2025 Rasor-Bareis examination problems

1. Prove that $n = \underbrace{100...00}_{2024}$ is not prime.

2. Evaluate
$$\int_{-1}^{1} \frac{dx}{(e^x+1)(x^2+1)}$$
.

3. Prove that for every positive integer n, the number $\sqrt[n]{\sqrt{3} + \sqrt{2}} + \sqrt[n]{\sqrt{3} - \sqrt{2}}$ is irrational.

4. Let $f: (0, \infty) \longrightarrow (0, \infty)$ be an increasing function (meaning that x < y implies $f(x) \le f(y)$) satisfying $\lim_{x \to \infty} \frac{f(2x)}{f(x)} = 1$. Prove that $\lim_{x \to \infty} \frac{f(cx)}{f(x)} = 1$ for any c > 0.

5. The points of \mathbb{R}^2 are colored in two colors. Prove that there exists a triangle whose sides have lengths $1, \sqrt{3}, 2$ and whose vertices have the same color.

6. Let P be an equiangular polygon (meaning that all the angles of P are equal) and let x be a point inside P. Prove that the sum of the distances from x to the lines containing the sides of P doesn't depend on the choice of x.