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Introduction

Abstract

Robotic control in unstructured environments remains a significant chal-
lenge in artificial intelligence. Recent advances in vision-language mod-
els have enabled more flexible multi-modal understanding, but generat-
ing coherent action sequences for physical tasks remains difficult.

Previous approaches including Octo, OpenVLA, and π0 have made
progress in this domain, but struggle with maintaining long-horizon co-
herence and physical consistency.

We introduce OPAL, a transformer-based architecture that addresses
these limitations through a principled approach to action generation
based on topological quantum field theory.

Our key insight is that complex action sequences exhibit topological
structure analogous to string-net models in condensed matter physics,
where local constraints determine global behavior. By incorporating
these constraints into our flow matching framework, we achieve more
coherent and physically plausible action sequences.

The theoretical guarantees provided by our topological approach result
in more coherent long-horizon action sequences without requiring task-
specific fine-tuning.

Problem

Let ot = [I1t , ..., I
n
t , ℓt, qt] denote a multimodal observation at time t, where

I it represents the i-th RGB image (typically from base, left wrist, and
right wrist cameras), ℓt is a language command, and qt encodes propri-
oceptive state information.

Our objective is to model the conditional distribution p(At|ot), where At =
[at, at+1, ..., at+H−1] represents a sequence of future actions over horizon
H = 50. We structure this sequence hierarchically as:

At = [P 1
t , P

2
t , ..., P

K
t ] (1)

(2)

Where each primitive P k
t = [ak,1t , ak,2t , ..., ak,mt ] contains m detailed actions,

maintaining H = K ·m = 50.

Similarly to π0 OPAL employs a PaliGemma vision-language backbone
with Gemma transformer variants (2B/300M parameters). Visual inputs
are encoded using SigLIP (“So400m/14”), with the architecture defined
as:

Vis(I it) = SigLIP(I it) ∈ Rnv×d (3)

Language commands ℓt are processed through token embeddings:

Lang(ℓt) = Embedder(ℓt) ∈ Rnℓ×d (4)

Proprioceptive state vectors are projected to match embedding dimen-
sions:

State(qt) = Linear(qt) ∈ Rd (5)

Topological Action Modeling

Flow Matching Extension

We extend the flow matching framework first implemented by Zhilinsky et
al. by introducing topological constraints. Given a trajectory from noise
to data distribution:

q(Aτ
t |At) = N (Aτ

t ; τAt, (1− τ 2)I)

We train a vector field vθ(Aτ
t , ot) to match the optimal transport direction

u(Aτ
t |At):

Lτ(θ) = Ep(At|ot),q(Aτ
t |At)∥vθ(A

τ
t , ot)− u(Aτ

t |At)∥2T
Where ∥ · ∥2T is a norm that respects the topological structure of the
action space, encoding invariances present in the task domain. This is
implemented as:

∥v∥2T = vTMtopov

The matrixMtopo encodes the topological constraints of the action space.

Topological Attention

We define our attention mechanism as a modified self-attention opera-
tion with topology-preserving constraints:

Att(Q,K, V ) = softmax

QKT

√
d

·Mtopo

V
Where Mtopo is a topological mask derived from fusion categories:

Mtopo(i, j) =
∑
k

F ij
k · δ(C(i, j, k))

Here, F ij
k represents the fusion coefficients between action tokens i and

j into channel k, and C(i, j, k) enforces consistency conditions.
The attention mechanism operates at three distinct levels:

1. Local fusion rules govern interactions within primitive blocks:∑
c
Nab
c = 1 ∀a, b ∈ P k

t

This ensures that local action sequences maintain physical consistency.

2. Non-local fusion channels enable long-range dependencies with
topological protection:

Inv(P i
t ⊗ P j

t ) = Inv(P i
t ) · Inv(P j

t ) · Ω(i, j)
The coupling term Ω(i, j) is learned during training but constrained to
satisfy braiding relations.

3. Invariant subspaces in the attention mechanism correspond to any-
onic excitations:

Πa =
∑
α
|ψαa ⟩⟨ψαa |

These projections ensure that the attention mechanism respects the
topological sectors of the action space.

Neural Architecture and Outputs

Results

We evaluated OPAL against baseline approaches (Octo, OpenVLA, and
pi0) on 10 complex robotic manipulation tasks. The table below presents
the Average Task Progress (ATP) across all benchmark tasks:
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Figure: Performance comparison of vision-language-action models across 10 robotic
manipulation tasks. OPAL achieves comparable performance to fine-tuned pi0 models
without requiring task-specific optimization, while both significantly outperform
previous approaches.

Conclusion

OPAL represents a significant advancement in vision-language-action
architectures for robotic control. By introducing topological attention we
achieve:

• More coherent and physically plausible action sequences
• Strong zero-shot performance without task-specific fine-tuning
• Enhanced computational efficiency through hierarchical

representation and improved integration techniques
• Superior robustness to perturbations in input conditions

Future work will explore further connections between topological quan-
tum field theory and robot learning, including more advanced categorical
structures and multi-agent systems with non-trivial braiding statistics.

Figure: The OPAL Transformer


