What is Sharkovsky's Theorem, or
why does period 3 imply chaos?
Dhows Gael
Doff. A discrete dynamical system (oDS) is a pair $(S, f$), where S is a $S e t$ \& $f: S \rightarrow S$ - functia

For each $n \geqslant 0$, define $n^{\text {th }}$ iterali f^{n} of f by $f^{0}=$ ids $t f^{n+1}=$ fo f^{n} firn $\geqslant 0$.
Given $x \in S$, define the forward orbit \mathcal{O}_{x} of x by $\mathcal{O}_{x}:=\left\{f^{n} x: n \geqslant 0\right\} \subseteq S$, and the set $\operatorname{Per}(x)$ of $\operatorname{periods}$ of x by $\operatorname{Per}(x):=\left\{n: f^{n} x=x\right\} \subseteq{ }^{\pi} \geqslant 1$.
We say that $x \in S$ is
i) periodic iff $\operatorname{Per}(x) \neq \varnothing$. The least period of x is $L P(x):=\min \operatorname{Par}(x)$. If $L P(x)=n \geqslant 1$, then $P_{2 r}(x)=n \mathbb{Z} 1$.
ii) preperiodic iff O_{x} is finite $\Leftrightarrow \exists n \geqslant 0$ s.t. f^{n} is periodic.
iii) wandering iff O_{x} is infinite.
D. fine the set of least periods to be $L P(f):=\bigcup_{\substack{x \in S \\ \text { periodic }}} L P(x) \subseteq Z \geqslant 1$.

Goal: Given DDS, Study iterates $f^{n} \& L P(f)$. periodic
eg. $L P(f) \neq \varnothing \Leftrightarrow$ them is a periodic μt
$1 \in L P(f) \leftrightarrow f$ has a fixed pt etc.

Rok 2. Usually, a $\operatorname{DDS}(s, f)$ has more structure eg. S is a top. space ℓf cts or S is a measure space e f measure preserving or for some Category C, we have $S \in O b(e) ~ P f \in E_{n} e^{(S)=\operatorname{Mor}_{e}(S, s) \text {. }}$

Now: focus on $S=[0,1]$ \& $f:[0,1] \longrightarrow[0,1]$ continuous ($=$ cts.)
Q. What are possible $L P(f)$ for cts $f:[0,1] \rightarrow[0,1]$?

Eg. Intermediate Value Thu (IVT) $\Rightarrow 1 \in L P(f)$. (Sec below.)
Conventia 3. An interval is a nonemply closed interval $\subset \mathbb{R}$, ie. a set $[a, b]=\{x: a \leq x \leq b\} \subset \mathbb{R}$ for $a, b \in \mathbb{R}\{a \leq b$. In particular, the singleton $\{x\}=[x, x]$ for $x \in \mathbb{R}$ is allowed.

Example 4.
(1) $f(x)=x$. Every x is a fixed pt $\& L P(f)=\{1\}$.
(2) $f(x)=x^{2}$. For $x \in[0,1], x$ is per. \Leftrightarrow proper. \Leftrightarrow fixed $\Leftrightarrow x \in\{0,1\}$. In this case, $L P(f)=\{1\}$.
Similarly, $f(x)=x^{m}, m \in \mathbb{Z} 2$.
(3) $f(x)=1-x$. Every pt is periodic with least period $2, \operatorname{excep} \tau x=1 / 2$, which is a fixed pt $\therefore L P(f)=\{1,2\}$.
(4) $f(x)=\left\{\begin{array}{ll}1-x, & x \in[0,1 / 3] \\ 4 / 3-2 x, & x \in[4 / 2 / 3] \\ x-2 / 3, & x \in[2 / 3,1] .\end{array}\right.$ Th
(5) $f(x)= \begin{cases}2 x, & x \in[0,1 / 2] \\ 2-2 x, & x \in[1 / 2,1] .\end{cases}$

Then $2 / 9<\frac{\Delta}{\sim} / 9 / 9 \rightarrow 3 \in L p(f)$.
In $f_{a}(t) L P(f)=\mathbb{Z}_{31}$ a the Set of all
 wandering pto $C[0,1]$ is uncountable 4 dense: chars!

The 5. (Sharkovsky, 1964-65) If $f:[0,1] \rightarrow[0,1]$ is cts, thin

$$
3 \in L P(f) \Rightarrow L P(f)=\mathbf{Z}_{Z 1} .
$$

Rok 6. This is not true in other Contexts, eg. if $S=[0,1]^{2}$ or $S=S^{1}$
The key input is the intermediate value The: \quad g. $z \mapsto e^{2 \pi i / 3}$.
Thm7. (Intermediale Value The / IVT)
$c \in[\min \{f(a), f(b)\}$, $\max \{f(c), f(b)\}]$
If $f:[a, b]+R$ is cts \& $c \in R$ between $f(a): f(b)$, then $\exists x \in[a, b]$ s $f(x)=c$.
Poor hm 5 . Let $f:[0,1] \rightarrow[0,1]$ be cts.
Step. If $I, I^{\prime} \subseteq[0,1]$ intervals $s t ~ f(I) \supseteq I^{\prime}$, then \exists interval

$$
J \subseteq I \text { st } f(J)=I
$$

if. Let $I^{\prime}=[c, d]$. If $c=d$, done. Else, $c<d$.
Pick $a, b \in I$ st $f(a)=c \& f(b)=d$.
Suppose $a<b$; other case is Similar.
Then $p:=\sup (\underbrace{\left.f^{-1}(c) \cap[a, b]\right) \in f^{-1}(c) \cap[a, b) \text {, }}_{\text {closed, bounder }}$
$\underset{\sim}{-c \text { closed, bounded, }}$ nonemplij.
and $q:=\inf \left(f^{-1}(d) \cap[p, b]\right) \in f^{-1}(d) \cap(p, b]$.
Claim: $J=[p, q]$ works.
Well, $f(J) \supseteq I^{\prime}$ by IVT (Chm 7).
If $\exists y \in J$ st $f(y) \notin I^{\prime}$, then lither $f(y)<c$ or $f(y)>d$.

If $f(y)<c$, then $y>p \&$ by $\operatorname{IVT}, \exists p^{\prime} \in[y, b]$ st $f\left(p^{\prime}\right)=c$, contradiction $1:$ choice of p. If $f(y)>d$, then $y<q \in$ by $I V T, \exists q^{\prime} \in[p, y]$ st $f\left(q^{\prime}\right)=d$, contradiction $1: p$ choicoof9
Similarly, if $a>b$, take $p:=\sup f^{-1}(d) \cap[b, a]+q:=\inf f^{-1}(c) \cap[p, a]$.

Step 2. If $I \subseteq[0,1]$ interval s.t. $f(I) \supseteq I$, then $\exists x \in I$ st $f(x)=x$.
Pf. Say $I=[c, d] \&$ let $a, b \in I$ st $f(a)=c \& f(b)=d$. The.. $f(a)-a \leq 0 \leq f(b)-b$, so by IVT applied to $g(x)=f(x)-x$.
Step ${ }^{3}$. For any integer $n \geqslant 1$, if $I_{0}, \ldots, I_{n-1} \&[0,1]$ intervals s.t. if $I_{n}:=I_{0}$ then for all $j=0,1, \ldots, n-1$ have $f\left(I_{j}\right) \geq I_{j+1}$,
then $\exists x \in I$ st $f^{n}(x)=x$ and $f^{j}(x) \in I_{j}$ for $j=0,1, \ldots, n-1$.
Pf. Set $J_{n}:=I_{0}$. By Step $1, \exists J_{n-1} \subseteq I_{n-1}$ st $f\left(J_{n-1}\right)=J_{n}$. Then $\exists J_{n-2} \subseteq I_{n-1}$ st $f\left(J_{n-2}\right)=J_{n-1}$. Inductively, \exists intervals $J_{0}, \ldots, J_{n-1} \subseteq[0,1]$ st $\forall j \in\{0,1, \ldots, n-1\}$, have $f\left(J_{j}\right)=J_{j+1}$.
Then $\forall j \in\{0, \ldots, n\}$, we have $f^{j}\left(J_{0}\right)=J_{j} \therefore f^{n}\left(J_{0}\right)=J_{n}=I_{0} \supseteq J_{0}$.
\therefore By step $2, \exists x \in J_{0}$ st $f^{n}(x)=x$. Then ale. $f^{j}(x) \in f^{j}\left(J_{0}\right)=J_{j} \subseteq I_{j}$ $\forall j \in\{0, \ldots, n-1\} . \square$
Step 4. Main proof. Suppose 3-cycle $a<b<c_{K_{0}}$ Then 2 cases
(A)

OR (B)

Let K_{0}, K_{1} be intervals as indicated, so by $\operatorname{IVT}\left(T_{\mathrm{Tm}} 7\right.$) we have

$$
f\left(K_{0}\right) \supseteq[a, c] \supseteq K_{0}, K_{1} \text { and } f\left(K_{1}\right) \supseteq K_{0} \text {. }
$$

We know $1 \in L P\left(f 1\right.$ by step 2 applied to K_{0}.
For $n=2$, take $I_{0}=K_{0} \& I_{1}=K_{1}$. By step 3, $\exists x \in K_{0}$ st $f^{2}(x)=x$.
if $f(x)=x$, then $x \in K_{0} \cap K_{1}=\{b\}$, but thin $c=f(b) \neq b$, contradiction.
Therefore, $f(x) \notin x$ \& So $2 \in L P(f)$.
The case $n=3$ is give.. For $n \geqslant 4$, we will produce $x \in I$ st $L P(x)=n$.

Take $I_{0}=I_{1}=\ldots=I_{n-2}=K_{0}+I_{n-1}=K_{1}$. By step 3, $\exists x \in K_{0}$ st $f^{n}(x)=x$ and $x_{1} f(x), \ldots, f^{n-2}(x) \in K_{0}$ while $f^{n-1}(x) \in K_{1}$.
Claim: $L P(x)=n$.
Pf. If not, $\exists k: 1 \leq k \leq n-1 * f^{k}(x)=x$. Them

$$
\begin{aligned}
& \text { ot, } \exists k: 1 \leq k \leq n-1 \& f^{*}(x)=x \text {. Then } \\
& f^{n-1}(x)=f^{n-k-1} \circ f^{k}(x)=f^{n-k-1}(x) \in K_{0}=\{b\}
\end{aligned}
$$

$\ln (A), g e t x=f \cdot f^{n-1}(x)=f(b)=c$ \& then $f(x)=a \notin K_{0}$, contradiction.
$\ln (B)$ get $x=f(b)=a \&$ thin $f(x)=c \notin k_{b}$, a contradictia.
In fact, there is a complete answer to the motivating question.
Def 8. The Sharkovsky order is the total order an $Z_{\geqslant 1}$ given as $3 \triangleright 5 \triangleright 7 \triangleright \ldots \triangleright 2.3 \triangleright 2.5 \triangleright 2.7 \triangleright \ldots \triangleright 2^{2} \cdot 3 \triangleright 2^{2} \cdot 5 \nabla 2^{2} \cdot 7 \nabla \ldots \nabla 2^{3} \triangleright 2^{2} \nabla 2 \nabla 1$.
A tail of the Sharkousky order is a nonemply subset $T C \mathbb{Z}_{\geqslant 1}$ s.t. if $a, b \in \mathbb{Z}_{\geq 1}$, then $a \in T$ and $a \nabla b \Rightarrow b \in T$.
oleksandr Mykalayovich
The 5^{\prime} (Sharkovsky, 1964-65). If $f:[0,1] \rightarrow[0,1]$ is cts., then $L P(f)$ is a tail of the Sharkovsky order.
Conversely, if $T \subset \mathbb{Z} \geqslant 1$ is atail of the sharkovsky order, then \exists ets. $f:[0,1] \rightarrow[0,1]$ st $T=\operatorname{LP}(f)$.

Tien-Yien, James A.
Thin 9. (Li-Yorke, 1975) If $f:[0,1] \rightarrow[0,1]$ cts $\& 3 \in L P(f)$ then f is chaotic i.e. $L P(f)=\mathbb{Z}_{21}$ and the set $W \subset[0,1]$ of wandering pts is uncountable $\&$ dense.

History:
a)Coppel, 1955. If $L P \not \geqslant\{1\}$, then $2 \in L P(f)$.
b) Sharkovsky, '64-65. (Uk. Math. Journal)
c) Li-Yorke, '75. (American Math. Monthly).
d) Yorke attended a Conference in East Berlin \& during a Cruise, a Ukrainian participant approached him, who managed 10 Convey (with the help of translation) that he had proved it already. This was Sharkovsky.
Lit Yorkie's article introduced the notion of chaos" and eventually led li: global recognition of Sharkowsky's work.

Source:
Burns-Hasselbatt, "The Sharkovsky Theorem: A Natural Direct". Proof:" The American Math. Monthly, Vol. 118, 2011, IsSue 3, PP-229-244. Also. available at https://math.arizona.edu/~dwang/BurnsHasselblattRevised-1.pdf

