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Paul Erdős

Paul Erdős (1913–1996)was a Hungarian mathematician renowned for his contributions to num-

ber theory, combinatorics, and graph theory. With over 1,500 published papers, Erdős is consid-

ered one of the most influential mathematicians of the 20th century. Known for his nomadic

lifestyle, he traveled the world, collaborating with hundreds of mathematicians and seeking out

new mathematical problems.

”The Book”

Paul Erdős’ idiosyncratic idea, The Book, was a hypothetical collection of elegant mathematical

proofs written by God himself, which he aspired to discover.

Proofs from THE BOOK

Proofs from THE BOOK by Günter M. Ziegler and Martin Aigner is a collection of elegant and

beautiful mathematical proofs, inspired by the concept of The Book [1]. It serves as a tribute

to mathematical beauty and Erdős’ vision of perfect mathematical solutions. Each proof in the

book is carefully selected for its clarity, making complex concepts accessible.

The first section of the book focuses on number theory and includes several proofs that demon-

strate the infinitude of primes. Among the six proofs included in the first chapter we have se-

lected two for presentation.

An Arithmetical Proof of the Infinitude of Primes

For an integer n ≥ 0, the nth Fermat number is defined to be Fn = 22n + 1. The fact that there

are infinitely many primes is an immediate consequence of the following:

Theorem: Any two distinct numbers in the sequence F0, F1, F2, .... are coprime (i.e., they share no

common prime factors).

Indeed, letting qn be any prime divisor of Fn for all n ≥ 0 and assuming that the above Theorem

holds, we see that q0, q1, q2, ... is an infinite sequence of distinct prime numbers.

AHelpful Identity

We will first establish the formula

F0F1 · · · Fn = Fn+1 − 2 (1)

for all n ≥ 0.
Note that for n = 4, repeated applications of the formula (a − b)(a + b) = a2 − b2 yield
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The proof of formula (1) for the case of general n ≥ 0 is similar.

Proof of the Theorem

Let Fn and Fm be any distinct Fermat numbers with 0 ≤ m < n and observe that

2 = Fn − F0F1 · · · Fm · · · Fn−1

by formula (1).

It follows that if k ≥ 1 is any common factor of both Fn and Fm, then k must be a factor of 2. In
other words, k = 1 or k = 2. But since every Fermat number is odd, we can’t have k = 2. Thus,
k = 1 is the only factor common to both Fm and Fn as desired. �

An Analytical Proof of the Infinitude of Primes

Let p1, p2, p3, ... be the list of primes in increasing order and P = {p1, p2, p3, ...} be the set of prime

numbers. The prime counting function π : R → {0, 1, 2, ...} counts the number of primes up to x:
π(x) = #{p ≤ x : p ∈ P}. Recall the natural logarithm, denoted by log, is defined by

log(x) =
∫ x

1

1
t

dt.

We will establish the following:

Inequality: For all natural numbers n, we have

log(n) − 1 ≤ π(n).

Since log(n) − 1 grows without bound, the above inequality implies that the number of primes up

to n also grows without bound (which means there are infinitely many primes).

Proof of Inequality

The integral test yields the following upper bound (see the picture):
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Since p1, p2, ..., pk, where k = π(n), are all the primes up to n, we have
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where the sum extends over all m ∈ N which have only prime divisors among p1, p2, ..., pk. Since
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Since pj ≥ j + 1, it follows that
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Inequalities (2)-(5) together imply that log(n) ≤ π(n) + 1 as desired. �
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