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Abstract. The two, related notions of completeness in model theory are at the core of

many beautiful theorems. In this expository note, we exhibit the eponymous Completeness

Theorem (without proof) and briefly discuss its high-level meaning— which should be of

interest to any mathematician. From this and results about “complete theories,” we will

then easily deduce nontrivial results in graph theory, algebra, and geometry, all of whose

statements contain no obvious influence from logic! These include the De Bruijn-Erdős

theorem, the Noether-Ostrowski irreducibility criterion, and the Ax-Grothendieck theorem.

To make this accessible to mathematicians without any logic background, we will be spartan

with definitions and use blackboxes as-needed.

1. The Completeness Theorem

Many mathematicians without a background in logic are apprehensive of its notation

and/or subject matter. However, beginning with the statement of the Completeness Theorem

will elucidate exactly which ideas are necessary for us while also introducing today’s main

character. After stating the theorem, we will immediately unpack the terms in concrete ways

and see that it is hardly something to be apprehensive about! Seasoned logicians reading

this will have to forgive the informality of some definitions and theorem statements, which

will differ from convention in certain areas. That aside, we will be examining the following

theorem, first found in Gödel’s 1929 PhD thesis [6]:

Theorem 1.1 (Gödel’s Completeness Theorem). For a language L, a theory T, and a sen-

tence φ, there is a proof of φ from the axioms of T iff φ is true in any model of T.1

Let us concisely unpack what this means, before seeing examples of each notion. We first

need to formalize the mathematics we are talking about– to do this we introduce languages.

A language L is the union of three sets: one of function symbols F = {fi}, one of relation

symbols R = {Ri}, and one of constant symbols C = {ci}. For a particular f ∈ F or r ∈ R,

we call the number of its inputs its arity, and we allow relations to have an arity of 0.

Date: July 28, 2024.
1For proofs, one could see the original source [6], but significantly more concise and transparent proofs

were given later. Chang and Keisler [4] Chapter 2 gives a full proof.
1
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Further, if f ∈ F or r ∈ R has arity n ∈ Z≥0, then the domain is Cn and the codomain

is Cm (for some m ≥ 1) or {0, 1}, respectfully (the latter can be viewed as ‘false or true’).

A sentence φ is just some ‘meaningful,’ finite string of symbols from L and the following

collection of symbols:

=, {xn}n∈N︸ ︷︷ ︸
variables

, ¬, ∧, ∨, =⇒ ,︸ ︷︷ ︸
logical connectives

∃, ∀,︸ ︷︷ ︸
quantifiers

(, )︸︷︷︸
parentheses

,

where each variable appearing in φ must be bound (i.e. corresponding) to a quantifier, and

‘meaningful’ is in the sense of the math you already know from introductory proof classes

(‘∀x1 : x1 = x1’ is meaningful, but ‘)x1∃¬c1’ is not). We often add a colon ‘:’ for notational

clarity to say that quantification has ended, but it is not part of the language. Finally, given

a language L, a theory T is a set of sentences (dependent on L), often called axioms, and a

model M of T is a set such that φ ∈ T implies φ is true when quantified over M. We say T

proves a sentence φ if one can start with the axioms and arrive at φ after a finite number of

deductions– deductions simply of the kind you are used to in a proofs class.

For example, one could work in the language of groups: Lgrp := {×, ·−1} ∪ {1}, where we

use multiplicative notation and note that there are no relations. The function × has arity

2, while the function ·−1 has arity 1. Easy examples of sentences include the following:

∃x1∀x2 : x1 × x2 = x2︸ ︷︷ ︸
there exists an identity

or ∀x1, x2 : x1 × x2 = x2 × x1︸ ︷︷ ︸
the group is abelian

(1)

Clearly the first sentence is true for all groups, while the latter is only true for abelian

groups– but this is allowed (a ‘meaningful’ sentence has only to do with the sentence being

well-defined, not with its truthfulness). Further, the theory of groups is simply the axioms

you already know and love– associativity, the existence of an identity, and the properties

of inverses! Some models for this theory include (Z,+), (C, ·), or (S3, ·). Notice that if we

appended the second sentence in (1) as an axiom of our theory (thereby forming the theory

of abelian groups), (S3, ·) is no longer a model of this new theory.

This aside, what is Gödel’s Completeness Theorem saying? If one concedes that the

goal of mathematics is to find statements that are true, and prove that they are true, then

completeness says that this can always be done– the goal of mathematics is achievable! The

only catch here is that such statements are limited to sentences, as we have defined them,

whereas there are certainly mathematical theorems/properties that cannot be expressed this

way.2 Nonetheless, that even this nontrivial fragment of mathematical content is provably

2This is the limitation of model theory as given above– one can only quantify over sets (not functions, sets

of sets, etc.). Examples of properties that cannot be expressed as sentences include: that a group is torsion,

that a graph is connected, or that a ring is a PID. Whats known as “higher-order” logics can account for
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within the our grasp is something we often taken for granted. Indeed, many mathematicians

equivocate between truth and provability as desired, whereas these notions are connected via

Theorem 1.1 in a more nuanced way. If this quasi-philosophical content is not your favorite,

fear not– the rest of this note will not worry so much about interpreting Theorem 1.1, but

rather focus on applications it to areas of mathematics you likely already know and love!

What Theorem 1.1 implicitly suggests is a very interesting sort of mathematical theory–

one where we can equivocate between truth and provability. Thence will we call a theory T

complete if for all sentences φ written in the same language as T , T proves exactly one of

φ or ¬φ. For example, we already remarked that the theory of groups has models such as

(Z,+) where the sentence

∀x1, x2 : x1 × x2 = x2 × x1

is true, as well as models such as (S3, ·) where it is false. Hence the theory of groups cannot

prove this sentence or its negation and therefore, by Theorem 1.1, this theory is incomplete.

As nontrivial examples of complete theories, we give the following theorem which will be

needed in the next section:

Theorem 1.2. The theory of algebraically closed fields of fixed characteristic is complete.

To be concrete, this means that in the language of fields Lflds := {+,−,×, ·−1} ∪ {0, 1}
one can consider the theory of algebraically closed fields of characteristic p, denoted ACFp,

or characteristic 0, denoted ACF0. These theories are generated by the field axioms along

with a few others: for any n ∈ Z≥1, and regardless of characteristic, one adds the axiom

∀y1, . . . yn∃x : xn + ynx
n−1 + · · ·+ y2x+ y1 = 0︸ ︷︷ ︸

all polynomials of degree n have a root

,

then for ACFp one adds p · 1 = 0 and for ACF0 one adds the axioms ¬(p · 1 = 0) for all

primes p. There are two different proofs of Theorem 1.2, one model-theoretic due to Tarski

and one purely algebraic essentially due to Chevalley, that are both rather elementary and

short (< 1 page) using the right ideas.3 Despite their nature, either proof would lead us

astray of our goals, so we elect to simply blackbox Theorem 1.2 for later use.

As a final remark for the philosophically-inclined, the Completeness Theorem does not

contradict Gödel’s more famous Incompleteness Theorems, which, in colloquial terms, imply

this and have more expressibility, but are beyond our scope and the completeness theorem is generally not

true in that context.
3See Marker [8] Chapter 3 for the first and EGA IV [7] for the second. Notably, the second proof method by

Chevalley did not explicitly aim to prove such a result, but logicians later realized that his work immediately

implied something far stronger (quantifier elimination) when translated into a model-theoretic framework.

Expositions of this translation abound online.
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that there are ‘true’ statements about the theory of arithmetic in the natural numbers that

cannot be proven.4 Without getting into details, the nuance is that the ‘truthfulness’ of the

sentence given by Gödel’s Incompleteness Theorem is dependent on the model of the natural

numbers one considers. In the standard model of the natural numbers that you know and

love, the sentence is evidently true, whereas there is a model of natural numbers that has

nonstandard, infinite elements where the statement is false.5 Hence Theorem 1.1 implies

that such a sentence has no proof from the theory of arithmetic.

2. Applications to Graphs, Algebra, and Geometry.

In this section, we use Theorems 1.1 and 1.2 to arrive at some beautiful mathematical

theorems that prima facie have no connection to mathematical logic. The original proofs of

these theorems involved each required long page lengths and noteworthy mathematicians to

tackle– we will do it with relative ease!

v1

v2

v3 v4

Figure 1. A 4-

colorable graph.

A leitmotif is that applying Theorem 1.1 or 1.2 is

very similar to appealing to compactness from elementary

topology.6 In other words, a property expressed by a sen-

tence will often be true if and only if some ‘finitistic ver-

sion’ of this property is true for all finite subsets of our

structure. The proceeding subsections each give a short

lemma to make this precise, after which clever application

gives way to graph coloring, polynomial irreducibility, and

bijectivity criteria.

2.1. Graph Colorings. First, let us consider a (planar)

graph G consisting of a set of vertices V = {vn} and a set

of edges E = {en}. By a subgraph H ⊆ G, we mean some

subset of vertices V ′ ⊆ V along with the edges E ′ of E that

have both vertices in V ′. For fixed k ∈ Z≥1, a k-coloring

is a way to partition the vertices of the graph into k subsets, such that if two vertices are

connected by an edge, they are contained in different subsets. A famous theorem of Appel

4Logicians must forgive me the distinction between the theory of arithmetic and the Peano Axioms.
5This is related to the talk by Saúl Rodŕıguez Mart́ın several weeks back on the hyperreals, which can be

seen as an analogous nonstandard model of the theory of real closed fields.
6This resemblance is not merely superficial. Theorem 1.1 is equivalent to the topological compactness of

a particular Stone space defined via the sentences of L. See the expositions by Tao [12] or Pierce [11] for

more details.
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and Haken (proved in 1976 after 100+ years of failed attempts!) says that any planar graph

has a 4-coloring [2]. The following is related:

Theorem 2.1 (De Bruijn–Erdős, 1951; [5]). A graph G has a k-coloring if and only if any

finite subgraph H ⊂ G has a k-coloring.

To see that this theorem is a corollary of Theorem 1.1, we work with the following, equiv-

alent of Theorem 1.1. We will only prove one direction of this equivalence, since it is all we

need. Short as it may be, this will be the most logic-intensive proof of these notes and can

be skipped on first reading if desired.

Theorem 2.2 (The Compactness Theorem). Fix a language L and a theory T. If every

finite subset of T has a model, then so does T.

Proof. Fix a language L and theory T. Assuming that T does not have a model, then arguing

in a contrapositive fashion, it suffices to find a finite subset T0 ⊂ T that does not have a

model. First, notice that for any sentence φ, Theorem 1.1 says that the axioms of T must

prove φ since it is vacuously true in all models of T . Since this is true of ¬φ as well, T

proves a contradiction of the form φ∧¬φ.7 Proofs are finite, so only a finite subset T0 ⊂ T is

necessary for the proof of this contradiction. Thence, T0 can have no model, as desired. □

From here, it is very easy to prove Theorem 2.1. We prove it for graphs with countably-

many vertices to ease notation, but the proof works for graphs and hypergraphs of any

cardinality! Further, this exact proof technique can be applied to a wide variety of other

coloring-related questions [13].

Proof of Theorem 2.1. Fix k ∈ Z≥1 and a graph G = (V,E). One can associate the vertices

V with N without loss of generality, if desired. One direction is clear, and we prove the other

via contrapositive. Hence, assume G does not have a k-coloring. Our strategy here is to

create a theory that uniquely specifies G but falsely claims that it has a k-coloring. Then

Theorem 2.2 will do all the heavy lifting!

To this end, introduce a 2-ary relation R(x, y) and axioms such that R(m, k) = 1 if there

is an edge e ∈ E connecting vertices m and k, and 0 otherwise. This will uniquely identify

our graph G. Next, for all n ∈ V and i ∈ {1, . . . , k}, introduce 0-ary relations Rn,i and the

7Logicians may recognize this as one half of the Model Existence Theorem of Henkin, which is also

equivalent to the Completeness Theorem. Some reports claim that Henkin’s original proof came to him in a

dream [1].
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following axioms:

Rn,1 = 1 ∨ · · · ∨Rn,k = 1︸ ︷︷ ︸
All vertices have a color

∀i, j : (i ̸= j ∧Rn,i = 1) =⇒ Rn,j = 0︸ ︷︷ ︸
No vertex has two colors

Recall that 0-ary relations are simply saying something is “true” or “false,” so the subscripts

above are merely labels. Finally, for exactly the m, k ∈ V adjoined by an edge e ∈ E, add

∀i : Rm,i = 1 =⇒ Rk,i = 0︸ ︷︷ ︸
No connected vertices have the same color

to our axioms. Let T be the theory given by the above axioms for all n ∈ V and e ∈ E. Since

G has no k-coloring, T has no model. Theorem 2.2 then gives a finite subset T0 ⊂ T of this

theory that also has no model. Since T0 is finite, it only quantifies over finitely-many vertices

V0 ⊊ V . This naturally gives one a finite subgraph G0 ⊊ G formed with the vertices of V0

and the finitely-many edges of E with both vertices in V0. Since the axioms corresponding

to V0 have no model, there cannot be a k-coloring of G0. □

2.2. Algebra and Geometry. We continue the applications of model-theoretic complete-

ness in a new direction. So far, we have leveraged model theory and the Completeness

Theorem in the form of Theorem 2.2, but we have yet to invoke Theorem 1.2 or the idea of

complete theories at all. We will see that such theories often allow for the transference of

‘nice’ properties between models, or better yet, to models of another, closely-related theory.

Such a transference will allow us to prove the following theorems:

Theorem 2.3 (Noether-Ostrowski, 1922/19; [9],[10]). For a field K, let K denote an alge-

braic closure of K. Then f ∈ Z[x1, . . . , xn] is irreducible over Q if and only if f mod p is

irreducible over Fp for almost every prime p.

Theorem 2.4 (Ax-Grothendieck, 1968/66; [3],[7]). If a polynomial mapping f = (f1, . . . , fn) :

Cn → Cn is injective, then it is also surjective.8

The completeness-infused lemma we will need is the following to prove these is as follows:

Lemma 2.5 (The Lefschetz Principle). Let Lflds be the language of fields and φ be a sentence.

The following are equivalent:

(1) φ is true in some algebraically closed field of characteristic 0,

8One can use the same proof methods here to generalize this significantly to endomorphisms of algebraic

varieties over algebraically closed fields, for the geometrically inclined.
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(2) φ is true in all algebraically closed fields of characteristic 0,

(3) φ is true in some algebraically closed fields of characteristic p, for all large p,

(4) φ is true in all algebraically closed fields of characteristic p, for all large p.

Proof. Notice that (1) ⇐⇒ (2) and (3) ⇐⇒ (4) are both immediate from Theorems 1.1

and 1.2. This is the upshot of having a complete theory- since there is a proof of exactly one

of φ or ¬φ, if φ is true in one model, it must be that φ is true for all models.

Hence it suffices to prove (2) ⇐⇒ (4). Suppose φ is true in all algebraically closed fields

of characteristic 0. Theorem 1.1 then gives that ACF0 proves φ. Since proofs are finite, only

finitely-many of the axioms ¬(p · 1 = 0) are needed to prove φ, so φ is provable with ACFp

for all large p. By Theorem 1.1, this gives (4). The mapping φ 7→ ¬φ gives the converse. □

Proof of Theorem 2.3. Fix f ∈ Z[x1, . . . , xn]. Observe that f is irreducible if and only if

it cannot be written as a product of two polynomial of degree less than deg f := k whose

degrees add to k. Hence the irreducibility of f is expressed by the sentence

∀a1, . . . , a2k : (a2kxk + · · ·ak+2x+ ak+1)(akx
k + · · · a2x+ a1) = f

=⇒ (a2k = · · · = ak+2 = 0 ∨ ak = · · · = a2 = 0)

Lemma 2.5 then immediately gives the desired conclusion. □

Proof of Theorem 2.4. Let n, k ∈ Z≥1 be arbitrary and fixed. It is easy, albeit tedious, to

see that the statement “every injective polynomial map in n coordinates with degree ≤ k is

surjective” can be written as a sentence and we leave it as an exercise. Call this sentence

φn,k. By Lemma 2.5, if we prove that φn,k holds over Fp for all large p, we are done.

Hence, for p prime, suppose that f : Fp
n → Fp

n
is injective with deg f ≤ k. A result from

undergraduate algebra says that Fp =
⋃

ℓ∈Z≥1
Fpℓ . Since f has only finitely many coefficients,

this implies that f ∈ Fpm [x1, . . . , xn] for some m ∈ Z≥1. Hence for ℓ ≥ m, the restriction

f : Fpℓ → Fpℓ is injective, and since Fpℓ is finite, this restriction is automatically surjective.

Since ℓ ≥ m was arbitrary, the statement remains true for Fp =
⋃

ℓ∈Z≥1
Fpℓ , as desired.

9 □

9It is of note that φn,k has quantifiers of the form ∀x1, . . . , xm∃xm+1, . . . , xm+p, and any sentence of this

kind satisfies something stronger than Lemma 2.5– we leave this as a challenge to the reader. Showing this

would effectively eliminate the second paragraph of the proof of Theorem 2.4.
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