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Primary Goal

The goal of this project was to learn about elliptic curves and their group structure, as well

as elliptic curve Galois Representations. This project has expanded to an exploration of their

division fields.

Elliptic Curves and Their Group Law

An elliptic curve over a field K is a nonsingular, projective, cubic plane curve with a K-rational

point. It is written as E/K , or just E.

Figure 1. Two common shapes for an elliptic curve in R2.

Here are what these terms mean. Let K be an algebraic closure of K (we will assume that K is

a perfect field).

Cubic plane curve: This is the set of points in K
2
which are solutions to an irreducible cubic

polynomial f (x, y) ∈ K[x, y]. We often write the curve as

C : f (x, y) = 0.

If f ∈ K[x, y], then we say that C is defined overK , and write C/K. For example, elliptic

curves are generally given in Weierstrass form,

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6.

Thus, E is defined over K if a1, a2, a3, a4, a6 ∈ K . A special case is the “short Weierstrass

form”

E : y2 = x3 + Ax + B,

where E is defined over K if A, B ∈ K .

Nonsingular: For a curve C : f (x, y) = 0, this means there is no point P on C for which the

two partial derivatives ∂f
∂x and ∂f

∂y are simultaneously zero at P .

Projective: This means that the curve lies in the projective plane P2. This is a bit technical, but

important, since elliptic curves have a “point at infinity” that can only be seen in P2.

Any curve C/K has infinitely many points in K
2
– however, it is interesting to ask what is known

about C(K), the set of points in K2. Studying K-rational points on curves is a big part of

modern number theory.

Group Law: A remarkable fact about elliptic curves E/K is that the set E(K) of their K-rational

points is an abelian group. The group law is defined using the ”chord and tangent” method. We

illustrate this with an example.

Example: Consider the elliptic curve E : y2 = x3 − x + 2, and points P1 := (−1,
√

2) and
P2 := (0,

√
2) on E. We want to compute the two sums P1 ⊕ P2 and 2P1 := P1 ⊕ P1. We will

start with P1 ⊕ P2:

The first step is to find the chord (line segment) between P1 and P2. This is given by the line

y =
√

2. By geometric considerations, this line will always intersect the elliptic curve three times

(possibly with multiplicity). The third intersection point here is P1 ? P2 := (1,
√

2).
The next step is to take the chord between P1 ? P2 and the point at infinity O (which is only seen

in the projective plane). The corresponding line is just the vertical line through P1 ? P2, which in

this case is x = 1. This line intersects E at a third point, which is our sum, P1 ⊕ P2 := (1, −
√

2).

To compute 2P1, the first step is to compute the tangent line to E at P1, which is y =
√

2
2 x + 3

√
2

2 .

In this case, we have P1 ? P1 =
(

5
2,

11√
8

)
. For the next step, the vertical line through P1 ? P1 is

x = 5
2, which implies that 2P1 =

(
5
2, − 11√

8

)
.

Figure 2. The group law for computing P1 ⊕ P2 and 2P1, respectively.

Torsion Points

Torsion Points: A point P on an elliptic curve E is called a torsion point if ∃n ∈ Z+ such that

nP = O. In this case, we also call P an n-torsion point.

Torsion Groups: For an elliptic curve E/K , we can look at the subgroup of all points in E(K)
whose order is finite; this is the torsion group ofE overK , and is denoted by E(K)[tors]. For an
integer n ∈ Z+, we also have the n-torsion subgroup E(K)[n], which is the subgroup of points

whose order divides n. More generally, we set E[tors] := E(K)[tors] and E[n] := E(K)[n].
Example: The following image shows how the chord and tangent method can be used to show

that on the elliptic curve E : y2 = x3 + 93x + 94, the point P1 := (23, −120) ∈ E has order 6:

Figure 3. The chord and tangent method applied repeatedly to compute the order of P1 := (23, −120) on
E : y2 = x3 + 93x + 94.

One of the most important results for elliptic curves is theMordell-Weil Theorem, which further

describes the group structure of E(K) when K is a number field, i.e., a finite degree extension

of Q.

Mordell-Weil Theorem:

Let F be a number field. Then for any elliptic curve E/F , its Mordell-Weil group is a finitely

generated abelian group: that is, there exist points P1, P2, . . . , Pn ∈ E(F ) such that for any

point P ∈ E(F ), one has

P = a1P1 ⊕ a2P2 ⊕ · · · ⊕ anPn

for some a1, a2, . . . , an ∈ Z.

The Mordell-Weil theorem and the fundamental theorem of finitely generated abelian groups

together imply the following.

Corollary:

Let F be a number field. Then for any elliptic curve E/F , one has

E(F ) ∼= Zr × E(F )[tors]
for some integer r ≥ 0.

Galois Representations

Given a number field F and an elliptic curve E/F , we know that E(F )[tors] is a finite abelian

group. What can we say about E[tors], the group of torsion points in F
2
? For any integer n ≥ 1,

we always have n2 points of order dividing n in E(F ) – however, these points do not necessarily

live F 2.

We can use Galois representations to study rationality of torsion points. Fix an n ≥ 1. Then there

is an action of the absolute Galois group GF := Gal(F/F ) on E[n]:
∀σ ∈ GF , ∀P = (x, y) ∈ E[n], σ(P ) := (σ(x), σ(y)).

The associated group action homomorphism

ρE,n : GF → Aut(E[n])
is called the mod-n Galois representation of E.

Fact: Each n-torsion subgroupE[n] is freeZ/nZ-module of rank 2. Thus, choosing a basis {P, Q}
of E[n] gives an isomorphism Aut(E[n]) ∼= GL2(Z/nZ), and so our representation becomes

ρE,n,P,Q : GF → GL2(Z/nZ).
In particular, fixing a basis of E[n] means that the image ρE,n(GF ) can be realized as a subgroup

of invertible 2 × 2 matrices over Z/nZ. Picking a different basis will conjugate this image.

For an elliptic curve E/F , its mod-n image ρE,n(GF ) encodes explicit information about the

rationality of its n-torsion points.

Example: We have

ρE,n,P,Q(GF ) ⊆
{[

1 b
0 d

]
∈ GL2(Z/nZ)

}
⇐⇒ P ∈ E(F ) .

Additionally,

ρE,n,P,Q(GF ) ⊆
{[

a b
0 d

]
∈ GL2(Z/nZ)

}
⇐⇒ 〈P 〉 := {aP : 0 ≤ a < n} is GF -stable

⇐⇒ ∀σ ∈ GF , σ(P ) ∈ 〈P 〉.
Without specifying a basis {P, Q} of E[n], these properties will hold up to conjugation of the

image ρE,n(GF ).

Current Directions

In studying the rationality of n-torsion points on an elliptic curve, it is natural to consider its

n-division field.

Division Fields: Given an elliptic curve E/F and an integer n ∈ Z+, the n-division field of E,

denoted by F (E[n]), is the minimal extension of F over which all n-torsion points of E are

rational. Explicitly, the field F (E[n]) is generated over F by the coordinates of n-torsion points:

F (E[n]) = F ({x(P ), y(P ) : P ∈ E[n]}).

The n-division field is also connected to the mod-n Galois representation. For an elliptic curve

E/F and an integer n ∈ Z+, one has ker ρE,n = Gal(F/F (E[n])). Thus F (E[n])/F is Galois, with

Galois group isomorphic to a subgroup of GL2(Z/nZ).
For n ∈ Z+, let ζn := e2πi/n denote a primitive n’th root of unity. For a number field F/Q, let
F (ζn) denote the minimal extension of F containing ζn. For any elliptic curve E/F , algebraic

considerations imply that ζn ∈ F (E[n]), and hence F (ζn) ⊆ F (E[n]). When is it possible that

F (ζn) = F (E[n])? A uniform answer to this question is known in the case F = Q:

[GL16, Theorem 1.1]:

For any elliptic curve E/Q, if there is n ∈ Z+ such that Q(E[n]) = Q(ζn), then n = 2, 3, 4, 5.

We are currently exploring a generalization of this result to other number fields:

Question:

Fix a number field F . Does there exist an integer c := c(F ) ∈ Z+ such that for any elliptic

curve E/F , if there is n ∈ Z+ such that F (E[n]) = F (ζn), then n ≤ c?
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