
Solutions to 2025 Rasor-Bareis examination problems

1. Prove that n = 100 . . . 00
︸ ︷︷ ︸

2024

1 is not prime.

Solution. Using the identity x3 + 1 = (x + 1)(x2 − x + 1), we have n = 102025 + 1 = (10675)3 + 1 =
(10675 + 1)

(
(10675)2 − 10675 + 1

)
.

Another solution. Using the identity xd + 1 = (x + 1)(xd−1 − xd−2 + · · · − x + 1) for odd d, we have
n = 102025 + 1 = (10 + 1)

(
102024 − 102023 + · · · − 10 + 1

)
= 11 · 9090 · · · 09

︸ ︷︷ ︸

2023

1

Yet another solution. We claim that n is divisible by 7. Indeed, 106 = 1mod 7 (by the little Fermat’s
theorem, or by a direct computation: 10 = 3mod 7, 102 = 9 = 2mod 7, 106 = 8 = 1mod 7). Hence,
102025 = 10337·6+3 = 103 = 27 = −1mod 7, so n = 102025 + 1 = 0mod 7.

2. Evaluate

∫ 1

−1

dx

(ex + 1)(x2 + 1)
.

Solution. Let f(x) = 1
(ex+1)(x2+1) , x ∈ R, then f(−x) = 1

(e−x+1)(x2+1) = ex

(1+ex)(x2+1) , so f(x) + f(−x) =
1+ex

(ex+1)(x2+1) =
1

(x2+1) . Put I =
∫ 1

−1
f(x) dx, then also I =

∫ 1

−1
f(−x) dx, so

2I =

∫ 1

−1

(f(x) + f(−x)) dx =

∫ 1

−1

dx

1 + x2
= arctanx

∣
∣
1

−1
= π/2,

and I = π/4.

3. Prove that for every positive integer n, the number
n

√√
3 +

√
2 +

n

√√
3−

√
2 is irrational.

Solution. We claim that for every n ∈ N there is a polynomial pn with integer coefficients such that
xn + x−n = pn(x+ x−1). Indeed, this is true for n = 1, and from the identity

xn+1 + x−(n+1) = (xn + x−n)(x+ x−1)− (xn−1 + x−(n−1))

we have that pn+1 = pnp1 − pn−1 for all n ≥ 2 by induction.

Let a =
n

√√
3 +

√
2; since

√
3−

√
2 = 3−2√

3+
√
2
= (

√
3+

√
2)−1, we have

n

√√
3−

√
2 = a−1. Since pn(a+a−1) =

an + a−n = 2
√
3 is irrational, a+ a−1 is irrational.

4. Let f : (0,∞) −→ (0,∞) be an increasing function (meaning that x < y imlpies f(x) ≤ f(y)) satisfying

lim
x→∞

f(2x)
f(x) = 1. Prove that lim

x→∞

f(cx)
f(x) = 1 for any c > 0.

Solution. By induction on n, lim
x→∞

f(2nx)
f(x) = 1 for all n ∈ N. Indeed, if this is true for some n, then

lim
x→∞

f(2n+1x)

f(x)
= lim

x→∞

(f(2n+1x)

f(2nx)
· f(2

nx)

f(x)

)

= lim
x→∞

f(2n+1x)

f(2nx)
· lim
x→∞

f(2nx)

f(x)
= lim

y→∞

f(2y)

f(y)
· 1 = 1.

Now, let c > 0. If c ≥ 1, let n ∈ N be such that 2n ≥ c; then we have f(x) ≤ f(cx) ≤ f(2nx) for all x > 0,

lim
x→∞

f(x)
f(x) = lim

x→∞

f(2nx)
f(x) = 1, so lim

x→∞

f(cx)
f(x) = 1 by the squeeze theorem. If 0 < c < 1, then with y = cx,

lim
x→∞

f(cx)

f(x)
= lim

y→∞

f(y)

f(c−1y)
=

(

lim
y→∞

f(c−1y)

f(y)

)−1

= 1

since c−1 > 1.
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5. The points of R2 are colored in two colors. Prove that there exists a triangle whose sides have lengths
1,
√
3, 2 and whose vertices have the same color.

Solution. Firstly, we claim that there are two points of the same color of
distance 2 of each other. Indeed, if this is not so, choose any point A, then all
points on the circle S of radius 2 centered at A are colored differently from A
and clearly there are two points on S of distance 2 from each other.

Abb 2

b
b2

Now, assume that such a triangle doesn’t exist. Choose two points A and D
of the same color with |AD| = 2 and consider the regular hexagon ABCDEF .
If at least one of the points B, C, E, F has the same color as A and D, then
A, D and that point form the required triangle; if not, then, say, the triangle
BFE has side lengths 1,

√
3, 2.
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6. Let P be an equiangular polygon (meaning that all the angles of P are equal) and let x be a point inside
P . Prove that the sum of the distances from x to the lines containing the sides of P doesn’t depend on the
choice of x.

Solution. The problem is easy if the polygon P is regular. In this case the
triangles formed by the sides of P and the point x have base a, the distances
h1, . . . , hn from x to the sizes of P are the heights of these triangles, so the sum
S = 1

2a(h1 + · · · + hn) of the areas of these triangles is the total area of P , and
the sum h1 + · · ·+ hn = 2S/a doesn’t depend on the choice of x.
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Now, the general case can be reduced to the case of a regular polygon as follows.
Place P inside a regular polygon P ′ with the same number n of sides, the same
angles π(1 − 2/n) as P , and with sides parallel to the corresponding sides of
P . For each side si, i = 1, . . . , n, of P let di be the distance between si and
the corresponding side s′i of P

′; then the distance between x and s′i equals the
distance between x and si plus di. Thus the sum of the distances between x
and all sides of P is equal to the sum of the distances between x and all sides
of P ′ minus the sum d1 + · · ·+ dn, and is therefore independent of x.
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Another solution. Let’s introduce Cartesian coordinates on the plane. Let x and y
be two points inside P , let v be the vector y − x. For every i = 1, . . . , n (where n is
the number of sides of P ) let ui be the unit vector orthogonal to the ith side si of P
and directed inside P ; then dist(y, si) = dist(x, si) + v · ui. Hence,

n∑

i=1

dist(y, si) =

n∑

i=1

dist(x, si) +

n∑

i=1

v · ui =

n∑

i=1

dist(x, si) + v ·
n∑

i=1

ui.

The vector u =
∑n

i=1 ui is invariant under the rotation of the plane by the angle of
2π/n (such a rotation simply permutes the vectors u1, . . . , un), hence, u = 0. Thus,
∑n

i=1 dist(y, si) =
∑n

i=1 dist(x, si).
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