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Abstract

This project explores the relationship between the Enhanced Vegeta-
tion Index (EVI) and average land surface temperature across Ohio.
EVI enhances vegetation signal in remote sensing by reducing atmo-
spheric and background noise. Temperature, a key environmental fac-
tor, is measured across spatial grid cells. We compare three regression
approaches—naive OLS, a spatially corrected version, and an optimal
estimator using generalized least squares and Gaussian processes. Re-
sults highlight the importance of accounting for spatial correlation to im-
prove prediction and uncertainty estimation.

Gaussian Processes (GP)

What is a Gaussian Process?
Gaussian Process (GP) is a collection of random variables, any finite
number of which have a joint Gaussian distribution. It defines a distribu-
tion over functions and is fully specified by a mean function m(x) and a
covariance function (kernel) k(x, x′):

f (x) ∼ GP(m(x), k(x, x′))

Covariance Function (Kernel):

k(x, x′) = exp

(
−(x− x′)2

2ℓ2

)

• x, x′: Input values (e.g., temperature at different locations)
• ℓ: Length-scale parameter controlling how quickly correlation decays

with distance
• k(x, x′): Covariance (similarity) between inputs x and x′

Gaussian Process (GP) regression captures spatial dependence be-
tween inputs—like temperatures at nearby locations—using a covari-
ance function (kernel).

Remote sensing data from MODIS over Ohio on 06/11/2020. Fitting the
above Gaussian Process to the EVI data, we find that the bandwidth is
approximately 200 km, or approximately 2◦.

Three Estimators for Spatial Linear Regression

1. Naive OLS (Incorrect Variance)
y = Xβ + ε, ε ∼ N (0, σ2I)

β̂ = (XTX)−1XTy

• β: Regression coefficient vector (the parameters to be estimated)
• ε: Error term, incorrectly assumed to be uncorrelated.
• β̂: Estimated coefficients using Ordinary Least Squares (OLS)
• X: Design matrix, with rows of the form

[
1 Tempsi

]
si∈S

.

When this correlation is ignored, the model treats spatially clustered pat-
terns as random noise, leading to underestimated standard errors, over-
confident predictions, and potentially misleading inferences.

2. Corrected Variance OLS

y = Xβ + ε, ε ∼ N (0,Σ)

Corrected Variance:
(
XTX

)−1
XTΣX

(
XTX

)−1

• Σ: Spatial covariance matrix (known or estimated via a model)

3. Optimal Estimator (Best Linear Unbiased Estimator)
We want to find a weight vector c ∈ Rn such that:

β̂1 = cTy

subject to the constraints:

• E[β̂1] = β1
• Var(β̂1) is minimized

Using Lagrange multipliers, the optimal solution is:

c = Σ−1X(XTΣ−1X)−1
[
0
1

]
Thus, the optimal estimator is:

β̂1 =
0 1

(XTΣ−1X)−1XTΣ−1y

The optimal weights c depend on the spatial covariance matrix Σ, en-
suring that the estimator accounts for spatial correlation and yields more
accurate results than standard OLS.

Simulation Results

To study how each of these methods might perform on the real EVI and
Temperature data, we simulate Gaussian Processes on a 2D grid of
longitude and latitude values, with parameters fitted to be similar to the
real data. In particular, on a 54x64 grid of lon/lat pairs in the range [-84,
80]x[38, 42], we use the kernel

Cov(EVIs1,EVIs2) = 1.812 exp

(
−||s1 − s2||2

2 · (2.068)2

)
+ 0.05.

We make two independent draws from the above process, and then at-
tempt the linear regression:

EVI = β0 + β1 · Temp + ϵ.

Note that here, Temp and EVI were genuinely independently generated,
and so β1 = 0 by design. For each of the three previous methods, we
generate 95% confidence intervals for β1 by

w = 4 ·
√
Var(β̂1), and 95% CI :

[
β̂1 −

w

2
, β̂1 +

w

2

]
As expected, we find that the coverage of 95% confidence intervals for
both the Corrected Variance estimator and the optimal estimator were
indeed 95%. Meanwhile, the Naive OLS intervals cover the true param-
eter (β1 = 0) 24% of the time.

Conclusion

This project examines the relationship between the Enhanced Vege-
tation Index (EVI) and temperature using OLS regression and Gaus-
sian Processes (GP). Naive OLS underestimates uncertainty by ignoring
spatial dependence. By incorporating spatial correlation—via corrected
OLS and the Best Linear Unbiased Estimator (BLUE)—we improve ac-
curacy and reliability. GP further offers a flexible, non-parametric ap-
proach for modeling spatial uncertainty. Our results highlight the impor-
tance of accounting for spatial structure in environmental data analysis.

Reference: NASA. (n.d.). MODIS: Moderate Resolution Imaging
Spectroradiometer. NASA. https://modis.gsfc.nasa.gov/


