There exist t_0 such that every t_0 -tough graph is Hamiltonian

Presenter: Alan Wang Mentor: Jingheng Wang, the Ohio State University, Columbus, OH

Background

Hamiltonian Cycle

A graph *G* is Hamiltonian if it contains a Hamilton cycle (a cycle contain every vertex of *G*)

If *G* is a Hamiltonian graph, then

 $k(G-S) \le |S|$

for every nonempty proper subset S of V(G)

So, if *G* is Hamiltonian:

$$\frac{|S|}{k(G-S)} \ge 1$$

for every nonempty proper subset S of V(G)

Graph Toughness

disconnected if and only if *t*(*G*)=0

A graph G is complete if and only if $t(G) = +\infty$

Peterson graph *P* is a 1-tough graph. In fact, $t(P) = \frac{4}{2}$.

V. Chvátal

Every Hamiltonian graph is 1 tough since $\frac{|S|}{k(G-S)} \ge 1$ for every nonempty subset S of V(G). However, noted by Chvátal, the converse is not true.

Graph H is 1 tough Graph H is non-Hamiltonian

Conjecture: Every *t*-tough graph with $t > \frac{3}{2}$ is Hamiltonian

If G is not complete, then $t \leq \frac{1}{2}\kappa$

Therefore, every *t*-tough graph with t >is 4-connected

According to Tutte's theorem, every four connect planar graphs having at least edges has a Hamiltonian circuit

D. Bauer, H.J. Broersma, H.J. Veldman

For a given graph *H* and two vertices *x* and *y* of *H* define G(H,x,y,l,m) [$l,m \in \mathbb{N}$] as:

Take *m* disjoint copies H_1, \dots, H_m of *H*, with x_i, y_i the vertices in H_i corresponding to the

vertices x, y in $H(i = 1, \dots, m)$.

Let F_m be the graph obtained from $H_1 \cup \cdots \cup H_m$ by adding all possible edge between pairs of

vertices in $\{x_1, \dots, x_m, y_1, \dots, y_m\}$.

Let $T = K_l$ and let G(H, x, y, l, m) be the join $T \lor F_m$ of T and F_m .

 F_5 : 5 copies of subgraph every vertex in the circle is connected to each other

Theory: Let *H* be a graph and *x*, *y* two vertices of *H* which are not connected by a Hamiltonian path of H. If $m \ge 2l + 3$ then G(H, x, y, l, m) is nontraceable.

Proof by Contradiction:

Suppose G(H, x, y, l, m) contains a Hamilton path P.

The intersection of P and F_m consists of a collection \mathcal{P} of at most l + 1 disjoint paths, together containing all vertices in F_m

Since $m \ge 2(l+1) + 1$

There must exist a subgraph of H_{i0} in F_m such that no end vertex of a path \mathcal{P} lies in H_{i0} .

Intersection of P and H_{i0} is a path with end-vertices x_{i0} and y_{i0} that contains all vertices of H_{i0} .

This contradicts the fact that H_{i0} is a copy of the graph H without a Hamilton path between x and y.

Theory: For $l \ge 2$ and $m \ge 1$

$$t(G(L,u,v,l,m)) = \frac{l+4m}{2m+1}$$

Let G = G(L, u, v, l, m) for some $l \ge 2$ and $m \ge 1$, and choose $S \subseteq V(G)$ such that k(G-S) > 1 and $t(G) = \frac{|S|}{k(G-S)}$ $V(T) \subseteq S$.

Define $S_i = S \cap V(L_i)$, $s_i = |S_i|$ and let k_i be the number of components of $L_i - S_i$ that contains neither u_i nor v_i (i =1, … ,m).

$$k(G) = \frac{l + \sum_{i=1}^{m} s_i}{c + \sum_{i=1}^{m} k_i} \ge \frac{l + \sum_{i=1}^{m} s_i}{1 + \sum_{i=1}^{m} k_i}$$

where:

$$c = \begin{cases} 0, \text{ if } u_i, v_i \in S_i \text{ for all } i \in \{1, \dots, m\} \\ 1, \text{ otherwise} \end{cases}$$

To justify the equality, we shall prove $s_i \ge 2k_i (i = 1, \dots, m)$

Note that $k_i \le 2$, since $L - \{u, v\}$ has independence number 2; $s_i \ge 2k_i$ if $k_i = 0$ or $k_i = 1$. By exhaustion it is readily checked that if $s_i \leq 3$, then $k_i \leq 1$ ($s_i \geq 2k_i$ if $k_i = 2$).

$$t(G) \ge \frac{l + 2\sum_{i=1}^{m} k_i}{1 + \sum_{i=1}^{m} k_i}$$

Since $l \ge 2$, the lower bound for t(G) is a nonincreasing function of $\sum_{i=1}^{m} k_i$ and is minimized if $k_i = 2$ for all $i \in \{1, \dots, m\}$

$$t(G) \ge \frac{l+4m}{1+2m}$$

Set $U = V(T) \cup U_1 \cup \cdots \cup U_m$, where U_i is the set of vertices of L_i having degree 4

in L_i ($i = 1, \dots, m$) The proof is completed by observing that

$$t(G) \le \frac{|U|}{k(G-U)} = \frac{l+4m}{1+2m}$$

Corollary: For every $\varepsilon > 0$ there exists a $\left(\frac{9}{4} - \varepsilon\right)$ -tough nontraceable graph.

Bibliography

• Bauer, Douglas, Hajo Broersma, and Edward Schmeichel. "Toughness in graphs-a survey." Graphs and

Combinatorics 22 (2006): 1-35.

• Bauer, Douglas, Haitze Jouke Broersma, and Henk Jan Veldman. "Not every 2-tough graph is hamiltonian." *Discrete*

Applied Mathematics 99.1-3 (2000): 317-321.

• Chvátal, Vasek. "Tough graphs and Hamiltonian circuits." Discrete Mathematics 5.3 (1973): 215-228.

• Tutte, William T. "A theorem on planar graphs." *Transactions of the American Mathematical Society* 82.1 (1956): 99-

