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Abstract. We consider the support problem of Erd�os in the context of l-adic rep-
resentations of the absolute Galois group of a number �eld. Main applications of
the results of the paper concern Galois cohomology of the Tate module of abelian
varieties with real and complex multiplications, the algebraic K-theory groups of
number �elds and the integral homology of the general linear group of rings of in-
tegers. We answer the question of Corrales-Rodrig�a~nez and Schoof concerning the
support problem for higher dimensional abelian varieties. In the Appendix C of the
paper we verify a special case of the Mumford-Tate conjecture for abelian varieties.

1. Introduction.

The support problem for Gm was �rst stated by P�al Erd�os who in 1988 raised the
following question:

let Supp(m) denote the set of prime divisors of the integer m: Let x and y
be two natural numbers. Are the following two statements equivalent ?

(1) Supp(xn � 1) = Supp(yn � 1) for every n 2 N ;

(2) x = y

This question, along with its extension to all number �elds, and also its analogue for
elliptic curves, were solved by Corrales-Rodrig�a~nez and Schoof in the paper [C-RS].
Other related support problems can be found in [Ba] and [S]. In the present paper
we investigate the support problem in the context of l-adic representations

�l: GF ! Gl(Tl):

The precise description of the class of representations which are considered is rather
technical. It is given by Assumptions I, II in section 1.3. This class of representa-
tions contains powers of the cyclotomic character, Tate modules of abelian varieties
of nondegenarate CM type, and also Tate modules of some abelian varieties with
real multiplications (cf. Examples 2-6 in section 1.3).
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Consider the reduction map

rv:H
1
f;Sl

(GF ; Tl)! H1(gv; Tl);

for all v =2 Sl; which is de�ned on the subgroup H1
f;Sl

(GF ; Tl) of the Galois co-

homology group H1(GF ; Tl) (see De�nition A.2, Appendix A). Sl denotes here a
�nite set containing primes over l in F: Let B(F ) be a �nitely generated abelian
group such that for every l there is an injective homomorphism

 F;l : B(F )
 Zl ! H1
f;Sl

(GF ; Tl):

Let P and Q be two nontorsion elements of B(F ): Put P̂ =  F;l(P 
 1) and

Q̂ =  F;l(Q
 1): Our main point of interest is the following support problem.

Support Problem.

Let P� be an in�nite set of prime numbers. Assume that for every l 2 P� the
following condition holds in the group H1(gv; Tl) :

for every integer m and for almost every v 62 Sl

mrv(P̂ ) = 0 implies mrv(Q̂) = 0:

How are the elements P and Q related in the group B(F ) ?

1.1. Main results.
Let P� be the in�nite set of prime numbers which we de�ne precisely in section 2
of the paper. We prove the following theorem.

Theorem A. [Th. 1, section 3]
Assume that for every l 2 P�; for every integer m and for almost every v 62 Sl the
following condition holds in the group H1(gv; Tl) :

mrv(P̂ ) = 0 implies mrv(Q̂) = 0:

Then there exist a 2 Z� f0g and f 2 OE � f0g such that aP + fQ = 0 in B(F ):
Here OE denotes the ring of integers of the number �eld E associated with the
representation �l (see De�nition 1).

In order to prove Theorem A we investigate representations with special properties
formulated in Assumption I and Assumption II of section 1.2. We introduce the
notion of the Mordell-Weil OE-module for such representations. Proof of Theorem
A is based on a careful study of reduction maps in Galois cohomology associated
with the given l-adic representation which satis�es Assumptions I and II. We man-
aged to extend the method of [C-RS] to the context of such l-adic representations.
The hard part of the work is to control the impact of arithmetical properties of the
images of these representations on the support problem. In section 4 of the paper
we derive the following corollaries of Theorem A.
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Theorem B. [Cor. 1, section 4.1]
Let P; Q be two nontorsion elements of the group O�

F;S : Assume that for almost
every prime v of OF and every integer m the following condition holds in the
group k�v :

mrv(P ) = 0 implies mrv(Q) = 0;

where in this case
rv : O

�
F;S ! k�v

is the reduction map at the prime v 62 S: Then there exist a; f 2 Z� 0 such that
P a = Qf in O�

F;S:

Note that Theorem B was already proven in [C-RS], where it is also shown that
one can choose a = 1:

Theorem C. [Cor. 2, section 4.2]
Let P; Q be two nontorsion elements of the algebraic K-theory group K2n+1(F );
where n is an even, positive integer. Assume that for almost every prime v of OF
and every integer m the following condition holds in the group K2n+1(kv) :

mrv(P ) = 0 implies mrv(Q) = 0;

where in this case, rv is the map induced on the Quillen K-group by the reduction
at v: Then the elements P and Q of K2n+1(F ) are linearly dependent over Z:

Note that Theorem C has already been proven by a di�erent method in [BGK].
Theorem C implies the following result concerning the reduction maps

r0v: H2n+1(K(OF ); Z)! H2n+1(Sl(kv); Z)

de�ned on the integral homology of the K-theory spectrum K(OF ):

Theorem D. [Cor. 3, section 4.2]
Let n be an even, positive integer. Let P 0; Q0 be two nontorsion elements of the
group H2n+1(K(OF ); Z): Assume that for almost every prime ideal v of OF and
for every integer m the following condition holds in the group H2n+1(Sl(kv); Z) :

mr0v(P
0) = 0 implies mr0v(Q

0) = 0:

Then the homology classes P 0 and Q0 are linearly dependent in H2n+1(K(OF ); Z):

Theorem A has the following corollary concerning the class of abelian varieties
mentioned in the beginning of this Introduction.
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Theorem E. [Cor. 4, section 4.3]
Let A be an abelian variety of dimension g � 1, de�ned over the number �eld F
and such that A satis�es one of the following conditions:

(1) A has the nondegenerate CM type with EndF (A) 
 Q equal to a CM �eld
E (cf. example 4, section 1)

(2) A has real multiplication by a totally real �eld E = EndF (A)
Q ; dimA =
he; where e = [E : Q ] and h is odd (cf. example 5, section 1) or A is an
abelian variety such that EndF (A) = Z and dimA is equal to 2 or 6 (cf.
example 6 (b), section 1).

Let P; Q be two nontorsion elements of the group A(F ): Assume that for almost
every prime v of OF and for every integer m the following condition holds in
Av(kv)

mrv(P ) = 0 implies mrv(Q) = 0:

Then there exist a 2 Z� f0g and f 2 OE � f0g such that aP + fQ = 0 in A(F ):

There are two important special cases of abelian varieties satisfying conditions of
(2) of Theorem E: abelian varieties A with EndF (A) = Z such that dimA is an
odd integer [Se1] (cf. example 6 (b), section 1) and abelian varieties with real mul-
tiplication by a totally real number �eld E = EndF (A)
 Q ; such that e = g [R1]
(cf. example 6 (a), section 1). Note that for these abelian varieties the analogues
of the open image theorem of Serre have been proven [R1] and [Se1]. The proof of
Theorem E relies on the analysis of the image of the corresponding Galois represen-
tation. The information concerning the image of Galois representations on l torsion
points of abelian varieties in (1) and (2) of Theorem E is contained in Theorem B1
of Appendix B and Theorem C5 of Appendix C. We would like to mention that
Theorem E given above provides an answer to the question of Corrales-Rodrig�a~nez
and Schoof about the support problem for higher dimensional abelian varieties [C-
RS], p. 227, where the support problem for an elliptic curve was considered. It is
known that for some families of abelian varieties of Theorem E the Mumford-Tate
group over Q l is equal to the identity component of the Zariski closure of the image
of the Galois representation on Vl(A) = Tl(A) 
 Q l i.e., the Mumford-Tate con-
jecture holds. For the CM abelian varieties of Theorem E (1) the Mumford-Tate
conjecture follows by the results of Pohlman cf. [Se5]. Important special cases of
the Mumford-Tate conjecture have been proven by J.P. Serre [Se1], W. Chi [C],
K. Ribet [R1], R. Pink [P] and S. Tankeev [Ta2]. In Theorem C6, Appendix C
we verify that the Mumford-Tate conjecture is true for some new abelian varieties
belonging to the �rst class of varieties listed in part (2) of Theorem E.

Organization of the paper: In section 1 we introduce necessary notation and de�-
nition of the class of representations which are considered. The proof of Theorem
A is contained in sections 2 and 3. In order to keep the exposition self-contained
we attached three appendices at the end of the paper. In Appendix A we discuss
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l-adic intermediate jacobians which were de�ned in a di�erent context by C. Schoen
in [Sch]. Appendix B contains a brief exposition of abelian varieties of the non-
degenerate CM type following [R3], [K] and [Haz]. In the Appendix C we discuss
the image of the Galois representation for abelian varieties with real multiplica-
tions for which the support problem has positive answer. The reader is advised to
use the appendices as the source of explanations for the unde�ned symbols in the
main body of the paper. In section 4 of the paper we collected the corollaries of
Theorem A.

Acknowledgements: We thank K. Ribet for correspondence concerning the Galois
representaton associated with CM abelian varieties. We also thank J.P. Serre, S.G.
Tankeev and J.P. Wintenberger for conversations and correspondence concerning
the case of the Galois representation of abelian varieties with real multiplications.
The ICTP in Trieste, the MPI in Bonn, the SFB 343 in Bielefeld, CRM in Barcelona,
Mathematics Departments of the Ohio State University and Northwestern Univer-
sity provided �nancial support during our visits to the institutions, while the work
on this paper continued. The research was partially �nanced by a KBN grant.

1.2. Notation.

l is an odd prime number.
F is a number �eld, OF its ring of integers.

GF = G( �F=F )
v denotes a �nite prime of OF :

OF;S is the ring of S�integers in F; for a �nite set S of prime ideals in OF
Fv is the completion of F at v and kv denotes the residue �eld OF =v
Gv = G(F v=Fv)
Iv is the inertia subgroup of Gv
gv = G(kv=kv)
Tl denotes a free Zl-module of �nite rank d:
Vl = Tl 
Zl Q l
Al = Vl=Tl
�l : GF ! Gl(Tl) is a representation unrami�ed outside a �xed �nite set Sl

of primes of OF ; containing all primes over l:
�l denotes the residual representation GF ! Gl(Tl=l) induced by �l:
Fl = F (Al[l]) denotes the number �eld �F ker�l :
Gl = G(Fl=F ); observe that Gl �= �l(GF ) is isomorphic to a subgroup of

Gl(T=l) �= Gld(Z=l): Let L=F be a �nite extension and w a �nite prime in
L: To indicate that w is not over any prime in Sl we will write w =2 Sl;
slightly abusing notation.

[H;H] denotes the commutator subgroup of an abstract group H:
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1.3. Basic Assumptions.

Assumption I. Assume that for each l; each �nite extension L=F and any prime
w of OL; such that w 62 Sl; we have

TFrwl = 0;

(or equivalently V Frwl = 0), where Frw 2 gw denotes the arithmetic Frobenius at
w:

Example 1. Let X be a smooth projective variety de�ned over a number �eld F
with good reduction at primes v =2 Sl: Let X be the regular, proper model of X
over OF;Sl and let Xv be its reduction at the prime v of OF;Sl : Put X = X 
F F

and X v = Xv 
kv kv: In the case when Hi
et(X;Zl(j)) is torsion free for some i; j

such that i 6= 2j we put
Tl = Hi

et(X;Zl(j)):

By the theorem of proper and smooth base change ([Mi1] VI, Cor. 4.2) there is a
natural isomorphism of Gv-modules

(1.1) Hi
et(X;Zl(j)) �= Hi

et(X v;Zl(j)):

(cf. [Ja] p. 322). Since the inertia subgroup Iv � Gv acts trivially onH
i
et(X v;Zl(j));

we observe by (1.1) that the representation �l : GF ! Gl(Tl) is unrami�ed outside
Sl: It follows by the theorem of Deligne [D1] (proof of the Weil conjectures, see
also [Har] Appendix C, Th. 4.5) that for an ideal w of OL such that w 62 Sl; the
eigenvalues of Frw on the vector space

Vl = Hi
et(X;Q l(j))

are algebraic integers of the absolute value N(w)�i=2+j; where N(w) denotes the

absolute norm of w: It follows that TFrwl = 0: In the special case when X = A is
an abelian variety de�ned over F; we have

Tl = Hi
et(A;Zl(j))

�= ^iH1
et(A;Zl)(j)

�= ^iHomZl(Tl(A);Zl)(j);

which is a free Zl module of rank
�
2g
i

�
by [Mi2] Th. 15.1. In this paper, most of

the time we will consider the representation

�l : GF ! Gl(Tl(A))

of the Galois group GF on the Tate module Tl(A) = H1
et(A;Zl)

� of the abelian
variety A de�ned over F , where for a Zl-module M; we put M� = HomZl(M ;Zl):
By the above discussion we see that �l satis�es Assumption I.
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In order to formulate the second basic assumption on the representation � let us
introduce some more notation. We �x a �nite extension E=Q of degree e = [E : Q ]
such that the Hilbert class �eld EH of E is contained in F: We assume that each
prime l splits completely in F: Let

(l) = �1 : : : �e

be the decomposition of the ideal (l) in OE : The ring OE acts on Tl in such a way
that Tl is a free OE;l = OE 
 Zl module of rank h and that the action of OE;l
commutes with the action of GF given by the representation �l: It is clear that e
divides d = dim�l and h =

d
e
: Put El = OE;l
Zl Q l : In addition, we denote by E�i

the completion of E at �i and by O�i the ring of integers in E�i : Now, it is obvious
that

OE;l =
eY
i=1

O�i and El =
eY
i=1

E�i :

Since Tl has the OE;l-module structure, we can represent Vl and Al as follows:

Vl = Tl 
OE;l El

Al = Tl 
OE;l El=OE;l = �ei=1Tl 
OE;l E�i=O�i = �ei=1A�i ;

where we put A�i = Tl 
OE;l E�i=O�i :

Note that every prime ideal �i is principal, because by assumption EH � F:
Hence, �i = (�i) for some �i 2 OE : In this case E�i=O�i

�= Q l=Zl for each i; hence

all A�i are divisible groups of the same corank h: Observe that Al[�i
k] = A�i [�i

k]
and

(1.2) Al[l] �=

eM
i=1

Al[�i];

where dimZ=lAl[�i] = h; for all 1 � i � e: By assumptions and decomposition
(1.2) it is clear that the image �l(GF ) of the representation �l is contained in the
subgroup of Gld(Z=l) which consists of matrices of the form

0
BB@
C1 0 : : : 0
0 C2 : : : 0
...

...
...

...
0 0 : : : Ce

1
CCA ;

where Ci 2 Glh(Z=l); for all 1 � i � e: Hence, we can consider the image of �l as a
subgroup of the product

Qe
i=1Glh(Z=l):
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Assumption II. Let P = P(�) be an in�nite set of prime numbers l > 3; which
split completely in F and such that the l-adic representation �l satis�es the following
conditions.

(1) If h > 1; then for each 1 � i � e; there is a subgroup Hi � Glh(Z=l) �=
Gl(Al[�i]) such that:

(i) the subgroup H1 � � � � �Hi � � � � �He of the group
Qe
i=1Glh(Z=l) is

contained in Im�l = Gl and H1 � � � � �Hi � � � � �He has index prime to l
in Gl

(ii) Hi acts irreducibly on Al[�i] �= (Z=l)h;

(iii) Hi=[Hi; Hi] has order prime to l;

(iv) there exist matrices �i; �i 2 Hi such that 1 is an eigenvalue of �i with
eigenspace of dimension 1 and 1 is not an eigenvalue of �i;

(v) The centralizer of Hi in Glh(Z=l) is (Z=l)
�Ih i.e. if � 2 Glh(Z=l) and

� h = h� for all h 2 Hi; then � is a scalar matrix.

(2) If h > 1; then for each 1 � i � e the group Hi contains a nontrivial subgroup
D0
i of the group faIh; a 2 (Z=l)�g � Glh(Z=l) of scalar matrices.

(3) If h = 1; we require that Gl = G(Fl=F ) satis�es two additional conditions:

(i) for every 1 � i � d; there is a diagonal matrix �i = diag (�1; : : : ; �d)
in the group Gl with �i = 1 and �j 6= 1; for all j 6= i;

(ii) there is an isomorphism of rings Z=l[Gl] �= OE=l; where Z=l[Gl] denotes
a subring of OE=l generated by Z=l and the image of Gl in OE=l via the
natural imbedding Gl ! (OE=l)

�:

De�nition 1. Let fB(L)gL be a direct system of OE -modules indexed by all �nite
�eld extensions L=F: The structure maps of the system are induced by inclusions
of �elds. We assume that for every embedding of �elds L ! L0 the structure
map B(L) ! B(L0) is a homomorphism of OE -modules. Let us put B(F ) =
lim�!L=F B(L): Let � and P be as in Assumption II. The system fB(L)gL is called

the Mordell-Weil OE -module of the representation � (or more precisely, of the pair
(�; P)) if the following conditions are satis�ed:

(1) B(L) is a �nitely generated OE -module for all L:
(2) There is a natural homomorphisms of OE-modules

 L;l : B(L) �! H1
f;Sl

(GL;Tl)

(for the de�nition of H1
f;Sl

(GL;Tl) see Appendix A), where L is as above
and l 2 P; is such that either

(i) for every l 2 P; the induced map

 L;l 
 Zl : B(L)
 Zl ! H1
f;Sl

(GL;Tl)
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is an isomorphism, or

(ii) for every l 2 P; the map  L;l 
 Zl is an imbedding, the group B(F )
is a discrete GF -module which is divisible by l and for every L we have:
B(F )GL �= B(L) and H0(GL;Al) � B(L):

We end this section with the examples of Mordell-Weil OE-modules related to
l-adic representations which satisfy Assumptions I and II.

Example 2. Consider the l-adic representation

�l : G( �F=F )! Gl(Zl(1)) �= Gl1(Zl) �= Z�l

given by the cyclotomic character. In this case Tl = Zl(1); Vl = Q l (1) and Al =
Q l=Zl(1): This representation is given by the action of GF on the Tate module of
the multiplicative group scheme Gm=F: Let S be any �nite set of primes in OF :
Denote by Sl the set of primes consisting of primes in S and primes in F over l:
Put B(L) = Gm(OL;S) = O�

L;S for any �nite extension L=F: The Kummer map

(which is obviously injective)

B(L)
 Zl ! H1(GL;Sl ;Zl(1))! H1(GL;Zl(1))

factors naturally through

 L;l : B(L)
 Zl ! H1
f;Sl

(GF ;Zl(1))

In this case we take E = Q hence OE = Z: We take P to be the set of all prime
numbers l such that G(F (�l)=F ) is nontrivial.

Example 3. Let n be a positive integer. Let Tl = Zl(n+ 1); hence Vl = Q l(n+ 1)
and Al = Q l=Zl(n+ 1): Consider the one dimensional representation

�l : GF ! GL(Tl) �= Z�l

which is given by the (n+1)-th tensor power of the cyclotomic character. For each
odd prime number l and for a �nite extension L=F consider the Dwyer-Friedlander
map [DF]

K2n+1(L)! K2n+1(L)
 Zl ! H1(GL; Zl(n+ 1)):

Let CL be the subgroup of K2n+1(L) which is generated by the l-parts of kernels of
Dwyer-Friedlander maps for all odd primes l:We de�ne the group B(L) by putting

B(L) = K2n+1(L)=CL:
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Note that the group CL is �nite by [DF] and it should vanish if the Quillen-
Lichtenbaum conjecture holds. Note that in this case

H1(GF ; Zl(n+ 1)) �= H1(GF;Sl ; Zl(n+ 1)) �= H1
f;Sl

(GF ; Zl(n+ 1)):

It follows by the de�nition of B(L) that

 L;l : B(L)
 Zl �= H1(GL; Zl(n+ 1)):

In the following three examples we discuss representations which come from Tate
modules of abelian varieties. Let A=F be a simple abelian variety of dimension d
over a number �eld F: As usual, we take Tl = Tl(A) the Tate module of A: Consider
the l-adic representation

�l : GF ! Gl(Tl(A)):

Assumption I holds due to the Weil conjectures (cf. [Sil], pp. 132-134). Let S be
the set of prime ideals of F at which A has bad reduction. By the Kummer pairing
and Serre-Tate theorem ([ST], Th. 1, p. 493 and Corollaries 1 and 2 of Manin's
Appendix II to the book [M]) we have a natural imbedding

 L;l : A(L)
 Zl ! H1
f;Sl

(GL;Tl(A)):

Put B(L) = A(L) for any �nite extension L=F:

Example 4. Let A=F be a simple abelian variety with complex multiplication by a
CM �eld E cf. [La] such that EH � F; where EH is the Hilbert class �eld of E:We
assume that CM type of A is nondegenerate (cf. Appendix B Def. B1) and de�ned
over F . Condition (i) of Assumption II (3) holds by Theorem B1 of Appendix
B (for CM elliptic curves it also follows by an alternative argument cf. [C-RS],
Lemma 5.1, p. 286). Condition (ii) of Assumption II (3) follows by Proposition, p.
72 of [R2]. We take P to be the set of prime numbers l which split completely in
F and such that A has a good reduction at l:

Example 5. Consider a simple abelian variety A=F such that E = EndF (A)
Q =
End �F (A) 
 Q (cf. [R1] and [C]) where e = [E : Q ] and 2h e = 2g with h and
odd integer. In addition, we choose F to be a number �eld satisfying conditions
indicated in a discussion which follows Theorem C1 of Appendix C and such that
EH � F: We take P to be the set of prime numbers l � 0 which split completely
in F; abelian variety A has a good reduction at l and ful�lls all the assumptions of
Appendix C. Hence by Theorem C5 of Appendix C we get

eY
i=1

Sp2h(Fl ) = [Gl; Gl]:
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Taking Hi = Sp2h(Fl ); for all 1 � i � e; we observe that conditions of Assumption
II (1) are ful�lled since

(i)
Qe
i=1 Sp2h(Fl) � Gl; and the quotient group GSp2h(Fl )=Sp2h(Fl ) has

order prime to l;

(ii) Sp2h(Fl) acts on Al[�i] �= (Z=l)2h; in an irreducible way.

(iii) Sp2h(Fl) modulo its center is a simple group.

(iv) matrix �i 2 Sp2h(Fl)

�i =

�
Jh(1) Jh(1)
O (Jh(1)

t)�1

�

has eigenvalue 1 with the eigenspace of dimension 1 where

Jh(1) =

0
BBBB@

1 1 0 : : : 0 0
0 1 1 : : : 0 0
...

...
...

...
...

0 0 0 : : : 1 1
0 0 0 : : : 0 1

1
CCCCA

is the h� h Jordan block matrix with 1 as the eigenvalue and �i = �I2h 2
Sp2h(Fl) does not have 1 as an eigenvalue.

(v) The centralizer of Sp2h(Fl ) in Gl2h(Fl) is (Fl )
�I2h:

Observe that condition (2) of Assumption II is satis�ed since obviously �I2h 2
Sp2h(Fl):

There are two special cases of Example 5 that have been considered extensively in
the past.

Example 6. (a) Let A=F be a simple abelian variety with real multiplication by a
totally real �eld E = EndF (A) 
 Q = End �F (A) 
 Q such that e = g and h = 1
(cf. [R1]). We choose F to be such a number �eld that EH � F: We take P to be
the set of prime numbers l which split completely in F and such that A has a good
reduction at l: Theorem 5.5.2, p. 801, [R1] or Theorem C5 of Appendix C implies
that the image of the representation ��l contains the subgroup

gY
i=1

Sl2(Fl ) =

gY
i=1

Sp2(Fl);

therefore the representation ��l satis�es Assumption II (1) and (2).

(b) Let A=F be a simple abelian variety with the property that End �F (A) = Z
and g = dimA is odd or equal to 2 or 6: In this case E = Q hence e = 1 and
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h = g: By the theorem of Serre ([Se1] Th. 3) the image of the representation ��l
equals GSp2g(Fl) (hence contains Sp2g(Fl )) for almost all l: We take P to be the
set of prime numbers such that the image of ��l equals GSp2g(Fl) and A has good
reduction at l: Hence the image of the representation ��l satis�es the conditions (1)
and (2) of Assumption II.

It is rather hard to �nd further examples of Mordell-Weil OE-modules satifying
condition (2)(i) of De�nition 1. Indeed, if we concentrate on �nding a Mordell-Weil
OE -module associated to Tl coming from �etale cohomology of a smooth proper
scheme X over F; then we should �rst prove Conjecture 5.3 (ii) p. 370 of [BK], for
such an X:

2. Key Propositions.

De�nition 2. Let
�P : GFl ! Al[l]

be the map:

�P (�) = �(
1

l
P̂ )�

1

l
P̂

where P 2 B(F ) and P̂ is the image of P via the natural map

B(F )! B(F )
 Zl ! H1
f;Sl

(GF ;Tl) � Jf;Sl(Tl)

Remark 1. Note that 1
l P̂ makes sense in Jf;Sl(Tl) since the last group is divisible

due to Proposition A1 (see Appendix A). The element 1
l P̂ is de�ned up to an

element of the group Al[l]:

Proposition 1. Suppose that the Assumptions I and II are ful�lled. Then we have:

(1) Hr(G(Fl=F );Al[l]) = 0 for r � 0 and all l 2 P; except the case of trivial
Gl-module Al[l] when r = 0 and d = 1:

(2) the map H1
f;Sl

(GF ;Tl)=l �! H1
f;Sl

(GFl ;Tl)=l is injective for all l 2 P;

(3) the map B(F )=lB(F ) �! B(Fl)=lB(Fl) is injective for all l 2 P;
(4) Let P 2 B(F ): If l 2 P does not divide ]B(F )tor and P =2 �iB(F ) for all

1 � i � e; then the map �P is surjective.

Proof. (1) First let us consider the case h > 1: The group D0 =
Qe
j=1D

0
i can be

regarded as a subgroup of Gl once we identify Gl with its image via �l: D
0 is a

normal subgroup of Gl: Assumption II (2) allows us to consider the Hochschild-Serre
spectral sequence

(2.1) Er;s2 = Hr(Gl=D
0; Hs(D0; Al[l]))) Hr+s(Gl; Al[l]):
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Observe that H0(D0; Al[l]) = �ei=1H
0(D0

i ; Al[�i]) = 0 because by de�nition D0
i

is nontrivial and acts by matrix multiplication (actually scalar multiplication) on
the Z=l vector space Al[�i] �= (Z=l)h: The groups Hs(D0; Al[l]) vanish for s > 0;
since l is odd by assumption and the order of D0 is prime to l: Hence the claim
(1) follows for h > 1:Now let h = 1: Note that Gl is isomorphic to a subgroup
of diagonal matrices in Gl(Al[l]) = Gld(Z=l). Since Gl has order relatively prime
to l; Hs(Gl; Al[l]) = 0 for s > 0: It follows easily by Assumption II (3) (i) that
H0(Gl; Al[l]) = 0; for all l 2 P and d > 1: This proves (1) in the case h = 1: If
d = 1; then H0(Gl; Al[l]) = 0 (= Al[l] resp.) if Al[l] is nontrivial (trivial resp.)
Gl-module.

(2) By Prop. A1, Appendix A, we have the following short exact sequence:

0 ����! Al[l] ����! Jf;Sl(Tl)
l

����! Jf;Sl(Tl) ����! 0:

By the long exact sequence in cohomology associated to this exact sequence and
Proposition A2, we obtain the commutative diagram in which the horizontal maps
are injections.

(2.2)

0 0??y ??y
ker � ����! H1(Gl; Al[l])??y ??y

H1
f;Sl

(GF ; Tl)=l ����! H1(GF ; Al[l])??y� ??y

H1
f;Sl

(GFl ; Tl)=l ����! H1(GFl ; Al[l])

However, ker � = 0; since it injects into the group H1(Gl; Al[l]) which vanishes by
part (1) of the proposition.

(3) Let us �rst consider the case (2) (i) of De�nition 1. Because the map

B(L)
 Zl �! H1
f;Sl

(GL; Tl);

is an isomorphism, the group B(L)=l is isomorphic to H1
f;Sl

(GL; Tl)=l: This shows
that the horizontal maps in the commutative diagram

(2.3)

B(F )=l ����! H1
f;Sl

(GF ; Tl)=l??y ??y�
B(Fl)=l ����! H1

f;Sl
(GFl ; Tl)=l
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are isomorphisms. Since we have proved in (2) that the map � is an injection,
diagram (2.3) gives the claim (3). Now consider the case (2) (ii) of De�nition 1.
We get the exact sequence of GF -modules:

0 ����! Al[l] ����! B(F )
l

����! B(F ) ����! 0

This gives the following commutative diagram with injective horizontal arrows:

(2.4)

0 0??y ??y
ker � ����! H1(Gl; Al[l])??y ??y
B(F )=l ����! H1(GF ; Al[l])??y� ??y

B(Fl)=l ����! H1(GFl ; Al[l])

Since by (1) the map 
 is injective for all l 2 P, the map � is also injective for all
l 2 P:

(4) We easily check that the image of the map �P is GF -invariant. If �P were not
surjective, then Im�P would be a proper GF submodule of Al[l]: It is clear from
the decomposition of Al[l] (1.2) and Assumption II (1) and (3) (ii) that every GF
submodule of Al[l] is of the formAl[�i1 ]�� � ��Al[�ir ] for some i1; : : : ; ir 2 f1; : : : ; eg:
Hence if Im�P were a proper GF submodule, we could assume that

Im�P � Al[�1]� � � � �Al[�i�1]� Al[�i+1]� � � � �Al[�e]

for some 1 � i � e: This implies that

(2.5) �1 : : : �i�1�i+1 : : : �e(�(
1

l
P̂ )�

1

l
P̂ ) = 0

for every � 2 G( �F=Fl): The equality (2.5) takes place in Jf;Sl(Tl) under the (2) (i)

part of De�nition 1 (resp. in B(F ) under the case (2) (ii) of De�nition 1) and it
implies that

(2.6) �(�1 : : : �i�1�i+1 : : : �e
1

l
P̂ ) = �1 : : : �i�1�i+1 : : : �e

1

l
P̂

for every � 2 G( �F=Fl): Hence by Proposition A2 (2) (resp. by Def. 1, sec. 1.3, of
the Mordell-Weil OE-module

�
B(L)

	
) we get

(2.7) �1 : : : �i�1�i+1 : : : �e
1

l
P̂ 2 H1

f;Sl
(GFl ;Tl) (2 B(Fl) resp:):
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So �1 : : : �i�1�i+1 : : : �eP̂ = 0 in the groupH1
f;Sl

(GFl ;Tl)=l (in the group B(Fl)=lB(Fl)

resp.). By parts (2) and (3) of the Proposition (see also the diagram (2.3)) this

implies �1 : : : �i�1�i+1 : : : �eP̂ = 0 in the group B(F )=lB(F ) in both cases. Hence

there is P1 2 B(F ) such that �1 : : : �i�1�i+1 : : : �eP̂ = lP1: This gives the equality

(2.8) �1 : : : �i�1�i+1 : : : �e(P̂ � �iP2) = 0

where P2 = uP1 2 B(F ) for some u 2 O�
E : Multiplying equation (2.8) by �i we

obtain the equality l(P � �iP2) = 0 in the group B(F ): Since, by assumption,
]B(F )l = 0 we get P = �iP2; hence P 2 �iB(F ) which contradicts the assump-
tions. �

For a given l let ��i denote the representation:

��i : GFi ! Gl(Al[�i])

Similarly to the de�nition of Fl we put Fi = �F ker��i : In analogy with the de�nition
2 we introduce a homomorphism

�i : GFi ! Al[�i];

�i(�) = �(
1

�i
P̂ )�

1

�i
P̂ :

Proposition 2. We have:

(1) Hr(G(Fi=F );Al[�i]) = 0 for r � 0 , all l 2 P; and 1 � i � e except the
case of trivial G(Fi=F )-module Al[�i] when r = 0:

(2) the map H1
f;Sl

(GF ;Tl)=�i �! H1
f;Sl

(GFi ;Tl)=�i is injective for all l 2 P
and 1 � i � e:

(3) the map B(F )=�iB(F ) �! B(Fi)=�iB(Fi) is injective for all l 2 P and
1 � i � e:

(4) Let P 2 B(F ): If l 2 P does not divide ]B(F )tor and P =2 �iB(F ); then
the map �i is surjective.

Proof. Proofs of (1), (2), and (3) are done in the same way as the corresponding
proofs in Proposition 1. Statement (4) holds because �i is obviouslyGF equivariant,
�i is nontrivial since P =2 �iB(F ); and Al[�i] is an irreducible Z=l[GF ] module due
to Assumption II. �

Let P; Q be two nontorsion elements of the group B(F ): Let Sl be the �nite set of
primes which contains primes for which �l is rami�ed and primes over l: For v 62 Sl
let

rv : H
1
f;Sl

(GF ; Tl)! H1(gv; Tl)
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denote the reduction map at a prime ideal v of OF (see Appendix A). We will
investigate the linear dependence of P and Q over OE in B(F ) under some local
conditions for the maps rv; (see statement of Theorem 1 below).

We need some additional notations. Let P� be the set of rational primes l 2 P such
that P =2 �iB(F ) and Q =2 �iB(F ) for all 1 � i � e: The set P n P� is �nite, since

B(F ) is �nitely generated OE module. Let R̂ 2 Jf;Sl(Tl) be such that lR̂ = P̂ : The

element R̂ exists by Proposition A1 of the Appendix. The Galois group GFl acts
on the set

fR̂+ t: t 2 Al[l]g

which is contained in Jf;Sl(Tl): Let NP � GFl be the kernel of this action. Note
that NP is a normal subgroup of GFl of �nite index. De�ne the �eld

Fl(
1

l
P̂ ) = �FNP :

Let Fl(
1
l
Q̂) denote the corresponding �eld de�ned for Q: Observe that Fl(

1
l
P̂ )=F

and Fl(
1
l Q̂)=F are Galois extensions and we have isomorphisms

Gal(Fl(
1

l
P̂ )=F ) �= H2 oGl Gal(Fl(

1

l
Q̂)=F ) �= H1 oGl;

where

H1 = Gal(Fl(
1

l
Q̂)=Fl) H2 = Gal(Fl(

1

l
P̂ )=Fl):

By Proposition 1 (4) the group H1 ( H2; respectively) can be identi�ed with Al[l]

via the map �Q ( �P ; resp.). Put K = Fl(
1
l P̂ )Fl(

1
l Q̂):

All �elds introduced above are displayed in the diagram below.

(2.9)

K

Fl(
1
l P̂ )

xxxxxxxx
Fl(

1
l Q̂)

FFFFFFFF

F (R̂) Fl

DDDDDDDDD

zzzzzzzzz
F (R̂0)

F

FFFFFFFFF

xxxxxxxxx

Similarly, let R̂i 2 Jf;Sl(Tl) be such that �iR̂i = P̂ : The element R̂i exists by
Proposition A1. The Galois group GFi acts on the set

fR̂i + t: t 2 Al[�i]g
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which is contained in Jf;Sl(Tl): Let Ni � GFi be the kernel of this action. Note
that Ni is a normal subgroup of GFi of �nite index. De�ne the �eld

Fi(
1

�i
P̂ ) = �FNi :

Let Fi(
1
�i
Q̂) denote the corresponding �eld de�ned in the same way for Q: Observe

that Fi(
1
�i
P̂ )=F and Fi(

1
�i
Q̂)=F are Galois extensions and there are isomorphisms

Gal(Fi(
1

�i
P̂ )=F ) �= H2;i oG(Fi=F ) Gal(Fi(

1

�i
Q̂)=F ) �= H1;i oG(Fi=F );

where

H1;i = Gal(Fi(
1

�i
Q̂)=Fi) H2;i = Gal(Fi(

1

�i
P̂ )=Fi):

By Proposition 2 (4) the group H1;i ( H2;i; respectively) can be identi�ed with

Al[�i] via the map �i for Q (for P resp.) Put Ki = Fi(
1
�i
P̂ )Fi(

1
�i
Q̂):

Fields introduced above are displayed in the left diagram below. In the right dia-
gram we depicted the relevant prime ideals that will be used in the proof of Theorem
1 below.

(2.10)

Ki w w0

Fi(
1
�i
P̂ )

xxxxxxxxx
Fi(

1
�i
Q̂)

GGGGGGGG

�

{{{{{{{{{
�0

DDDDDDDDD

F (R̂i) Fi

EEEEEEEEE

yyyyyyyyy
F (R̂0

i) u

BBBBBBBBBBB

{{{{{{{{{{{
u0

F

HHHHHHHHH

wwwwwwwww
v

DDDDDDDDDD

yyyyyyyyyy

Remark 2. Observe that

Fl(
1

l
P̂ ) = F1(

1

�1
P̂ ) : : : Fi(

1

�i
P̂ ) : : : Fe(

1

�e
P̂ );

Fl(
1

l
Q̂) = F1(

1

�1
Q̂) : : : Fi(

1

�i
Q̂) : : : Fe(

1

�e
Q̂):

In addition there is an equality

[F (R̂i) : F ] = [Fi(
1

�i
P̂ ) : Fi];

since by Proposition 2 (4) there are [Fi(
1
�i
P̂ ) : Fi] di�erent imbeddings of F (R̂i)

into �F that �x F: Hence from diagram (2.10) we �nd out that F (R̂i) \ Fi = F:
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3. The support problem for l-adic representations.

Theorem 1. Let P� be the in�nite set of prime numbers introduced in section 2.
Assume that for every l 2 P� the following condition holds in the group H1(gv; Tl):

For every integer m and for almost every v 62 Sl

mrv(P̂ ) = 0 implies mrv(Q̂) = 0:

Then there exist a 2 Z and f 2 OE such that aP + fQ = 0 in B(F ):

Lemma 1. Let H1;i and H2;i be two h-dimensional Fl -vector spaces equipped with
the natural action of the group Gi = Im ��i � Glh(Fl ): Let us denote by 
i the
semidirect product (H1;i �H2;i)oGi: Assume that we are given �i 2 Gi such that
for every h1 2 H1;i the element (h1; 0; �i) 2 (H1;i � f0g)o Gi is conjugate to an
element (0; h2; �i) 2 (f0g �H2;i)o Gi: Then 1 is not an eigenvalue of the matrix
�i:

Proof. cf. [C-RS], Lemma 4.2. �

Remark 3. Observe, that by Assumption II there exists a matrix �i 2 Gi; such
that 1 is an eigenvalue of �i with an eigenspace of dimension 1, for every l 2 P and
every 1 � i � e:

Proof of Theorem 1. We want to prove that

(3.1) Fl(
1

l
P̂ ) = Fl(

1

l
Q̂):

Hence it is enough to prove that for each 1 � i � e we have

(3.2) Fi(
1

�i
P̂ ) = Fi(

1

�i
Q̂):

Suppose this is false for some i. Then we observe that

Fi(
1

�i
P̂ ) \ Fi(

1

�i
Q̂) = Fi;

since both groups H1;i = G(Fi(
1
�i
Q̂)=Fi) and H2;i = G(Fi(

1
�i
P̂ )=Fi) are irreducible

Gi = G(Fi=F ) modules by Assumption II (1) (ii).
Hence

(3.3) Gal(Ki=Fi) �= H1;i �H2;i
�= Al[�i]� Al[�i]:

We need the following:
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Lemma 2. We have the following equality

Ki \ Fl = Fi:

Proof. By (3.3) the group G(Ki=Fi) is abelian of order l2h:

If h = 1; then G(Fl=Fi) �
Qd
j=1;j 6=iGl1(Z=l) has order relatively prime to l and it

is clear that Ki \ Fl = Fi:
Let h > 1: We observe that

eY
j=1;j 6=i

[Hj; Hj] �
eY

j=1;j 6=i

Hj � G(Fl=Fi);

hence by Assumption II (i), (ii) the subgroup
Qe
j=1;j 6=i[Hj; Hj] has index prime to

l in G(Fl=Fi): On the other hand

eY
j=1;j 6=i

[Hj; Hj] � [G(Fl=Fi); G(Fl=Fi)] � G(Fl=Fi);

hence the group G(Fl=Fi)
ab = G(Fl=Fi)=[G(Fl=Fi); G(Fl=Fi)] has order prime to

l: Let K0 = Ki \ Fl: Then K0=Fi; as a subextension of Ki=Fi; is abelian with
order equal to some power of l: On the other hand G(K0=Fi) is a quotient of the
abelian group G(Fl=Fi)

ab; which has order prime to l: This implies that the group
G(K0=Fi) is trivial. Hence K0 = Fi: �

Let us now return to the proof of Theorem 1. Consider the following tower of �elds.

(3.4)

KiFl

Ki

yyyyyyyy
Fl

Fi

zzzzzzzzz
F1 : : : Fi�1Fi+1 : : : Fe

QQQQQQQQQQQQQQ

F

EEEEEEEEE

mmmmmmmmmmmmmm

We can regard Gl = G(Fl=F ) as the subgroup of
Qe
j=1Glh(Fl): Let us pick �l 2 Gl

such that �ljFi = �i and �ljFj = �j for all j 6= i: Such a �l exists by Assumption II
(1) (iv). Note that �l considered as a linear operator on the Fl vector space Al[l] has
an eigenvalue 1 with the eigenspace of dimension 1: Let h1 2 H1;i be an arbitrary
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element. Let us pick an element of G(Ki=Fi) �= H1;i�H2;i such that its projection
onto H1;i is h1 and its projection onto H2;i is a trivial element. We denote this
element as (h1; 0): Taking into account Lemma 2, Remark 2 and the isomorphism
of Galois groups Gal(Ki=F ) �= (H1;i �H2;i)oG(Fi=F ); we can de�ne an element


 2 G(KiFl=F ) such that 
jKi = (h1; 0; �i); 
jF (R̂i) = idF (R̂i) and 
jFl = �l: By

Chebotarev density theorem there exists a prime ~w of KiFl such that:

(i) Fr ~w = 
 2 G(KiFl=F );
(ii) the unique prime v in F below ~w is not in Sl and satis�es the assumptions

of Theorem 1.

By the choice of prime v we see that

H0(gv; Al)[l] = �ej=1H
0(gv; Al)[�j] = H0(gv; Al)[�i]

and also H0(gv; Al)[l] �= Z=l: Hence for each k � 1 we have

H0(gv; Al)[l
k] = H0(gv; Al)[�

k
i ]

which, together with �nitness of H0(gv; Al); shows that there is an m such that

(3.5) H0(gv; Al) = H0(gv; Al)[l
m] = H0(gv; Al)[�

m
i ]

and H1(gv; Tl) �= H0(gv; Al) is a �nite, cyclic group.

Let w (u resp.) be the prime of Ki (F (R̂i) resp.) which is over v and below ~w (cf.
Diagram (2.10). Consider the following commutative diagram.

(3.6)

H1
f;Sl

(GKi
; Tl)

rw����! H1(gw; Tl)x?? x??
H1
f;Sl

(GFi( 1
�i
P̂ ); Tl)

r�
����! H1(g�; Tl)x?? x??

H1
f;Sl

(GF (R̂i); Tl)
ru����! H1(gu; Tl)x?? �=

x??
H1
f;Sl

(GF ; Tl)
rv����! H1(gv; Tl)

The lowest right vertical arrow in the diagram (3.6) is an isomorphism because,

by the choices we have made the prime v splits in F (R̂i) (which means that kv �=
ku: Note that prime ideal v does not need to split completely in F (R̂i)=F since
this extension is usually not Galois). The left vertical arrows are embeddings by
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Proposition A2. Since v splits in F (R̂i); we have the following equality in the group
H1(gv; Tl)

rv(P̂ ) = �i ru(R̂i):

Let tv = lm denote the order of the �nite cyclic group H1(gv; Tl) �= H0(gv; Al):
For some c 2 O�

E we have

(3.7)
tv
l
rv(P̂ ) =

tv
l
�i ru(R̂i) = lm�1�i ru(R̂i) = c

Y
j 6=i

�m�1j (�mi ru(R̂i)) = 0

in the group H1(gv; Tl); since ru(R̂i) 2 H
0(gv; Al)[�

m
i ] by (3.5).

By the assumption of Theorem 1, equality (3.7) implies that

(3.8)
tv
l
rv(Q̂) = 0:

Since H1(gv; Tl) is cyclic, the equality (3.8) implies that

rv(Q̂) 2 l H
1(gv; Tl):

This gives

(3.9) rv(Q̂) = �i ~R
00
i :

for some ~R00
i 2 H

1(gv; Tl): By Proposition A1 we can �nd an element R̂00
i 2 Jf;Sl(Tl)

such that

(3.10) �i R̂
00
i = Q̂:

Choose a prime u00 in F (R̂00
i ) over v: Let w

0 be a prime over u00 in Ki: Observe that,

by the diagram similar to Diagram 3.6 with P̂ and R̂i replaced by Q̂ and R̂00
i we

obtain by (3.10) that

(3.11) rv(Q̂) = �i ru00(R̂
00
i ):

in the group H1(gu00 ; Tl); hence also in H
1(gw0 ; Tl): By (3.9) and (3.11) we get

ru00(R̂
00
i )� ~R00

i 2 Al[�i] \H
1(gu00 ; Tl):

Because Al[�i] � H1
f;Sl

(GKi
; Tl) (cf. proof of Lemma A2 and diagram (A.2)), by

Lemma A3 there exists P̂0 2 H
1
f;Sl

(GKi
; Tl) such that rw0(P̂0) = ru00(R̂

00
i )�

~R00
i :We

have the following equality

rw0(R̂00
i � P̂0) = ~R00

i :
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in the group H1(gw0 ; Tl):

Let R̂0
i = R̂00

i � P̂0: Since F (R̂
0
i) � Fl(

1
l
Q̂) there is a unique prime u0 in F (R̂0

i) below

w0 and above v: Of course ru0(R̂
0
i) = ~R00

i : Consider the following commutative
diagram.

(3.12)

H1
f;Sl

(GKi
; Tl)

rw0

����! H1(gw0 ; Tl)x?? x??
H1
f;Sl

(GFi( 1
�i
Q̂); Tl)

r�0
����! H1(g�0 ; Tl)x?? x??

H1
f;Sl

(GF (R̂0

i
); Tl)

ru0����! H1(gu0 ; Tl)x?? =

x??
H1
f;Sl

(GF ; Tl)
rv0����! H1(gv0; Tl)

Let Frw0 2 G(Ki=F ) be an element of the conjugacy class of the Frobenius element
of w0 over v: Observe that

Frw0(R̂0
i) = R̂0

i + P̂ 0
0

for some P̂ 0
0 2 Al[l]: Note that

(3.13) Frw0(rw0(R̂0
i)) = rw0(R̂0

i)

because
rw0(R̂0

i) = ru0(R̂
0
i) = ~R00

i 2 H
1(gv;Tl):

On the other hand

(3.14) Frw0(rw0(R̂0
i)) = rw0(Frw0(R̂0

i)) = rw0(R̂0
i + P̂ 0

0) = rw0(R̂0
i) + rw0(P̂ 0

0):

Equations (3.13) and (3.14) show that rw0(P̂ 0
0) = 0: This by lemma A3 implies that

P̂ 0
0 = 0 . So Frw0 2 G(Ki=F (R̂

0
i))

�= H1;ioGi: Hence Frw = (h1; 0; �i) is conjugate
to Frw0 = (0; h2; �i) for some h2 2 H2;i and �i 2 Gi: Lemma 1 implies that no
eigenvalue of �i is equal to 1: This contradicts the properties of �i (cf. Assumption
II). So we proved that the equality (3.2), and consequently the equality (3.1), holds.
Equality (3.1) shows that ker �P = ker �Q; which gives the following commutative
diagram

(3.15)

0 ����! ker(�Q) ����! G( �F=Fl)
�Q

����! A[l] ����! 0

=

??y =

??y  

??y
0 ����! ker(�P ) ����! G( �F=Fl)

�P
����! A[l] ����! 0



A SUPPORT PROBLEM, 23

with  a Gl-equivariant map. Hence due to Assumption II (1) (v) and (3) (ii)
(observe that (3) (ii) implies that the centralizer of Gl in the group Gld(Fl ) is
contained in the group of diagonal matrices Dd � Gld(Fl )), it is clear, that  as a
linear operator is represented by a block matrix of the form0

BB@
b1Ih 0 : : : 0
0 b2Ih : : : 0
...

... : : :
...

0 0 : : : beIh

1
CCA

for some b1; b2; : : : ; be 2 Z=l: Since OE=(l) �=
Qe
j=1 Z=l; there is a b 2 OE such that

b modulo the ideal (l)OE corresponds to the element (b1; : : : ; be) 2
Qe
j=1 Z=l via

this isomorphism. So Diagram (3.15) implies that �P = b �Q; hence �P�bQ is a
trivial map. On the other hand the natural map

�: B(F )=lB(F )! H1(GFl ; Tl=l) = Hom(GFl ; Al[l])

�(X) = �X

(where �X is the map from Def. 2, sec. 2) is an injection since it can be expressed
as a composition of the injective map from Proposition 1 (3) and the bottom hor-
izontal, injective maps from diagrams (2.2), (2.3) and (2.4). Hence P = bQ in
B(F )=lB(F ): So the image of P in

B0 = B(F )=fcQ : c 2 OEg

is contained in the group lB0 for all primes l 2 P�. Since by our assumption B(F )
and therefore B0 are �nitely generated, we conclude that

T
l2P� lB0 is �nite. Hence

aP = bQ for some a 2 Z�f0g and b 2 OE : For f = �b we obtain aP +fQ = 0: �

4. Examples. In this section we give applications of Theorem 1 to the l-adic
representations which were already discussed in Examples 2 - 6 in Section 1.

4.1 The cyclotomic character.
Consider the cyclotomic character

�l : G( �F=F )! Gl(Zl(1)) �= Gl1(Zl) �= Z�l ;

(see Example 2, Sect. 1). There is a commutative diagram.

(4.1)

O�
F;S ����!

Q
v 62Sl

(kv)
�
l??y =

??y
H1
f;Sl

(GF ; Zl(1)) ����!
Q
v 62Sl

H1(gv; Zl(1))

where the left vertical arrow factors as:

O�
F;S ! O�

F;S 
ZZl ! H1
f;Sl

(GF ; Zl(1)):

This map has �nite kernel with order prime to l: Diagram (4.1) and Theorem 1
applied to �l imply the following corollary.
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Corollary 1. Let P; Q be two nontorsion elements of the group O�
F;S: Assume that

for almost every v and every integer m the following condition holds

mrv(P ) = 0 in (kv)
� implies mrv(Q) = 0 in (kv)

�:

Then there exist a; f 2 Z� f0g such that P a = Qf in O�
F;S:

4.2 K-theory of number �elds.
Let n be a positive integer. Consider the one dimensional representation

�l : GF ! Gl(Zl(n+ 1)) �= Z�l

which is given by the (n+ 1)-th tensor power of the cyclotomic character. We use
the notation of Example 3, Sec. 1. We have the following commutative diagram.

(4.2)

K2n+1(F )=CF ����!
Q
v 62Sl

K2n+1(kv)l??y J;l =

??y
H1(GF ; Zl(n+ 1)) ����!

Q
v 62Sl

H1(gv; Zl(n+ 1))

Note that in this case

H1(GF ; Zl(n+ 1)) �= H1(GF;Sl ; Zl(n+ 1)) �= H1
f;Sl

(GF ; Zl(n+ 1))

and
K2n+1(kv)l �= H1(gv; Zl(n+ 1)) �= H0(gv; Q l=Zl(n+ 1)):

It follows by the de�nition of B(L) that

 L;l : B(L)
 Zl �= H1(GL; Zl(n+ 1)):

Hence as a consequence of Theorem 1 we get the following corollary (cf. [BGK]):

Corollary 2. Let P; Q be two nontorsion elements of the group K2n+1(F ): Assume
that for almost every v and every integer m the following condition holds

mrv(P ) = 0 in K2n+1(kv) implies mrv(Q) = 0 in K2n+1(kv):

Then the elements P and Q of K2n+1(F ) are linearly dependent over Z:

Theorem 1 and Corollary 2 have the following consequence for the reduction maps

r0v: H2n+1(K(OF ); Z)! H2n+1(Sl(kv); Z)

on the integral homology of the special linear group.
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Corollary 3. Let P 0; Q0 be two nontorsion elements of the group H2n+1(K(OF ); Z):
Assume that for almost every prime ideal v and for every integer m the following
condition holds H2n+1(Sl(kv); Z) :

mr0v(P
0) = 0 implies mr0v(Q

0) = 0:

Then the elements P 0 and Q0 are linearly dependent in the group H2n+1(K(OF ); Z):

Proof. Consider the following commutative diagram.

(4.3)

K2n+1(OF ) ����!
Q
vK2n+1(kv)

hF

??y Q
v
hv

??y
H2n+1(K(OF ); Z) ����!

Q
vH2n+1(Sl(kv); Z):

The horizontal maps in the diagram (4.3) are induced by the reductions at prime
ideals of OF : The vertical maps are the Hurewicz maps from K-theory to the
integral homology of the special linear group. Since the rational Hurewicz map

hF 
 Q : K2n+1(OF )
Q! H2n+1(K(OF ); Q)

is an isomorphism cf. [Bo], we can �nd c; d 2 Z and nontorsion elements P; Q 2
K2n+1(OF ); such that

(4.4) hF (P ) = cP 0 and hF (Q) = dQ0:

Hence we can check that for every prime ideal v the image of the reduction map r0v
is contained in the torsion subgroup of H2n+1(Sl(kv); Z):

It follows by [A] that kernels of the Hurewicz maps hF and hv; for any v; are �nite
groups of exponents which are divisible only by primes smaller than the number
n+1
2 : Let P� be the set of all prime numbers l which are bigger than n+1

2 and
relatively prime to cd ]CF : Let l 2 P�: Consider the following diagram obtained
from (4.3).

(4.5)

K2n+1(OF )
 Zl ����!
Q
vK2n+1(kv)l

hF

??y Q
v
hv

??y
H2n+1(K(OF ); Z)
 Zl ����!

Q
vH2n+1(Sl(kv); Z)l:

To simplify notation we keep denoting the Hurewicz maps and the reduction maps
in (4.5) by the same symbols as in the diagram (4.3). Let P̂ (Q̂ resp.) denote as
before the image of P (Q resp.) via the map

K2n+1(OF )! (K2n+1(OF )=CF )
ZZl �= H1(GF ;Zl(n+ 1)):
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Let Sl denote the �nite set of primes of OF which are over l: Let v 62 Sl and assume
thatmrv(P̂ ) = 0 in the groupK2n+1(kv)l �= H1(gv;Zl(n+1)): Since rv(P ) = rv(P̂ );
it follows by the diagram (4.5) that

0 = mhv(rv(P )) = mr0vhF (P )) = cmr0v(P
0)

in the group H2n+1(Sl(kv);Z)l: Since c is relatively prime to l; the last equality
implies that

mr0v(P
0) = 0:

Since r0v(P
0) 2 H2n+1(Sl(kv);Z)tor; there is a natural number m0 which is prime

to l and such that

m0mr
0
v(P

0) = 0

in the group H2n+1(Sl(kv);Z): Hence, by assumption

m0mr
0
v(Q

0) = 0

in the group H2n+1(Sl(kv);Z): Since m0 is prime to l we get

mr0v(Q
0) = 0

in the group H2n+1(Sl(kv);Z)l: We multiply the last equality by d: The commuta-
tivity of diagram (4.5) gives then the following equality in the groupH2n+1(Sl(kv);Z)l:

0 = mr0v(dQ
0) = mr0v(hF (Q)) = hv(mrv(Q))

Since by the choice of l the map hv in the diagram (4.5) is injective, for v 62 Sl;
from the last equality we obtain the following:

mrv(Q̂) = mrv(Q) = 0:

Thus we have checked that the elements P̂ and Q̂ satisfy the assumption of Theorem
1. Hence by Theorem 1, there are a; b 2 Z such that

(4.6) aP = bQ:

in the group K2n+1(OF ):
Applying hF to equality (4.6) and using (4.4) we get

acP 0 = bdQ0: �
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4.3 Abelian varieties.
Let A=F be a simple abelian variety of dimension g de�ned over the number �eld
F: As usual Tl = Tl(A) denotes the Tate module of A: Consider the l-adic repre-
sentation

�l : GF ! Gl(Tl(A)):

In this subsection we follow the notation introduced in Examples 4 - 6 of Section
1.3. For any abelian variety A=F there is the following commutative diagram

(4.7)

A(F ) ����!
Q
v=2Sl

Av(kv)l

 L;l

??y ??y
H1
f;Sl

(GF ; Tl(A)) ����!
Q
vH

1(gv; Tl(A)):

Av denotes the reduction of A mod v: Observe that the right vertical arrow is an
injection. Theorem 1, Examples 4, 5 and 6 of Section 1.3, and the diagram (4.7)
imply the following corollary.

Corollary 4.

Let A be an abelian variety of dimension g � 1, de�ned over the number �eld F
and such that A satis�es one of the following conditions:

(1) A has the nondegenerate CM type with EndF (A) 
 Q equal to a CM �eld
E (cf. example 4, section 1)

(2) A has real multiplication by a totally real �eld E = EndF (A) 
 Q and
dimA = he; where e = [E : Q ] and h is odd (cf. example 5, section 1) or
A is an abelian variety such that EndF (A) = Z and dimA is equal to 2 or
6 (cf. example 6 (b), section 1).

Let P; Q be two nontorsion elements of the group A(F ): Assume that for almost
every prime v of OF and for every integer m the following condition holds in
Av(kv)

mrv(P ) = 0 implies mrv(Q) = 0:

Then there exist a 2 Z� f0g and f 2 OE � f0g such that aP + fQ = 0 in A(F ):
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Appendix A. l-adic Intermediate Jacobians.

De�nition A1. De�ne

H1
f (GF ;Tl); ( resp: H1

f (GF ;Vl) )

to be the kernel of the natural map:

H1(GF ;Tl)!
Y
v

H1(Gv;Tl)=H
1
f (Gv;Tl)

( resp: H1(GF ;Vl)!
Y
v

H1(Gv;Vl)=H
1
f (Gv;Vl) )

where H1
f (Gv;Tl) = i�1v H1

f (Gv;Vl) via the natural map

iv : H
1(Gv;Tl)! H1(Gv;Vl):

The group H1
f (Gv;Vl) is de�ned in [BK] p. 353 (see also [F] p. 115) as follows:

H1
f (Gv;Vl) =

8><
>:
Ker (H1(Gv;Vl)! H1(Iv;Vl) ) if v - l

Ker (H1(Gv;Vl)! H1(Gv;Vl 
Ql Bcrys) ) if v j l ;

where Bcrys is the ring de�ned by Fontaine (cf. [BK] p. 339).

We have the natural maps

H1
f (GF ;Tl)!

Y
v

H1
f (Gv;Tl);

H1
f (GF ;Vl)!

Y
v

H1
f (Gv;Vl):

De�nition A2. We also de�ne

H1
f;Sl

(GF ;Tl) ( resp: H1
f;Sl

(GF ;Vl) )

as the kernel of the natural map:

H1(GF ;Tl)!
Y
v=2Sl

H1(Gv;Tl)=H
1
f (Gv;Tl)

( resp: H1(GF ;Vl)!
Y
v=2Sl

H1(Gv;Tl)=H
1
f (Gv;Vl) ):

Here Sl denotes a �xed �nite set of primes of OF containing primes over l and such
that the representation �l is unrami�ed outside of Sl:

Obviously

H1
f (GF ;Tl) � H1

f;Sl
(GF ;Tl) and H1

f (GF ;Vl) � H1
f;Sl

(GF ;Vl):

Below we de�ne various intermediate Jacobians associated with the representation
�l; (cf. [Sc], chapter 2).
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De�nition A3. We put

(1)
J(Tl) = lim�!

L=F

H1(GL;Tl); J(Vl) = lim�!
L=F

H1(GL;Vl)

(2)
Jf (Tl) = lim�!

L=F

H1
f (GL; Tl); Jf (Vl) = lim�!

L=F

H1
f (GL;Vl)

(3)

Jf;Sl(Tl) = lim�!
L=F

H1
f;Sl

(GL;Tl); Jf;Sl(Vl) = lim�!
L=F

H1
f;Sl

(GL;Vl)

where the direct limits are taken over all �nite extensions L=F of the number �eld
F; which are contained in some �xed algebraic closure �F :

Remark A1. Observe that the groups J(Vl); Jf (Vl) and Jf;Sl(Vl) are vector spaces
over Q l :

Remark A2. Note that we also could have de�ned the intermediate Jacobians of the
module Tl for the cohomology groups of GF;� for any � containing Sl: However, if
H0(gv;Al(�1)) is �nite for all v =2 Sl; (as it often happens for interesting examples
of Tl), then

H1(GF;�;Tl) = H1(GF ;Tl):

Lemma A1. For every prime w of OL which is not over primes in Sl; we have:

(1) the natural map H1(Gw;Tl)=H
1
f � H1(Gw;Vl)=H

1
f is an imbedding,

(2) H1
f (Gw;Tl)tor = H1(Gw;Tl)tor = H0(Gw;Al) = H0(gw;Al)

(3) H1
f (Gw;Tl) = H1(gw;Tl):

Proof. First part of the lemma is obvious from the de�nition of H1
f (Gw;Tl): The

second part follows immediately from the �rst part and the diagram (A1). Note
that H1(Gw;Vl)=H

1
f (Gw;Vl) is a Q l -vector space. To prove the third part consider

the following commutative diagram.

(A.1)

H0(gw; Al) ����! H1(gw; Tl) ����! H1
f (Gw; Vl)

=

??y ??y ??y
H0(Gw; Al) ����! H1(Gw; Tl) ����! H1(Gw; Vl)??y ??y ??y
H0(Iw; Al)

0
����! H1(Iw; Tl) ����! H1(Iw; Vl)
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The horizontal rows are exact. The middle and the right vertical columns are also
exact. The left bottom horizontal arrow is zero because Iw acts on Tl; Vl and
Al trivially by assumption. This gives the exactness of the following short exact
sequence.

0! H0(Iw;Tl)! H0(Iw;Vl)! H0(Iw;Al)! 0

In addition because of Assumption I we have

H0(gw;Vl) = H0(Gw;Vl) = 0:

Therefore the left upper and middle horizontal arrows are imbeddings The right,
upper horizontal arrow is de�ned because of the commutativity of the lower, right
square in the diagram. The middle vertical column is the in
ation restriction se-
quence. It is actually inverse limit on coeÆcients of the in
ation-restriction sequence
but it remains exact with in�nite coeÆcients because we deal with H1: Now the
claim follows by diagram chasing. �

Remark A3. Observe that the Assumption I implies, thatH0(gw;Al) andH
1(gw;Tl)

are �nite for all w 62 Sl:

Lemma A2. For any �nite extension L=F the following equalities hold.

H1
f;Sl

(GL;Tl)tor = H1(GL;Tl)tor = H0(GL;Al)

Proof. The �rst equality follows from Lemma A1 and the exact sequence.

0! H1
f;Sl

(GL;Tl)! H1(GL;Tl)!
Y
w=2Sl

H1(Gw;Tl)=H
1
f (Gw;Tl):

Consider the exact sequence (see [T], p. 261):

H0(GL;Vl) ����! H0(GL;Al)
@L����! H1(GL;Tl):

By Assumption I we get H0(GL;Vl) = 0: Hence by [T], Prop. 2.3, p. 261

H0(GL;Al) = H1(GL;Tl)tor:

So the second equality in the statement of lemma A2 also holds . �

For w =2 Sl consider the following commutative diagram

(A.2)

H1
f;Sl

(GL;Tl) ����! H1(gw; Tl)x?? x??
H0(GL;Al) ����! H0(gw; Al):
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The bottom horizontal arrow is obviously an injection. Hence, by Lemmas A1 and
A2, we obtain the following:

Lemma A3. For any �nite extension L=F and any prime w =2 Sl in OL the natural
map

rw : H1
f;Sl

(GL;Tl)tor ����! H1(gw; Tl)

is an imbedding.

Proposition A1. We have the following exact sequences

0! Al ! J(Tl)! J(Vl)! 0

0! Al ! Jf;Sl(Tl)! Jf;Sl(Vl)! 0

In particular
J(Tl)tor = Jf;Sl(Tl)tor = Al

and the groups
J(Tl) and Jf;Sl(Tl)

are divisible.

Proof. Consider the following long exact sequence (see [T] p. 261)

H0(GL; Al)! H1(GL; Tl)! H1(GL; Vl)! H1(GL; Al):

Taking direct limits with respect to �nite extensions L=F gives the following short
exact sequence.

0! Al ! J(Tl)! J(Vl)! 0

This short exact sequence �ts into the following commutative diagram

(A.3)
0 �����! 0 �����! lim�!L=F

Q
w=2Sl

H1(Gw; Tl)=H
1

f �����! lim�!L=F

Q
w=2Sl

H1(Gw; Vl)=H
1

fx
?
?

x
?
?

x
?
?

0 �����! Al �����! J(Tl) �����! J(Vl) �����! 0

=

x
?
?

x
?
?

x
?
?

0 �����! Al �����! Jf;Sl(Tl) �����! Jf;Sl (Vl) �����! 0
x
?
?

x
?
?

x
?
?

0 0 0

The rows and columns of the diagram are exact. The exactness on the right of
the bottom horizontal sequence follows from the injectivity of the top, nontrivial,
horizontal arrow by Lemma A1. �
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Proposition A2. Let L be a �nite extension of F: Then we have isomorphisms:

(1) H1(GL;Tl) �= J(Tl)
GL ;

(2) H1
f;Sl

(GL;Tl) �= Jf;Sl(Tl)
GL :

Proof. Under condition of Assumption I the proof of claim (1) is done in the same
way as the proof of (4.1.1) of [BE]. To prove (2) take an arbitrary �nite Galois
extension L0=L and consider the following commutative diagram.

(A.4)

0 0??y ??y
H1
f;Sl

(GL;Tl) ����! H1
f;Sl

(GL0 ;Tl)
G(L0=L)??y ??y

H1(GL;Tl) ����!
�=

H1(GL0 ;Tl)
G(L0=L)

??y ??yQ
w=2Sl

H1(Iw; Tl) ����!
Q
w=2Sl

�Q
w0jwH

1(Iw0 ; Tl)
�G(L0=L)

The columns of this diagram are exact. The upper horizontal arrow is trivially an
imbedding. The middle horizontal arrow is an isomorphism. This follows directly
from claim (1). Since the representation �l is unrami�ed outside Sl then using
Th. 8.1 and Cor. 8.3 Chap. I of [CF] and Kummer pairing we get the following
commutative diagram

(A.5)

H1(Iw; Tl) ����! H1(Iw0 ; Tl)??y= ??y=
Homcts(Iw; Tl) ����! Homcts(Iw0 ; Tl)??y�= ??y�=
Homcts(Zl(1); Tl) ����! Homcts( Zl(1); Tl)

Since Lw0=Lw is a �nite extension, the bottom horizontal arrow is induced by a
nontrivial (hence injective) homomorphism of Zl-modules Zl(1) ! Zl(1): Because
Tl is a free Zl-module, every nontrivial homomorphism of Zl-modules Zl(1)! Tl is
injective. Hence the bottom horizontal arrow in the diagram (A.5) is injective. So
the bottom horizontal arrow in diagram (A.4) is also an imbedding. Now claim (2)
follows by taking direct limits over L0 in diagram (A.4) and chasing the resulting
diagram. �
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At the end of this appendix we give some additional information about the
reduction map

rv:H
1
f;Sl

(GF ; Tl)! H1(gv; Tl):

Proposition A3. Let P̂ 2 H1
f;Sl

(GF ; Tl) be a nontorsion element. Given M1 =

lm1 a �xed power of l; there exist in�nitely many primes v 62 Sl such that rv(P̂ ) 2
H1(gv; Tl) is an element of order at least M1:

Proof. Let M be a power of l which we will specify below. Let FM denote the
extension F (A[M ]): Consider the following commutative diagram.

(A.6)

H1
f;Sl

(GF ; Tl)=M
rv����! H1(gv; Tl)=M

h1

??y ??y
H1
f;Sl

(GF ; A[M ])
rv����! H1(gv; A[M ])

h2

??y ??y
H1
f;Sl

(GFM ; A[M ])
rw����! H1(gw; A[M ])

h3

??y ??y
Hom(GFM ; A[M ])

rw����! Hom(Gw; A[M ])

h4

??y�= ??y=
Hom(GabFM ; A[M ])

rw����! Hom(gw; A[M ])

The horizontal arrows in the diagram (A.6) are induced by the reduction maps. We
describe the vertical maps. By Proposition 1 (1) the map h2 is an injection. The
map h3 is the injection which comes from the long exact sequence in cohomology
associated to the following exact sequence of GFM -modules:

(A.7) 0 ����! A[l] ����! Jf;Sl(Tl)
�l

����! Jf;Sl(Tl) ����! 0:

The vertical maps on the right hand side of the diagram (A.6) are de�ned in the

similar way. Consider the nontorsion element P̂ 2 H1
f;Sl

(GF ; Tl): Let l
s be the

largest power of l such that P̂ = lsR̂ for an R̂ 2 H1
f;Sl

(GF ; Tl): Such an ls exists

since H1
f;Sl

(GF ; Tl) is a �nitely generated Zl-module. We put M = M1l
s: Let

P 0 be the image of P̂ in Hom(GabFM ; A[M ]) under the composition of the maps
h1; h2; h3 and h4. Since the maps h1; h2; h3 and h4 are injective, the element
P 0 is of order M1: By the Chebotarev density theorem there exist in�nitely many
primes w 62 Sl such that the map rw preserves the order of P 0: Hence, for those w
the element P̂ is mapped by the composition of left vertical and lower horizontal
arrows onto an element whose order is M1: The commutativity of (A.6) implies

that rv(P̂ ) 2 H
1(gv; Tl) is of order at least M1 for the primes v = w \ OF;Sl : �
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Corollary A1.

Let P̂ 2 H1
f;Sl

(GF ; Tl) be an element which maps onto a generator of the free Zl
- module H1

f;Sl
(GF ; Tl)=tor. There exist in�nitely many primes v 62 Sl such that

rv(P̂ ) is a generator of a cyclic summand in the l-primary decomposition of the
group H1(gv; Tl):

Appendix B. Nondegenarate CM abelian varieties.

Let A=F be a simple abelian variety of dimension g with complex multiplication
by a CM �eld E cf. [La]. We assume that the CM data is de�ned over F and in
addition that the Hilbert class �eld EH of E is contained in F: In ths appendix,
following [R3], we discuss CM abelian varieties of nodegenerate type. Let (E; S)
be the CM-type of A and let (E0; R) be its re
ex type. Let L=Q be a �nite Galois
extension containing E: Put G = G(L=Q); H = G(L=E) and H 0 = G(L=E0): We
identify S with a subset of right cosets in HnG: Let T be an algebraic torus de�ned
over a number �eld. The character group of T is by de�nition

X(T ) = Hom
Q
(T; Gm):

For a number �eld K we put TK = ResK=Q(Gm): Observe that

X(TK) = f
X

�2Hom (K;C)

n�[�]; n� 2 Zg:

K. Ribet in [R3] p. 85 de�nes a homomorphism of tori

� : TE0 ! TE

by giving the following homomorphism on character groups

�� : X(TE)! X(TE0)

[�]!
X

 2R

[
�]:

The image of � is an algebraic torus which is equal to the Mumford-Tate group of
A cf. [D2, Ex. 3.7] and [W, p. 128-129]. The dimension of Im� is by de�nition
the rank of the CM-type (E; S) and the rank of the abelian variety A: It is easy to
see that the rank of (E; S) equals the rank of the matrix�

i(�; �)
�
�2H0nG; �2HnG

where the entries are de�ned by the formula

i(�; �) =

�
1; if ���1 2 ~S

0; if ���1 62 ~S

and ~S = fg 2 G: Hg 2 Sg:
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De�nition B1. We say that the CM-type (E; S) is nondegenerate if the rank of
(E; S) equals g+1:We say that the CM abelian variety A is nondegenerate if its type
is nodegenerate. This means that the Mumford-Tate group of A (for the de�nition
see [D2]) is of maximal possible dimension.

Example B1. In [R3], Example 3.7 it is shown that all CM abelian varieties of
dimension smaller than 4 are nondegenerate. Kubota in [K] Th. 2, p. 121 showed
that the Jacobian variety of the curve y2 = 1�xp; where p is an odd prime is of
nondegenerate CM-type. For examples of CM varieties A with rank smaller than
dimA+1 (which are called degenerate), we refer the reader to papers [R3], sec. 3,
p. 89 and [Haz], sec. 5, p. 747.

Let �l : GF ! Gl(Tl(A)) = Gl2g(Zl) be the l-adic representation of the Galois
group GF on the Tate module of A. According to Corollary 2, p. 502 of [ST],
the image of this representation is an abelian group contained in the subgroup
(OE 
ZZl)

� of Gl2g(Tl(A)): We have the following commutative diagram

(B.1)

GF
�l

����! Gl2g(Zl)??y x??
Q
vjlO

�
F;v

cl����! GabF
�abl����! (OE 
 Zl)

�;

where the map cl is the restriction to
Q
vjlO

�
F;v of the composition of natural maps:

Y
v

O�
F;v ! (F�

Y
v

O�
F;v)=F

� ! IF =F
� ! GabF :

The map on the right side in the above sequence of maps is the global norm residue
symbol of global class �eld theory, ([N], p. 94). Let l be a prime of good reduction
for A relatively prime to the class number of F: The natural isomorphism

Cl(OF ) �= IF =(F
�
Y
v

O�
F;v)

[N], Prop. 2.3, p. 77 and Artin global reciprocity law, [N], Th. 6.5, p. 94, show
that the image of �l is equal to the image of the composition �abl Æ cl: According to
[ST], p. 511 there is a homomorphism of algebraic tori

(B.2)  : TF ! TE

over Q ; such that after base change to Q l we obtain a map of tori

(B.3)  l: TFl ! TEl
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over Q l ; where TFl =
Q
vjlResFv=Ql (G m) and TEl =

Q
�jlResE�=Ql (Gm): For any

torus T=Q l put

T (Zl) = ft 2 T (Q l); �(t) 2 Z�l ; for all � 2 (X(T ))Qlg;

where (X(T ))Ql is the group of characters of T de�ned over Q l cf. [O], p. 115,
[R3], p. 77 and [V], p. 134-139. Short computation shows that

TFl(Zl) =
Y
vjl

O�
F;v and TEl(Zl) =

Y
�jl

O�
E;�

The map (B.3) gives a group homomorphism

(B.4)  l(Zl): TFl(Zl)! TEl(Zl)

which by Theorem 11, p. 512 and Corollary 2, p. 513 of [ST] can be identi�ed with
the map �abl Æ cl:

Theorem B1. Let A=F be a simple abelian variety of nodegenerate CM-type. Then
for all primes l of good reduction for A that are split in F; the image of the reduced
representation

��l:GF ! Gl2g(Fl )

consists of all diagonal matrices of the form

fdiag(x1; y1; : : : ; xg; yg) 2 Gl2g(Fl ): x1y1 = � � � = xgygg:

Proof. By [R3], Prop. 3.8 we have the following commutative triangle:

(B.2)

TF
 //

NF=E0 !!CC
CC

CC
CC

TE

TE0

�

=={{{{{{{{

Since l splits completely in F and E by assumption, we have

TFl =

[F :Q]Y
i=1

Gm TEl =

2gY
i=1

G m :

Since A is nondegenerate, the image of  has dimension g+1 (cf. [R3], Cor. 3.9).
Thus the image of the map  l : TFl ! TEl is a torus of dimension g+1: Denote by
E+ the maximal totally real sub�eld of E and put

E+
l = E+ 
 Q l �= OE+ 
 Q l :



A SUPPORT PROBLEM, 37

We �x an isomorphism of Q l -vector spaces

El �= E+
l � E+

l :

This isomorphism and the representation �l 
 Q l de�nes a representation

�+l 
 Q l : GF �! Gl2(E
+
l ):

such that
detE+

l
Æ (�+l 
 Q l) = �c

(cf. [R1], Lemma 4.5.1), where �c denotes the composition of the cyclotomic char-
acter GF ! Q�l and the obvious imbedding Ql ! E+

l : Since l splits completely in
E; the representation �l 
 Q l : GF �! Gl2g(Q l ) is diagonalizable and there exists
a basis of El over Q l such that

Im�l � fdiag(x1; y1; : : : ; xg; yg) 2 Gl2g(Q l ) : x1y1 = � � � = xgygg:

Let Tnd denote the following torus:

fdiag(x1; y1; : : : ; xg; yg) 2 Gl2g : x1y1 = � � � = xgygg

over Q l : One can easily check that there is a natural isomorphism (over Q l ) of group
schemes

Tnd �= (Gm �Ql Gm)�Gm � � � �Gm (G m �Ql G m)| {z }
g�times

�= G g+1m ;

where the structure map for �Gm product is the group structure map Gm�Ql G m !
Gm of the group scheme Gm : The torus Tnd is contained in TEl: This shows that the
image of the map  l =  
Q l is a subtorus of Tnd; which is split and of dimension
g+1; hence Im l = Tnd: It follows that  l can be written as the composition of
homomorphisms of tori

(B.5)  l : TFl ����! Tnd ����! TEl :

Taking corresponding Zl-models of maps of tori in (B.5) (cf. [V], Prop. 6.13, p.
138), we get a map of schemes

(B.6) 	l : TFl ����! Tnd ����! TEl :

Taking �bers in (B.6) over spec Fl we get maps of split tori

(B.7) � l : �TFl ����!
�Tnd ����! �TEl

On the other hand by [O], Th. 2.3.1, [R3], p. 93 and [V], Prop. 6.14, p. 139, we
have the commutative diagram
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(B.8)

TFl(Zl) ����! Tnd(Zl) ����! TEl(Zl)??y ??y ??y
�TFl(Fl ) ����!

�Tnd(Fl ) ����! �TEl(Fl )

where the compositions of horizontal maps are  l(Zl); � l(Fl) and the vertical maps
are reductions mod l: Hence, by (B.1), (B.2), (B.4), (B.7) and (B.8) we see that
Im ��l = �Tnd(Fl ): �

Appendix C. Abelian varieties with real multiplication.

Let E be a totally real extension of Q of degree [E; Q ] = e: Let A=F be a
polarized simple abelian variety of dimension g of type E, which means that E �
End �F (A)
Z Q and the polarization is over F cf. [R1] chap. II.1 or [C] Chap. 1.1.
We assume that E = EndF (A)
ZQ = End �F (A)
ZQ and in addition that EH � F:
Since End �F (A)\E = RE is an order in OE we observe that RE 
ZZl = OE 
ZZl
for l that does not divide the index [OE ; RE ]. In this appendix we consider such
primes l that additionally split completely in E: The polarisation of A gives Q l -
bilinear, nondegenerate alternating pairing

(C.1) h ; i : Vl(A)� Vl(A)! Q l (1)

which is Galois equivariant and such that for every x; y 2 Vl(A) and � 2 End �F (A)
Z
Q we have

h�(x); yi = hx; �0(y)i;

where �0 denotes the e�ect of Rosati involution of the ring End �F (A)
Z Q on the
element �: Theorem 2, Type I, p. 201 of [M] implies that the Rosati involution
acts trivially on E: Let us restrict the pairing (C.1) to Tl(A)� Tl(A): The vertical
arrows in the diagram (C.2)

(C.2)

Tl(A)� Tl(A)
h ; i

����! Zl(1)??y ??y
Vl(A)� Vl(A)

h ; i
����! Q l (1)

are injective. Under our assumption on l and E the pairing (C.1) splits into non-
degenerate, Q l bilinear, alternating pairings (cf. [C], Lemma 1.2.1, p. 319 )

(C.3) h ; i : V�(A)� V�(A)! Q l(1)



A SUPPORT PROBLEM, 39

Reducing modulo l and splitting into � components the top horizontal arrow in
diagram (C.2), it follows again by [C], Lemma 1.2.1, p. 319 that for each prime �
of OE that divides l there is a nondegenerate bilinear, alternating pairing

(C.4) h ; i� : A[�]� A[�]! Z=l(1)

such that for every � 2 Fl

h�x; yi� = hx; �yi� = �hx; yi�:

We are going to investigate the image of the residual representation

�l : GF ! Gl(A[l]) �= Gl2g(Fl )

of the representation

�l : GF ! Gl(Tl(A)) �= Gl2g(Zl)

for abelian varieties A=F and prime l satisfying all the above assumptions. As usual
we let Gl to denote the image of �l: Because of the pairings (C.3) and (C.4) for an
appropriate choice of bases in the Fl vector spaces A[�] we get

Gl �
Y
�jl

GSpA[�](Fl ) �=
Y
�jl

GSp2h(Fl ) � Gl2g(Fl )

where 2he = 2g and GSp denote the respective groups of symplectic similitudes.

Let us introduce some notation. For an algebraic group schemeG=S over the base
scheme S we denote by G0 the derived group scheme of G; as de�ned in [SGA3]
XXII, 6.2. If G is an algebraic group over a �eld, then G0 is the commutator
subgroup of G:We put ~G to be the universal cover of G and G(S)u to be the image

of the natural map ~G(S) ! G(S): Observe that if G is simply connected, i.e., if
~G = G, then we get G(S)u = G(S): Let Galgl be the algebraic envelope of the image
of �l 
 Q l in the group Gl2g=Q l i.e. the Zariski closure of the image. Enlarging

F , if necessary we can assume that Galgl is connected for any l: This is justi�ed by

the results of Serre, [Se4] (see also [LP2]). Let Galgl be the Zariski closure of the
image of �l in the algebraic group Gl2g=Zl; endowed with the unique structure of
reduced closed subscheme. It follows by [LP1], Prop.1.3 (see also [Wi], Th.1) that

for l� 0 the scheme Galgl is smooth over Zl: Let G(l)
alg be the algebraic envelope

of the image of �l in Gl2g=Fl : Observe that Galgl is the general �ber of Galgl over
specZl cf. [Wi] 2.1. On the other hand, by [Wi] Lemme 5 and by [Se3], pp. 43-46,

G(l)alg is the special �ber of Galgl over specZl: By de�nition, we have

(C.5) Galgl �
Y
�jl

GSpV�(A)
�=
Y
�jl

GSp2h=Q l � Gl2g=Q l
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(C.6) G(l)alg �
Y
�jl

GSpA[�] �=
Y
�jl

GSp2h=Fl � Gl2g=Fl

J. P. Serre used the results of Nori [No] on subgroups of Gl2g(Fl) to ivestigate the
group G(l)alg: We collect the results of Serre on G(l)alg proven in [Se2] and [Se3]
in the following theorem.

Theorem C1. ([Se2], [Se3]) The group G(l)alg is reductive and in addition:

(1) the index [G(l)alg(Fl) : Gl \G(l)
alg(Fl )] is bounded independently of l;

(2) there is a �nite extension K=F such that �l(GK) � G(l)alg(Fl ):

Following [Se2] p. 22, we write:

G(l)alg = T (l)(G(l)alg)0

where (G(l)alg)0 is the derived subgroup of G(l)alg and T (l) is a torus which is
the connected component of the center of G(l)alg: The groups (G(l)alg)0 and T (l)
commute elementwise. It is worth pointing out that the group (G(l)alg)0 is denoted

by N(l) in [Wi] and by ~G in [No]. Enlarging F if necessary, we can assume that
�l(GF ) � G(l)alg(Fl ) so from now on we assume that the abelian variety A is
de�ned over such a �eld F: This is justi�ed by Theorem C1 (2). Observe that by
(C.6) we have:

(C.7) (G(l)alg)0 �
Y
�jl

Sp2h:

Lemma C2. Let A=F be an abelian variety with with real multiplication by a
totally real �eld E = EndF (A)
ZQ of degree e = [E : Q ] such that g = eh with h
odd. We have equalities of ranks of group schemes over Q l :

(C.8) rank (Galgl )0 = rank
Y
�jl

Sp2h=Q l

Proof. Let g = Lie(Galgl ): Then g = gss � Q l ; where g
ss = Lie((Galgl )0): Note that

by (C.5) we have

(C.9) gss �
M
�jl

sp2h(V�);

where V� = Vl(A) 
E E�: Put �V� = V� 
 Q l: In order to prove (C.8) it is enough
to show that

(C.10) gss 
 Q l =
M
�jl

sp2h(V �):
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Projecting onto the � component we see that the image of gss 
 Q l in sp2h(V �)
is semisimple. Hence, using the structure of the universal enveloping algebra of a
semisimple lie algebra [H] pp. 89-94 and the properties of the irreducible standard
cyclic modules [H] pp. 107-110, we get a decomposition

�V� = E(!1)
Ql
� � � 


Ql
E(!r);

where E(!i); for all 1 � i � r; are the irreducible (orthogonal or symplectic) Lie
algebra modules of the highest weight !i corresponding to simple Lie algebras gi
which are factors of the image

Im
�
gss 
 Q l ! sp2h(V �)

�
= g1 � � � � � gr:

By Corollary 5.11 [P] all simple factors of gss 
 Q l are of classical type A, B, C
and D and the weights !1; : : : ; !r are minimal (= miniscule = microweight). The
reader can �nd the table of all minimal weights for corresponding type in [H] exer.
13.13 p. 72 or [Bour] Chap. VIII, 7.3. Since dim

Ql
V � = 2h; where h odd by

assumption, we observe by computing the dimensions of E(!i)'s for types A, B, C
and D (use [Ta1] section 4.8.1 and [Bour] Chap. VIII, Tables 1, 2 pp. 213-214, cf.
[C] p. 332), that the tensor product E(!1) 
Ql

� � � 

Ql
E(!r) can consist of only

one space E(!1) and g1 has the type C symplectic representation on E(!1): Hence

Im
�
gss 
 Q l ! sp2h(V �)

�
= sp2h(V �):

By the result of Faltings [Fa] cf. [Se1] 2.5.4 the representations

gss 
 Q l ! sp2h(V �)

are pairwise not isomorphic, for any two of the ideals �jl: Hence, by the structure
theorem of semisimple Lie algebras, [H] Th. 5.2, we deduce that the natural map

gss 
 Q l ! sp2h(V �1)� sp2h(V �2)

is surjective for any pair of ideals �1; �2 dividing l: By [R1], Lemma, p. 790, this
implies (C.10). �

Lemma C3. Let A be an abelian variety with with real multiplication by a totally
real �eld E = EndF (A) 
ZQ of degree e = [E : Q ] such that g = eh with h odd.
There are equalities of ranks of group schemes over Fl :

(C.11) rank (G(l)alg)0 = rank (
Y
�jl

Sp2h=Fl )

for all l� 0:

Proof. By [LP1] Prop.1.3 and by [Wi], Th.1 and 2.1, for l � 0 the group scheme

Galgl over specZl is smooth and reductive. For such an l the structure mor-

phism (Galgl )0 ! specZl is the base change of the smooth morphism Galgl !
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DZl(DZl(G
alg
l )) via the unit section of DZl(DZl(G

alg
l )); see [SGA3] XXII, Th. 6.2.1,

p. 256. Hence, the group scheme (Galgl )0 is also smooth over Zl: By [SGA3] loc.

cit, the group scheme (Galgl )0 is semisimple. By [SGA3] XIX, Th. 2.5, p. 12,
applied to the special �ber of the base scheme specZl; there exists an �etale neigh-
borhood S0 ! specZl of the geometric point over the special point such that
Galgl;S0 = Galgl �specZl S

0 has a maximal torus TS0 : By [SGA3] XXII, Th. 6.2.8 p.

260, (Galgl;S0)0 \TS0 is a maximal torus of (Galgl;S0)0: By de�nition of the maximal torus

and by [SGA3] XIX, Th. 2.5, p. 12 applied to the special point of specZl; we

obtain that the special and the generic �bers of (Galgl;S0)0 have the same rank. On the

other hand, it is clear that the generic (resp. special) �bers of (Galgl;S0)0 and (Galgl )0

have the same rank. Hence, for l� 0 :

(C.12) rank (Galgl )0 = rank (G(l)alg)0:

Observe that

(C.13) rank Sp2h=Q l = rank Sp2h=Fl = h:

Equalities (C.12), (C.13) and Lemma C.2 show that the ranks of the group schemes
at both ends of the bottom horizontal arrow in the diagram

(C.14)

(Galgl )0 ����!
Q
�jl Sp2h=Q l??y ??y

(Galgl )0 ����!
Q
�jl Sp2h=Zlx?? x??

(G(l)alg)0 ����!
Q
�jl Sp2h=Fl

are the same. This concludes the proof. �

Lemma C4. Under assumptions of Lemmas C2 and C3 we have equalities of group
schemes:

(C.15) (Galgl )0 =
Y
�jl

Sp2h=Q l

(C.16) (G(l)alg)0 =
Y
�jl

Sp2h=Fl

for all l� 0:

Proof. We prove the equality (C.16). The proof of the equality (C.15) is very
similar and we leave it for the reader. Let

�
l
: G(l)alg ! Gl2g
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denote the inclusion representation induced by G(l)alg � Gl2g: By the result of
Faltings [Fa] the representation �

l
is semisimple and the commutant of �

l
(G(l)alg)

in the matrix ring M2g;2g(Fl) is End �F (A)
ZFl : Projecting onto the � component
we obtain the representation

�
�
: G(l)alg ! GSpA[�] �= GSp2h:

The commutant of �
�
is Fl because End �F (A) 
ZQ = E and l splits completely

in E; by assumption. This implies that �
�
is absolutely irreducible. Since T (l) is

abelian and it commutes elementwise with (G(l)alg)0; the restriction of �� to the
derived subgroup:

�
�
: (G(l)alg)0 ! Sp2h

is also absolutely irreducible. By Schur's lemma the image �
�
(Z((G(l)alg)0) of the

center of (G(l)alg)0 is contained in the scalars of Sp2h: This implies that

(C.17) Z((G(l)alg)0) � Z(
Y
�jl

Sp2h):

To simplify notation, we put G1 = (G(l)alg)0 and G2 =
Q
�jl Sp2h: Note that G1

and G2 are reductive groups. Let T be a maximal torus in G1: Since by Lemma
C3 the ranks of G1 and G2 are equal, T is also the maximal torus of G2: Let
h 2 Z(G2): By [H], Chap. 26.2, Cor. A (b) we see that h 2 T: Let C denote the
commutant of G1 in the ring M2g;2g(Fl): Since G1 � G2; we have h 2 C�; hence
h 2 C� \ T = Z(G1). Thus we have Z(G2) � Z(G1): Together with (C.17) this
implies that

(C.18) Z((G(l)alg)0) = Z(
Y
�jl

Sp2h):

To �nish the proof we use the same argument as in the proof of [Wi], Lemme 7 (see
also [LP1], Lemma 4.4, p. 577). Let R1 (R2; respectively) be the roots of G

0
1 ( G

0
2;

resp.) with respect to the torus T: The roots R1 form a symmetric subset of R2

which is closed by [SGA3] XXIII, Cor 6.6. By [Bour] Chap. VI, 1.7, Prop. 23 we
obtain equality R1 = R2: Hence G

0
1 = G0

2; so G1 = TG0
1 = TG0

2 = G2: �

Theorem C5. Let A be an abelian variety with with real multiplication by a totally
real �eld E = EndF (A) 
ZQ of degree e = [E : Q ] such that g = eh with h odd.
Consider the residual representation �l: GF ! Gl2g(Fl ) induced by the action on
the l-torsion points of A: We have equality:

(C.19) (�l(GF ))
0 =

Y
�jl

Sp2h(Fl);
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for all l� 0:

Proof. Since Sp2h is simply connected, it follows by (C.16) that (G(l)alg)0 is simply
connected. So (G(l)alg)0(Fl) = (G(l)alg)0(Fl )u: Hence, by a theorem of Serre (cf.
[Wi], Th.4) we get

(G(l)alg)0(Fl ) � (�l(GF ))
0:

On the other hand, by (C.6) and Th. C1 (2) it is clear that

(�l(GF ))
0 � (G(l)alg)0(Fl ): �

We �nish this section with veri�cation of the Mumford-Tate conjecture for the
abelian varieties A=F considered in this appendix. This has been expected by the
experts (cf. [P, p. 190]). We refer the reader to [P] and also to [G] for an up-to-date
discussion concerning the current status of the Mumford-Tate conjecture. Let us
�x some notation �rst. We choose an embedding of F into the �eld of complex
numbers C : Let W = H1(A(C );Q ) denote the singular cohomology group with
rational coeÆcients and let

W 
Q C =W 1;0 �W 0;1;

whereW 1;0 =W 0;1; be its associated Hodge decomposition. De�ne the cocharacter

�1 : Gm;C ! Gl(W 
Q C ) = Gl2g(C )

such that, for any z 2 C � ; the automorphism �1(z) of the space W 
Q C is the
multiplication by z onW 1;0 and the identity onW 0;1: Recall that the Mumford-Tate
group of the abelian variety A=C is the smallest algebraic subgroupMT � Gl2g(Q);
de�ned over Q ; such that MT 
Q C contains the image of �1: Note that MT is a
reductive subgroup of the group of symplectic similitudes GSp2g: According to the
Mumford-Tate conjecture (cf. [Se5], C.3.1), for the abelian variety A de�ned over
the number �eld F; for any rational prime l we should have:

(C.20) Galgl =MTl:

where MTl = MT
QQ l : Recall that due to our assumptions on A and F; the

group Galgl is connected. It was proved by Deligne [D2], I, Prop. 6.2 that

(C.21) Galgl �MTl;

for any l:
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Theorem C6. Let A be an abelian variety with with real multiplication by a totally
real �eld E = EndF (A) 
ZQ of degree e = [E : Q ] such that g = eh with h odd.
Then the Mumford-Tate conjecture holds for A:

Proof. By [LP1], Th. 4.3. to verify the Mumford-Tate conjecture for all primes l
it is enough to show it for at least one prime number l: Let H denote the Hodge
group of A; see [D2], Section 3 or [G], p. 312. By de�nition, the Mumford-Tate
group and the Hodge group of A are related by equality

MT = G m H;

where Gm is in the center of MT: Hence, (MT )0 = (H)0: The group H is semisiple
(cf. [G] Prop. B.63), hence H = (H)0 (cf. [H], Th. 27.5). Put Hl = H
QQ l : By
(C.15) and (C.21) for l� 0 and such that l is splitting completely in E; we get:

Y
�jl

Sp2h = (Galgl )0 � (Hl)
0:

On the other hand,

Hl �
Y
�jl

Sp2h

(see Lemma B.60 and Lemma B.62 of [G]). Hence, we have

(C.22) Hl = (Galgl )0 =
Y
�jl

Sp2h:

Using the theorem of Bogomolov we get from this

(C.23) MTl = G m Hl = G m (Galgl )0 � Galgl :

The inclusions (C.21) and (C.23) imply the equality (C.20) for A: �
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