| OSU
CYCLE
DEPARTMENT OF
MATHEMATICS | _ | erspective on $\mathbb{Z} imes \mathbb{F}$ (supervisor: Annette Karrer) | Δ | $Cay(W_{\Delta})$ | Car | $y(A_{\Delta})$ | \mathbb{R}^2 | |---|---|--|----------|--|------------|-------------------------|--------------------------------------| | Question: How are $\operatorname{Sal}(A_\Delta)$ and $\operatorname{Dav}(W_\Delta)$ related? $\Delta \coloneqq (V, E) \text{ graph (triangle - free)}$ Right Angled Artin Group: A_Δ $A_\Delta \coloneqq \langle V uv = vu \ \forall \{u, v\} \in E \rangle$ Right Angled Coxeter Group: W_Δ $W_\Delta \coloneqq \langle V uv = vu \ \forall \{u, v\} \in E, v^2 = id \forall v \in V \rangle$ | | | | - | | $T_4 \times \mathbb{R}$ | | | Cayley graph of A_{Δ} and W_{Δ} vertices: group elements; edges: connect g and h if $h=gv$ for some $v\in V$ Salvetti complex $\mathrm{Sal}(A_{\Delta})$ and Davis complex $\mathrm{Dav}(W_{\Delta})$ square complex obtained by gluing in squares into the corresponding Cayley graph whenever possible $\underline{\mathrm{Def:}}$ An n -scaled Davis complex is obtained from $\mathrm{Dav}(W_{\Delta})$ by scaling each edge in $\mathrm{Dav}(W_{\Delta})$ by n . | | | H | The proj T_4 are bi | | Section 2 | e projections onto are finite paths. | | Observation: 1) for every n ∈ N, Sal(A_Δ) contains an n-scaled Davis complex of W_Δ. 2) Any two vertices in Sal(A_Δ) are contained in an n-scaled Davis complex of W_Δ. | | | sc
wi | plored regions are nated Dav(W_{Δ}) athin Sal(A_{Δ}) for Δ chael W. Davis. The geometry and topology of Conduction to modern mathematics, volume 33 on M.M., pages 129-142, Int. Press, Somerville, MA. 2 | n=2
n=3 | 2 | |