Solutions to 2025 Rasor-Bareis examination problems

1. Prove that n = 100...001 is not prime.

Solution. Using the identity $x^3 + 1 = (x + 1)(x^2 - x + 1)$, we have $n = 10^{2025} + 1 = (10^{675})^3 + 1 = (10^{675} + 1)((10^{675})^2 - 10^{675} + 1)$.

Another solution. Using the identity $x^d + 1 = (x+1)(x^{d-1} - x^{d-2} + \dots - x + 1)$ for odd d, we have $n = 10^{2025} + 1 = (10+1)(10^{2024} - 10^{2023} + \dots - 10 + 1) = 11 \cdot 9090 \cdots 091$

2023

Yet another solution. We claim that n is divisible by 7. Indeed, $10^6 = 1 \mod 7$ (by the little Fermat's theorem, or by a direct computation: $10 = 3 \mod 7$, $10^2 = 9 = 2 \mod 7$, $10^6 = 8 = 1 \mod 7$). Hence, $10^{2025} = 10^{337\cdot6+3} = 10^3 = 27 = -1 \mod 7$, so $n = 10^{2025} + 1 = 0 \mod 7$.

2. Evaluate $\int_{-1}^{1} \frac{dx}{(e^x+1)(x^2+1)}$.

Solution. Let $f(x) = \frac{1}{(e^x+1)(x^2+1)}, x \in \mathbb{R}$, then $f(-x) = \frac{1}{(e^{-x}+1)(x^2+1)} = \frac{e^x}{(1+e^x)(x^2+1)}$, so $f(x) + f(-x) = \frac{1+e^x}{(e^x+1)(x^2+1)} = \frac{1}{(x^2+1)}$. Put $I = \int_{-1}^1 f(x) \, dx$, then also $I = \int_{-1}^1 f(-x) \, dx$, so

$$2I = \int_{-1}^{1} (f(x) + f(-x)) \, dx = \int_{-1}^{1} \frac{dx}{1 + x^2} = \arctan x \Big|_{-1}^{1} = \pi/2,$$

and $I = \pi/4$.

3. Prove that for every positive integer n, the number $\sqrt[n]{\sqrt{3}+\sqrt{2}} + \sqrt[n]{\sqrt{3}-\sqrt{2}}$ is irrational.

Solution. We claim that for every $n \in \mathbb{N}$ there is a polynomial p_n with integer coefficients such that $x^n + x^{-n} = p_n(x + x^{-1})$. Indeed, this is true for n = 1, and from the identity

$$x^{n+1} + x^{-(n+1)} = (x^n + x^{-n})(x + x^{-1}) - (x^{n-1} + x^{-(n-1)})$$

we have that $p_{n+1} = p_n p_1 - p_{n-1}$ for all $n \ge 2$ by induction. Let $a = \sqrt[n]{\sqrt{3} + \sqrt{2}}$; since $\sqrt{3} - \sqrt{2} = \frac{3-2}{\sqrt{3} + \sqrt{2}} = (\sqrt{3} + \sqrt{2})^{-1}$, we have $\sqrt[n]{\sqrt{3} - \sqrt{2}} = a^{-1}$. Since $p_n(a+a^{-1}) = a^n + a^{-n} = 2\sqrt{3}$ is irrational, $a + a^{-1}$ is irrational.

4. Let $f:(0,\infty) \longrightarrow (0,\infty)$ be an increasing function (meaning that x < y imprises $f(x) \le f(y)$) satisfying $\lim_{x\to\infty} \frac{f(2x)}{f(x)} = 1$. Prove that $\lim_{x\to\infty} \frac{f(cx)}{f(x)} = 1$ for any c > 0.

Solution. By induction on n, $\lim_{x\to\infty} \frac{f(2^n x)}{f(x)} = 1$ for all $n \in \mathbb{N}$. Indeed, if this is true for some n, then

$$\lim_{x \to \infty} \frac{f(2^{n+1}x)}{f(x)} = \lim_{x \to \infty} \left(\frac{f(2^{n+1}x)}{f(2^nx)} \cdot \frac{f(2^nx)}{f(x)} \right) = \lim_{x \to \infty} \frac{f(2^{n+1}x)}{f(2^nx)} \cdot \lim_{x \to \infty} \frac{f(2^nx)}{f(x)} = \lim_{y \to \infty} \frac{f(2y)}{f(y)} \cdot 1 = 1.$$

Now, let c > 0. If $c \ge 1$, let $n \in \mathbb{N}$ be such that $2^n \ge c$; then we have $f(x) \le f(cx) \le f(2^n x)$ for all x > 0, $\lim_{x \to \infty} \frac{f(x)}{f(x)} = \lim_{x \to \infty} \frac{f(2^n x)}{f(x)} = 1$, so $\lim_{x \to \infty} \frac{f(cx)}{f(x)} = 1$ by the squeeze theorem. If 0 < c < 1, then with y = cx,

$$\lim_{x \to \infty} \frac{f(cx)}{f(x)} = \lim_{y \to \infty} \frac{f(y)}{f(c^{-1}y)} = \left(\lim_{y \to \infty} \frac{f(c^{-1}y)}{f(y)}\right)^{-1} = 1$$

since $c^{-1} > 1$.

5. The points of \mathbb{R}^2 are colored in two colors. Prove that there exists a triangle whose sides have lengths $1, \sqrt{3}, 2$ and whose vertices have the same color.

Solution. Firstly, we claim that there are two points of the same color of distance 2 of each other. Indeed, if this is not so, choose any point A, then all points on the circle S of radius 2 centered at A are colored differently from A and clearly there are two points on S of distance 2 from each other.

Now, assume that such a triangle doesn't exist. Choose two points A and D of the same color with |AD| = 2 and consider the regular hexagon ABCDEF. If at least one of the points B, C, E, F has the same color as A and D, then A, D and that point form the required triangle; if not, then, say, the triangle BFE has side lengths $1,\sqrt{3}, 2$.

6. Let P be an equiangular polygon (meaning that all the angles of P are equal) and let x be a point inside P. Prove that the sum of the distances from x to the lines containing the sides of P doesn't depend on the choice of x.

Solution. The problem is easy if the polygon P is regular. In this case the triangles formed by the sides of P and the point x have base a, the distances h_1, \ldots, h_n from x to the sizes of P are the heights of these triangles, so the sum $S = \frac{1}{2}a(h_1 + \cdots + h_n)$ of the areas of these triangles is the total area of P, and the sum $h_1 + \cdots + h_n = 2S/a$ doesn't depend on the choice of x.

Now, the general case can be reduced to the case of a regular polygon as follows. Place P inside a regular polygon P' with the same number n of sides, the same angles $\pi(1-2/n)$ as P, and with sides parallel to the corresponding sides of P. For each side s_i , i = 1, ..., n, of P let d_i be the distance between s_i and the corresponding side s'_i of P'; then the distance between x and s'_i equals the distance between x and s_i plus d_i . Thus the sum of the distances between x and all sides of P is equal to the sum of the distances between x and all sides of P' minus the sum $d_1 + \cdots + d_n$, and is therefore independent of x.

Another solution. Let's introduce Cartesian coordinates on the plane. Let x and y be two points inside P, let v be the vector y - x. For every i = 1, ..., n (where n is the number of sides of P) let u_i be the unit vector orthogonal to the *i*th side s_i of P and directed inside P; then dist $(y, s_i) = \text{dist}(x, s_i) + v \cdot u_i$. Hence,

$$\sum_{i=1}^{n} \operatorname{dist}(y, s_i) = \sum_{i=1}^{n} \operatorname{dist}(x, s_i) + \sum_{i=1}^{n} v \cdot u_i = \sum_{i=1}^{n} \operatorname{dist}(x, s_i) + v \cdot \sum_{i=1}^{n} u_i$$

The vector $u = \sum_{i=1}^{n} u_i$ is invariant under the rotation of the plane by the angle of $2\pi/n$ (such a rotation simply permutes the vectors u_1, \ldots, u_n), hence, u = 0. Thus, $\sum_{i=1}^{n} \operatorname{dist}(y, s_i) = \sum_{i=1}^{n} \operatorname{dist}(x, s_i)$.

