
A RELATIVE VARIATIONAL PRINCIPLE FOR EXPANDING ITERATED FUNCTION SYSTEMS

Jason Tu
(under the guidance of Dr. Greg Hemenway)

A RELATIVE VARIATIONAL PRINCIPLE FOR EXPANDING ITERATED FUNCTION SYSTEMS

Jason Tu
(under the guidance of Dr. Greg Hemenway)

Introduction

Thermodynamic formalism provides tools to study
the ergodic theory of chaotic dynamical systems. In
particular, we wish to pick a distinguished measure
that sees all of the chaotic behavior; i.e. a measure
of maximal entropy or more generally an equilibrium
state. In [1], Dr. Hemenway studied the structure of
ESs in nonstationary dynamics.

During this project, we investigate a relative varia-
tional principle for expanding iterated function systems
(IFSs), relating topological entropy and measure-
theoretic (metric) entropy in the skew-product setting.

Stationary Case

Let X be a compact metric space and T : X → X be
continuous. The variational principle states

h(T ) := htop(T ) = sup
ν ∈M(X,T )

hν(T ).

A measure µ achieving this supremum is called a
measure of maximal entropy (MME).

Relative Variational Principle

Let S : Y → Y be continuous on a compact metric
space. Suppose there is a continuous surjective map
π : X → Y such that πT = Sπ. Let ν ∈ M(Y, S).
Then

sup
{
hµ(T |S)

∣∣ µ ∈ M(X,T ), µ◦π−1 = ν
}
=

∫
Y
h(T, π−1y) dν(y)

where h(T, π−1y) denotes the relative topological en-
tropy for T on π−1y.

Theorem A

We prove the following relative variational principle for
an expanding iterated function system.

Theorem 0.2. Let (X,Φ) be an IFS of expanding type.

h(Φ) := htop(Φ) = sup
ν∈M(X,Φ)

hν(Φ).

Iterated Function Systems

Let X be a compact metric space. Consider a collection of maps Φ = {T0, . . . , Tℓ−1} for which each
Tj : X → X is a surjective map. We assume that each of these maps Tj is expanding in the sense that
there exist δ > 0 and γj > 1 such that whenever 0 < d(x, y) < δ, we have

d(Tj(x), Tj(y)) ≥ γj · d(x, y).

We can define shift space Σ = {0, . . . , ℓ − 1}N in which every element ω = ω0ω1 . . . ωn−1 . . . is a
sequence composed of letters L = {0, . . . , ℓ − 1}. We equip Σ with the left-shift map σ : Σ → Σ for which
σ(ω) = ω1ω2 . . . ωn−1 . . .. We assume that (Σ, σ) has the specification property so that it has a unique
MME (see [2]).

An iterated function system (IFS) is a skew product T : Σ×X → Σ×X defined

T (ω, x) = (σ(ω), Tω0
(x)).

For every ω ∈ Σ, define a orbit segment of length n starting at x ∈ X by T n
ω (x) = Tωn−1

◦ . . . ◦ Tω0
(x).

Topological Entropy

We equip Σ×X with the L1 metric; i.e.

d
(
(ω, x), (ω′, x′)

)
= dΣ(ω, ω

′) + dX(x, x
′).

Fix ω ∈ Σ. We define the fiber above ω by Xω = {ω}×X.
For y, x ∈ Xω, define the Bowen distance on X as

dn(y, x) = max
0≤k≤n

d(T k
ωy, T

k
ωx).

We say a subset E ⊂ Xω is (ω, n, ϵ)-separated if for any
two distinct points x, y ∈ E, dn(x, y) > ϵ. Let sn(ω, ϵ)
denote the maximal cardinality of (ω, n, ϵ)-separated
sets.

The topological entropy of (X,Φ) is defined as

htop(Φ) = lim
ϵ→0

lim sup
n→∞

1

n
logSn(Φ, ϵ)

where
Sn(Φ, ϵ) :=

1

#Ln

∑
ω∈Ln

sn(ω, ϵ).

An IFS is called chaotic if htop(Φ) > 0.

Metric Entropy

Let µ be a probability measure on X
that is invariant under each Tj ∈ Φ.

Let ξ = {A1, . . . , Ak} be a finite partition
of X. The entropy of ξ is given by

Hµ(ξ) = −
k∑
i=1

µ(Ai) log µ(Ai).

The relative entropy of Φ with respect
to ξ is defined as

hµ(Φ, ξ) = lim
n→∞

1

n

∑
ω∈Ln

Hµ

(
n−1∨
i=0

T−i
ω ξ

)
.

The relative metric entropy of the IFS
Φ is then

hµ(Φ) = sup
ξ∈E

hµ(Φ, ξ)

where E denotes the set of all finite par-
titions of X.

Ideas of Proof

We note that Ju–Lui–Yang [3] prove

h(Φ) ≥ sup
ν∈M(X,Φ)

hν(Φ).

To propose an equivalence, we prove Theorem A by
showing the reverse inequality.

Let En ⊂ Xω be an (ω, n, ϵ)-separated set. Define
a sequence of delta measures νn = 1

|En|
∑

x∈En
δx on

Xω and

µn =
1

n

n−1∑
i=0

f i
∗νn.

Pick any weak∗ accumulation point µ of {µn}n∈N.

An expanding IFS (X,Φ) is fiberwise exact, which
implies ∀x ∈ Xω, ∀ϵ > 0, ∃N ∈ N ∋ n ≥ N,

T n
ω (B(x, ϵ)) = Tωn−1

◦ . . . ◦ Tω0
(B(x, ϵ)) = Xσnω.

Given a finite partition ξ of X into balls of radius ϵ,
we expect exactness to allow for a decomposition of
ξn =

∨n−1
k=0 T

−k
ω ξ for which

logSn(Φ, ϵ) ≤
∑
ω∈Ln

Hµ

(
n−1∨
i=0

T−i
ω ξ

)
which would conclude the other half of relative varia-
tional principle.
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