
Application of Denoising Potential on MNIST Dataset

Chunyu Gu*, Fengze Jia*, Daniel Tcheurekdjian
*These authors contributed equally to this work.

Denoising Potential contributed by Brantley Vose and Dr. Dustin Mixon.

The Ohio State University

Introduction

Abstract

Traditional deep learning architectures typically learn feature transfor-
mations through direct mappings. Instead, we use a denoising potential
to learn an energy landscape that captures the underlying structure of
valid feature configurations. This energy landscape, parameterized as
a mixture of Gaussian components, defines a potential function whose
local maxima correspond to stable, denoised feature representations.

The energy-based formulation provides several key advantages. First, it
naturally handles uncertainty and noise in the input features by allowing
them to evolve toward stable configurations through gradient ascent on
the potential function. Second, the learned energy landscape provides
an interpretable representation of the feature space structure, with the
Gaussian components capturing local manifold geometry through their
centers and precision matrices. Third, the iterative refinement process
implemented through gradient ascent allows the model to actively de-
noise and improve feature representations, rather than relying on a sin-
gle feed-forward pass.

We build and test the denoising potential and demonstrate that it outper-
forms SOTA models at equivalent computational resources.

Denoising Potential Overview and Limitations

Feature Space Let X ⊆ Rd be the feature space.
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Gradient Ascent Map

xt+1 = xt + α∇ϕ(xt), t = 0, . . . , n− 1

Parameters - k ∈ N : number of components - α > 0 : step size - n ∈ N :
iterations

Class-conditionality and Data

Denoising Potential Approach

For traditional CNN models, we found that the model needs to relearn
the entire mapping and lacks explicit modeling of noise distributions.
Therefore, we created a model with good adaptability to noise types
through learning different clean centers.
First, we compute the distance between noisy data and learning data
(x − µi). Then we use Mahalanobis distance, which can compute the
scalar of standardized distance by considering the importance and cor-
relation of different dimensions:
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where µi is cleaning data center.
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which can enhance numerical stability by preventing the exponential
terms from exploding.
The potential function is defined as:
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To ensure numerical stability and parameter constraints, we
reparametrize:

wi = exp(ci)
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where ci is unconstrained and Ai is a square matrix.
The denoising process is then accomplished through gradient ascent:

x 7→ x + α∇ϕ(x)

where α is a step size. (Note that α is a trainable parameter.) The
number n of gradient ascent iterations is a hyperparameter.
For a given noisy point x, the potential value at each step indicates the
proximity to clean data centers, with higher values suggesting closer
alignment with the clean data distribution.
We denoise data using an energy function from a Gaussian mixture
model. It measures deviations from clean centers and uses gradient
ascent to shift data toward high-density areas, naturally amplifying dom-
inant features while suppressing noise. In short, it acts like an auto-
amplifier, boosting primary signals and reducing background noise.

Neural Architecture and Outputs

Architecture

We integrate three phases: feature extraction, feature denoising,
and classification.We employ a hybrid denoising approach (potential
function-based optimization and iterative gradient ascent) to denoise the
data.

First, we use a feature extractor to transform the noisy input data into a
low-dimensional feature space. In the feature space, the noisy data will
move along the gradient direction for multiple iterations until it converges
to the nearest clean data center . Then, a classifier produces the final
prediction based on the denoised features. Finally, we train the model by
taking the original clean data from the MNIST dataset and adding noise
to the data. By learning the key features of the clean data distribution

only in the low-dimensional feature space, the computational complexity
and memory requirements of the model are significantly reduced.

Results

The model’s performance was evaluated using traditional metrics: vali-
dation loss, validation accuracy, and test accuracy. These metrics
are visualized in the plots below.
Validation loss steadily decreased, reaching an optimal low of 0.4 around
epoch 17, with validation loss consistently lower than training loss. This
suggests good generalization and no signs of overfitting.
Both validation and test accuracy peaked at over 86% around epoch 17,
indicating strong performance for a relatively simplistic model tackling a
10-class multi-classification problem.
These results highlight the potential and effectiveness of this approach,
even with a simple model architecture. With access to more computa-
tional resources, we anticipate achieving industry-grade results, compa-
rable to models like ImageNet.
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