

Catalog Description:

Single variable calculus treated in depth.

<u>Prerequisites</u>:

1151 or 151.xx, and permission of department.

Exclusions:

Not open to students with credit for any higher numbered math class.

Text:

<u>*Calculus with Analytic Geometry*</u>, 2nd edition, by Simmons, published by McGraw-Hill, ISBN: 9780070576424

Topics:

1 opies:	
2.1	The Problem of Tangents
2.2	How to Calculate the Slope of the Tangent
2.3	The definition of the Derivative
2.4	Velocity and Rate of Change
2.5	The Concept of a Limit; Two Trigonometric Limits
A2	Theorems about Limits;
3.1	Derivatives of Polynomials
3.2	The Product and Quotient Rules
3.3	Composite Functions and the Chain Rule
3.4	Some trig Derivatives;
3.5	Implicit Functions and Fractional Exponents
3.6	Derivatives of Higher Order
12.2	Indeterminate Form 0/0, L'Hopital's Rule
4.1	Increasing and Decreasing Functions, Maxima and Minima
4.2	Concavity and Points of Inflection
4.3	Applied Maxima and Minima Problems
4.4	Reflection & Refraction
4.5	Related Rates
2.6	Continuous Functions
A4	The Mean Value Theorem
	Midterm I
5.2	Differentials and Tangent Line Approx'n
5.3	Indefinite Integrals, Integration by Substitution;
5.4	Differential Equations, Separation of Variables
6.1	Introduction
6.2	The Problem of Areas.
6.3	The Sigma Notation and Certain Special Sums
6.4	Area under a Curve, Definite Integrals, Riemann
6.5	The Computation of Areas as Limits;

6.6 The Fundamental Theorem of Calculus

- 6.7 Algebraic and Geometric Areas
- 7.2Area between Two Curves;
- 7.3 Volumes: The Disk Method
- 7.4 Volumes: The Method of Cylindrical Shells
- 7.5; 7.6 Arc Length; Area of a Surface of Revolution
- 7.7 Work and Energy
- 8.2 Review of Exponents and Logarithms;
- 8.3 The number e and the function $y=e^x$
- 8.4 The Natural Logarithm Function, Euler
- 8.5 Applications, Population Growth and Radioactive Decay
- 9.1; 9.2 Review of Trig.; Der've and Integrals of Sin and Cos
- 9.3; 9.4 Der've of the Other Four Fns
- 9.5 The Inverse Trig Functions
- 9.6; 9.7 Simple Harmonic Motion; ("Optional") Hyperbolic Functions

MIDTERM 2

- 10.1; 10.2 Basic Formulas; Method of Substitution
- 10.3: 10.4 Certain Trig Integrals; Trig Substitutions;
- 10.5; 10.6 Completing the Square
- 10.7 Integration by Parts
- 10.8 Strategy for Dealing with Integrals
- 12.2; 12.3 Indeterminate Form 0/0, L'Hopital's Rule; Other Indeterminate Forms
- 12.3; 12.4 Improper Integrals
- 13.1 What is an Infinite Series?;
- 13.2 Convergent Sequences
- 13.3 Convergent and Divergent Series
- 13.4 General Properties of Convergent Series
- 13.5 Series of Non-negative Terms, Compar. Tests
- 13.6 Integral Test, Euler's Constant
- 13.7 Ratio and Root Test
- 13.8 Alternating Series Test, Absolute Convergence

MIDTERM 3

- 14.2 The Interval of Convergence
- 14.3 Differentiation and Integration of Power Series
- 14.4 Taylor' Series and Taylor's Formula
- 14.5 Computations Using Taylor's Formula
- 14.6 Applications to Differential Equations
- 14.8 Operations on Power Series

FINAL