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Background

This semester emphasized how algebraic structures (fields, groups, and their
categorical generalizations) underpin classical problems, demonstrating the
power of abstraction in unifying seemingly disparate mathematical ideas.
Through this framework, we connected theoretical constructs like minimal
polynomials and composition series to profound results such as the unsolv-
ability of higher-degree equations.

Fields

Definition 1 A field is a set F equipped with two operations, addition and
multiplication, such that:

• Addition is associative: pa ` bq ` c “ a ` pb ` cq

• Multiplication is associative: pabqc “ apbcq

• Addition is commutative: a ` b “ b ` a

• Multiplication is commutative: ab “ ba

• There is a unit, 1, satisfying: 1 ¨ a “ a ¨ 1 “ a

• There is a zero, 0, satisfying: 0 ` a “ a ` 0 “ a

• There are inverses: for all a ‰ 0, there is an element a´1 satisfying a´1
¨a “ 1

• There are negatives: for all a, there is an element ´a satisfying a` p´aq “ 0

• The distributive law holds: apb ` cq “ ab ` ac for all a, b, c P F .

Example 2

• rational numbers Q
• real numbers R
• complex numbers C are fields.

• rational functions (eg things in the form x2`4x`3
2x´10 )

• finite fields (eg, F5 “ t0, 1, 2, 3, 4u with multiplication and addition mod 5)

• The integers Z do not form a field because not all nonzero elements have
multiplicative inverses.

Definition 3 The minimal polynomial of an algebraic element α over a field
F is the unique polynomial ppxq with leading coefficient 1 of the lowest degree
such that ppαq “ 0.

Example 4 Examples of things like
?
2, i, 3

?
2, ζ (which solves something like

x2 ` x ` 1 or also x3 ´ 1)

• The minimal polynomial of
?
2 over Q is x2 ´ 2.

• The minimal polynomial of i (where i2 “ ´1) over Q is x2 ` 1.

• The minimal polynomial of ζ (a primitive third root of unity) over Q is x2 `

x ` 1, since ζ satisfies x3 ´ 1 “ px ´ 1qpx2 ` x ` 1q.

Definition 5 The splitting field of a polynomial is the smallest field contain-
ing all its roots, over which the polynomial factors completely into linear terms.

Example 6 The roots of x3 ´ 2 are:
3

?
2,

3
?
2ζ,

3
?
2ζ2

The field Qp
3

?
2q contains only the real root 3

?
2, but not the complex roots ζ 3

?
2

and ζ2 3
?
2. To include the complex roots, we must adjoin ζ to Qp

3
?
2q, giving

the splitting field Qp
3

?
2, ζq.

Field Extension Diagram

A subfield of a field is a subset that contains 0, 1, is closed under addition and multiplication, and
contains inverses and negatives of its elements. We can create a diagram of a field and its subfields;
below is an example of such a diagram for Qp

4
?
2, iq (the splitting field for x4 ´ 2).

Qp
4

?
2, iq

Qp
4

?
2q Qp

4
?
2iq Qp

?
2, iq Qp

4
?
2p1 ` iqq Qp

4
?
2p1 ´ iqq

QpiqQp
?
2q Qp

?
2iq

Q

Automorphisms

Definition 7 A field automorphism of a field F is a function f : F Ñ F satisfying:

f pa ` bq “ f paq ` f pbq; f pa ¨ bq “ f paq ¨ f pbq, @a, b P F

f p1q “ 1; f p0q “ 0

Example 8 Complex conjugation f(a + bi) = a - bi
This function preserves both addition and multiplication:

f ppa ` biq ` pc ` diqq “ pa ` cq ´ pb ` dqi “ f pa ` biq ` f pc ` diq,

and

f ppa ` biqpc ` diqq “ f pac ´ bd ` pad ` bcqiq “ ac ´ bd ´ pad ` bcqi “ f pa ` biqf pc ` diq.

Thus, f is a field automorphism.

If we compose two field automorphisms, then the composition is also a field automorphism. For
example, there is a field automorphism f of Qpζq (where ζ5 “ 1) given by f pζq “ ζ2. Below, we see
how the composite of f with itself is also a field automorphism:
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A picture of the five solutions to ζ5 “ 1

Groups

Definition 9 A group is a set G equipped with a binary operation ¨ that sat-
isfies the following properties:

• Associativity: For all a, b, c P G, we have pa ¨ bq ¨ c “ a ¨ pb ¨ cq.

• Unital: There exists an element 1 P G such that for all a P G, we have
1 ¨ a “ a ¨ 1 “ a.

• Invertible: For every a P G, there exists an element a´1
P G such that

a ¨ a´1
“ a´1

¨ a “ 1.

Example 10

•Sn: The group of all permutations of n elements with composition as the
operation. For example:

S3 “ tidentity, p1 2q, p1 3q, p2 3q, p1 2 3q, p1 3 2qu.

•Dn: The group of symmetries of a regular n-sided polygon. For example,
D5 is the symmetries of the regular pentagon (consisting of five rotations
and five reflections)

•Cn: The group of integers modulo n under addition, generated by a single
element. For example:

C5 “ t0, 1, 2, 3, 4u, where 3 ` 4 “ 2 pmod 5q.

` 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

• The collection of field automorphisms of a field forms a group under func-
tion composition

Abel-Ruffini Theorem

Theorem 11 (Abel-Ruffini) There is not general solution to fifth degree
polynomials (and higher) with radicals, addition, and multiplication.

The proof of this theorem using Galois theory uses the connection between
fields and their corresponding groups of automorphisms. The structure of
the automorphism group can be used to determine if the field is built out of
radical extensions.
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