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Abstract

The Mordell-Weil Theorem, originally conjectured by Poincaré and proved by Mordell in 1922,

states that the group of rational points E(Q) on an elliptic curve is finitely generated. This result

laid the foundation for modern research in Diophantine equations and the arithmetic of elliptic

curves. It has since become a cornerstone of number theory, with deep connections to modern

topics such as the Birch and Swinnerton-Dyer Conjecture, the proof of Fermat’s Last Theorem,

and applications in cryptography. In this poster, we follow Tate and Silverman’s approach, using

height functions and algebraic methods to outline a proof of the Mordell-Weil Theorem.

The Mordell-Weil Theorem

(For curves with a rational point of order two) Let E be an elliptic curve given by an equation

E : y2 = x3 + ax2 + bx,

where a and b are integers. Then the group of rational points E(Q) is a finitely generated abelian

group.

Definition of Elliptic Curves and Group Law

An elliptic curve E is given by the set of solutions to an equation in the form

y2 = f (x) = x3 + ax2 + bx + c,

together with a point O at ∞, assuming the (complex) roots of f (x) are distinct.
Rational points on an elliptic curve form an abelian group under addition. We describe the addition

of two points here: Let P and Q be two rational points on E. To add P and Q, draw the line

through P and Q and take the third intersection point P ∗ Q. Then join it to O by another line,

and take the third intersection point to be P +Q. In other words, set P +Q = O ∗ (P ∗Q).
Then we briefly discuss how to find the inverse of a point P . Given a point P , we draw the line

through O and P . Then the third intersection point will be −P .
Height Function: Let x = m/n be a rational number written in lowest terms. We define:

H(x) = H
(m
n

)
= max{|m|, |n|}, h(x) = logH(x).

Let P = (x(P ), y(P )) be a rational point on E. Define the height of P to be

H(P ) = H(x(P )), h(P ) = logH(P ).

Important Propositions Leading to the Mordell-Weil Theorem

The Mordell-Weil Theorem follows from four propositions. We state these propositions and

sketch the proofs. We then explain how they imply the Mordell-Weil Theorem.

Proposition 1: For every real numberM , the set {P ∈ E(Q) : h(P ) ≤ M} is finite.

Proposition 2: Let P0 be a fixed rational point on E. There is a constant k0 that depends on P0,
a, b, and c, so that

h(P + P0) ≤ 2h(P ) + k0 for all P ∈ E(Q).

Proposition 3: There is a constant k, depending on a, b, and c, so that

h(2P ) ≥ 4h(P ) − k for all P ∈ E(Q).

Proposition 4: The index (E(Q) : 2E(Q)) is finite.

Proof Sketch of the Four Propositions

Proposition 1: For a fixed height boundM , there are only finitely many coprime pairs (a, b) with
max(|a|, |b|) ≤ M . Therefore, only finitely many such rational numbers exist.

Proposition 2: Using the explicit formula for point addition on an elliptic curve, one can express

x(P + P0) as a rational function of x(P ) and x(P0). Estimating the growth of the numerator and

denominator gives a bound on the height of the sum.

Proposition 3: For a point P = (x, y) on E(Q), let 2P = (ξ, η), then the duplication formula gives

us:

ξ = x4 − 2bx2 − 8cx + b2 − 4ac
4x3 + 4ax2 + 4bx + 4c

= f ′(x)2 − (8x + 4a)f (x)
4f (x)

.

Since y2 = f (x) is non-singular by assumption, f (x) and f ′(x) have no common complex roots.

As a result, the numerator and denominator also have no common complex roots.

The rest proof of Proposition 3 relies on the following fact about polynomials.

Fact: For polynomials p and q with integer coefficients and no common complex roots, let d =
max{deg(p), deg(q)}. There are constants k1 and k2, so that for all rational m/n that are not roots

of q,

dh
(m
n

)
− k1 ≤ h

(
p(m/n)
q(m/n)

)
.

Since this fact is not specifically related to elliptic curves, we will briefly sketch the idea of the

proof and how it leads to Proposition 3.

Proof: We start by proving the above fact. There exist some integer R ≥ 1, independent of m
and n, such that:

H
(
p(m/n)
q(m/n)

)
H(m/n)d

≥ 1
2R

|p(mn )| + |q(mn )|
max{|mn |d, 1}

.

One can show that the right-hand side is greater than or equal to a constant C1 > 0. Thus, this
gives us:

H

(
p(m/n)
q(m/n)

)
≥ C1H

(m
n

)d
,

where the constant C1 depends on p and q, but not on m or n. Then taking logarithms gives us

the desired inequality:

h

(
p(m/n)
q(m/n)

)
≥ dh

(m
n

)
− k1 with k1 = log(1/C1).

For the proof of Proposition 3, we set p(x) = x4 − 2bx2 − 8cx+ b2 − 4ac and q(x) = 4x3 + 4ax2 +
4bx + 4c. The desired inequality then follows from the Fact.

Proposition 4: We will explain the proof of Proposition 4 in more details, as it is the most difficult

part. Recall the elliptic curve E is given by the following equation

E : y2 = f (x) = x3 + ax2 + bx, a, b ∈ Z.
We consider E given by

E : y2 = x3 + ax2 + bx,

where a = −2a, b = a2 − 4b, and E given by

E : y2 = x3 + ax2 + bx,

where a = −2a, b = a2 − 4b.

We then define ϕ : E → E by

ϕ(x, y) = (x, y) =

(
y2

x2, y

(
x2 − b

x2

))
, with x 6= 0.

And both O and T = (0, 0) get mapped to O under ϕ. Then the kernel of ϕ is {O, T}.
Applying the same process to E gives a map ϕ : E → E. The curve E is isomorphic to E via the

map (x, y) 7→ (1
4x,

1
8y). There is thus a homomorphism ψ : E → E given by

ψ(P ) =


(
y2

4x2,
y
(
x2−b

)
8x2

)
, if P = (x, y) 6= O, T

O, if P = O or P = T
.

It can be directly verified that the composition ψ ◦ ϕ : E → E is the multiplication by two map

ψ ◦ ϕ(P ) = 2P.
Then we introduce a map α : E(Q) → Q∗/Q∗2 defined by

α(O) = 1 (mod Q∗2)
α(T ) = b (mod Q∗2)

α(x, y) = x (mod Q∗2) if x 6= 0.

It turns out that α is a homomorphism, with its kernel being ψ(E(Q)). Hence α induces an

injective homomorphism E(Q)/ψ(E(Q)) ↪→ Q∗/Q∗2.
Let p1, . . . , pt be the distinct primes dividing b. Then the image of α is contained in the subgroup

of Q∗/Q∗2 consisting of the elements

{±pε11 p
ε2
2 · · · pεtt : each εi equals 0 or 1}.

The index (E(Q) : ψ(E(Q))) is at most 2t+1. Therefore, we get (E(Q) : ϕ(E(Q)) and
(E(Q) : ψ(E(Q))) are finite. Then we use the following lemma about abelian groups to conclude

the proof.

Lemma: Let A and B be abelian groups, and suppose that ϕ : A → B and ψ : B → A are

homomorphisms satisfying

ψ ◦ ϕ(a) = 2a for all a ∈ A and ϕ ◦ ψ(b) = 2b for all b ∈ B.

Suppose further that ϕ(A) has finite index in B and ψ(B) has finite index in A. Then 2A has

finite index in A. More precisely, the indices satisfy

(A : 2A) ≤ (A : ψ(B))(B : ϕ(A)).
Applying the above lemma to A = E(Q) and B = E(Q) yields Proposition 4.

Proof of the Mordell-Weil Theorem

Let Γ ⊂ E(Q) be a set of coset representatives of E(Q)/2E(Q). Since we know there are only

finitely many cosets, Γ is finite.

Now consider any P ∈ E(Q). There exists a coset representativeQ ∈ Γ such that P ∈ Q+2E(Q),
i.e., P = Q+2R for someR ∈ E(Q). Applying Proposition 3 repeatedly toR, 2R, 4R, ...,we obtain
a sequence of points with decreasing height. Then by Proposition 1, only finitely many points can

occur in such a descent sequence. Eventually, we reach points with height bounded by a constant

depending on Γ, and therefore, the descent terminates.

Thus, we can express every P ∈ E(Q) as a sum of finitely many points in Γ. As a result, E(Q) is
finitely generated.
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