A RELATIVE VARIATIONAL PRINCIPLE FOR EXPANDING ITERATED FUNCTION SYSTEMS

THE OHIO STATE UNIVERSITY

Introduction

Thermodynamic formalism provides tools to study the ergodic theory of chaotic dynamical systems. In particular, we wish to pick a distinguished measure that sees all of the chaotic behavior; i.e. a *measure* of maximal entropy or more generally an equilibrium state. In [1], Dr. Hemenway studied the structure of ESs in nonstationary dynamics.

During this project, we investigate a relative variational principle for expanding iterated function systems (IFSs), relating topological entropy and measuretheoretic (metric) entropy in the skew-product setting.

Stationary Case

Let X be a compact metric space and $T: X \to X$ be continuous. The variational principle states

$$h(T) := h_{\operatorname{top}}(T) = \sup_{\nu \in M(X,T)} h_{\nu}(T).$$

A measure μ achieving this supremum is called a measure of maximal entropy (MME).

Relative Variational Principle

Let $S: Y \to Y$ be continuous on a compact metric space. Suppose there is a continuous surjective map $\pi \colon X \to Y$ such that $\pi T = S\pi$. Let $\nu \in \mathcal{M}(Y,S)$. Then

 $\sup\{h_{\mu}(T|S) \mid \mu \in \mathcal{M}(X,T), \ \mu \circ \pi^{-1} = \nu\} = \int_{V} h(T,\pi^{-1}y) \ d\nu(y)$

where $h(T, \pi^{-1}y)$ denotes the relative topological entropy for T on $\pi^{-1}y$.

Theorem A

We prove the following relative variational principle for an expanding iterated function system.

Theorem 0.2. Let (X, Φ) be an IFS of expanding type.

$$h(\Phi) := h_{top}(\Phi) = \sup_{\nu \in \mathcal{M}(X,\Phi)} h_{\nu}(\Phi).$$

For every $\underline{\omega} \in \Sigma$, define a orbit segment of length n starting at $x \in X$ by T_{ω}^{n}

sets.

where

Jason Tu (under the guidance of Dr. Greg Hemenway)

Iterated Function Systems

Let X be a compact metric space. Consider a collection of maps $\Phi = \{T_0, \ldots, T_{\ell-1}\}$ for which each $T_i: X \to X$ is a surjective map. We assume that each of these maps T_i is **expanding** in the sense that there exist $\delta > 0$ and $\gamma_i > 1$ such that whenever $0 < d(x, y) < \delta$, we have $d(T_j(x), T_j(y)) \ge \gamma_j \cdot d(x, y).$

We can define shift space $\Sigma = \{0, \ldots, \ell - 1\}^{\mathbb{N}}$ in which every element $\underline{\omega} = \omega_0 \omega_1 \ldots \omega_{n-1} \ldots$ is a sequence composed of letters $\mathcal{L} = \{0, \dots, \ell - 1\}$. We equip Σ with the left-shift map $\sigma \colon \Sigma \to \Sigma$ for which $\sigma(\underline{\omega}) = \omega_1 \omega_2 \dots \omega_{n-1} \dots$ We assume that (Σ, σ) has the **specification property** so that it has a unique MME (see [2]).

An iterated function system (IFS) is a skew product $T: \Sigma \times X \to \Sigma \times X$ defined $T(\underline{\omega}, x) = (\sigma(\underline{\omega}), T_{\omega_0}(x)).$

Topological Entropy

We equip $\Sigma \times X$ with the L^1 metric; i.e. $d((\underline{\omega}, x), (\underline{\omega}', x')) = d_{\Sigma}(\underline{\omega}, \underline{\omega}') + d_X(x, x').$

Fix $\underline{\omega} \in \Sigma$. We define the fiber above $\underline{\omega}$ by $X_{\omega} = {\underline{\omega}} \times X$. For $y, x \in X_{\omega}$, define the **Bowen distance** on X as

$$d_n(y, x) = \max_{0 \le k \le n} d(T_{\underline{\omega}}^k y, T_{\underline{\omega}}^k x).$$

We say a subset $E \subset X_{\omega}$ is (ω, n, ϵ) -separated if for any two distinct points $x, y \in E$, $d_n(x, y) > \epsilon$. Let $s_n(\omega, \epsilon)$ denote the maximal cardinality of (ω, n, ϵ) -separated

The **topological entropy of** (X, Φ) is defined as

$$h_{top}(\Phi) = \lim_{\epsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \log S_n(\Phi, \epsilon)$$

$$S_n(\Phi, \epsilon) := \frac{1}{\#\mathcal{L}_n} \sum_{\omega \in \mathcal{L}_n} s_n(\omega, \epsilon).$$

An IFS is called **chaotic** if $h_{top}(\Phi) > 0$.

Let $\xi = \{A_1, \ldots, A_k\}$ be a finite partition of X. The **entropy of** ξ is given by

 $H_\mu(\xi)$ =

The **relative entropy of** Φ with respect to ξ is defined as

 $h_{\mu}(\Phi,\xi) =$

The relative metric entropy of the IFS Φ is then

where \mathcal{E} denotes the set of all finite partitions of X.

Ideas of Proof

$$(x) = T_{\omega_{n-1}} \circ \ldots \circ T_{\omega_0}(x).$$

Metric Entropy

Let μ be a **probability measure** on X that is **invariant** under each $T_i \in \Phi$.

$$= -\sum_{i=1}^{k} \mu(A_i) \log \mu(A_i).$$

$$= \overline{\lim_{n \to \infty} \frac{1}{n}} \sum_{\omega \in \mathcal{L}_n} H_{\mu} \left(\bigvee_{i=0}^{n-1} T_{\underline{\omega}}^{-i} \xi \right).$$

$$h_{\mu}(\Phi) = \sup_{\xi \in \mathcal{E}} h_{\mu}(\Phi, \xi)$$

We note that Ju–Lui–Yang [3] prove

$$h(\Phi) \ge \sup_{\nu \in \mathcal{M}(X,\Phi)} h$$

To propose an equivalence, we prove Theorem A by showing the reverse inequality.

Let $E_n \subset X_{\underline{\omega}}$ be an (ω, n, ϵ) -separated set. Define a sequence of delta measures $\nu_n = \frac{1}{|E_n|} \sum_{x \in E_n} \delta_x$ on X_{ω} and

$$u_n = rac{1}{n} \sum_{i=0}^{n-1} f_*^i
u_n$$

Pick any weak^{*} accumulation point μ of $\{\mu_n\}_{n\in\mathbb{N}}$.

An expanding IFS (X, Φ) is **fiberwise exact**, which implies $\forall x \in X_{\omega}, \ \forall \epsilon > 0, \ \exists N \in \mathbb{N} \ni n \geq N,$

 $T_{\omega}^{n}(B(x,\epsilon)) = T_{\omega_{n-1}} \circ \ldots \circ T_{\omega_{0}}(B(x,\epsilon)) = X_{\sigma^{n}\underline{\omega}}.$

Given a finite partition ξ of X into balls of radius ϵ , we expect exactness to allow for a decomposition of $\xi^n = \bigvee_{k=0}^{n-1} T_\omega^{-k} \xi$ for which

$$\log S_n(\Phi, \epsilon) \le \sum_{\omega \in \mathcal{L}_n} H_\mu \left(\right)$$

which would conclude the other half of relative variational principle.

References

References

- [1] Gregory Hemenway. "Equilibrium states for non-uniformly expanding skew products". In: Ergodic Theory Dynam. Sys*tems* (2023). to appear, arXiv:2304.02529, pp. 1–22.
- [2] Gregory Hemenway. "Shift Spaces with Specifcation are Intrinsically Ergodic". MA thesis. University of Houston, 2018. URL: https://www.math.uh.edu/~hemenway/Shift_ Spaces.pdf.
- [3] Yujun Ju, Huoxia Liu, and Qigui Yang. "Entropy of Nonautonomous Iterated Function Systems". In: Results in Mathematics (2024). DOI: 10.1007/s00025-024-02233-0. URL: https://doi.org/10.1007/s00025-024-02233-0.
- [4] François Ledrappier and Peter Walters. "A relativised variational principle for continuous transformations". In: Journal of the London Mathematical Society 2.3 (1977), pp. 568–576.

 $h_{\nu}(\Phi).$

n \cdot

 $\bigvee T_{\underline{\omega}}^{-i}\xi$