# **Homotopy Theory**

## **Instructor and Class Information**

| Lecturer: | Course Num.:   |
|-----------|----------------|
| Office:   | Lecture Room:  |
| Phone:    | Lecture Times: |
| Email:    | Office Hours:  |
|           |                |

## **About Course Goals**

#### FORMAT

The course will meet three times a week for 55 minutes each meeting. Instruction will be mainly by lecture delivered by the instructor. It may also include occasional in-class discussion as well as short student presentations, particularly, by post-candidacy students.

#### **DESCRIPTION & GOALS**

This course provides students with a solid working knowledge in the basic techniques of Homotopy Theory and constitutes a natural continuation of the Math 6801-6802 sequences in Algebraic Topology. Topics will center around properties and calculations with higher homotopy groups as well as the more general theory of fibrations and fiber bundles. The course should be of interest to all students with research interests in topology or geometry.

#### PREREQUISITES

This section is open only to mathematics post-candidacy students and requires, in addition, the permission of the instructor.

## Textbook

#### MAIN REFERENCE

Allen Hatcher: *"Allen Hatcher".* (Chapter 4) Cambridge Univ Press, 2002. ISBN: 0521795400. Freely available at https://www.math.cornell.edu/~hatcher/AT/AT.pdf

#### **ADDITIONAL REFERENCES**

G. W. Whitehead: "Elements of Homotopy Theory". GTM 61, Springer 1978. ISBN: 0387903364.

S.-T. Hu: "Homotopy Theory". Academic Press, 1959. (5<sup>th</sup> Printing 1971) ISBN: 0123584507.

#### Assessments

#### **READING, PARTICIPATION, AND ATTENDANCE**

Students are required to read scheduled textbook materials and actively participate in class room discussions that arise from lecture material. Students are expected to attend all classes.

## **Research Oriented Presentation**

Post-candidacy students in this section are required to deliver a half hour presentation that both synthesizes lecture material and connects it to relevant research questions, more advanced

theoretical topics, or applications in other fields of mathematics. The topic and required independent reading will be determined by the instructor individually in negotiation with the student. Presentations may also be replaced by respective research papers upon the request of the student.

## Grading

## **COURSE GRADE**

The grades for this course section are "satisfactory" (S) or "unsatisfactory" (U). A satisfactory outcome requires continued active participation in class (weighed about 20%) and is further based on the student's performance during the presentation (weighed about 80%).

## Weekly Schedule

| Week 1  | Review of CW complexes, higher homotopy groups                              |
|---------|-----------------------------------------------------------------------------|
| Week 2  | Relative homotopy groups, functorial properties, fundamental group actions. |
| Week 3  | Pair exact sequence, compression lemma, Whitehead Theorem.                  |
| Week 4  | Cellular and CW approximation                                               |
| Week 5  | Whitehead & Postnikov Towers                                                |
| Week 6  | Homotopy Excision Theorem and computations                                  |
| Week 7  | Moore spaces and Eilenberg–MacLane space                                    |
| Week 8  | Hurewicz maps, general Hurewicz Theorem                                     |
| Week 9  | Homotopy Lifting Property, (Serre) Fibrations, fiber bundles                |
| Week 10 | Long Exact Sequences for fibrations, applications to spheres and Lie groups |
| Week 11 | Whitehead products, stable homotopy groups, ring structures                 |
| Week 12 | Loop spaces & Suspension, exact and coexact Puppe sequences                 |
| Week 13 | Relations to cohomology theory and characteristic classes                   |
| Week 14 | Obstruction Theory                                                          |

## **General Policies**

## ACADEMIC MISCONDUCT

It is the responsibility of the Committee on Academic Misconduct to investigate or establish procedures for the investigation of all reported cases of student academic misconduct. The term "academic misconduct" includes all forms of student academic misconduct wherever committed; illustrated by, but not limited to, cases of plagiarism and dishonest practices in connection with examinations. Instructors shall report all instances of alleged academic misconduct to the committee (Faculty Rule 3335-5-487). For additional information, see the Code of Student Conduct (http://studentaffairs.osu.edu/info\_for\_students/csc.asp)."

## **DISABILITY SERVICES**

Students with disabilities that have been certified by the Office for Disability Services will be appropriately accommodated and should

inform the instructor as soon as possible of their needs. The Office for Disability Services is located in 150 Pomerene Hall, 1760 Neil Avenue; telephone 292-3307, TDD 292-0901; http://www.ods.ohio-state.edu/.