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Abstract

We consider the Hardy-type operator

T

(TF) (@) = v(x) / w® B,z > a.

a

and establish properties of T' as a map from LP(a,b) into L%(a,b) for 1 < p <
g<2,2<p<g<oandl <p<2<qg<oo. The main result is that, with
appropriate assumptions on v and v, the approximation numbers a, (7T") of T" satisfy
the inequality

b b
c1 / |luv|"dt < liminf na) (T') < limsupna,, (T) < ¢ / |uv|"dt

n—00 n—o0
a a

when 1 <p<g<2o0r2<p<qg<oo,and in the case 1 < p <2 < g < co we have

d
limsup na, (T') < 63/|u(t)v(t)|rdt

n—00
0
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and

d
04/ lu(t)v(t)|"dt < liminf n(l/Zil/q)THa:L(T),
n—oo
0
where r = p’,’:fq and constants cq, ¢g, c3, ¢4. Upper and lower estimates for the I* and

1% norms of {a,(T)} are also given.

Key words: Approximation numbers, Hardy-type operators, Integral operators
1991 MSC: 47G10, 47B10

1 Introduction
The operator T : LP(a,b) — L9(a,b) ( where 0 < a <b < d < oo ) defined by

Tf(@) = v(@) [u(t) (@)t 1

was studied in [1] and [5], in the case 1 < p < ¢ < o0, for real-valued
functions v € L?(0,¢),v € LP(c,d), for any ¢ € (0,d) and p' = p/(p — 1).
In the aformentioned works, the following estimates for the approximation
numbers a, (7)) of T' were obtained:

AN ()43 < Op&, (2>

an) -1 = v(N(e) = )V Pe, forp < g < oo (3)
and

an(e)/2-1 > €/2, for p = g, (4)

where o, v,, are constants depending on ¢, and N (¢) is an e-depending natural
number .

In the case p = ¢, these results are sharp and are used in [2] and [5] to obtain
asymptotic results for the approximation numbers.
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Specifically, it was proved in [2] that for p = ¢ = 2

n—oo

d
1
lim nan(T) = - / u(t)o(t)|dt (5)
T 0
and that for 1 < p = ¢ < oo,
d

ia,, / [u(t)o()|dt < lim inf na, (T) < limsupna,(T) < o / lu(t)u(t)]dt.(6)

n—00
0

The endpoint cases were studied in [5]: it was shown there that for p = ¢ = o0
(and similarly for p = g = 1)

d d
1
; / [u(t)o,(B)]dt < lim inf na, () < limsupna, (T) < / lu(t)v,(8)dt, (7)
0 0
where

vs(t) = B [|v X prells.

If p < g, the estimates (2) and (3) are not sharp.

The estimates (2) and (3) were used in [7] to obtain the following asymptotic
results for the approximation numbers in the case 1 < p < ¢ < oo:

limsup na, (T') < cpq/]u t)|"dt (8)
and
d
<d / (t)|"dt < hmmfn(l/p Var+lar (1) 9)
0

where r = pq' /(g + 7).

Since the estimates upon which they are based are not sharp, these results
aren’t sharp either, in contrast to (5), (6). Our research is directed toward
finding alternative, refined versions of (2) and (3) in the case p < ¢, aiming



to get better asymptotic results than (8) and (9). In this paper, we succeed in
showing that for 1 < p < ¢ < o0,

an(+1 < 2g, (10)

and for 1 <p<g<2o0r2<p<qg<o0

aN(e)/4—1 = CE, (11)

and for 1 <p<2<g< o0
an(e)ja—1 > ceN(e) /2714, (12)

where ¢ is a constant independent of € and N(g). And under some condition
on u and v we show that for 1 <p<g<2o0r2<p<g< o0

b b
cl/|uvl’" < liminfna, (T) < liminf na, (T') < CQ/"U/'U‘T,

n—oo n—oo

and for 1 <p<2<g< o0

n—oo

d
limsup na, (T) < Cp,q/ lu(t)v(t)|"dt
0
and
d

dy [ lu(t)o(t)]"dt < Timint (/210747 (T),
0

/ .
where r = L1 We also describe [" and "* norms of {a,};2;.

2 Preliminaries

Throughout this paper we will suppose that 1 < p < ¢ < 2. In what follows we
shall be concerned with the operator T defined in (1) as a map from L?(0, d)
into L9(0, d) where 0 < d < oo. The functions u, v are subject to the following
restrictions: for all x € (0, d)

we LP(0,), (13)



and
ve Li(z,d). (14)

It is well-known that these assumptions guarantee that 7" is well defined (see
(9)). Moreover, the norm of this operator is equivalent to:

d 1/q
J = sw (/\u \pdt> (/www) ,

(see [4],[8] and [5]). We define the operator 17 by

T

Trf(x) :=v(x)x(x) /u(t)f(t)xl(t)dt, x>0, (15)

0

where I = (a,b) C (0,d), and the quantity

9 /4 1/q
J(I) = J(a,b) = Szlél? (/ lu(t)[? dt) (/ |v(t)|th) : (16)

It is obvious that J(I) ~ ||17]/,—q, where the symbol ~ indicates that the
quotient of the two sides is bounded above and below by positive constants.

Proposition 1 There are two positive constants Ky, Ko such that for any
I = (a,b) C (0,d) the inequality

Ky J(a,b) < |T7|| < KaJ(a,b)
holds.
We start by proving an important continuity property of J:

Lemma 2.1 Suppose that (13) and (14) are satisfied. Then the function J(.,b)
is continuous and non—increasing on (0,b), for any b < co.

Proof: It is easy to verify that J(.,b) is non-increasing on (0,b). To prove
the continuity of J, fix x € (0,b) an ¢ > 0. By (13) and (14) there exists
0 < hg < min{z,b — x} such that

1/p'

[ w@Fa] ol <&
—ho



It follows that for h, 0 < h < hy,

r—h<z<b

. 1/p'
T b) < (e —hb)= sup (/ u(t)?’dt) Jolloges

; 1/p’
:max{ sup (/ u(t)|p/dt> ”UHq,(z,b)v
r—h<z<zx
“h
X z 1/p/
sup ((/ +/) U(t)p'dt) ||U||q,<z,b)}
r<z<b n -

<max{e,e + J(z,d)} = e+ J(z,d), (17)

which yields 0 < J(z — h,b) — J(x,b) < €. The inequality 0 < J(x,b) — J(x +
h,b) < € can be proved analogously. O

For the sake of completeness, we include the following known result (see [4]
and [9]):

Proposition 2.2 The operator T defined by (1), with 1 < p < oo and u,v
satisfying (13), (14) and J < oo is a compact map from LP(0,d) into L(0,d)
if and only if lim._o, J(0,c) = lim.q_ J(c,d) = 0.

In what follows A([) is a function defined on all sub-intervals I = (a,b) C
(0,d), defined by

A(I) = A(a,b) := sup inf ||[Tf —av |, (18)

[ £llp =1 2ER

A similar function can be found in [5]. Next, we prove some basic properties
of A(I). Choosing a = 0 in (18) we immediately obtain for any I = (a,b),
0<a<b<d,

A(I) < || Tx]]. (19)
Lemma 2.3 Let I = (a,b) and ||u|ly; < 0o, ||v]4r < co. Set

A(l) = inf || Tf—av ||,

su
P
Then A(I) = g(])

Proof: Holder’s inequality yields



q 1/q
d:v)

x a/r / x q/v 1/q
||fﬁuf) ! (/” (a/lf(t)lpdt) (a/lu(t)|p dt) dx)

b b a/v’ 1/q
. (/ [o(a) ( / |u<t>|p’dt) d:c) = l[ull.dllollr

If |v]l,; = 0 then A(I) = A(I) = 0. Assume ||v||,; > 0. Let || f|l,; = 1 and
suppose that |« > 2||ul|, ;. Then |a| > 2|HIH and using the trivial inequality

b T
77| = sup (

1llp, =17

la — b|7 > 2179)a|? — |b]? valid for any real numbers a, b we obtain for each
acR

/

b T q b T q
(a— / f(t)u(t)dt) o(z)| de> / ()| ~ | / F(Eyu(t)d]

> 91-4|q |4 /| |qu—/\ /xf(t)u(t)dt‘qu

T3]y
> 20(2 0 / v@)|"de — |[TH]|" = |1
q,!

dzx

In conjuction with (19), the above yields

T3] = A(I)

- ||fﬁ2?:1min {a<i2nfp,’l ( b (a - j f(t)u(t)dt) v(x)
a ,, ; m

|a|>izﬂufup,’l (a (a - a/ f(t)u(t)dt) ()
b T

— la‘gigﬂiup,J (a (Oé = a/f(t)u(t)dt) v(z)

which finishes the proof. O

q)l/q
q)l/‘I}

Lemma 2.4 Let u and v satisfy (13) and (14) respectively. Then A(l;) <
A(1y), provided I, C Iy. Moreover, given 0 < b < d the function A(.,b) is
continuous on (0, b).



Proof: Let 0 < a; <as <by <b; < d, I, = (Cll,b1>, I, = (CLQ,bQ) . Then

q 1/q
d:c)
q 1/q
dx)

q 1/q

T

v@)( [Eu(t)dt - )

ai

by
A(l = su inf /
() Hfllp,zll)=1‘)‘6§](e (01

by
> sup inf /
1y llp,ry =1 ©€% \J
b
> sup inf /
171lp.r =1 >R\

which proves the first part of lemma.

T

v@)( [ @u(t)d - )

al

T

v@)( [ Bult)dt - a))

a2

For the remaining statement, fix b € (0,d) and 0 <y < b. Let € > 0. By (13)
and (14) there exists 0 < hg such that 0 < y — hy and

Yy Yy
/ lul”” < e and / |7 < e.
—ho y—ho

Set Dy, = 2||u|p (y—np) for any 0 < h < y. Recall that by (13), one has D), < oo
for 0 < h < d. Using the trivial inequality (a +b)'/? < a'/? 4 /9, the triangle
inequality and the Holder inequality, it follows that

Y

A(y,b) < A(y — h,b)

. 1/q
_ b inf Q / (o - / £(t) (t)dt)v(x)"’dx)
y—h

Hf”p (y—h,b)

= sup inf {/ ’(oz— / f(t)u(t)dt)v(:p)‘qu
h h

Hf”p,(yfh,b)::l || <Dy

. 1/q

”f”p (1/ h,b)=
y 1/q
+ {lalt [ fo(@)|"ds
y—h




b

y Ly 1a
Jrw@as( [ uwpa)”( [ f(t)pdt)q/p]

Y y— y—h
b

z 1/q
+ /‘U(x)( f(t)u(t)dt—oz)‘qu] }

Y Y

+

/

< {8”1/”' + DT+ ||v]l g 0"

! o \Ojglfjh /b‘ /xf(t)u(t)dt_a)v(m)’qdm)l/q}

1 llp, cy— hw 1

Since Dy < Dy, < Dy, we have by Lemma 2.3

L, /b’ jf ()t — a)v(x)|'d )1/q
<] Ki Fyutta = a)o(w)|'d) " = Aty

and thus
A(y,b) < A(y — h,b) < 271 (VP 4 Dy + ||u| g e + Ay, b))

which proves that
lim A(y — h,b) = A(y, b).

h—04
Analogously,
hli:%l A(y+ h,b) = A(y, b).
—04

which finishes the proof of our lemma. O

Lemma 2.5 Suppose u,v > 0 satisfy (13) and (14) and that T : L*(a,b) —
L%(a,b) is compact. Let I = (¢,d) and Iy = (¢, d') be subintervals of (a,b),
with Iy C I, |I,| > 0, |[I, =I5 > 0, [*v9(z)dz < oo. Then 0 < A(Iy) < A(L).

Proof: Let 0 < f € LP(1), 0 < ||fllp, < || fllp.y < 1 with supp f C I5. Let
y € Iy then

||T(0’,y)||p712 >0 and HT(y,d’)HpJQ >0

and then by simple modification of [EHL2, Lemma 3.5] for case p < ¢ we have

min{ [T ) llo, 2o [ Tty g2} < i [T glg, 1,



which means A(l) > 0.

Next, suppose that ¢ = ¢ < d’ < d. A slight modification of [EHL2, Theorem
3.8] for p < ¢, yields zy € I, and z; € I; such that A(ly) = ||Ty.1lq,1, and
A(L) = Ty, .0 llqn- Since u,v > 0 on I3, it is then quite easy to see that
o € I§ and x; € I7.

If xo = x1, then, since u,v > 0 on [, we get

A(Il) = ||T$1711||q711 > ||T:v1711||q712 = ||Tf61,12||q7]2 = A(IQ)

On the other hand, if xq # x1, then
A(Il) = ||T901711||q711 > ||Tx1711||q712 > ||TI1J2||qJ2 > ||Ta:0,12||q,12 = A<]2)

The case ¢ < ¢ < d = d could be proved similarly and the case c < ¢ < d' < d
follows from previous cases and the monotonicity of A([;). O

Let I = (CL, b) C (0,d) and ]z = (ai,bz-) - I, 1= 1,2 . .,/{Z. Say that {Iz}le S
P(I) if Ur_, I; D I and assume the intervals {I;}¥_, to be non-overlapping.

Now, for any interval I C (0,d) and € > 0, we define the numbers M and N,
as follows:

M(I,e) :=inf{n: J() <e {L;}, € P(I)}. (20)

and

N(I,e) :=1inf{n; A(L;) < e,{L}-, € P(I)}. (21)

Since by Proposition 1, A(I) < ||T|| < KsJ(I), we have

N(I,e) < M(I, K). (22)
Put N(e) = N((0,d),e) and M(e) = M((0,d),e). From Proposition 2.3 and
the definition of J(I) one gets the following:

Remark 2.6 Suppose that (13) and (14) are satisfied. Then T : LP(0,d) —
L9(0,d) is compact if and only if M (g) < oo for each € > 0.

Lemma 2.7 Let T be a compact operator. Then

lim A(0,z) =0 and liI}ll A(z,d) = 0.

z—04

10



Lemma 2.8 Suppose that T is a compact operator, ¢ > 0 and I = (a,b) C
(0,d). Let m = N(I,¢e). Then there exists a sequence of non-overlapping inter-
vals {1;}7, covering I, such that A(I;) =€ fori € {2,...,m—1}, A(L) <e¢,
and A(l,) <e.

Proof: From Remark 2.7 and (22), one has m < oo. Define a system S =
{I;}jeq, I; C I, of intervals as follows: Set by = inf{z € I; A(z,b) < ¢}. By
Lemma 2.7 we have a < by < b. Put I} = [b1,b]. Then A(l;) <e. If a =0
write S = {I,}, otherwise set by = inf{x € I; A(x,b,) < e} and Iy = [b, by].
Observe that by Lemma 2.4 we have A(ly) = . We can now proceed by
mathematical induction to construct a (finite or infinite) system of intervals
S = {[;}5-,. Note that we have only A(l,) < ¢ (not A(l,) = ¢) provided
a < oo and A(Ig) = € for f < a. Writing by = b we can set I; = [b;,b;_1],
I<j<a

Our next step is to show that o = m. By the definition of m one has a« > m
and a finite sequence of numbers a = a,, < a,,—1 < ...ay9 = b and intervals
J; = la;,a;—1], 1 = 1,2,...,m such that A(J;) < e. Notice that b; < a, for if
not, we can take A : 0 < A < by, which, from Lemma 2.4 and the definition
of I, would yield € < A(\, by) < A(Jy) < ¢, which is a contradiction. Assume
now that for some v > 1,b, > ay. If b._1 < ag_1, then talking a, < A < by,
Lemma 2.4 and the definition of Iy yield ¢ < A(\, br_1) < A(Jx) < &, which is
a contradiction, so that a;_; < by_;. Repeating this reasoning, one arrives at
b1 > aq, which is again a contradiction. Thus, b, < a; for all £ = 1,2,...m.
Choosing £ = m we have b,, = a and consequently, « = m and S covers [
which finishes the proof. O

For future reference (see the proof of (11) in the next section) we include the
following lemmas and remarks.

Let X be a Banach space and M C X. Recall the definition of the distance
function dist(., M),

dist(z, M) = inf{||z —y|l;y € M}, z € X.

Lemma 2.9 Let T be a compact operator, u,v >0, e >0, I = (a,b) C (0,d)
and m = N(I,e).

(i) Then there exists 0 < 1 < € and a sequence of non-overlapping intervals
{L;}, covering I, such that A(I;) =&y fori e {1,...,m}.

(ii) There exists o : 0 < g9 < & such that m +1 = N(I, ).

Proof: The proof follows from the strict monotonity and the continuity of
A(I). O

Lemma 2.10 Let H be an infinite dimensional separable Hilbert space. Let

11



Y = {u,...,us,} be any orthonormal set with 2n vectors and let X be any
m-dimensional subspace of H with m < n. Then there exists an integer j,
1 < j < 2n, such that

dist(u;, X) >

Sl

Proof: Denote the inner product in H by (u,v). Extend Y to an orthonor-
mal topological basis {u;}3°, of H. Choose an orthonormal basis of X, say
V1, ..., Unp. Denote by P the orthogonal projection of H into X. Then

m

Pu=> (u,v;)v; for any u € H.

=1

Since P is a self-adjoint projection we obtain

2n 2n
k=1 k=1
2n 2n m
=2n — Z(uk, Puy) = 2n — Z Z(“k> v;)?
k=1 k=1j=1
m 2n
=2n =) (ug,v))%
j=1k=1
The Parseval identity yields
(ur, v5)* = [loy]|* = 1,
k=1
which implies
2n
Z(uk,vj)2 <1.
k=1
Consequently,
2n
Z |up — Pug|®* > 2n —m > n,
k=1

12



which guarantees the existence of an integer j, 1 < j < 2n, with ||u; — Pu;||* >
1/2. Then

: 1
dist (uj, X) = [lu; — Pusl| > Vol

which finishes the proof. O

Lemma 2.11 Let 1 <p <2 and X be any n-dimensional subspace of l,. Set
e; € 1y, e;j = {0;;}2, where §;; is Kronecker’s symbol. Then there exists an
integer 7, 1 < 5 < 2n, such that

1

diStp<€j, X) > ﬁ

Proof: Denote by ||.||, the norm and by dist, the distance function in /,. Since
|-l < [|-|l;, we can consider X as an n-dimensional subspace of l5. Thus, using
the previous lemma there is j, 1 < j < 2n with dists(e;, X) > % from which
immediately follows that

dist,y(ej, X) = inf{||e;—z|,; x € X} > inf{|le;—z|]2; 2 € X} = dista(e;, X) >

9

O

Lemma 2.12 Let 2 < p < oo, n € N and X be any n-dimensional subspace
of IP. Set e; = {6;;}2, € l, where &;; is the Kronecker’s symbol. Then there is
7, 1 <5 < 2n such that

dist,(e;, X) > 2V/p=1nl/p=1/2, (23)

Proof: Let R : [P — [P be the restriction operator given by
R(a) = (a1, az,...,0a2,,0,0,...)

where a = (a1, az,...) € [P. Chose u; € X such that dist,(e;, X) = ||e; — w].
Using the well-known inequality

|R(a)||2 < (2n)*7Y?||R(a)]|, for all a € 1P

it follows that for each 1 < i < 2n,

dist,(ei, X) = lles — willp > | R(ei) — R(us)ll,
> (2n)27 V2| R(e;) — R(w;)|l2 > (2n)/27V/7 disty(e;, R(X)).

13



Since R(X) is a linear subspace of (2, by Lemma 2.10 there exists j with

1
diStQ(@j, X) Z ﬁ7
which finishes the proof of the lemma. O

It is shown in the appendix that the power of n in (23) is the best possible if
2 <p< oo

With the aid of the last lemmas we can use get a modified version Lemma
2.10 with H replaced with LP(0,d) .

We start by recalling some lemmas referring to the properties of the map
taking = € X to its nearest element M4(x) € A C X.

Lemma 2.13 Assume that X is a strictly convex Banach space, V C X be a
finite dimensional subspace of X and o € X. Set A= {xo+v;ve V} . Then
for any x € X there exists a unique element v such that

[l —vl| = inf{]|lz —yll;y € A}.
Denote by M4 the mapping which assigns to x € X the nearest element of A.

Lemma 2.14 For any o € R, x € X and v € V', one has

My (ax) = aMy(z), (24)

My (x 4+v) = My(x) + v (25)
and

oz~ ol > 21 My(z) ol (26)

The proof of these last two lemas can be found in [10].

Recall that P : X — X is called a projection if P is linear, P? = P and
|P|| < oc.

Lemma 2.15 Let X s a strictly conver Banach space and V. C X be a
subspace, dim(V') = /n is finite. Then there exists a projection P : X — V
which is onto such that ||P|| < y/n.

For proof see [11,I11.B, Theorem 10].

The following lemma, whose proof is included for the sake of completions |,
plays a critical role in the sequel, since it provides an approximation to the

14



map M, above by an linear operator of at most one dimensional range. The
proof can also be found in [5].

Lemma 2.16 Let I C (0,d),1 < ¢ < oo and let [;|g(t)v(t)]|%dt < co. Set

0 if gy lo()ledt = 0
wi(g) = § (Jrg@(@)|4dt)/ [y lo(@®)]%dt if 0 < [;o(t)|%dt < oo
0 if  Jrlv(t)]fdt = oo
Then
inf [[(g = @)vllgr < 19 —wi(g))vllgr < 2 nf [[(g — a)vllyr (27)

Proof: It suffices to prove the second inequality. Fix g such that [; g(t)|v(t)|?dt <
0.

Assume first that [, |v(¢)|?%dt = 0. Then v(t) = 0 almost everywhere in I and
all members in (27) are equal zero.

Let [;|v(t)]?dt = oo. We claim that ||av|,; < |[(o — g)v]|qr- If @ = 0 the
inequality is clear. Let o # 0, otherwise |lav||,; = oo and by the triangle
inequality, it follows that ||(a — g)vl|sr > ||lav]er — |lgv]lqr = oo and hence
the claim. Thus, for each o € R

Itg = wr(g)vllgr = lI(g — a+ )ollgr < 2[(g — )ollqs

which gives
(g = wr(@)olar <2 inf (g — a)ollg.r

Assume now 0 < [; |v(t)|?dt < co. By the Hélder’s inequality, we obtain, for
any o € R

q

Jrg(@)|v(®)|?dt
|(a —wi(g))v]| 1/ (a - W)v(m) dx
(0 — g(®)lo(®)odt |
:/|v(x) AEOIT ) I
(Jy [v(t) Iflth /(O‘ — g(t)|v(t)|7dt| dx

15



q

(@ = g) )| at

_ (/w(t)\qu) B
< (/ qdas) /| a—g t)|9dt </|v )= 1)dt> "
-~ [la

!

—g(@)o(@)|"dt = [|(a = g)vllg

which proves [|(a —wi(g))vllgr < [l(a = g)vllg.r-

Now, using this inequality, for any real a one has:

(g — wi(g))vllgs < Ig — @)ollgr + [0 = wi(g))vllgr < 2[[(e — wi(g))vl|

The lemma follows by taking the infimum over « on the right hand side . O

Lemma 2.17 Let X = LP(0,d), p > 1. Let vy, vs,...,v, be functions in X
with pairwise disjoint supports with ||v;||, = 1 for i = 1,2,...,n. Set V. =
span{vy, vg, ..., v, }. Then there is a projection Py with rank P, < n, such
that

1f = My (F)llp.o.a) < IIf = Pv(Hllpoa < 201f = My (f)llp 0.0

where My is defined on Lemma 2.135.

Proof: Denote S; = suppv;, V; = span{v;}. Given any f € X, with supp f C
Si, let Mi(f) = M,,(f). Put Fif = wi(fxs,)xs;, and Pf =30 Pi(fxs,)Xs,-

From the definition of M, and P, we have || f =My (f)|lp,0.0) < [[f=Pv (f)llp,0.9),
which is the first inequality. Also

p,Si

1f = My (NI = DI xs: + Mo(f)xsilps, = D 11 xs, — Mi(fxs,)
i=1 =1

S 2—1/17 Z ”fXSz - Pz(fXSz)XSsz,SZ = 2_1/p||f - Z PL(fXS@)XSz ||§
i=1 i=1
<272 f = P(f)xs b,
which gives the second inequality and finishes the proof. O

Lemma 2.18 Let 1 < p <2 and let uy, ..., us, be a system of functions from
LP(0,d) with disjoint supports. Let X C L*(0,d) be a subspace, dim X < n.

16



Then there exists an integer j, 1 < j < 2n, such that

1
dist,(u;, X) > ——=||u;l|,.
P05 X) = 2l

Proof: If ||u;||, = 0 for some i, it suffices to choose j = i. Let ||u;|[, > 0
for all 1 <7 < 2n. Set v; = HuuTlp Let V' = span{vy,vs,...,vq,} and let Py
be the projection from the previous lemma. Let Y = Py (X). Then Y C V,
dimY < n. Denote by Z the subspace of I? consisting of all sequences {a;}°,
such that a; = 0 for all £ > 2n. Let e; be the canonical basis of Z. Define a

linear mapping I : Y — Z by

2n 2n
I(Z CYﬂ]i) = Z Q€.
i=1 i=1

Since ||v;|| = 1 and the functions v; have pairwise disjoint supports, it follows
that I is an isometry between Y and Z. According to Lemma 2.11 there exists
1 <5 < 2n such that

1

dist,(e;, 1(Y)) > ok (28)
and from Lemma 2.13 there is a unique z € X with
dist, (v}, X) = [[v; — 2. (29)

By the definition of P, and My, we have

1 1
glle = M@)lly < Sllz = Pr(@)lly < |z = My(@)ll, < [lv; — 2|,

which yields, with the triangle inequality,
1Py () =vjlly, < [Py (x)=zllp+llz—uv;lly, < 2llz—vill, < 20—l +le—vill, < 3lle—vjllp.

This together with (28) and (29), gives

. 1
dist,(vj, X) = [|v; — 2|, > §||Uj — Py (z)ll,

1
> —dist,(v;,Y) = 3 dist, (e, I(Y))

1
> —.
Denoting by M; the mapping which assigns to any f € LP(0,d) the element
of X nearest to f and using (24) we can rewrite the previous inequality as

W=

17



dist,, (uj, X) = [Ju; — M ()|, = H%Hp [v; = My ()l

= ||u,;||, dist,(v;, X) > —=|u;

ol disty(0s, %) = 2=l

which yields the claim. O

Lemma 2.19 Let 2 < p < 00 and let uq, ..., us, be a system of functions from
LP(0,d) with disjoint supports. Let X C LP(0,d) be a subspace, dim X < n.
Then there exists an integer j, 1 < j < 2n, such that

dist, (uj, X) > Up-1/2,

\/— HUJ Hpn

Proof: Let V, My, Py,Y, Z and I have the same meanins as in Lemma 2.18.
Proceading as before, Lemma 2.12 yields j: 1 < j < 2n such that

1
dist,(e;, I(Y)) > énl/p_l/Q.

Let z € X be the element given by Lemma 2.13 so that

dist(v;, X) = [lv; — 2.

In exactly the same way as in Lemma 2.18, one gets

1
dist,(v;, X) > gnl/p_l/Q,

which can be written as

1
dist,(uj, X) > 3 [ Hpnl/p_l/Z’

and the proof is complete. O

3 Bounds for the approximation numbers
We recall that, given any m € N, the m' approximation number a,(S) of a
bounded operator S from LP into L4, is defined by

am(S) = i%f HS - F||p—>q»

18



where the infimum is taken over all bounded linear maps F' : LP(0,d) —
L9(0,d) with rank less than m. Futher discussions on approximation numbers
may be found in [3]. An operator S is compact if and only if a,,(S) — 0 as
m — oo. The first two lemmas of this section provide estimates for a,,(7) for
T asin (1), which are the analogous of those obtained in [1] and [5]. Hereafter,
we shall always assume (13) and (14).

Lemma 3.1 Let 1 < p < ¢ < oo and suppose that T : LP(0,d) — L%(0,d)
15 bounded. Let ¢ > 0 and suppose that there exist N € N and numbers
ek =0,1,... N, with0 =cy < ¢y < ...<cy =d, such that A(Iy) < e for
k=0,1,...,N — 1, where I, = (¢, cx+1). Then ay1(T) < 2e.

Proof: Consider for f € LP(a,b) and 0 < k < N — 1 one-dimensional linear
operators given by

P f(z) :== x1.(z)v(x) (/mufdthw]k (iufdt)) :

Ck Ck

where wy, is the functional from Lemma 2.16. We claim that P, is bounded
from L?(0,d) into L9(0,d) for each k.

Assume first that either 0 = ||v||, s, or ||v||4, = co. Then P, = 0 and conse-
quently, it is bounded.

Assume now 0 < |lv]|q7, < oo and fix f,[|f|lp04 = 1. Then using Hélder’s
inequality, we obtain

o, (/ u(t)f(t)dt)

k

Jr, Jo u(t) f()dt|v(x)]|9d
i, o(@)]edz

i lo(@) S5 ) f ()t o)) de

- i, Jo()[7dz

(Jo o) 5 ) atpraz) ™ (1, (@) o7 d)

1/q

<
: Ty, (@)
Tl 7]
[ollan, = Tolla,

and consequently,

q

/d (Bf) (@) dz = [ o

Iy,

v(x) (iufdt—i—w;k (/xufdt))

19




v(x) /xufdt

Ck

<! (/

k

+wl ( [u fdtdx))

|7 .

[Vllg, 1

< 27| T f Il + ) < T[T+

[V]lq.z

Set P = 7' P. Then P is a linear bounded operator from LP(0,d) into
L9(0,d). Moreover, we have by Lemma 2.16 and the well-known inequality
(SR Jaw| M0 < (572 larl?)?

N-1
ITf =Pl = > ITf = Prfllgs,
k=0

N-1 z z

= dt — dt I
> Ivt) L/ ufdt - wr, ( [ur )] 18
N-1

k Ck
N-1

<2703 inf 1T, f — ofllfs, <203 AU S,
=0 k=0

N—1 N—1 q/p
< @Y I, < (22)° (Z ||f|r;z,fk) < (201
k=0 k=0

by Lemma 2.5. Since rank P < N, the proof of the lemma is complete . O

Lemma 3.2 Let 1 < p < q < oo, T be bounded from L*(0,d) to L1(0,d), 0 <
a<b<c<dand denote I = [a,b], and J = [b,c|. Further, let f,g € L?(0,d)

with supp f C I, suppg C J, || fll, = llgll, = 1.

Let r, s be real numbers and set

h@) = o) [ (@) (1) + sg(t)d.

Assume [;u(t)h(x) = 0. Then

> q; _ q q; _ a\l/a
1Bllg = ([r[* inf |77 f — awl[* + [s]* inf 779 — av][?)

Proof: Since supp f C I and supp g C J we have

q

dz = 0. (30)

a

/

0

T

o(a) [u(t)rf(t) + sg(t))at

0

20



If z € (¢,d) we have (recall that [; u(t)h(z) = 0) that

d

/

C

q d

dx:/

c

q

dx =0. (31)

T

o(a) [u(t)rf(t) + sq(t))at

0

C

v(z) / w(t)h(t)dt

a

Assume first s # 0. Then it follows from (30) and (31) that

d q a b c d

Inlls= [ ote) [uoer@)+ snar] do= [+ [+ [+
v(z /xu t)(rf(t)+sg(t ))dtqda:

q

dx

o(@) [ ) () + sgt))dt

J

Assume now s = 0. Then

T
v\x /’LL dx

0

d
Il — [ 1t
0
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dx

v(x) (/ u(t) f(t)dt — a)

a

q

dr =

q 3 _ q
7 inf 172 f — w2,

which finishes the proof of the lemma. O

Lemma 3.3 Let 1 < p < ¢ < 2, T be bounded from LP(0,d) to L(0,d),
e>0, N e Nand 0 < dy < di < ... < dyny < d. Set I}, = (dk7dk+1) and
assume that A(Iy) > ¢ fork =0,1,...,4N — 1. Then ay(T) > 21/971/P=3/2¢

Proof: Let 0 < 7 < 1. Then there exist functions f;, € LP(I;) such that
| fellp,n =1 and

inf ([T fu — avllqn = vA(Lk) 2 7e. (32)
By definition of the approximation numbers, there is a bounded linear mapping
with rank P < N such that

an+1(T) > ~||T — P”pﬁcr
Then P = YN, P, where P, are one-dimensional operators from LP
into L(0,d). Thus, we can write (P, f)(x) = ¢;(x)R;(f) where ¢; € LI(0,

and R; € (LP(0,d))*. Since (LP(0,d))* = L*'(0,d), it follows that R;f(z) =
J&ap;(t) f(t)dt and that there are functions v; € L¥' (0, d) such that

(0,d)
(0,d)

N d

(PH) =D 6i(x) [wln) f@)a.

i=1 0

Denote by X the range of P. Notice that dim(X) < N.

Define J,L = IQZ'U[QZ'Jrl fori = 0, 1, e 2N —1. For each 7 € {O, 1, c. ,2N— 1}
Let (r;, s;) be orthogonal to the 2-dim vector. So that

75| + |ss]P > 0 and T’Z'/Ufgi + s; / U foir1 = 0. (33)

Io; Iziq1
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Set g;(t) = 7ifa + Sifair1 and hi(z) = v(x) [ u(t)g:i(t)dt. From | f;]] = 1 for
each i: 0 <7 < 2N — 1 and (3.2), one has
1/p
lgilly = {Irl? [ 1@ at+ Isi? [ |faenOFdt | = (i + |si7)7.
Iz;

Iziq1

Consequently, ||hill, = | Tgill, < oo. Moreover, [&hy(t)dt = [5, hi(t)dt = 0
whence
supph; C J; foralli =0,1,...,2N — 1.

Thus, using Lemma 2.18 one finds that there exists an integer k, 0 < k£ <
2N — 1, such that

1
dist,(hi, X) > ——=||h
18 fI( k> ) = 2\/5” k“%

from which it follows that

@N+1(T) > ”YHT - PHqu
Tf—-P
T i
feLP,supp fCJg ||f||p
MTge — Pgella _ vllhe — Pgellq
| gxlp | gxlp
diStq(hkvX) > i Hthq
N larll, = 2v2 [lgkllp

Using Lemma 3.2, (34) and the inequality
(7l -+ Il 12 < 270y 4 sy )

we obtain

Rl o (el infaen | Th, f — av]]d + |sel” infaep | Ty, — avlld)
lgrllp — (IrelP =+ [si[P)1/7

1
(Irk|? + |sk]?) /a >~ e o1/a=1/p
> 2

which together with the previous estimate gives
(1N+1(T) > ,}/2 21/q—1/p—3/2‘

The proof is complete.O
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Using the properties of approximation numbers on dual operators we can
extend the previous result

Lemma 3.4 Let 2 < p < ¢ < oo and suppose that T : LP(0,d) — L%(0,d)
15 bounded. Let ¢ > 0 and suppose that there exist N € N and numbers
de,k = 0,1,... AN with 0 = dy < dy < ... < dyny < d such that A(Iy) > ¢
for k =0,1,...,N — 1, where I, = (dg,dxs1). Then an(T) > ce where ¢ is
positive and depends only on p,d.

Proof: The adjoint of T, T”, is bounded from L% into L¥". It is easy to see that
Lemma 3.2 holds for T replaced by T”. Then the proof follows immediately
from Proposition 2.5 and Remark 2.6 in [3]. O

Lemma 3.5 Let 1 < p <2 < g < oo and suppose that T : LP(0,d) — L(0, d)
1s bounded. Let ¢ > 0 and suppose that there exists N € N and numbers
de,k=0,1,... ;AN with 0 = dy < dy < ... < dyn < d such that A(Iy) > ¢ for
k=0,1,...,N — 1, where I, = (dy,ds1). Then an(T) > cen/9 /2 where c

15 positive and depends only on p,d.

Proof: Let 0 < 7 < 1. Then there exist functions f; € LP(I;) such that
| fellp, . = 1 and

inf ([T f — avllgn = vA(k) = 7e. (34)

By definition of the approximation numbers there is a bounded linear mapping
with rank P < N such that

GN+1(T) > 'YHT - PHp—>q-

Write P = Zij\il P; and let J; be as in the proof of Lemma 3.3. In the notation
of Lemma 3.3, in this case we also have ||;||, = || Tg:ll, < oo and [ h;(t)dt =
[;, h¢t)dt, so that

supph; C J; foralli =0,1,...,2N — 1,

whence, by Lemma 2.18, there exists an integer k£, 0 < £ < 2N — 1, such that
dist, (he, X) > ——n/a=12|| |
q ’ —_— 3\/5 a»
which gives
an+1(T) > T = Pllp—q
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s TP
JELP,supp fCJy Hpr
NTge — Paelly _ vllhe — Pgellg
19l 19kl
disty (he, X) S Hhk’anl/q—l/Q
lgelly  — 3v2 1l '

Using Lemma 3.2, (34) and the inequality
(|rk|p + |Sk|p)1/p < 21/p—1/q(|rk|p + |Sk|p)1/p

we obtain

Ihilly - (7el?infaen | Tr, f — av][d + |si|” infaen | Trye,, — avlld)
lgrlly — (IrelP + |se[P) 7P
(Iral? + |sel9) ™9
(IrefP + sk P) /P

>ye 9l/a=1/p

which gives with the previous estimate
ans1(T) > 4% cent/a71/2
for fixed ¢ > 0 and finishes the proof.O

The following theorem follows immediately from the previous lemmas. It im-
proves results from [1] and [5].

Theorem 3.6 Suppose that T is compact (see Proposition 2.2 and Remark
2.8). Then, for smalle >0, 1 <p<qg<o0

an()+1(T) < 2,

for1<p<qg<2o0r2<p<qg<co

e, 4 (T) > ce,
(X421

and for 1 <p<2<¢g<

CL[M]_I(T) > ceN(g)l/q—l/?
4

Here N(e) = N ((0,d), ) is defined in (21) and [x] denotes the integer part of

xZ.
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Proof: The first inequality is an immediate consequence of Lemma 3.1 and
definition of N(e). The second inequality follows from Lemmas 2.4, 3.1 and
3.2. 0

4 Local asymptotic result

The first part of this section is devoted to proving lemmas that will be needed
in the proof of our local asymptotic results, which we present in the second
part.

Lemma 4.1 Let u and v be constant functions on the interval I = (a,b) C
(0,d) and let 1 < p < q < 0o. Then A(I) := A(I,u,v) = |u|v||I|*?+1A((0,1),1,1).

Proof: If u = 0 then A(I,u,v) = 0 and the assertion is trivial. Assume that
u # 0. Using the substitutions y = =2 and t = a + s(b — a), we obtain

A(l,u,v) = sup inf [jv /u f)dt —a| llqr
Ifllp, =1 2% = \J ’

—lolful sup_inf | [ F(E)dt— o,

[I£llp.r <1 @€ER

Y
— sup inf(b—a)" || [ fla+5(b - a)ds — ally 00,
0

1£1lp,r=1 €%

Writing g(s) = f(a + s(b — a)) we have [|g|l. 01 = (b — a)™?|| fllp,(ap) and
thus

AL u,v) = Jol|ul IV sup )Uu/ﬁawv—mumn

||9Hp,(0,1):(b—‘1
— [l ull [+ sup || [ g(t)dt — ally 0
lgllp,0,=1 2
= [ol ull 1]/ A((0,1), 1,1).

The proof is complete. O

Lemma 4.2 Let I = (a,b) C (0,d), 1 < p < q < 00, up,ug € LP(I) and
v e LiI). Then

|A(L, ur,v) — A(L, ug, v)| < ||v]g.r]lur — uallp 1
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Proof: Suppose first that A(7,u;,v) > A(I,uz,v). Then

A(L ug,v) — A, ug,v) =

= sup inf ||v(z) (/(ul(t) — ua(t) + us(t)) f(t)dt — a) llgr — A(L, uz,v)

1fllp,r=1 *E® 4

< s i [”U@;) [0~ wa) s,
1£llp,1=1*€ a

+lu(e) ( [ wt syt - a) | = AU, 0)

a

I fllp,r=1%€
—A<[,u27?])
< HUHqJ”ul - UQHP'J + A(I,UQ,’U) - A(Iv UQJU)'

< sup inf [Hvllq,zllul — Ul + [v(x) (/ us(8) f(8)dt — a) Hq,z]

a

The remaining case can be proved analogously. O

Lemma 4.3 Let I = (a,b) C (0,d), 1 < p < q < o0, u € LV (I), and
vy, vy € LY(I). Then

[ AL, w,v1) = AL w, v2) | < 3[or = vallg rllully,z
Proof: If A(I,u,vy) > A(I,u,vs) then by Lemma 2.3 we have

AL u,v1) — A(L,u,v) =

= sup inf [lui(x) [ / u(t) f(t)dt—a] lor — AL, vs)
1 llp,1=1 € ]

x

||v1 () [/u(t)f(t)dt — oz] llg.r — AL, u,v2)

sup inf
1 llp, =1 led <2l /

[H(vl(x) — va(2)) (/U(t)f(t)dt - a) lq.z

< sup in
I fllp =1 le1<2llull, 1 J

+vs(x) (/ u(t) f(t)dt — a) oot | = A, 03)

a

11 (2) = va(@)llgallelly ol llpr + (01 = v2)allg.

< sup in
1 fllp =1 le1=2llully 1

v (/ w(t) f(t)dt — oz) s

a

- A(-[7 u, 1}2)
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< 3oy — vallg,rllullp,r

inf  [vs(2) [ / w(t) f(t)dt — a] lor — AL u,v2)

sup
111y, 1=1 led <llull, £

= 3llor = vallg rllully.r-

Now we prove a local asymptotic result which in some sense extends those in
2] and [5]:

Lemma 4.4 Let [ = (a,b) C (0,d), \I[ < oo and 1 < p < q < oo. Assume
that w € LP (I) and v € Lq(I) Setr = Then

p+q

clapq/ luv|" < hmmfe’"N(e I) <limsupe"N(e, I) < CQOzM/ luv]",
T

e—0 + 6—>0+

where o, 4 = A((0,1),1,1).
Proof: Set s = %/ + 1. Clearly,

rs=1p, rs =q. (35)

Let [ € N be fixed. Then by the absolute convergence of the Lebesque integral
and the Luzin Theorem there exists m := m(l) € N, {W;}7., € P and real
numbers &;, 7; such that setting

m m
Uy = Z§]XWJ7 U= ZTIJXWJ7
j=1 j=1

we have

lu—wllyr <1/, [lv—=wullgr <1/L
and

[ ul™ = Jwl s <1/ | ol = ol [l < 1/L
Consequently,
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Jrrtel = [l
I 1
+/|Ul|T

1
e L
1 1
< S (lully + llvrlle) < 5 lully + [l = villg + [Jello)

| T

[l = v " = [u]"|

< [lur
I

< (ullys || ool = ol

1.1
< 7(? + ||qu/71 + HUHQ)'

Let € > 0. Put N(e) = N(e, ). According to Lemma 2.8 there is a system of
intervals {I; };V:(i) € P such that

A(lL) <€, A(Ine)) <€ and A(l;) =¢ for 2 <i < N(e).

Define,
Ji=1Ulyy, 1=1,2,...,N(g)/2, for even N(¢)
and

Ji = IQZ' U]2i+1, 1= 1,2,...,(N(€) — 3)/2,
J(N(s)fl)/2 = JN(E),Q U JN(s)fl U JN(s) for odd N(e)
N(e)
In both cases {Jz}ﬁjl Ve P and according to the definition of N(e), A(J;) > ¢
forall 1 <i < [@] Let W; = [di—1,d;], where a = dy < dy < dy < ... <
d,, = b. Set

n(e)

K={J;1<i< [T] and there exists j € {1,2,...,m} such that J; C W;}.

If J; ¢ K, there exists k € {1,2,...,m—1} such that dj, € int(.J;). The number

of such intervals J; can be estimate by m — 1. Then #K > [M&] —m + 1.

2
Using Lemmas 4.1, 4.2 and 4.3 one sees that

(IN()/2] =m=1)e" < 3 A'(Iisu,v)

keK
< Z [A(Ly; wi, vr) + (AL w, v) — Al g, v)) + (AL w, v) — Al w, )]
<max(1,37") > (Ar(lk;ul,vl) + [A(Iy; u,v) — A(Ly; ug, v)|"

keK

+| AL w,v) — A(Ildul;vlﬂr)

< max(1,3"7)[af , S IG I 1TW )] + D llu = wlly w11l w6
j=1 j
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+> v - UIHZ,W(]')”U“;',W(J‘)]
7j=1

Using the discrete version of Holder’s inequality
Zaibi < (Z af)l/S(Z b';/)l/s,
i=1 i=1 i=1
and (35) we obtain
([N(2)/2] =m +1)e" < max(1,3"7) ( quIQ ;1" (W3]
1/s 1/s
(2 e = el ) (ZH I5w,)
1
1/s / 1/s
(o= wll) " (3 Il ) )
j j=1

r— r s 1 1 1 T T
< max(1,3™) (o, [ fuol + (G + lullys + lollos) + 7 Qlly s+ 0l;)
1

IVjs

<.
Il

INgE

1

rT— 1 1 1 T T
< max(1,3™) (o, [ fuol" + (G + lully + Nollos) + 3 Qllly + 0l;)).
1

Thus, there is a constant ¢; > 0 independent of € and [ such that

([N(e)/2] —m+1)e" < ¢y (/ luv|” + % llr) (36)

Let I; = [ci—1,¢), 1 = 1,2,...,N(e). Thus, a = cg < ¢1 < ... < cy() = b. Let
D ={ex: 1 <k < M} stand for the set-theoretic union of {cZ 1< z < N(e)}
and {d; : 1 < j < m}, sothat a = e; < ex < ... < eyy = b and write
Ly = [ex_1,ex]. Then {L;}2L, € P and for each 1 < k < M there exists
i, 1 < i < N(e) such that L, C I; and, consequently, by Lemma 2.4 it is
A( k) < A(L;) < e. Thus,

a;’q/|uv| < max(1,3" ")as (/|uwz| +/|u—ul| lo|” +/|ul| v — " )

I

< max(1,3r_1)oz;,q (Z &1 sl W3]
j=1

m m

/ !

FO =l ) ol w,)
j=1 j=1
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+ Ol =l O il “ﬁ
r— T 1
< max(1,3"") q(Z o &Gl Il Ll + 5, (IIUI|/1+|IvIIq1>)

3:1 {k LkCW }

< max(1 3T1<Z > ALy, &my) +

3=1{k;LyCW;}

wwq+wmm

< max(1,3" ) ((N(e) + m)e" + Mwmq+mmw

Thus, there exists ¢, > 0, independent of £ and [ such that

/]uyy’" §CQ<( (e) + m)e" + ;)

Letting € — 0, here and in (36) we obtain for each [

1 1
limsupe"N(e) < 2¢ (/ luv|” + 7 + l_T)
T

8—>0+

and .
/|uv| <0211m111f( "N(e)+ lr)‘

The lemma follows letting | — oco. O

The latter lemma coupled with Theorem 3.4 yields the following theorem:

Theorem 4.5 Let 1 <p<qg<2o0r2<p<q<oo, v, <oo, |ully, < oo
and u,v > 0. Then

cl/]uv] < liminf na; (T') < limsup na,, (1) < 02/ luv]".

n—00 n—o0

Let 1 <p<2<q<oo vl <oo, ||ully < oo and u,v > 0. Then

03/|uv|7" < lim inf n®/2=Y0 147 (T) < lim sup nal, (T) < 04/ luv|".

n—0o0 n—00

where r = ppq .
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5 The main result

For the remainder of this section we assume that [ |u(t)[”'dt = oo. Further-
more, we set U(z) := [ |u(t)[P'dt. Let {&.}5° ., be a sequence satisfiyng

—o0)

kp'

U&e) =27, (37)

and

o =2"Nollgz,  Zk = &k & (38)

The sequence {0y} is the analogue of the sequence defined in [2] and [5], which
in turn, was motivated by a similar sequence introduced in [8].

The following technical lemmas play a central role in this section.

Lemma 5.1 Let r > 0, ko, ki € Z with ko < ky. Let I = (a,b) C UL, Zg.
Then

J'(I) <47 max o},
ko<k<ki

Proof: Let x € (a,b). Then there exists n € Z, kg < n < ki such that x € Z,.
Clearly,

r/p’

x r/p Ent1
( / |u|p) loxealy < | [ 1| Toxes, ol
a 0

/

k1 T/q Ky q T/q
n+1)r/q q _ o(n+1)r/q g;
< 2( + Z HUX(ﬁi,fi-&-l)Hq =2 Z 5

i=n i=n
< 2t r/a( max g8)r/a 2-mr/a — 4r/a max ol
- i=n,.. k1 i=n,...k1 "

so that

r < r/q r
T ST o

O

Lemma 5.2 Let r Z p%)igq’ Iz = (ai,bi), 1 S 1 S [ and bz S Ajy1, 1 S [ — 1.
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Let k € Z be such that Ui_,I; C Zy. Then

DTN < (21— 1) o

Proof: Set s = (p' + ¢)/p’. Thus s > 1 and p/s =q/s =p'q/(p + q). Fix
x; € (aj, b;). According to the assumption r > we have r > p//s', r > q/s
and

e

/

! g p !
Z (/ |u|p) ||UX($i:bi)HZ < Z ||UXI7L ;
=1 \;, i=1
1/s I 1/s
) (S uly)
=1

l , r/p’ 1 T/q
< (an ) (znm z)
=1 =1

< uxz o lloxz s = (2074 = 1) of

’||UXIz' Z

[
< (z lux,
=1

Thus,

/

! v !
Z J(I Z sup (/ |U|p) ||UX(Ii7bi)
i=1 ai

i=1 %€l

Z < (2p’/q _ 1)7‘/17’02

O

Lemma 5.3 Let U._,I; C UZLkOZk and r > ppfq Then

k1
ZJT ((2v "4 _ 1)7"/10’ +21+2r/q) Z or.

k=ko

Proof: Let

A={ie{1,2,...,1}: there exists k € Z such that &, € intl;},
B ={ie{1,2,...,l} : there exists k € Z such that I; C Z;}.

Clearly, ANB =0, AUB ={1,2,...,l}. By Lemma 5.2 we obtain

k1
ST Jn(n) < @21 N o (39)

1€EB k=ko
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Set A; = {k € Z;int(I; N Z;) # 0} for i € A. Let A= {A;;i € A}. Since each
k belongs at most to two elements of A, Lemma 5.1 yields

k1
S J(L) < 4”/‘1;‘%%(0; < 4r/a 2 > o

1€A k=ko

which coupled, with (39) yields the assertion of this lemma. O
Lemma 5.4 Let Ky, Ky be the constants from Proposition 1. Then

Kisupoy < |T|| < 441K, sup oy
kez kez

Moreover, T is compact if and only if

lim supop = lim supoy = 0.
=0 p>n == k<n

Proof: Let (a,b) C (0,d). Set

b—e if b< oo,

ale) =a+e, ble) = X -
= 1 = OQ.

Define a function f(e,x) by

T 1/17/ b(g) 1
fley=| [l || [ 1ol
(e) z
Since f(e,z) /" f(0,z) for e — 0, and any fixed x we have

J(a(e),b(e)) = sup fle,x) /7 sup f(0,2) = J(a,b).

a(e)<z<b(e) a<z<b

/q

Choosing a = 0, b = d we have by Lemma 5.1

J(a(e),b(e)) < 4 sup oy,
kezZ

and consequently,

J(a,b) < 4Y9sup oy,
kez

By the definition of oy, it is easy to see that o < J(0,d) for each k € Z which
implies

sup oy < J(a,b).

kez
Now, the first part of our lemma follows by applying Lemma 1.
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The second part can be proved analogously by using Proposition 2.2. O

Lemma 5.5 Let I' = [a/, V)| C I = [a,b] C [0,d] and lete > 0. Let {I;}N{) €
P(I) and A(L;) <e. Set C={i;I; C I'}, K = #K. Then

K—-2<N(,e)<K+2.

Proof: Let {1/} ¢ P(I'), A(I)) < . Let I; = [a, aip1],i = 1,2,...,N(I,¢),
and I} = [a},a),,], 7 =1,2,...,N(I',¢) and put kg = min K and k; = max K.
Write

S =

2 f—
0 if o = ag,, 0 if ag,41 =1V

{{[axako]} it d < an, {{[aml,w} if g <V,

Remark that by Lemma 2.4, A(I) < ¢ for each I € S; U S,. Take a system of
intervals £ = S; U Sy U{l;;1 € K} so that £ € P(I') and A() <efor I € L.
Thus, by the definition of N(I’,¢) one has

N(I'je) <H#L<#K+2=K +2.

To prove the inequality K — 2 < N(I',¢) set

o {lakg-1,a']} if ag—1 < d, o {1V, anp42]} i 0 < ak, 2,
1 2

0 if ag,_1=d, 0 if O = a0

Clearly, A(I) < e for I € §{US). Denote Ny = {I; I; C [a,a']}, N1 = {I;; I; C
[V, b]} and set ng = #Ny, n1 = #N;. Take a system of intervals

L'=8SUSUNUMUA{T;j=1,2,...,N(I',e)}.

Since, A(I) < ¢ for any I € £' and by definition of N(I,e), N(I,¢) < #L’.
Moreover, since

no+n+K < N(,e) <ng+n +K+2
and
no+mny+ NI e) <#L <ng+ni+ N &) +2

we obtain
n0+n1+K§n0+n1+N(I’,5)+2

which finishes the proof. O

Lemma 5.6 Let 1 < p < g < oo, r = p’,”fq. Let Y ez 07 < 0o. Then T 1is
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compact, fod |luv|"™ < oo and there are positive constants ci,ca such that

d d
¢ / luv|” <liminfe"N(e) < limsupe"N(e) < 02/|UU|T.
0 0

54’04' 6—>0+

Proof: By Lemma 5.4, T is compact. Let k € Z and set s = p'/q+1. It follows
that rs = p/, rs’ = ¢ and using Holder’s inequality, we obtain

Ekt1 /v Sk41 r/a
Jrar<{ [ | | [
Zy, &k &k
Moreover by the definition of & one has
I 1/p Erit 1/p
<2p’/q _ 1)1/;0’ /‘u’p’ _ / |u‘p’
0 &k
and consequently,
/ o] < (2¢19 — 1) ot (40)
Zy,

This proves [ [uv|” < co.
Fix § > 0. Take kg, k1 € Z such that

S o+ S oT < (@ 1y gy

1<ko—1 1>k

Let € > 0. Let {]j};\f:(i‘) € P(0,d), A(I;) < e. Remark that according to the
definition of N(¢), A([;Ulj11) > efor j=1,2,... ,N(e)—1. Set I = [&x,, x|
and

No={L;; I; C [0,&,]}, no(e) = #M,
Ni={1;;1; C &y, d]}, ni(e) = #N,
N ={I;I, C I}, fie) = #N.

Then N(e) < n(e) + ng(e) + ni(e) + 2. By Lemma 5.5, n(e) —2 < N(1,¢) <
n(e) 4 2. Since n < 2([5] 4 1) for any positive integer n, we obtain

e"(N(e) = N(,e)) <e(N(e)—nle)+2)
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< £"(no(e) + na(e) +4) < 2e7( l”‘f)] + [”1 2

For jo = min{j; [; € Ni(e)}, one has

1 ] pe)
—&"(N(e) = N(1,e) — 6) < Z e’ + Z e
2 Jj=1 Jj=jo
4] it [ 242
< > AGULa+ Y AL UL
Jj=1 J=Jo

Since A(I,e) < J(I,¢) for I C J and according to Lemma 5.5 we have

1
3 eE'(N(E)—=N(e)—6)< > J(LULa)+ > J(UL)
j=1 J=jo
< ((2p’/q _ 1)?"/(1 + 21+2r/q)< Z ol + Z o") <6
i<ko—1 i>k1

which gives

e"N(e) <204+e"N(I,e) + 6"

and consequently,

limsupe"N(e) < 2§ + limsupe"N(/,¢). (41)

6—>0+ €—>0+
Again Lemma 5.5, gives N(I,e) <n+2 < N(¢) + 2 and thus
limsupe"N(/,¢) < limsupe"N(e). (42)

e—04 e—04

By (40) we have

d

[l = [ fuor
0 I

Using Lemma 4.4 one easily sees that

< (279 — 1)/, (43)

clam/ luv|" < liarg(i)r:fer(I,s) < li;ngups’”N([, e) < czap,q/ luv|”
T s T
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which yields with (41), (42) and (43) that for any 6 > 0,

d
C100p g (/ lu|" — (281 — 1)’”/7”5) < liminfe"N(e)
0

8—>0+

e—04

d
<limsupe"N(e) < car4 (/ |uv|’") + 20.
0

Letting 6 — 0, we obtain our lemma. O

Theorem 5.7 Suppose that (13) and (14) are satisfied and let r = p’,’fq and
Yo o O < 00.

—0o0 (2

Let 1 <p<qg<2o0r2<p<qg<oo. Then

d d
1 / lu(t)v(t)|"dt < lim inf na;, (T) < limsup na! (T) < 02/|u(t)v(t)|rdt.(44)

n—oo

0 0

Let1 <p<2<qg<oo. Then

d d
03/|u(t)v(t)|rdt < lim inf n(1/2=Yar+lgr (7Y < limsup na! (T') < c4/|u(t)v(t)|Tdt.(45)

n—oo

0 0

6 [" and weak-!" estimates

In this section we show that the L™ (L"*°)-norms of {a, (T)}
are equivalent for r > ming>; max(p'/s’, q/s).

and {o,}

neN neZ

Lemma 6.1 Let [ = [a,b] and € > 0. Set

ole)={keZ:Z, Cl,o,>c¢}.

Suppose that oy contains at least four elements. Then

£

A(l) > VL

Proof: Let Z;,,i = 1,2,3,4, ky < ky < ks < k4, be 4 distinct members of
U(E)v and set [; = (gkn&@)? I = (€k2+1a€k4)' Then, with f() = Xn T XIzs
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A(T) z inf () ( [ 1wl fo(t)dt - a) o

> infmax { vz, | [ Ju®fOldt ol ooz, | [ @ f@ld-a

Iy 11Ul
= inf max {|[vlly 7, [22/7 — 277 — a; [v]|g z,,[242/7 — 241/2 4 2k/2 — o(ktD/a _ o}

3

ka/q _ oki/q _ ..
|24 =20 —als 5

> inf max{ |2ke/a _ gkr/a 4 oka/a _ olket1)/a _ oz\}

5
NI,
€ 1 ka ka+1
22k4/q+1m(2 —2 )ZM'
O
Lemma 6.2 Let e > 0. Let K = {k € Z; 04, > 2Y/9¢}. Then
#K < AN(e) — 1.
Proof: Let I; = [¢;_1,¢;] and i =1,..., N(¢). Divide K into two disjoint sets
Z, and Zs by
Z, = {k € K; there exists j € {1,..., N(e)} such that ¢; € Z;},

Zy = {k € K; there exists j € {1,..., N(¢)} such that Z; € I;},

Clearly, #Z; < N(e) — 1.

Say that ki, ks € Zy are equivalent if there exists j such that 7, U Z;, C I;.
Denote the equivalence classes in Zy by Y; and Y5. Assume #Y; > 4 for some
t. Then there are ki, ko, k3, k4 and j such that Z, U Zy, U Zy, U Z;, C I;. Using
Lemma 6.1 with 2'/9¢ instead of &, we have A(I) > ¢ which contradicts the
definition of A(I). Then #Y; < 3 for any ¢ € Z,. Consequently, the mapping
P defined by

P(i)=jif Z; C I, for any i € Z,

is an injection and, therefore,

#75 < 3N(e).

Thus,

#K = #7Z, + #Zy <4N(e) — 1
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which completes the proof. O

Lemma 6.3 Let 1 <p<qg<2o0r2<p<q<oo. Then there are positive
constants cy, co, c3 depending on p and q such that the inequality

#{k; o, >t} < #{k;ap(T) > cat} + c3

holds for all t > 0.

Proof: According to Lemma 3.4 there are two positive constants c;, co de-
pending on p, ¢ such that

Qle; N(e)]-1 (T) > Co€.

Then

#{k;ap(T) > coe} > 1 N(e) — 2

and, according to Lemma 6.2, we have

t 4 t 4
#{k; on >t}§4N(m) —-1= C_1 (ClN(m) —2) +c_1 —1
< # {k,ak(T) > mt}.

The lemma follows by writing ¢;, ¢s and c¢3 instead of %, sire and ﬁ — 1.0

We recall the following well-know fact: given a countable set S we have for
any p,1 <p < oo

D lal” = P/tp_l#{k' € S;lax| > t}dt.
0

kes

It is easy to see that also

Z lag|P = p/tpfl#{k € S;lag| > t}dt.
0

keS

Lemma 6.4 Let r > 0. There are constants ¢; > 0 and ¢y > 0 such that

{0}l z) < erll{an(T)Hlir o) + c2l {0} i (2)

Proof: Set A = ||[{c}|;(z). By Lemma 6.3 we have,
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A
oty =7 [ €7 3k € Zion > that
0

A
< r/tr_l(cl#{k’; ag(T) > cot} + cadt
0

A
= i [k (D) > hdt+ X
0

2
C1 r
=t lH{ar(T) Ml ooy + e3A”
Cy
and hence the proof is complete. O

Lemma 6.5 Let r > 0. Then there is a positive constant ¢ such that

o }irz) < cl{ax(T)}irm
Proof: By Remark 5.5,

ok} ez < C|IT|| = Car(T)
<Ol {ar(T)} llirv)

The result then follows from Lemma 6.4. O
Now, we tackle the remaining inequality:

Lemma 6.6 Let 1 <p<q<2or2<p<qg<ocoands>r=j pq . Then

[{an(T)}

5 >

Proof: Let I;,i = 1,2,..., N(e), be the collection of intervals given by (20)
with I = (a,b) and N(¢) = N((a,b),e): note that in view of Lemma 2.1,
we have J(I;) = ¢ for 1 < i < N(eg). We group the intervals I; into families
F;, 7 = 1,2,... such that each F; consists of the maximal number of those
intervals Ix_1 in the collection, which satisfy the hypothesis of Lemma 5.1
and Lemma 5.2 : Iy, C (&ky,Eryr1), fOr some ko, ks, and the next interval Iy
intersects Zy, 1 (This construction is based on our construction from [2], for
more see Lemma 5.1. and Section 6 in [2]). Hence, by Lemma 5.1 and Lemma
5.2, there is a positive constant ¢ such that

e'#F; <c¢ max o, =coy,
ko<n<ks

It follows that, with n; = [coj} /"],
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Y47
Y=Y Y

j n=1 nljn]>n
e
1
Sfaz) w

Thus, if {ox} € I°(Z) for some s € (r,00),

o0

OOOO tT
/ts IN () /Zts—l#{k;:o;;>” }dt
C
0 0 n=1

= sc’® /Zn STk oy, > 2} dz

Onl

= {ow} I} 15(Z) (47)

where < stands for less than or equal to a positive constant multiple of the right
hand side. From the inequality N(g) < M (e) and Theorem 3.4, ay(e)41(T) <
2¢ and therefore

# ke N:ap(T) >t} <N(t/2) + 1
< M(t/2) + 1.

This yields

H{ae(T)} o zs/ts_l# (ke N:ay(T) >t} dt
0
17|l '
<s / 51 [N(2) + 1} dt
0
2 H{or} sz + 1T1°
= [{ow} iz

by (47) and then, in virtue of Lemma 5.1 and Remark 5.5, | T'[| < || {o&(T)} [Jieo(z) <

[ {o%} llia(z)- O

Lemmas 6.4 and 6.5 imply the following theorem:

Theorem 6.7 Let 1 <p<g<2and2<p<qg<oo,r= Iff and k > 0.
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(i) Then there exists a positive constant ¢, such that

o Hmz) < el{an(T) Him -

(ii) Let s > r. Then there is a positive constant ca such that

Han}leoo < eall{on} ).

(7ii) Let 1 < j < oo. Then there exists a positive constant ¢ such that

lowHles ) < eall {ar(T)}lms oo,

(iv) Let s >r and 1 < j < oo. Then there is a positive constant cy such that

[{ax}

i) < Col{ok i (z)-

Proof: Claims (i) and (ii) follow from Lemma 6.4 and Lemma 6.5. The asser-
tions (iii) and (iv) can be obtained from (i) and (ii), by using real interpolation
on the scale [P9. O

7 Appendix

In this section we show that the power of n in (23) is the best possible for
2 < p < 0. Given a square matrix of a dimension L.

aijl a2 ... Ay
a91 Q22 ... A2,

A= (48)
ar1 Qro ... ALy,

we will denote, for 1 < I < L, the i-th column of A by u;(A) and the i-th row
of A by v;(A) | ie.

ci(A) = (ay;, agy - - ., ar;)

ri(A) = (ai1, aia, - - -, a;r).
By h(A) denote the rank of A and by u.v the canonical scalar product of
vectors v and v, i. e.

L
u.v = Zuz (3
1=1
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where u = (u1,ug,...,ur) and v = (vy, vg, ..., vL).

Lemma 7.1 Let m € N and L = 2™. Then there exists a square matriz A
given by (48) such that

lag| =1 for <i,j <L (49)

and

ui(A)u;(A) =0 for <i,j<L,i#]j. (50)

Proof: We use mathematical induction with respect to m. If m = 1 it suffices
to take

1 1
A=
1 -1

Assume that the matrix A given by (48) with L = 2™ satisfies (49) and (50).
Let B be a square matrix of a dimension 2L = 2™*! given by

a1 12 ... A1, a1 a2 ... aiy,
21 Q929 ... A9], 21 asy ... oy,
ar1 Qro ... ALy, ara aro ... arr,
A A
B pr— pr—
A—-A
ajl Q2 ... Ay, —a1; —a2 ... —ayyg,
21 Q22 ... A9J, —Q21 —A2 ... —A9],
ar1 aro ... ALy, —arj1 —ar2 ... —ary,

It is easy to se that B satisfies (49) and (50). O

Lemma 7.2 Let n € N and set K = 2", L = K%. Then there exists a square
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matriz of a dimension 2L,

mip My ... Mg
M= Ma1 Mag ... M2y, ,
mri Mmrpa ... ML
such that
h(M) < L, (51)
my; =K for 1<i,j <2L, (52)
Imij| <1 for 1<4,5 <2L,i# j. (53)

Proof: Since L = 2" we have by Lemma 7.1 a matrix A,

a1 a2 ... a1

921 Q922 ... Agg,
A= ,

arq aro ... ary,

which satisfies (49) and (50). For 1 <14 < L, set

mij={0 for 1<j<L,i#j K for j=1i,a;;- for L+1<j<2L(54)

and let 1,79, ..., r, be 2L-dimensional vectors, r; = (my1, Mo, ..., Mj2r). Set
for1<i<L
1 L
Ti+L = ? ]Z:; Q5iT5 (55>
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Let M be the matrix consisting of the rows ry,79,...,7r9p, i.6. v;(M) = 1.
Denote the elements of M by m,;, so that

my; M1z ... M12L

mo1 Moz ... 7M22L
M =

Maop1 Map2 ... MaL 2L

We claim that M satisfies (51), (52) and (53).

Let L +1 <i < 2L. Then r; is by (55) a linear combination of uy, us, ..., ur
and then h(M) < L.

Next, we calculate my;. If 1 < i < L, my = K by (54). Let L+ 1 < i < 2L
and write s =i — L. Then by (49) and (55) we have

1 & J
My = My Ls+L = K Z Mjs+L Myt = K Z Ajs Qjs
Jj=1 Jj=1
1 1

— 2 —_ —

We now (53). Calculate m;j, i # j. We have four posibilities:

(i) If 1 < 4,5 < L then by (54) we have m;; = 0 and thus, m;; = 0 satisfies
(53).

(i) If1 <i< L, L+1<j<2L then m;; = a;;—1 and due to (49) it is

(ii)) f L+1<i<2L,1<j <L then setting s =i — L we have by (54) and
(55)
1 EL: 1
Mmi; = MsyLj = 75 Qs MEki = —Qig Mi; = Qg
J J Kk:1 J K J 2] J

which gives by (49) |m;;| < 1.

(iv) f L+1<i<2L,L+1<j<2Ldenotes=1i—L,t=j— L. By (54)
and (55) we obtain

1

1 L
Mij = Metrj = Zaks Mmg; = ? Zaks At = ?uS(A) ut<A)
k=1

which gives with (50) that m;; = 0 and proves (53). O
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Let ¢;| denote the sequence which has 1 on i-th coordinate and 0 on other.

Lemma 7.3 Let2 <p < oo andn € N. Set K = 2" and L = K?. Then there
exists a subspace X of IP, dim X < L such that for each i, 1 < i < 2L.

oL/p

distp(ei, X) S m

Proof: Let M be the matrix of rank 2L from Lemma 7.2. Set for 1 <7 < 2L
T = (mﬂ, mio, ..., Mi2L, 0,0,.. )

and
X =lin{xy, 29, ..., 291}

By (51), dim X < L.
Next, we estimate dist, (e, X) for 1 < k < 2L.

Assume first p < co. Then

_ 1
dlstg(ek, X) <|lex— —xkllﬁ

K
1 1 1 1
= H(Kmkly R Kmk,mh 0, Emk,ml, S Emk,zb 0,0,.. )Hﬁ

2L—1 1 2L 1 27, 9
<Y <y =
- K? T K? KP KP

This gives dist,(ex, X) < KZ%/QP/I,

Next, assume p = 00, so that

) 1
disto (€, X) < lex — Exkyloo
I 1 1 0 1 1 0.0 Ml < 1
K k1, 7K k,k—1, ’K k,k+1, 7K k2L, Y, Y, K

This concludes the proof. O
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