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The Equation

The nonlinear Schrödinger equation (NLSE) is a class of
second-order nonlinear partial differential equations whose
solution is a complex wave. It is given by:

i∂ψ
∂t + ∆ψ ± |ψ|2σψ = 0

Whether the nonlinear term is positive or negative dictates
whether the NLSE is focusing or defocusing respectively.
This equation is used to model light propogation through
optical fibers, deep-water waves, and Bose-Einstein conden-
sates.

Derivation Part I: Maxwell’s Equations

This fall semester, we chose to derive the NLSE in the context
of nonlinear optics. For this, we begin with Maxwell’s equa-
tions and flux density relations in a vaccuum:

∇ · E = 0

∇ · B = 0

∇× E = −∂B
∂t

∇× H = ∂D
∂t

D = ϵ0E

B = µ0H

After rearranging and utilizing the following vector identity
fitted to our scenario:

∇×∇× E = ∇(∇ · E)− ∆E

one can arrive at the vector wave equation, which can fur-
ther be decoupled into n-scalar wave equations for an n-
dimensional problem. A common simplification used is to
suppose that the electric field vector is pointed solely in one
direction (linearly polarized), reducing us down to one scalar
wave equation:

∇2E = 1
c2

∂2E
∂t2

Given this equation, we can furthermore take this expression
and look for a continuous wave beam solution of the form:

E(x, y, z, t) = E(x, y, z)e−iω0t + c.c.

where c.c is the complex conjugate. When plugged into our
wave equation, we yield the scalar Helmholtz equation, or
the time-independent wave equation

∇2E + k2
0E = 0

where our constant is rewritten given the following disper-
sion relation in a vacuum

k2
0 =

ω2
0

c2

Our next objective is to apply this to a nonlinear system.

Derivation Part II: Apply Nonlinearity

Now, we must transfer this to a system with Kerr nonlinearity (such
as a weakly nonlinear optical cable). To do this, we must alter our
dispersion relation to account for the Kerr effect, which alters our re-
fractive index and therefore the wave number

k2 = ω2
0

c2 n2 = ω2
0

c2 n2
0(1 +

4n2
n0
|E |2) = k2

0(1 +
4n2
n0
|E |2)

Now, we apply this to our Helmholtz equation

∇2E + k2E = 0

∇2E + k2
0E(1 + 4n2

n0
|E |2) = 0

∇2E + k2
0E + k2

0
4n2
n0
|E |2E = 0

Now, we make the following substitution
E(x, y, z) = eik0zψ(x, y, z)

into our nonlinear Helmholtz equation. This yields

2ik0ψz − k2
0ψzz + ψyy + ψxx + k2

0
4n2
n0
|eik0zψ|2ψ = 0

2ik0ψz − k2
0ψzz + ψyy + ψxx + k2

0
4n2
n0
|ψ|2ψ = 0

2ik0ψz − k2
0ψzz +∇2

⊥ψ + k2
0

4n2
n0
|ψ|2ψ = 0

We further suppose that this is a para-axial plane wave, which means
it propagates in a slow-varying fashion along one direction (usually
taken to be the z-axis). Given this, we apply the paraxial approxi-
mation, which takes the second partial derivative of the wave with
respect to the propagation direction as insignificant

2ik0ψz +∇2
⊥ψ + k2

0
4n2
n0
|ψ|2ψ = 0

Here, we derived a 3 + 0 nonlinear Schrödinger equation.

Graph

Figure 1: Graph of the fundamental soliton to the NLSE
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Conservation Law Equation and Use

The spring semester was partly dedicated to applying conservation
laws in the context of partial differential equations and the NLSE.
Firstly, we have the following initial value problem

iψt +∇2ψ + |ψ|2σψ = 0; ψ(x, 0) = φ(x)

Along with the following definitions

• Mass =
∫

Rn |ψ|2dx

• Hamiltonian Density = H = ∇ψ · ∇ψ − |ψ|2σ+2

σ+1

• Hamiltonian = H =
∫

Rn Hdx

Conservation laws take the following form

∂
∂tu(x, t) +∇ · f = 0

Where the function u(x, t) is chosen and if we can find vector f that
satisfies this, we have a conservation law. From here, we can apply this
to mass and the Hamiltonian. Worked out, the conservation law and
the vector f for each case will be

∂
∂t|ψ|2 −∇ · i(ψ∇ψ − ψ∇ψ) = 0

∂
∂tH−∇ · i(∆ψ∇ψ − ∆ψ∇ψ + |ψ|2σψ∇ψ − |ψ|2σψ∇ψ) = 0

Now we can make the following step∫
Rn

∂
∂t|ψ|2dx −

∫
Rn ∇ · i(ψ∇ψ − ψ∇ψ)dx = 0∫

Rn
∂
∂tHdx −

∫
Rn ∇ · i(∆ψ∇ψ − ∆ψ∇ψ + |ψ|2σψ∇ψ − |ψ|2σψ∇ψ)dx = 0

Utilizing divergence theorem and the fact that the solution and its vari-
ations go to 0 as x goes to ∞, both the divergence integrals go to 0∫

Rn
∂
∂t|ψ|2dx = 0∫

Rn
∂
∂tHdx = 0

From here, one can quickly see that this becomes

d
dt

∫
Rn |ψ|2dx = 0

d
dtH = 0

This ensure both quantities are conserved in our NLSE system.

Key

E = Electric Field
D = Electric Field Flux Density

H = Magnetic Field
B = Magnetic Field Flux Density

c = Speed of Light
ω = Frequency

k = Wave Number
n =Index of Refraction

n2 =Kerr Coefficient


