
A Statistical Analysis of Backtracking for Sudoku
Jacob Scherzer1 Tyler Beauregard 1 Cory Shields 1

1The Ohio State University

Abstract

Sudoku is a number puzzle game where you are
given a 9 × 9 board, blocked into 9 3 × 3 blocks,
where your goal is to fill the board, such that
each block, row, and column has each number 1
through 9 appearing exactly once. Usually, some
cells are filled ahead of time. Given that there is a
finite number of possibilities for each cell, and a fi-
nite number of cells to fill in, this puzzle is solvable
via backtracking. Since backtracking itself can be
rather slow, we investigate how it can be sped up
using logic.

Definitions

A fixed cell is a cell that has been given a certain
number beforehand and cannot be changed.

An open cell is a cell which currently has no
number in it. The number of open cells a board
has is denoted with m.

An (n, k) board is an k × n grid of n× k blocks,
where each block, row and column must
contain each integer between 1 and nk exactly
once.

Backtracking is a problem-solving algorithm
which finds a solution by guessing different
options and undoing them (backtracking) if they
do not lead to a solution.

A naked single is an open cell which has only
one possibility which keeps the board valid.

References

[1] Frazer Jarvis Bertram Felgenhauer.
Mathematics of sudoku i, 2006.

Example

A (2, 3) board with all open cells

n

k

k
n

A simple backtracking algorithm
procedure backtracking(board)

cell ← chooseOpenCell(board) ▷ Returns NULL if no
open cell

if cell = NULL then ▷ The board is already filled
return 1

end if
options← getOptions(board, cell)
sols← 0
for option in options do

board[cell]← option
sols← sols + backtracking(board)

end for
board[cell]← 0 ▷ 0 represents an empty cell
return sols

end procedure

FutureWork

Actually implement efficient Sudoku model into
Code to confirm expected running time analysis
via simulation

Investigate expected running time when adding
logic such as naked singles to algorithm

Use number of solutions return to help
investigate the distribution of solutions given an
(n, k) board with m open cells

Results

Based upon the given algorithm, we can model
this algorithm as a recursion relationship, assum-
ing the most efficient implemtation:

b(k, n, m) = cnk + G(k, n, m)b(k, n, m− 1)
b(k, n, 0) = c

where b is the time for the backtracking algorithm
and G is a discrete random variable with para-
maters k, n, m that represent the number of op-
tions returned by getOptions. Solving exactly for
E[G] is greatly beyond the scope of this poster,
as indicated by [1], which needs some brute force
counting for just getting the number of solutions
for an empty (3, 3) board. We simplify this problem
by assuming that for any open cell, its block, row,
and column are completely independent of each
other, as well as assuming that the probability any
number appears is independent by whether other
numbers appears. This leads to

E[G] = nk

(
nk + m

n2k2 + nk

)3

where m is the number of open cells. Thus the re-
currence relation for the expected running time of
our backtracking is

b(k, n, m) = cnk + nk

(
nk + m

n2k2 + nk

)3
b(k, n, m− 1)

which solves to

b(n, k, c1) ∈ Θ(nk)

b(n, k, pn2k2) ∈ Θ

((
1

nk

)5pn2k2(
(nk + pn2k2)!

(nk)!

)3
)

b(c1, c2, m) ∈ Θ
((

c1c2

(c2
1c

2
2 + c1c2)3

)m

((c1c2 + m)!)3
)

Cycle Conference 2025, The Ohio State University


