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1 Introduction

Let G be any finite abelian group of order v. Let D = (x1, x2, ......, xk) be

a multiset/list of elements from G (not neccessarily distinct elements). A

difference of these elements is called nontrivial if and only if it is of the form

xi−xj, for i 6= j, otherwise trivial. In particular the element 0 occurs exactly

k times as a trivial difference but it can also be a nontrivial difference, if some

of the elements of D are equal. With this convention we give the following

definition:

Definition 1.1 A multiset D = (x1, x2, ......, xk) is called a difference cover

with parameters (v, k, λ) iff every element z ∈ G (including the identity el-

ement) appears exactly λ times as a non trivial difference i.e. z = xi − xj,
(for i 6= j) of elements of D.

The above notion of difference covers differs from that of difference sets

or difference lists in the requirement that the non trivial differences cover all

the non identity elements of G constant number of times in the difference

sets or difference lists but in difference covers they cover all elements of G

including identity constant number of times. (See (Beth, Jungnickel et al [3])

for difference sets and Arasu & Ray-Chaudhuri [1] for difference lists).

Definition 1.2 If the group G is cyclic then we call the difference cover a

cyclic difference cover.

In the literature difference covers have been studied in a more general

context, where the list of differences is simply required to cover all elements

of G (not necessarily with constant number of times) e.g. See ( [15], [20],[7],

[11], [8], [6], [12]). In these papers the main object was to find minimal size

k covering all of G as a list of differences.

Our work is motivated by paper of (T. Bier [4]), in which the regularity

condition was introduced (i.e. the parameter λ was introduced). In this

paper we give some new constructions of difference covers and prove several
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non-existence theorems. Our approach is using group rings and characters

as in the theory of abelian difference sets. Most of our non-existence proofs

’mimic’ those of difference sets. Difference covers can be studied for any finite

groups but we restrict our discussions to abelian groups. Some of our results

carry over to non-abelian groups as well.

The following Theorems are due to Bier ( [4])

Theorem 1.3 For each positive integer m, there exits a difference cover with

parameters (m(m+ 1),m2,m(m− 1)) in an abelian group.

Theorem 1.4 If there exits a cyclic (v, k, 2) difference cover, then (v, k) =

(3, 3) or (6, 4).

• Remark: The construction of theorem 1.3 is straightforward, but the

proof of theorem 1.4 is quite complicated. We have not been able to verify

the details of theorem 1.4. We find it interesting to note that difference covers

occur less frequently than difference sets/lists. We now give an example of a

difference list which is not a difference cover. Take, for instance G = Z7 =<

g > and D = 2 + g + g2 + g4. It is easy to check that D is a difference list,

but not a difference cover.

2 Preliminaries

Let R be a commutative ring with unity 1 and G a group. We let RG denote

the group ring of G over R. We identify each subset S of G with the group

ring element
∑
x∈S x. For A =

∑
g∈G agg ∈ RG and any integer t, we define

A(t) =
∑
g∈G agg

t. With these notations “the difference cover” condition for

a multiset D of G becomes

DD(−1) = ke+ λG (1)

in ZG. Let G be a finite abelian group of exponent m. A character χ of G is

a homomorphism of G into the multiplicative group of complex mth roots of
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unity. It is well known that the characters of G form a group G∗ (called the

character group of G) that is isomorphic to G. The identity element of G∗ is

the principal character χ0 that maps each element of G to 1. The characters

of G can be extended by linearity to the group ring Z[G]

χ(
∑
x∈G

axx) =
∑
x∈G

axχ(x).

Thus each character of G yields a ring homomorphism from Z[G] into the ring

of algebraic integers in the cyclotomic field obtained by adjoining a primitive

mth root of unity to the field Q of rational numbers. We let ζm denote the

complex mth root of unity e2πi/m.

It is easy to show that D is a (v, k, λ) difference cover if and only if

|χ(D)|2 =

 k2 = k + λv if χ = χ0

k if χ 6= χ0.
(2)

Proposition 2.1 If D is a (v, k, λ) difference cover in an abelian group then

k(k − 1) = λv.

Proof Apply χ0 to both sides of equation ( 1) above.

Proposition 2.2 Let D be a (v, k, λ) difference cover in an abelian group G.

Let N be any subgroup of G of order n. Let σ : G → G/N be the canonical

homomorphism. Then σ(D) is a (v/n, k, λn) difference cover in G/N .

Proof Apply σ to both sides of equation ( 1).

The following is a Bruck-Ryser-Chowla type theorem for difference covers.

It follows from adapting the proof of Theorem 2.1 in Lander [14], for example.

Theorem 2.3 (Bruck-Ryser-Chowla) Let D be a (v, k, λ) difference cover in

an abelian group G.

1. If v is even then k is a perfect square.

2. If v is odd then there exist integers x, y, z not all zero such that x2 =

ky2 + (−1)v−1/2λz2.
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• Remarks:

•Part 1 of Theorem 2.3 follows from equation (1) by applying a character

of order 2.

•Part 2 is essentially contained in Hallm & Ryser [9].

Let G be an abelian group of order v and N any subgroup of order n. Let

G/N = {N0, N1, ......, Nm−1} be all the cosets of N in G, where m = v/n.

For any subset S of G define si = |S∩Ni| for i = 0, 1, ...,m−1. The numbers

(s0, s1, ......, sm−1) are called the intersection numbers of S relative to N .

Proposition 2.4 Let D be a difference cover with parameters (v, k, λ) in an

abelian group G of order v. Suppose H is any normal subgroup of G of order

n and index m. Let H1, H2, ......, Hm be all the distinct cosets of H in G. Let

si = |D ∩Hi| then
∑
si = k and

∑
s2
i = k + λ|H|.

Proof Let D = (a1, a2, ......, ak) where all ai need not be distinct. Let σ :

G→ G/H be the natural homomorphism. Let σ(D) =
∑
sigi where all gi’s

are distinct elements in the quotient group G/H. Then obviously
∑
si = k

since D has size k. Also σ(D).σ(D)−1 = ke+λ|H|G/H. Now comparing the

coefficients of identity in G/H we get
∑
s2
i = k + λ|H|

Corollary 2.5 If we take H = {e} then we get the following result. If

D =
∑
sigi with all gi’s distinct then

∑
si = k and

∑
s2
i = k + λ.

Corollary 2.6 Let D be a (v, k, λ) difference cover in an abelian group G,

then λ must be even.

Proof ¿From Corollary 2.5 we get
∑

[s2
i − si] = λ and so λ is even.

Let p be a prime and w be an integer. Write w = psw
′

where s ≥ 0 and

w
′

is co-prime to p. Then p is said to be self conjugate modulo w if there is

an interger r such that pr ≡ −1 (mod w
′
). An integer m is said to be self

conjugate modulo w if all its prime divisors are. Self conjugacy is important

because complex conjugation fixes all the ideals dividing the ideal (m) in the
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ring of integers of the cyclotomic field Q(ζw) if and only if m is self conjugate

modulo w. This allows us to infer divisibility information about the algebraic

integer χ(D) given similar information about the algebraic integer χ(D)χ(D).

The following is similar to Lemma 1.2 of Arasu & Sehgal [2].

Proposition 2.7 Let D be a (v, k, λ) difference cover in an abelian group

G. Assume there exists a prime p such that

1. p2r|k for some positive integer r, and

2. p is self conjugate modulo exponent of G

Then χ(D) ≡ 0 (mod pr) for all nonprincipal characters of G.

3 New Constructions

Proposition 3.1 There exists a difference cover with parameters (m(m −
1),m2,m(m+ 1)) in any abelian group of order m(m− 1).

Proof Let D = me + G. We assert that D is a difference cover with the

required parameters. We prove this statement using characters.

1. If χ is a non principal character of G, then χ(D) = m

2. If χ0 is the principal character then χ0(D) = m+m2 −m = m2.

The following is a different construction of a difference cover with the

same parameters as in Proposition 3.1, when m is odd.

Proposition 3.2 Let G be an abelian group of order m(m− 1) with m odd,

then there exists a difference cover with parameters (m(m−1),m2,m(m+1))

namely: Let P be a subgroup of G of order m, H a subgroup of G of order

m− 1, K a subgroup of H of order 2. Let K be generated by the involution

k, then D = m∗e + 2Pk + P (H − K) is a difference cover with the above

parameters.
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Proof If χ is the principal character of G then χ(D) = size of D = m2. For

χ a non-principal character of G, the following cases arise:

1. χ|P is non principal. Then χ(D) = m

2. χ|P is principal.

(a) If χ|K is non principal then χ(k) = −1, χ(H) = 0, χ(K) = 0 so

χ(D) = m− 2m = −m

(b) χ|K is principal. Then χ cannot be principal on H. (For other-

wise, χ will be principal on G). Hence χ(D) = m+2m+m(0−2) =

m.

Proposition 3.3 Let E be a (v, k, λ) difference set in an abelian group G.

Suppose k − λ divides k. Let a = k
k−λ . Then D = aE is a (v, ak, a2λ)

difference cover in G.

Proof

DD(−1) = a2EE−1

= a2[(k − λ) + λG]

= a2[k/a+ λG]

= ak + λa2G

Since χ0(D) = ak, the result follows.

Corollary 3.4 Let E be any (4t− 1, 2t, t) difference set in an abelian group

G, then D = 2E is a difference cover in G with parameters (4t− 1, 4t, 4t).

Proof Follows immediately from Proposition 3.3.

• Remarks: Corollary 3.4 provides many examples of difference covers

since the required difference sets with Paley parameters (4t−1, 2t, t) exist in

abundance e.g. see (Beth et al [3])
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Proposition 3.5 If pn is congruent to 3 mod 4 and D is a skew Hadamard

difference set with parameters (pn, (pn − 1)/2, (pn − 3)/4) then E = 1 + 2D

is a difference cover with parameters (pn, pn, pn − 1)

(• Note: D is a skew hadamard means D +D(−1) + 1 = G in Z[G]).

Proof

(1 + 2D)(1 + 2D)−1 = 1 + 2(D +D−1) + 4DD−1

= 1 + 2(G− 1) + 4[(pn + 1)/2 + (pn − 3)/4G]

= pn +G(pn − 1).

Since χ0(E) = 1 + 2χ0(D) = pn, the result follows.

•Remark: The above construction works only for Skew Hadmard Payley

difference sets , as we can see from its proof, D must satisfy D+D(−1) = G−1.

These have been classified by (Camion & Mann [5]).

• Remark: If D is a Payley difference set with parameters (pn, (pn −
1)/2, (pn − 3)/4) with pn is congruent to 3 mod 4 then E = (a + bD) is a

difference cover iff a = 1 and b = 2.

Proof

EE(−1) = (a+ bD)(a+ bD(−1))

= a2 + ab(G− 1) + b2[(pn + 1)/4 + ((pn − 3)/4)G]

E is a difference cover iff EE(−1) = (a + b(p
n−1
2

)) + µG for some integer µ.

Now compare the above two expressions of EE(−1) and obtain:

a+ b(pn − 1)/2 = a2 − ab+ b2(pn + 1)/4

a− b/2 + pn(b/2− b2/4) = a2 − ab+ b2/4 = (a− b/2)2.

x2 − x = pn(
b

2
− b2

4
), where x = a− b

2
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1. If b = 1 then we get

a− 1

2
+ pn(

1

4
) = (a− 1

2
)2

4a− 2 + pn = 4a2 − 4a+ 1

pn = 4a2 − 8a+ 3 = (2a− 1)(2a− 3)

⇒ 2a− 3 = 1⇒ a = 2 and b = 1

2. If b ≥ 2 then x2 − x ≤ 0⇒ x(x− 1) < 0⇒ 0 ≤ x ≤ 1⇒ 0 ≤ a− b
2
≤

1⇒ 2a− b =


0

1

2

If 2a − b = 0, we get x = 0 and hence b
2

= b2

4
, showing b = 2 and hence

a = 1. If 2a − b = 1 the equation pn( b
2
− b2

4
) = −1

4
pn(2b − b2) = −1, a

contradiction . If 2a − b = 2, then x = 1 and hence b
2

= b2

4
, showing b = 0

and a = 1 (on b = 2 and a = 0).

Theorem 3.6 Let pn be any prime power congruent to 1 mod 4, then there

exists a difference cover with parameters (pn, pn, pn − 1)

Proof Let E(resp. E
′

) be the set of all nonzero squares (resp. nonsquares)

in the finite field of order pn. Let D = 1 + 2E, then we assert that D is

a difference cover with parameters (pn, pn, pn − 1). We know that E is a

partial difference set (for more on partial difference sets, see (Ma [16]) with

parameters (pn, (pn − 1)/2, (pn − 5)/4, (pn − 1)/4) and E = E(−1). So

DD(−1) = 1 + 4E2 + 4E

= 1 + 4[(pn − 1)/2 + ((pn − 5)/4)E + ((pn − 1)/4)E
′
] + 4E

= 1 + 4[(pn − 1)/2 + (pn − 1)/4E + ((pn − 1)/4)E
′
]

= 1 + 2(pn − 1) + (pn − 1)[E + E
′
]

= 2pn − 2 + 1 + (pn − 1)[E + E
′
] = pn + (pn − 1)G
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• Remark: If p is a prime congruent to 1 mod 4 and D is any differ-

ence cover with parameters (p, p, p − 1) then D must be as in the above

construction. We use the following well-known result to prove this remark.

Result 3.7 (Ireland, Rosen [10], Chapter 6) Let p be a prime and A ∈ X[H]

be an element in the integral group ring over the cyclic group H =< h > of

order p. Then χ(A)χ(A) = p for all complex characters χ 6= χ0 if and only

if there exists a suitable translate Ag of A with

Ag = xH +
p−1∑
i=0

(
i

p
)hi

for some integer x. The integer x can be determined from the principal

character value χ0(A) (we have χ0(A) = xp). (Here ( i
p
) is the so called

Legendre symbol: It is 0, 1 or -1 depending on whether i is 0, a square or

a non-square modulo p.)

Theorem 3.8 If p is a prime, p ≡ 1 mod 4 and D is any-difference cover

with parameters (p, p, p− 1), then D must be equal to 1 + 2E where E is the

set of all quadratic residues mod p. (See constructions as in Theorem 3.6)

Proof Let D =
∑p−1
i=0 sig

i, then

p−1∑
i=0

si = p

DD(−1) = p+ (p− 1)G

χ(DD(−1)) = p ∀ χ 6= χ0

so by result 3.7, we see that

si =


x when i = 0

x+ 1 when ( i
p
) = 1

x− 1 when ( i
p
) = −1

(3)

Thus x + (p−1
2

)(x − 1) + (p−1
2

)(x + 1) =
∑p−1
i=0 si = p showing x = 1 and

D = 1 + 2E as asserted.

10



Lemma 3.9 If D be a (v, k, λ) difference cover in an abelian group G and

E = G−D is a difference cover in G then v = 2k.

Proof

EE(−1) = (G−D)(G−D(−1)) = vG− 2kG+ k + λG (4)

Be definition if difference cover,

EE(−1) = (v − k) + λG (5)

Compare ( 4) and ( 5) to get the result.

4 Nonexistence Results

Theorem 4.1 Suppose that there exists a (v, k, λ) difference cover D in an

abelian group G. Assume that p2|k for some prime p. If p|v and if the sylow

p-subgroup of G is cyclic, then p|λ.

Proof Suppose that p|v and let S be the sylow p-subgroup of G of order

pα, write G = ST for some subgroup T of G. By Proposition 2.2, E = Dσ,

the image of D under σ : G → G/T is the canonical homomorphism, is a

(pα, k, v/pαλ) difference cover in S. Since p is self conjugate modulo |S|,
by Proposition 3.4, it follows that χ(E) ≡ 0 (mod p), (since p2|k) for all

nonprincipal characters χ of S. So by Ma’s Lemma, E = px+ < g > y,

where o(g) = p, g ∈ S and x, y ∈ XS. Therefore E(1 − g) ≡ 0 (mod p).

Thus the coefficients of E satisfy:

ahj ≡ ahjg
i (mod p) for all i = 0, ..., p− 1 & j = 0, 1, ..., pα − 1 (6)

where E =
∑pα

j=0 ahjh
j, S = 〈h〉. We have

∑
j

ahj = k and
∑
j

a2
hj = k + (v/pα)λ (7)

Use of ( 6) and ( 7) imply that p | v
pα
λ and hence p | λ.
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Proposition 4.2 If there exists a (m,m,m− 1) difference cover in a cyclic

group of odd order m, then ((−1)(m−1)/2(m− 1)/p) = 1 for all primes p.

Proof In view of Theorem 4.1, we can assume that m is squarefree, now we

apply Bruck-Ryser theorem to conclude that there exist integers x, y, z, not

all zero, such that

x2 = my2 + (−1)(m−1)/2)(m− 1)z2 (8)

Now let p be any prime dividing m, we can assume without loss of gen-

erality, that p not divides χ (and hence p not divides z). So, ( 8) when read

modulo p, gives ((−1)(m−1)/2(m− 1)/p) = 1, as desired.

• Remarks: Proposition 4.2 also holds in general abelian groups, if we

assume that for the prime p in question, the Sylow p-subgroup is cyclic.

• Application: (21, 21, 20) difference covers do not exist.

Proof Follows from Proposition 4.2, by taking p = 3, since ((−1)(m−1)/2(m−
1)/3) = (20/3) = −1.

Corollary 4.3 Cyclic difference covers with parameters (m2(m±1),m2,m∓
1) do not exist.

Proof Immediate from Theorem 4.1.

Corollary 4.4 (m2,m2,m2 − 1) difference covers do not exist.

Proof follows from Theorem 4.1.

Corollary 4.5 (m2(m + 1)/t,m2, t(m − 1)) cyclic difference covers do not

exist for all t dividing (m+ 1).

Proof follows from Theorem 4.1.
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• Remarks: Corollary 4.5 shows that the cyclic difference covers (m(m+

1),m2,m(m− 1)), in Theorem 1.3, do not extend to parameters as given in

corollary 4.5.

Our next Theorem can be proved using the ideas as in the original work

of Turyn.

Theorem 4.6 (Turyn’s exponent bound [19]) Let D be an abelian (v, k, λ)

differnce cover in a group G. Let p be a prime, p|v. Let S be the sylow

p-subgroup of G. Let U be a subgroup of G such that |U ∩ S|= 1. Assume

p2a|k. If p is selfconjugate modulo exponent of G/U , then the exponent of S

is ≤ |U |
pa
|S|.

• Applications:

1. (40, 16, 6) difference covers do not exist.

Proof Take p = 2, a = 2, U = {1} and apply Theorem 4.6.

2. (24, 16, 10) difference covers do not exist.

Proof Similar to 1 above.

The following result is a straight forward generalitation of the so-called

Mann’s test (See Jungnickel and Pott [13]), for instance,

Theorem 4.7 (Jungnickel and Pott) Let D be a (v, k, λ)-difference cover

with v > k in G. Furthermore, let u 6= 1 be a divisor of v, let U be a normal

subgroup of index u of G, put H = G/U and assume that H is abelian and

has exponent u∗. Finally, let p be a prime not dividing u∗ and assume that

tpf ≡ −1 mod u∗ for some numerical G/U-multiplier t of D and a suitable

non-negative integer f . Then the following hold:

1. p does not divide the square-free part of k, say p2j ‖ k (where j ≥ 0);

2. pj ≤ v/u.
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• Application: (105, 21, 4) difference covers do not exist.

Proof Take p = 3, |U | = 15, H = Z7, u
∗ = 7, t = 1, f = 3 in Theorem 4.7.

We finally wish to mention that Schmidt’s results in his recent work([17],

[18]) (also see Chapter 6 of [3] ), carry over to difference covers in a very

straightforward manner.
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