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Short Exact Sequences

Definition
Given groups A,B,C and homomorphisms ϕ : A → B, ψ : B → C, we say
these form a short exact sequence if ϕ is injective, ψ is surjective, and
Im(ϕ) = Ker(ψ).

Usually, when we have a short exact sequence, it is denoted by

0 → A → B → C → 0.

Typically, the maps are omitted when understood.
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Short Exact Sequences

A canonical example of a short exact sequence is

0 → N → G → G/N → 0,

where G is a group, N ◁ G is a normal subgroup, and G/N is the quotient
group. The maps ϕ : N → G and ψ : G → G/N would be the inclusion and
quotient maps respectively.

From this example it is clear that if one knows G and one of N or G/N, it
is possible to deduce the third using exactness of the sequence. But what
can be said if one only knows N and G/N?
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Short Exact Sequences

Suppose N = G/N = Z/2Z. Then we have the following short exact
sequence,

0 → Z/2Z → G → Z/2Z → 0.

One can check that both G = Z/4Z and G = Z/2Z× Z/2Z are both valid
choices for G in this short exact sequence. So it is not always possible to
determine G from knowledge of N ◁ G and G/N.
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Short Exact Sequences

Definition
Given groups A,B,C, we say B is an extension of A and C if there exists a
short exact sequence

0 → A → B → C → 0.

The theory of group extensions is quite deep, and as illustrated by the
previous example extensions are not always unique. But certain properties
of groups may or may not be preserved by extensions.

For the purpose of this talk, all groups mentioned are finite unless
otherwise stated.

Linus Ge Schur-Zassenhaus July 21, 2025 6 / 21



The Schur-Zassenhaus Theorem

Theorem (Schur)
Let G be a group and N ◁ G be a normal subgroup. If
gcd(|N|, |G/N|) = 1, then there exists H ≤ G such that H ∼= G/N.

Corollary
Let G be a group and N ◁ G be a normal subgroup. If
gcd(|N|, |G/N|) = 1, then there exists H ≤ G such that G = N ⋊ H.

In general, such a subgroup H is called a complement of N in G.
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Statement of the Theorem

Alternatively, one can state the theorem as follows.

Theorem (Schur)
Given a short exact sequence

0 → A → B → C → 0,

with homomorphisms ϕ : A → B and ψ : B → C, if gcd(|A|, |B|) = 1, then
the short exact sequence splits. This means there exists a homomorphism
ρ : C → B such that ψ ◦ ρ is the identity map on C.
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Statement of the Theorem

As is typical in mathematics, this theorem is attributed to Schur by
Zassenhaus, but it is not fully clear where Schur proved this in his work.
Schur’s work on Schur multipliers, however, does imply this theorem in the
case that N ≤ Z(G), i.e. the normal subgroup is in the center.

Zassenhaus himself provided a complete proof of this theorem, along with
an additional stronger statement.
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Statement of the Theorem

Theorem (Zassenhaus)
Let G be a group and N ◁ G be a normal subgroup. If
gcd(|N|, |G/N|) = 1, then there exists H ≤ G such that H ∼= G/N.

Additionally, for any K ≤ G with K ∼= G/N there exists g ∈ G such that
K = gHg−1.

So not only does N have a complement, but all its complements are
conjugate. Zassenhaus at the time was only able to prove the second part
of the statement under the assumption that one of N or G/N was solvable,
but that assumption can be dropped.
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Reduction to Abelian N

To prove the Schur-Zassenhaus theorem, we now proceed by strong
induction on the order of G. It is clear that we can further assume N is a
proper nontrivial normal subgroup. Let p be a prime dividing |N|, and P be
a Sylow p subgroup of N. As (|N|, |G/N|) = 1, P is also a Sylow p
subgroup of G. As N is normal and P ≤ N, all conjugates of P in G are
contained in N. This means we have

|G|
|NG(P)|

= [G : NG(P)] = [N : NN(P)] = [N : NG(P) ∩ N] =
|N|

|NG(P) ∩ N|
.

Here, we are using that the index of the normalizer is the number of
conjugates.
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Reduction to Abelian N

Suppose that P is not a normal subgroup of G. Then NG(P) is a proper
subgroup of G and thus has strictly smaller order. We also have
NG(P) ∩ N ◁ NG(P) as N ◁ G. However,

|G|
|NG(P)|

=
|N|

|NG(P) ∩ N|
=⇒ |NG(P)|

|NG(P) ∩ N|
=

|G|
|N|

.

So our strong induction hypothesis applies to NG(P) and NG(P) ∩ N.
Thus, there exists H ≤ NG(P) ≤ G with

|H| = |NG(P)|
|NG(P) ∩ N|

=
|G|
|N|

= |G/N|.

This completes the proof in this specific case.
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Reduction to Abelian N

Now suppose that P ◁ G. Then P ◁ N and N/P ◁ G/P as N ◁ G. We also
know [G/P : N/P] = [G : N] = |G/N| and gcd(|N/P|, |G/N|) = 1, so our
strong induction hypothesis applies to N/P ◁ G/P. This means there
exists K ≤ G/P with |K| = |G/N|. Lift K to H ≤ G, so that K = H/P.

As P is a nontrivial p-group, it has nontrivial center Z(P) = Z. The center
of a normal subgroup is normal, so Z ◁ H and P/Z ◁ H/Z. We once again
apply our strong induction hypothesis and lift the resulting subgroup to
get L ≤ H, with L/Z ≤ H/Z and |L/Z| = |G/N|.
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Reduction to Abelian N

After applying our strong induction hypothesis and lifting twice, we now
have subgroups, L ≤ H ≤ G and Z = Z(P)◁ L a normal p-group with
gcd(|Z|, |L/Z|) = 1. If |L| < |G|, we can apply our strong induction
hypothesis again and get M ≤ L ≤ G with |M| = |L/Z| = |G/N|. This
would complete the proof.

If |L| = |G|, then L = H = G. In other words, [G : N] = [H : P] = [G : P]
and N = P is a normal Sylow p-group. In fact, N must be an abelian
Sylow p-subgroup since [G : N] = [L : Z] = [G : Z], which implies
N = P = Z(P) = Z. This completes the reduction to N being abelian.
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Proof for Abelian N

After a reduction to abelian N, most proofs use either representation
theory or group cohomology to complete the proof. The idea of this
approach is the second cohomology group H2(G/N,N) is trivial since
gcd(|N|, |G/N|) = 1, and using a bijection between H2 and equivalence
classes of group extensions. But one should always try and find an
elementary argument when possible.

We will now outline a constructive proof that avoids heavy machinery.
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Proof for Abelian N

Given N ◁ G is abelian and gcd(|N|, |G/N|) = 1, fix two sets of coset
representatives for N, denoted A and B. Notice for every a, b ∈ G with
aN = bN, a−1b ∈ N since a−1bN = a−1(aN) = N. Define

T(A,B) =
∏

(a,b)∈A×B, aN=bN
a−1b.

T(A,B) is well defined since a−1b ∈ N and N is abelian, meaning the order
of multiplication in the product does not matter.

Define an equivalence relation on sets of coset representatives of N, where
A and B are equivalent if T(A,B) = e. One can check this is a genuine
equivalence relation.
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Proof for Abelian N

With this equivalence relation, G acts by left multiplication on equivalence
classes of sets of coset representatives. This is because

T(gA, gB) =
∏

(ga,gb)∈A×B, gaN=gbN
(ga)−1gb =

∏
(a,b)∈A×B, aN=bN

a−1b = T(A,B).

With more work, one can check there are exactly |N| equivalence classes of
sets of coset representatives. Hence, a stabilizer subgroup will be a
complement. Furthermore, this group action is transitive, proving the
second part as that implies all stabilizer subgroups are conjugate.

Linus Ge Schur-Zassenhaus July 21, 2025 17 / 21



Conjugacy of Complements

Zassenhaus himself in 1937 only managed to prove all complements H of
N are conjugate in the case that one of N or G/N is solvable. He did,
however, note that the theorem in full generality would follow if groups of
odd order were solvable.

And it turns out this did indeed turn out to be true. Feit and Thompson
proves solvability of groups of odd order in 1963. Unfortunately, this talk
is not long enough to cover all the details of this proof.

There are, however, more elementary proofs of conjugacy which do not go
through solvability of groups of odd order.
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A Corollary

Corollary
Let p be a prime. For a finite group G with order divisible by p, the
following are equivalent:

1 |Aut(G)| is not divisible by p.
2 G ∼= Z/pZ× H where |H| and |Aut(H)| are not divisible by p.

In particular, if |G| is divisible by p2 then |Aut(G)| is divisible by p.
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