You may submit solutions for at most 5 out of the following 7 problems. Each question will be graded out of 10 points.

- (1) Suppose that \mathcal{C} is a non-empty collection of open balls in \mathbb{R}^n , and let $U = \bigcup_{B \in \mathcal{C}} B$. Show that if c < m(U) (where m is Lebesgue measure), then there are *disjoint* $B_1, \ldots, B_k \in \mathcal{C}$ such that $\sum_{i=1}^k m(B_i) > 3^{-n}c$. Note: You may **not** use the Vitali Covering Lemma without proof.
- (2) Give examples of sequences $(f_n)_{n=1}^{\infty}$ of measurable functions on some measure space such that:
 - (f_n) converges almost uniformly to a limit function f, but not everywhere to f.
 - (f_n) converges everywhere to a limit function f, but not in measure to f.
 - (f_n) converges in L^1 to a limit function f, but not almost everywhere to f.
 - (f_n) converges uniformly to a limit function f, but not in L^1 to f.

For each example, you must indicate the measure space and the sequence of functions, together with a justification of the first mode of convergence, and not the second.

- (3) (a) State the Monotone Convergence Theorem.
 - (b) State Fatou's Lemma.
 - (c) Assuming the Monotone Convergence Theorem, prove Fatou's Lemma.
 - (d) Assuming Fatou's Lemma, prove the Monotone Convergence Theorem.
- (4) Suppose μ is a positive measure on (X, \mathcal{M}) and $f \in L^1(X)$.
 - (a) Prove that if $E \subset X$ with $\mu(E) = 0$, then $\int_E f \, d\mu = 0$.
 - (b) Prove that if $\int_E f d\mu = 0$ for all $E \in \mathcal{M}$, then f = 0 μ -a.e.
- (5) Let $L^2(\mathbb{T})$ denote the space of complex-valued square-integrable 1-periodic functions on \mathbb{R} , and let $C(\mathbb{T}) \subset L^2(\mathbb{T})$ denote the subspace of continuous 1-periodic functions. (a) Prove that $\{e_n(x) := \exp(2\pi i n x) | n \in \mathbb{Z}\}$ is an orthonormal basis for $L^2(\mathbb{T})$.

 - (b) Define $\mathcal{F} : L^2(\mathbb{T}) \to \ell^2(\mathbb{Z})$ by $\mathcal{F}(f)_n := \langle f, e_n \rangle_{L^2(\mathbb{T})} = \int_0^1 f(x) \exp(-2\pi i n x) dx.$ Show that if $f \in L^2(\mathbb{T})$ and $\mathcal{F}(f) \in \ell^1(\mathbb{Z})$, then $f \in C(\mathbb{T})$, i.e., f is a.e. equal to a continuous function.
- (6) Suppose (X, \mathcal{M}, μ) is a finite measure space and $f \in L^{\infty}(X)$. Show that $f \in L^{p}(X)$ for all p > 0, and that $||f||_p \to ||f||_\infty$ as $p \to \infty$.
- (7) Suppose f is continuous and g is locally integrable on the reals with $\int f \phi' = -\int g \phi$ for every smooth (infinitely differentiable) function ϕ with compact support. Prove that f is absolutely continuous and f' = q a.e.