You may submit solutions for at most 5 out of the following 6 problems. Each question will be graded out of 10 points.

Problem 1 (L^p spaces). Let (X, μ) be a σ -finite measure space, and let $(f_n : X \to \mathbb{R})$ be a sequence of measurable functions in L^p for all $p \ge 1$. Suppose $f_n \to 0$ in L^2 and L^4 .

- (1) Does $f_n \to 0$ in L^1 ? Give a proof or a counterexample.
- (2) Does $f_n \to 0$ in L^3 ? Give a proof or a counterexample.
- (3) Does $f_n \to 0$ in L^5 ? Give a proof or a counterexample.

Problem 2 (L^p spaces). Suppose that $f \in L^p(\mathbb{R})$ for all $p \in (1,2)$ and that $\sup_{1 \le p \le 2} ||f||_p \le \infty$. Prove that $f \in L^2(\mathbb{R})$ and that

$$||f||_2 = \lim_{p \to 2^-} ||f||_p.$$

Problem 3 (Fourier analysis). Suppose $f, g \in L^1(\mathbb{R}, \lambda)$ where λ is Lebesgue measure.

- (1) Show that $y \mapsto f(x-y)g(y)$ is measurable for all $x \in \mathbb{R}$ and in $L^1(\mathbb{R}, \lambda)$ for a.e. $x \in \mathbb{R}$.
- (2) Define the *convolution* of f and g by

$$(f * g)(x) := \int_{\mathbb{R}} f(x - y)g(y) \, d\lambda(y).$$

Show that $f * g \in L^1(\mathbb{R}, \lambda)$.

(3) Show that f * g = g * f for all $f, g \in L^1(\mathbb{R}, \lambda)$.

Problem 4 (Fourier analysis). Prove that the Fourier transform is injective on $L^1(\mathbb{T}^n)$. That is, show that if $f, g \in L^1(\mathbb{T}^n)$ with $\widehat{f}(k) = \widehat{g}(k)$ for all $k \in \mathbb{Z}^n$, then f = g a.e.

Problem 5 (Distributions). Suppose $U \subset \mathbb{R}^n$ is open and $f, g \in L^1_{loc}(U)$. Show that the distributions associated to f, g are equal if and only if f = g a.e.

Problem 6 (Distributions). Let $s \in \mathbb{R}$. Construct an invertible linear isometry from the Sobolev space H_{-s} to the dual space $(H_s)^*$.