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1 Smooth bump functions.

Introduction I will be talking about bump functions, and how we can use
them to prove a few facts about smooth manifolds.

Definition 1.1. Let X be a topological space and f : X → R be continuous.
The support of f is supp(f) = {x ∈ X; f(x) ̸= 0}. A smooth bump function in
Rd is a C∞ function f : Rd → R which has compact, nonempty support.

The first time one considers the concept of bump functions, it is not obvious
that bump functions even exist. For example, there is no analytic bump function
f : Rd → R, as any analytic function which is 0 in a nonempty open set has to
be 0 everywhere, by a connectedness argument.

Construction of a C∞ bump function. We start by noticing that there
exist C∞ functions f : R → R which are not identically 0, but such that its
derivatives fn)(0) are 0 for all n ≥ 0:

f(x) =

{
e−1/x if x > 0
0 if x ≤ 0.

To check that fn)(0) = 0 for all n one can use the fact that for all rational
functions r : R → R we have limx→0 e

−1/x · r(x) = 0 (equivalently, taking
y = −1/x, for all rational functions we have limy→∞

ey

r(y) = ∞).

The function g(x) = f(1+x) ·f(1−x) is a bump function, as it is supported
in the interval [0, 1].
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Plateau bump functions. Bump functions can be made to have a nice prop-
erty: they can have a plateau, by which we mean a nonempty open set in which
the function is identically 1. To construct such a function, we can first take a
bump function g∂ supported near the boundary of supp(g); g∂ can be obtained
from a sum of two small copies of g.

And then, the ‘quotient’ h = g
g+g∂

(we define h(x) = 0 when g(x) + g∂(x) = 0)
is a bump function with the plateau we want:

Bump functions in higher dimension. Once we have our bump function
g in R, we can easily create bump functions Rd → R. For example, the function
(x, y) 7→ g(x) · g(y) will work, and so will (x, y) 7→ g(x2 + y2).

Smooth sums of bump functions. We can obtain smooth functions as
infinite sums of bump functions. First a technical lemma:

Lemma 1.2. Let fn : Rd → R be a sequence of differentiable functions. Suppose
that |∇fn(x)| < 1

2n for all x ∈ Rd and
∑

n fn is defined. Then f =
∑

n fn is
differentiable, and f ′(x) =

∑
n f

′
n(x) for all x ∈ Rd.

Proof. We prove that f is differentiable at 0. Let v =
∑

n ∇fn(0); we want to
prove that ∇f(0) = v. That is, for every ε > 0 we want to find δ such that, for
all x with |x| < δ, we have |f(x)− v · x| < ε|x|. And indeed, let N be such that

2−N < ε/2 and
∣∣∣v −∑N

n=1 f
′(0)

∣∣∣ < ε/2, so that
∑∞

n=N+1 fn is ε/2-Lipschitz,

and let δ > 0 be such that
∣∣∣∑N

n=1 f(x)− v · x
∣∣∣ < ε|x|/2 for all x with |x| < δ.
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Then, for all x ∈ B(0, δ),

|f(x)− v · x| ≤

∣∣∣∣∣
N∑

n=1

f(x)− v · x

∣∣∣∣∣+
∣∣∣∣∣

∞∑
n=N+1

fn(x)

∣∣∣∣∣ < ε|x|/2 + ε|x|/2 = ε|x|.

Corollary 1.3. Let ϕn : Rd → R be a bump1 function for all n. If a sequence
(λn) of positive real numbers decreases to 0 fast enough, then f =

∑
n λnϕn is

smooth.

Proof. Choose the constants λn so that all the partial derivatives of order ≤ n
of ϕ are ≤ 1

10n for all n, and use Lemma 1.2 to prove by induction that f is of
type Cn for all n.

Some constructions using bump functions Here are a few existence re-
sults for C∞ functions that are false for analytic functions.

Proposition 1.4. Any closed set C ⊆ Rd is the zero set of some smooth func-
tion f : Rd → [0,∞).

Proof. Express Rd \ C = ∪nBn as a countable union of balls, and let ϕn be a
bump function which is positive exactly in Bn and 0 elsewhere. We can just let
f =

∑
n λnϕn, for some sequence (λn) which decreases fast enough.

Proposition 1.5 (Smooth Urisohn lemma). For any disjoint closed sets C0, C1 ⊆
Rd, there is a function f : Rd → [0, 1] such that C0 = f−1({0}) and C1 =
f−1({1}).

Proof. Let g0, g1 : Rd → [0,∞) be smooth functions with g−1
0 ({0}) = C1 and

g−1
1 ({0}) = C0. Then the function h(x) = g1

g0+g1
(x) works.2

Extending and combining smooth functions We can use Proposition 1.5
to construct extensions of smooth functions. For a closed set C ⊆ Rd, say a
f : C → R is smooth if it can be extended to a smooth function in an open set
containing C3.

Proposition 1.6. If C ⊆ Rd is closed and f : C → R is smooth, then f admits
an extension F : Rd → R.

Proof. Let f be an extension of f to an open set O ⊇ C, let C0 = Rd \ O
and let g be a smooth function which is 1 in the set C and 0 in the set {x ∈
Rd; d(x,C0) ≤ d(x,C)}. Then the function h = f · g (extending by h(x) = 0 if
x ∈ C0) works.

1This works for any sequence of smooth functions, not only bump functions, using that
smooth functions have their derivative bounded in compacts sets.

2This construction, simpler than the one I had in mind, was provided by Prof. Neil Falkner
during the talk.

3We could give an a priori weaker, local definition of differentiability; one can check that
they are equivalent using partitions of unity.
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In particular, we can glue smooth functions:

Corollary 1.7. For any disjoint closed sets C1, . . . , Cn ⊆ Rd and any smooth
functions fi : Ci → R, there is a smooth function f : Rd → R such that
f(x) = fi(x) for all i = 1, . . . , n and x ∈ Ci.

Proof. Apply Proposition 1.6 to the (smooth) function g : ∪iCi → R given by
g(x) = fi(x) for x ∈ Ci.

Counterexamples using bump functions We first recall a famous calculus
counterexample: the function f(x, y) = xy

x2+y2 is not differentiable at 0, but all
its directional derivatives exist. Equivalently, f is smooth when restricted to
any line, but is not continuous in R2.

By a curve γ : R → Rd being smooth, we mean that it is C∞ and that
γ′(t) ̸= 0 for all t ∈ [0, 1].

Proposition 1.8. There is a function f : R2 → R which is not continuous, but
such that for all smooth curves γ : R → R2 the function f(γ(t)) is smooth.

For a proof see this link; the key fact used in the proof is that there is a
sequence of balls Bn ⊆ R2 convergent to 0 and such that the image of any
smooth curve γ : [0, 1] → R2 intersects only finitely many of them.

Proposition 1.9. There is a function f : R3 → R which is not continuous, but
whose restriction to every plane is smooth.

For a proof see this link. Again, the key fact is that there is a sequence of
balls Bn ⊆ R3 convergent to 0, but such that each plane can intersect at most
3 of them.

Mollifiers. We can use bump functions supported near 0 to create ‘explicit’
C∞ approximations of continuous functions f in compact sets.

Let g : Rd → [0,∞] be a bump function with
∫
Rd g dµ = 1 and supported in

the ball B(0, δ), for some small δ > 0. We can consider g as the density function
of a random variable V , so that V takes values in Rd, and has norm < δ with
probability 1.

Now, given a continuous function f : Rd → R, we consider the function

g(x) = E(f(x+ V )) =

∫
Rd

f(x+ v)g(v)dµ(v).

Even if f was an arbitrary continuous function, the function g is smooth!

Definition 1.10 (Convolution). Let f, g : Rd → R be continuous, with g being
compactly supported. We define f ∗ g : Rd → R by

(f ∗ g)(x) =
∫
Rd

f(x)g(t− x)dµ(x)
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Fact 1.11. If f, g are as above and g is smooth, then ∂
∂xi

(f∗g)(x) =
(
f ∗ ∂g

∂xi

)
(x).

So the convolution of a continuous function and a bump function is smooth.

As we make δ go to 0, the function g will converge to f , uniformly in compact
sets: indeed, given ε > 0 and a compact set K ⊆ Rd, choose δ > 0 such that
|f(x) − f(y)| < ε for all x ∈ K, y ∈ Rd such that |x − y| < ε. Then, if g is
supported in B(0, δ), for all x ∈ K we necessarily have |f(x)− g(x)| < δ. This
is because the variable x+ V takes values inside B(x, δ) with probability 1, so
f(x+ V ) is inside B(f(x), ε) with probability 1, so E(f(x+ V )) ∈ B(f(x), ε).

This can be seen as a ‘more explicit’ alternative to Weierstrass’ approxima-
tion theorem; however, one can prove much stronger results, like this stronger
version of the Weierstrass approximation theorem for analytic functions, which
was proved by Carleman in dimension 1 and by Scheinberg in higher dimension.

Proposition 1.12 ([Sch]). If η, φ : Rd → R are continuous and η > 0, then
there exists an entire function Ψ : Cd → C such that for all real x, |Ψ(x) −
φ(x)| < η(x).
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