Behaviour of the approximation numbers of a Sobolev embedding in the one-dimensional
 case.

D.E.Edmunds ${ }^{\text {a }}$, J.Lang ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Centre for Mathematical Analysis and its Applications, University of Sussex, Falmer, Brighton BN1 9QH, UK
${ }^{\mathrm{b}}$ The Ohio State University, Department of Mathematics, 100 Math Tower, 231
West 18th Avenue, Columbus, OH 43210-1174, USA

Abstract

We consider the Sobolev embeddings

$$
E_{1}: W_{0}^{1, p}(a, b) \rightarrow L^{p}(a, b) \quad \text { or } \quad E_{2}: L^{1, p}(a, b) /\{1\} \rightarrow L^{p}(a, b) /\{1\}
$$

with $-\infty<a<b<\infty$ and $1<p<\infty$. We show that the approximation numbers $a_{n}\left(E_{i}\right)$ of E_{i} have the property that

$$
\lim _{n \rightarrow \infty} n a_{n}\left(E_{i}\right)=c_{p}(b-a) \quad(i=1,2)
$$

where c_{p} is a constant dependent only on p. Moreover we show the precies value of $a_{n}\left(E_{1}\right)$ and we study the unbounded Sobolev embedding $E_{3}: L^{1, p}(a, b) \rightarrow L^{p}(a, b)$ and determine precisely how closely it may be approximated by n-dimensional linear maps.

Key words: Approximation numbers, Sobolev Embedding, Hardy-type operators, Integral operators
1991 MSC: 47G10, 47B10

[^0]
1 Introduction.

Let Ω be a bounded subset of \mathbf{R}^{n} with smooth boundary, let $1<p<\infty$ and consider the embedding

$$
E_{1}: W_{0}^{1, p}(\Omega) \rightarrow L^{p}(\Omega)
$$

where $W_{0}^{1, p}(\Omega)$ is the usual first-order Sobolev space of functions with zero trace. This space is a closed subspace of the Sobolev space $W^{1, p}(\Omega)$. It is wellknown that E_{1} is compact. More precise information about E_{1} is available via its approximation numbers, for there are positive constants c_{1} and c_{2}, depending only on p and Ω, such that the m-th approximation number $a_{m}\left(E_{1}\right)$ of E_{1} satisfies

$$
\begin{equation*}
\frac{c_{1}}{m} \leq a_{m}\left(E_{1}\right) \leq \frac{c_{2}}{m}, \quad m \in \mathbf{N} \tag{1}
\end{equation*}
$$

Of course, this is a very special case of quite general results concerning the approximation numbers of embeddings between function spaces, for which we refer to (T) and (ET).

When $p=2$ it is possible to sharpen (1) by using the familiar relation

$$
a_{m}\left(E_{1}\right)=\frac{1}{\lambda_{m}^{1 / 2}}
$$

between the approximation numbers of E_{1} and the eigenvalues λ_{m} of the Dirichlet Laplacian. Since the behaviour of the eigenvalues is well-known, it follows that $\lim m a_{m}\left(E_{1}\right)$ exists; and even sharper statements about the asymptotic behaviour of $a_{m}\left(E_{1}\right)$ can be made. It is natural to ask whether or not $\lim m a_{m}\left(E_{1}\right)$ exists when p is not equal to 2 .

In (EHL) a new technique was given for the study of the approximation numbers of the Hardy-type operator T on a tree Γ :

$$
(T f)(x)=v(x) \int_{0}^{x} f(t) u(t) d t, \quad x \in \Gamma
$$

Using this it was shown that $T: L^{p}(\Gamma) \rightarrow L^{p}(\Gamma)$ has approximation numbers $a_{m}(T)$ for which $\lim m a_{m}(T)$ exists, when $1 \leq p \leq \infty$. This technique was improved and extended in (EKL), where in the case in which Γ is an interval and $p=2$, remainder estimates were obtained. These results were extended in (L) to cover the cases $1<p<\infty$.

In the present paper we obtain sharper information about $a_{m}\left(E_{1}\right)$ than was previously known. We deal only with the case in which $n=1$ and Ω is a bounded interval in the line. The techniques of this paper are based on methods derived from (EHL), (EKL), (L), (Li2) and (DM). In more detail, for the Sobolev embeddings

$$
\begin{aligned}
& E_{1}: W_{0}^{1, p}(I) \rightarrow L^{p}(I) \\
& E_{2}: L^{1, p}(I) /\{1\} \rightarrow L^{p}(I) /\{1\},
\end{aligned}
$$

where $I=(a, b),-\infty<a<b<\infty$ and $L^{1, p}(I)$ is the space of all $u \in L_{l o c}^{p}(I)$ with derivative $u^{\prime} \in L^{p}(I)$, we show that there is a positive constant α_{p} such that

$$
\lim _{m \rightarrow \infty} m a_{m}\left(E_{i}\right)=\alpha_{p}|I| \quad \text { for } i=1 \text { or } 2
$$

Moreover, it turns out that for every $m \in \mathbf{N}$, there is a linear map P_{m} with $\operatorname{rank} P_{m}=m$ such that

$$
\left\|E_{2}-P_{m}\right\|=\alpha_{p}|I| / m \geq a_{m+1}\left(E_{2}\right) \geq \alpha_{p}|I| /(m+1)
$$

For embedding E_{1} we have that for every $m \in \mathbf{N}$, there is a linear map B_{m} with rank $B_{m}=m$ such that

$$
\left\|E_{1}-B_{m}\right\|=\alpha_{p}|I| /(m+1)=a_{m+1}\left(E_{1}\right)
$$

We also study the best approximation of the unbounded Sobolev embedding

$$
E_{3}: L^{1, p}(I) \rightarrow L^{p}(I)
$$

by linear maps of finite rank. We show that for every $m \in \mathbf{N}$, there is a linear map R_{m} with rank $R_{m}=m$ such that

$$
\left\|E_{3}-R_{m}\right\|=\alpha_{p}|I| /(m)=\inf \left\{\left\|E_{3}-P\right\| ; P \text { linear map, } \operatorname{rank} P<m+1\right\} .
$$

We also show that $\alpha_{p}=\left(\frac{1}{\lambda_{n, I}}\right)^{1 / p}$ where $\lambda_{n, I}$ is the first eigenvalue of a p-Laplacian eigenvalue problem.

Our conclusion appears to be the first result of this kind in the literature, apart from the special case $p=2$. It remains to be seen whether or not this can be extended to higher dimensions.

2 Preliminaries and technical results.

Throughout the paper we shall assume that $-\infty<a<b<\infty$ and that $I=(a, b)$. We also assume that $1<p<\infty$ and denote by $\|\cdot\|_{p}$ or $\|\cdot\|_{p, I}$ the usual norm on the Lebesgue space $L_{p}(I)$.

By the Sobolev space $W_{0}^{1, p}(I)$ we understand, as usual, the space of all functions $u \in L^{p}(I)$ with finite norm $\left\|u^{\prime}\right\|_{p, I}$ and zero trace. We consider the embedding

$$
\begin{equation*}
E_{1}: W_{0}^{1, p}(I) \rightarrow L^{p}(I) \tag{2}
\end{equation*}
$$

and define the norm of E_{1} by

$$
\begin{equation*}
\left\|E_{1}\right\|=\sup _{\left\|u^{\prime}\right\|_{p, I}>0} \frac{\|u\|_{p, I}}{\left\|u^{\prime}\right\|_{p, I}} . \tag{3}
\end{equation*}
$$

Plainly $\left\|E_{1}\right\|<\infty$; moreover, it is well known (see, for example, (EE), Theorem V.4.18) that E_{1} is compact.

We will consider in this paper also the approximation numbers for the embedding

$$
E_{2}: L^{1, p}(I) /\{1\} \rightarrow L^{p}(I) /\{1\}
$$

where $L^{1, p}(I)$ is the space of all functions $u \in L_{l o c}^{p}(I)$ with finite pseudonorm $\left\|u^{\prime}\right\|_{1, p}$ which vanishes on the subspace of all constant functions. By $L^{1, p} /\{1\}$ we mean the factorization of the space $L^{1, p}(I)$ with respect to constant functions, equipped with the norm $\left\|u^{\prime}\right\|_{p, I}$. Then we have $f \in L^{1, p} /\{1\}$ if and only if $\|f\|_{p, I}=\inf _{c \in \Re}\|f-c\|_{p, I}$. In a similar way $L^{p}(I) /\{1\}$ is defined. The norm of E_{2} is defined by

$$
\left\|E_{2}\right\|=\sup _{\left\|u^{\prime}\right\|_{p}>0} \frac{\|u\|_{p}}{\left\|u^{\prime}\right\|_{p}} .
$$

It is obvious that $\left\|E_{2}\right\|=a_{1}\left(E_{2}\right)<\infty$ and also $\lim _{n \rightarrow \infty} a_{n}\left(E_{2}\right)=0$.
We will also consider the unbounded embedding

$$
E_{3}: L^{1, p}(I) \rightarrow L^{p}(I) .
$$

Since $L^{1, p}(I)$ is defined by the pseudonorm $\left\|u^{\prime}\right\|_{1, p}$ and E_{3} is unbounded, we
will study the best approximation of E_{3} by linear maps of finite rank $\left(a_{n}\left(E_{3}\right)\right.$ are not well defined).

Definition 2.1 Let $J=(c, d) \subset I$. We define

$$
A_{0}(J)=\sup _{\left\|u^{\prime}\right\|_{p, J}>0} \inf _{\alpha \in \Re} \frac{\|u-\alpha\|_{p, J}}{\left\|u^{\prime}\right\|_{p, J}} .
$$

Since every function in $W^{1, p}(J)$ is absolutely continuous, we can rewrite $A_{0}(J)$ as

$$
A_{0}(J)=\sup _{\left\|u^{\prime}\right\|_{p, J}>0} \inf _{\alpha \in \Re} \frac{\left\|\int_{c}^{x} u^{\prime}(t) d t+u(c)-\alpha\right\|_{p, J}}{\left\|u^{\prime}\right\|_{p, J}}
$$

From this we can see the connection between A_{0} and the Hardy operator.
Lemma 2.2 Let I_{n} be a decreasing sequence of subintervals of I with $\left|I_{n}\right| \rightarrow 0$ as $n \rightarrow \infty$. Then $\left\{A_{0}\left(I_{n}\right)\right\}$ is a decreasing sequence bounded above by $A_{0}(I)$ and with limit 0.

Proof. In this proof we extend $u \in W^{1, p}\left(I_{n+1}\right)$ outside I_{n+1} by a constant, i.e. $u^{\prime}=0$ outside I_{n+1}. From the definition of A_{0} we have for $I_{i+1} \subset I_{i}$,

$$
\begin{aligned}
A_{0}^{p}\left(I_{i+1}\right) & =\sup _{\left\|u^{\prime}\right\|_{p, I_{i+1}}>0} \inf _{\alpha \in \Re} \frac{\left\|\int_{c}^{x} u^{\prime}(t) d t-\alpha\right\|_{p, I_{i+1}}^{p}}{\left\|u^{\prime}\right\|_{p, I_{i+1}}^{p}} \\
& \leq \sup _{\left\|u^{\prime}\right\|_{p, I_{i+1}}>0} \inf _{\alpha \in \Re} \frac{\left\|\int_{c}^{x} u^{\prime}(t) d t-\alpha\right\|_{p, I_{i}}^{p}}{\left\|u^{\prime}\right\|_{p, I_{i}}^{p}} \\
& \leq \sup _{\left\|u^{\prime}\right\|_{p, I_{i}>0}>\inf _{\alpha \in \Re}}^{\left\|\int_{c}^{x} u^{\prime}(t) d t-\alpha\right\|_{p, I_{i}}^{p}} \frac{\left\|u^{\prime}\right\|_{p, I_{i}}^{p}}{}=A_{0}^{p}\left(I_{i}\right)
\end{aligned}
$$

and so $A_{0}\left(I_{i}\right) \geq A_{0}\left(I_{i+1}\right)$. For $A_{0}(J)$ we have

$$
\begin{aligned}
A_{0}(J) & \leq \sup _{\left\|u^{\prime}\right\|_{p, J}=1} \frac{\left\|\int_{c}^{x} u^{\prime}(t) d t\right\|_{p, J}}{\left\|u^{\prime}\right\|_{p, J}} \\
& =\sup _{\left\|u^{\prime}\right\|_{p, J}=1}\left\|\int_{c}^{x}\left|u^{\prime}(t)\right| d t\right\|_{p, J} \\
& \leq \sup _{\left\|u^{\prime}\right\|_{p, J}=1}\left\|\left(\int_{J}\left|u^{\prime}\right|^{p}\right)^{1 / p}|J|^{1 / p^{\prime}}\right\|_{p, J}=|J|^{1 / p^{\prime}} .
\end{aligned}
$$

From this observation it follows that $A_{0}\left(I_{n}\right) \rightarrow 0$ as $I_{n} \rightarrow 0$.
Lemma 2.3 Let $J=(x, y) \subset I$. Then $A_{0}((x, y))$ is a continuous function of x and y.

Proof. Let us suppose that there are $x, y \in I$ and $\varepsilon>0$ such that $A_{0}(x, y+$ $\left.h_{n}\right)-A_{0}(x, y)>\varepsilon$ for some sequence $\left\{h_{n}\right\}$ with $0<h_{n} \searrow 0$. Then we have that there is $\varepsilon_{1}>0$ such that $A_{0}^{p}\left(x, y+h_{n}\right)-A_{0}^{p}(x, y)>\varepsilon_{1}$ for any $n \in \mathbf{N}$. But for all $h>0$,

$$
\begin{aligned}
& A_{0}^{p}(x, y+h)-A_{0}^{p}(x, y)=\sup _{\left\|u^{\prime}\right\|_{p,(x, y+h)}>0} \inf _{0 \in \mathbf{R}} \frac{\left\|\int_{x}^{t} u^{\prime}-\alpha\right\|_{p,(x, y+h)}^{p}}{\left\|u^{\prime}\right\|_{p,(x, y+h)}^{p}} \\
& -\sup _{\left\|u^{\prime}\right\|_{p,(x, y)}>0} \inf _{0 \in \mathbf{R}} \frac{\left\|\int_{x}^{t} u^{\prime}-\alpha\right\|_{p,(x, y)}^{p}}{\left\|u^{\prime}\right\|_{p,(x, y)}^{p}} \\
& \leq \sup _{\left\|u^{\prime}\right\|_{p,(x, y+h)}>0}\left(\inf _{\alpha \in \mathbf{R}} \frac{\left\|\int_{x}^{t} u^{\prime}-\alpha\right\|_{p,(x, y+h)}^{p}}{\left\|u^{\prime}\right\|_{p,(x, y+h)}^{p}}\right. \\
& \left.-\inf _{\alpha \in \mathbf{R}} \frac{\left\|\int_{x}^{t} u^{\prime}-\alpha\right\|_{p,(x, y)}^{p}}{\left\|u^{\prime}\right\|_{p,(x, y+h)}^{p}}\right) \\
& \leq \sup _{\left\|u^{\prime}\right\|_{p,(x, y+h)}>0}\left(\inf _{\alpha \in \mathbf{R}} \frac{\left\|\int_{x}^{t} u^{\prime}-\alpha\right\|_{p,(x, y)}^{p}}{\left\|u^{\prime}\right\|_{p,(x, y+h)}^{p}}\right. \\
& \left.+\inf _{\alpha \in \mathbf{R}} \frac{\left\|\int_{x}^{t} u^{\prime}-\alpha\right\|_{p,(y, h)}^{p}}{\left\|u^{\prime}\right\|_{p,(x, y+h)}^{p}}-\inf _{\alpha \in \mathbf{R}} \frac{\left\|\int_{x}^{t} u^{\prime}-\alpha\right\|_{p,(x, y)}^{p}}{\left\|u^{\prime}\right\|_{p,(x, y+h)}^{p}}\right) \\
& \leq \sup _{\left\|u^{\prime}\right\|_{p,(x, y+h)}>0} \inf _{\alpha \in \mathbf{R}} \frac{\left\|\int_{x}^{t} u^{\prime}-\alpha\right\|_{p,(x, y)}^{p}}{\left|u^{\prime}\right|_{p,(x, y+h)}^{p}} \\
& \leq \sup _{\left\|u^{\prime}\right\|_{p,(y, y+h)}>0} \frac{\left\|\int_{y}^{t} u^{\prime}\right\|_{p,(y, y+h)}^{p}}{\left\|u^{\prime}\right\|_{p,(y, y+h)}^{p}} \\
& \leq|(y, y+h)|^{p / p^{\prime}} \leq h^{p / p^{\prime}},
\end{aligned}
$$

and we have a contradiction. Hence $A_{0}(x, y+h) \rightarrow A_{0}(x, y)$ as $h \rightarrow 0$. Similarly we find that $A_{0}(x+h, y) \rightarrow A_{0}(x, y)$ as $h \rightarrow 0$ and the result follows.

Lemma 2.4 Let $J=(c, d) \subset I$. Then there is a function $f \in W^{1, p}(J)$ such that

$$
A_{0}(J)=\frac{\|f\|_{p, J}}{\left\|f^{\prime}\right\|_{p, J}}=\inf _{\alpha \in \mathbf{R}} \frac{\|f-\alpha\|_{p, J}}{\left\|f^{\prime}\right\|_{p, J}}
$$

Proof: It is possible to find a sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ of functions in $W^{1, p}(J)$ such
that for each n in \mathbf{N},

$$
\frac{\left\|f_{n}\right\|_{p, J}}{\left\|f_{n}^{\prime}\right\|_{p, J}}+1 / n=\inf _{\alpha \in \mathbf{R}} \frac{\left\|f_{n}-\alpha\right\|_{p, J}}{\left\|f_{n}^{\prime}\right\|_{p, J}}+1 / n>A_{0}(J)
$$

and $\left\|f_{n}\right\|_{W^{1, p}(J)}=1$. Since E is compact, it follows that there exists a subsequence of $\left\{f_{n}\right\}$, again denoted by $\left\{f_{n}\right\}$ for convenience, which converges weakly in $W^{1, p}(J)$, to f, say, and this subsequence converges strongly to f in $L^{p}(J)$. By a standard compactness argument we get that f_{n} converges strongly to f in $W^{1, p}(J)$ and then

$$
A_{0}(J)=\frac{\|f\|_{p, J}}{\left\|f^{\prime}\right\|_{p, J}}=\inf _{\alpha \in \mathbf{R}} \frac{\|f-\alpha\|_{p, J}}{\left\|f^{\prime}\right\|_{p, J}} .
$$

Lemma 2.5 Let $J=(c, d) \subset I$ and let f be as in the previous lemma. Then $f(x)=0$ only for $x=(c+d) / 2, f$ is monotone and $f^{\prime}\left(c_{+}\right)=f^{\prime}\left(d_{-}\right)=0$.

Proof: Let f be from the previous lemma. Let $f_{+}(x)=\max \{f(x), 0\}$ and $f_{-}(x)=\max \{-f(x), 0\} ;$ then $\left\|f_{+}\right\|_{p, J}^{p}=\left\|f_{-}\right\|_{p, J}^{p}, f=f_{+}-f_{-}$and $\mid\{x:$ $f(x)=0\} \mid=0$. Since we know that for any $g \in W^{1, p}(J), g \geq 0$ we have $\left\|g^{\prime}\right\|_{p, J} \geq\left\|\left(g^{*}\right)^{\prime}\right\|_{p,(0,|J|)}$ (where g^{*} is the non-increasing rearrangament of the function g). Then we have that

$$
\frac{\left\|f_{+}^{*}\right\|_{p,(0,|J|)}^{p}+\left\|f_{-}^{*}\right\|_{p,(0,|J|)}^{p}}{\left\|\left(f_{+}^{*}\right)^{\prime}\right\|_{p,(0,|J|)}^{p}+\left\|\left(f_{-}^{*}\right)^{\prime}\right\|_{p,(0,|J|)}^{p}}=A_{0}^{p}(J) .
$$

Now define $r=|\{x: f(x)>0\} \cap J|$ and $g(x)=f_{+}^{*}(c+r-x)$ for $c \leq x \leq c+r$ and $g(x)=-f_{-}^{*}(c+r+x)$ for $c+r \leq x \leq d$. Then

$$
\frac{\|g\|_{p, J}}{\left\|g^{\prime}\right\|_{p, J}}=A_{0}(J)
$$

and $\left\|g_{+}\right\|_{p, J}^{p}=\left\|g_{-}\right\|_{p, J}^{p}$.
From all this we can see that we have found a function g such that: g is monotone, $g(c+r)=0$ where $c<c+r<d$ and $\left(\|g\|_{p, J} /\left\|g^{\prime}\right\|_{p, J}\right)=A_{0}(J)$.

Now we show that $g((c+d) / 2)=0$ (i.e. $r=(c+d) / 2)$. Put $J_{1}=(c, c+r)$ and $J_{2}=(c+r, d)$; then we have

$$
\begin{equation*}
\frac{\|g\|_{p, J_{1}}^{p}+\|g\|_{p, J_{2}}^{p}}{\left\|g^{\prime}\right\|_{p, J_{1}}^{p}+\left\|g^{\prime}\right\|_{p, J_{2}}^{p}}=A_{0}^{p}(J) . \tag{4}
\end{equation*}
$$

Since $A_{0}(J)=|J| A_{0}((0,1))$, we see that

$$
\frac{\|g\|_{p, J_{1}}^{p}}{\left\|g^{\prime}\right\|_{p, J_{1}}^{p}} \leq A_{0}^{p}((0,1))\left|J_{1}\right|^{p} 2^{p} .
$$

For if not then we can define $h(x)=g(x)$ on $(c, c+r)$ and $h(x)=-g(-x+$ $2(r+c))$ on $(c+r, c+2 r)$ and we have that $\inf _{\alpha \in \Re}\|h-\alpha\|_{p,(c, c+2 r)}=\|h\|_{p,(c, c+2 r)}$ and

$$
\frac{\|h\|_{p,(c, c+2 r)}^{p}}{\left\|h^{\prime}\right\|_{p,(c, c+2 r)}^{p}}>A_{0}^{p}((c, c+2 r)),
$$

which is a contradiction with the definition of A_{0}. Similarly we have

$$
\frac{\|g\|_{p, J_{2}}^{p}}{\left\|g^{\prime}\right\|_{p, J_{2}}^{p}} \leq A_{0}^{p}((0,1))\left|J_{2}\right|^{p} 2^{p} .
$$

Observe that (4) holds if and only if

$$
\frac{\|g\|_{p, J_{1}}^{p}}{\left\|g^{\prime}\right\|_{p, J_{1}}^{p}}=\frac{\|g\|_{p, J_{2}}^{p}}{\left\|g^{\prime}\right\|_{p, J_{2}}^{p}}=A_{0}^{p}(J)
$$

(do not forget that $\|g\|_{p, J_{1}}^{p}=\|g\|_{p, J_{2}}^{p}$). This means that $c+r=(c+d) / 2$ and moreover we can suppose that $g(x)=-g(-x+(c+d))$ (i.e. $g(x)$ is odd with respect to $(c+d) / 2)$.

Next we show that $g^{\prime}(c)=g^{\prime}(d)=0$. Note that $g(c)=-g(d) \geq 0$. Suppose that $g^{\prime}(c)=-g^{\prime}(d)<0$; then there are a number $z>0$ and a sequence of numbers $\left\{x_{n}\right\}_{n=1}^{\infty}$ such that $x_{n}>c, x_{n} \rightarrow c$ and

$$
\frac{g(c)-g\left(x_{n}\right)}{c-x_{n}}<z<0
$$

(i.e. $\int_{c}^{x_{n}} g^{\prime}(t) d t<\left(x_{n}-c\right) z$). A similar procedure can be carried out in the neighbourhood of d.

Then we have $|z|\left(x_{n}-c\right)<\int_{c}^{x_{n}}\left|g^{\prime}(t)\right| d t \leq\left(\int_{c}^{x_{n}}\left|g^{\prime}(t)\right|^{p} d t\right)^{1 / p}\left(x_{n}-c\right)^{1 / p^{\prime}}$. And also we have

$$
A_{0}^{p}(J)=\frac{\int_{x_{n}}^{d}|g|^{p}+\int_{c}^{x_{n}}|g|^{p}}{\int_{x_{n}}^{d}\left|g^{\prime}\right|^{p}+\int_{c}^{x_{n}}\left|g^{\prime}\right|^{p}} \leq \frac{\int_{x_{n}}^{d}|g|^{p}+\left(x_{n}-c\right)|g(c)|^{p}}{\int_{x_{n}}^{d}\left|g^{\prime}\right|^{p}+\left(x_{n}-c\right)|z|^{p}}
$$

Since $A_{0}(J)>0$ and $|z|>0$, plainly

$$
|g(c)|^{p}<|z|^{p} A_{0}^{p}(J)+|g(c)|^{p}
$$

and there exists $n_{1} \in \mathbf{N}$ such that for any $n>n_{1}$ we have

$$
\left(x_{n}-c\right)|g(c)|^{p}<\left(x_{n}-c\right)|z|^{p} \frac{\int_{x_{n}}^{d}|g|^{p}}{\int_{x_{n}}^{d}\left|g^{\prime}\right|^{p}}+\left(x_{n}-c\right)\left|g(c)-z\left(x_{n}-c\right)\right|^{p}
$$

and then

$$
\begin{aligned}
\left(\int_{x_{n}}^{d}|g|^{p}\right)\left(\int_{x_{n}}^{d}\left|g^{\prime}\right|^{p}\right)+ & \left(x_{n}-c\right)|g(c)|^{p}\left(\int_{x_{n}}^{d}\left|g^{\prime}\right|^{p}\right)< \\
& \quad\left(\int_{x_{n}}^{d}|g|^{p}\right)\left(\int_{x_{n}}^{d}\left|g^{\prime}\right|^{p}\right)+\left(x_{n}-c\right)|z|^{p}\left(\int_{x_{n}}^{d}|g|^{p}\right) \\
& +\left(x_{n}-c\right)\left|g(c)-z\left(x_{n}-c\right)\right|^{p}\left(\int_{x_{n}}^{d}\left|g^{\prime}\right|^{p}\right) \\
+ & |z|^{p}\left|g(c)-z\left(c-x_{n}\right)\right|^{p}\left(c-x_{n}\right)^{2} .
\end{aligned}
$$

From this it follows that for any $n>n_{1}$,

$$
\frac{\int_{x_{n}}^{d}|g|^{p}+\left(x_{n}-c\right)|g(c)|^{p}}{\int_{x_{n}}^{d}\left|g^{\prime}\right|^{p}+\left(x_{n}-c\right)|z|^{p}}<\frac{\int_{x_{n}}^{d}|g|^{p}+\left(x_{n}-c\right)\left|g\left(x_{n}\right)\right|^{p}}{\int_{x_{n}}^{d}\left|g^{\prime}\right|^{p}} .
$$

But this means that for $l_{n}=\chi_{\left(x_{n}, d\right)} g+\chi_{\left(c, x_{n}\right)} g\left(x_{n}\right)$ we have:

$$
A_{0}^{p}(J)<\frac{\int_{c}^{d}\left|l_{n}\right|^{p}}{\int_{c}^{d}\left|l_{n}^{\prime}\right|^{p}} \quad \text { for any } n>n_{1} .
$$

In view of the antisymmetry of g we define a function
$r_{n}(x)=\chi_{\left(c, d+c-x_{n}\right)} g(x)+\chi_{\left(d+c-x_{n}, d\right)} g\left(d+c-x_{n}\right)$, and have

$$
A_{0}^{p}(J)<\frac{\int_{c}^{d}\left|r_{n}\right|^{p}}{\int_{c}^{d}\left|r_{n}^{\prime}\right|^{p}} \quad \text { for any } n>n_{1} .
$$

Finally we define $k_{n}(x)=\chi_{\left(x_{n}, d+c-x_{n}\right)} g(x)+\chi_{\left(d+c-x_{n}, d\right)} g\left(d+c-x_{n}\right)+\chi_{\left(c, x_{n}\right)} g\left(x_{n}\right)$. Then for n large enough we have

$$
A_{0}(J)<\inf _{c \in \mathbf{R}} \frac{\left\|k_{n}-c\right\|_{p, J}}{\left\|k_{n}^{\prime}\right\|_{p, J}} .
$$

But this contradicts the definition of $A_{0}(J)$: hence $g^{\prime}(c)=g^{\prime}(d)=0$.

Now we recall the p-Laplacian eigenvalue problem, which is defined, for $1<$ $p<\infty, \lambda>0$ and $T>0$ by

$$
\begin{gathered}
\left(\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}+\lambda|u|^{p-2} u=0, \text { on }(0, T), \\
u^{\prime}(0)=0, \quad u^{\prime}(T)=0 .
\end{gathered}
$$

The set of eigenvalues of this problem is given by

$$
\lambda_{n}:=\left(\frac{2 n \pi_{p}}{T}\right)^{p} \frac{1}{p^{\prime} p^{p-1}} \text { for each } n \in \mathbf{N} .
$$

The corresponding eigenfunctions are $u_{0}(t)=c, c \in \mathbf{R} \backslash\{0\}$ and

$$
u_{n}(t)=\frac{T}{n \pi_{p}} \sin _{p}\left(\frac{n \pi_{p}}{T}\left(t-\frac{T}{2 n}\right)\right) .
$$

Here for $p>1$ we put $p^{\prime}=\frac{p}{p-1}$ and $\pi_{p}=2 B\left(\frac{1}{p}, \frac{1}{p^{\prime}}\right)=\pi / \sin (\pi / p)$, where B denotes the beta function. Moreover $\sin _{p}($.$) can be defined as the unique$ (global) solution to the initial-value problem

$$
\begin{gathered}
\left(\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}+\frac{2^{p}}{p^{\prime} p^{p-1}}|u|^{p-2} u=0 \\
u(0)=0, \quad u^{\prime}(0)=1
\end{gathered}
$$

Also $\sin _{p}$ can be expressed in terms of hypergeometric functions, see ((AS), p.263),

$$
\arcsin _{p}(s)=p s^{1 / p} F\left(\frac{1}{p}, \frac{1}{p}, 1+\frac{1}{p} ; s\right)
$$

or

$$
\arcsin _{p}(s)=B\left(\frac{1}{p}, \frac{1}{p^{\prime}},\left(\frac{2 s}{p}\right)^{p}\right)
$$

where $F(a, b, c ; s)$ denotes the hypergeometric function and B is the incomplete beta function

$$
B\left(1 / q, 1 / p^{\prime}, x\right)=\int_{0}^{x} z^{1 / q-1}(1-z)^{-1 / p} d z
$$

see (AS).
Moreover, for $s \in[0, p / 2]$ we have

$$
\arcsin _{p}(s)=\frac{p}{2} \int_{0}^{\frac{2 s}{p}} \frac{d t}{\left(1-t^{p}\right)^{1 / p}},
$$

(note that this integral converges for all $s \in[0, p / 2]$).
We note that in this paper we are using the definition of π_{p} and $\sin _{p}$ functions from the paper (DM) which is slightly different from the definition of π_{p} and the $\sin _{p}$ function used in (Li1) and (Li2).

Note that as $\arcsin _{p}:[0, p / 2] \rightarrow\left[0, \pi_{p} / 2\right]$ is strictly increasing then its inverse function $\sin _{p}:\left[0, \pi_{p} / 2\right] \rightarrow[0, p / 2]$ is also strictly increasing.

We extended $\sin _{p}$ from $\left[0, \pi_{p} / 2\right]$ to all \mathbf{R} as a $2 \pi_{p}$ periodic function by the usual way as in the $p=2$ case (i.e. from \sin).

For later use let us define $\cos _{p}(t):=\sin _{p}^{\prime}(t)$. We have that

$$
\left(\frac{p}{2}\right)^{p}\left|\cos _{p}(t)\right|^{p}+\left|\sin _{p}(t)\right|^{p}=1 \text { for all } t \in \mathbf{R}
$$

and

$$
\pi_{p}=\pi_{p^{\prime}}
$$

From (DM) we have

$$
\int_{0}^{T}\left|\sin _{p}\left(\frac{n \pi_{p}}{T} t\right)\right|^{p} d t=\frac{T p^{\prime} p^{p}}{2^{p}\left(p^{\prime}+p\right)}
$$

and

$$
\int_{0}^{T}\left|\frac{d}{d t} \sin _{p}\left(\frac{n \pi_{p}}{T} t\right)\right|^{p} d t=\frac{n^{p} \pi_{p}^{p} p}{T^{p-1}\left(p^{\prime}+p\right)}
$$

See (Li2) for more information about $\sin _{p}($.$) and \cos _{p}($.$) functions.$
Definition 2.6 Given $J=[c, d] \subset \mathbf{R}$ we denote by $u_{n, J}(t)$ the n-th eigenfunction of the p-Laplacian eigenvalue problem on J and by $\lambda_{n, J}$ the corresponding n-th eigenvalue.

Note that

$$
\begin{gathered}
u_{0, J}=C, \\
u_{n, J}(t)=\frac{|J|}{n \pi_{p}} \sin _{p}\left(\frac{n \pi_{p}}{|J|}\left(t-\frac{|J|}{2 n}-c\right)\right), \quad \text { for } n \geq 1
\end{gathered}
$$

and

$$
\lambda_{n, J}=\left(\frac{2 n \pi_{p}}{|J|}\right)^{p} \frac{1}{p^{\prime} p^{p-1}}, \quad \text { for each } n \in \mathbf{N}
$$

where $\pi_{p}=\pi / \sin (\pi / p)$. It is simple to see that for any $n \in \mathbf{N},\left\{u_{i, J}\right\}_{i=1}^{n}$ is a linearly independent set.

Lemma 2.7 Let $J=(c, d) \subset I$. Then

$$
A_{0}(J)=\frac{\left\|u_{1, J}\right\|_{p, J}}{\left\|u_{1, J}^{\prime}\right\|_{p, J}}=\inf _{\alpha \in \mathbf{R}} \frac{\left\|u_{1, J}-\alpha\right\|_{p, J}}{\left\|u_{1, J}^{\prime}\right\|_{p, J}}=\left(\frac{1}{\lambda_{1, J}}\right)^{1 / p}
$$

Proof: We can see that

$$
A_{0}(J)=\sup _{u \in K(J)} \frac{\left\|u_{1, J}\right\|_{p, J}}{\left\|u_{1, J}^{\prime}\right\|_{p, J}}
$$

where $K(J)=\left\{f ; 0<\left\|f^{\prime}\right\|_{p, J}<\infty, \inf _{\alpha}\|f-\alpha\|_{p, J}=\|f\|_{p, J}\right\}$. After taking the Fréchet derivative of $A_{0}^{p}(J)$ we can see that this lemma follows from the previous observation about eigenfunction and eigenvalues for the p-Laplacian problem with Neumann boundary value conditions together with Lemma 4 (more can be found in (DKN))

We recall that, given any $m \in \mathbf{N}$, the m-th approximation number $a_{m}(T)$ of a bounded linear operator $T: X \rightarrow Y$, where X and Y are Banach spaces, is defined by

$$
a_{m}(T):=\inf \|T-F \mid X \rightarrow Y\|,
$$

where the infimum is taken over all bounded linear maps $F: X \rightarrow Y$ with rank less than m.

A measure of non-compactness of T is given by

$$
\beta(T):=\inf \|T-P \mid X \rightarrow Y\|,
$$

where the infimum is taken over all compact linear maps $P: X \rightarrow Y$. In our case we have $X=W^{1, p}(I)$ and $Y=L^{p}(I)$. Then since $L^{p}(I)$ has the approximation property for $1 \leq p \leq \infty, T$ is compact if and only if $a_{m}(T) \rightarrow 0$ as $m \rightarrow \infty$, and $\beta(T)=\lim _{n \rightarrow \infty} a_{n}(T)$.

3 The Main Theorem.

Definition 3.1 Let $\varepsilon>0$ and $I=(a, b) \subset \mathbf{R}$. We define

$$
N(\varepsilon, I)=\inf \left\{n ; I=\cup_{i=1}^{n} I_{i}, A\left(I_{i}\right) \leq \varepsilon,\left|I_{i} \cap I_{j}\right|=0 \text { for } i \neq j\right\} .
$$

From our previous observation that $A_{0}(J)=\left(\frac{1}{\lambda_{1, J}}\right)^{1 / p}=\left(p^{\prime} p^{p-1}\right)^{1 / p} \frac{|J|}{2 \pi_{p}}$ we have:

Observation 3.2 i) Given any $\varepsilon>0$ we have $N(\varepsilon, I)<\infty$.
ii) Let $\varepsilon>0$. Then there is a covering set of intervals (that is, a set of nonoverlapping intervals)
$\left\{I_{i}\right\}_{i=1}^{N(\varepsilon)}$ such that $A_{0}\left(I_{i}\right)=\varepsilon$ for $i=1, \ldots, N(\varepsilon)$ and $A_{0}\left(I_{N(\varepsilon, I)}\right) \leq \varepsilon$.
iii) For any $n \in \mathbf{N}$ there exist $\varepsilon>0$, such that $n=N(\varepsilon, I)$ and corresponding covering sets $\left\{I_{i}\right\}_{i=1}^{N(\varepsilon, I)}$ for which $A_{0}\left(I_{i}\right)=\varepsilon$ for $i=1, \ldots N(\varepsilon, I)$.

Moreover we can see:
Observation 3.3 Let $n \in \mathbf{N}$ and $\varepsilon \in\left[\frac{|I|}{2 n \pi_{p}}\left(p^{\prime} p^{p-1}\right)^{1 / p}, \frac{|I|}{2(n-1) \pi_{p}}\left(p^{\prime} p^{p-1}\right)^{1 / p}\right)$. Then $N(\varepsilon, I)=n$.

From this observation we obtain the following two lemmas as in (EEH2).
Lemma 3.4 Let $n \in \mathbf{N}$. Then

$$
a_{n}\left(E_{1}\right) \leq \frac{|I|}{2 n \pi_{p}}\left(p^{\prime} p^{p-1}\right)^{1 / p}
$$

and

$$
a_{n+1}\left(E_{2}\right) \leq \frac{|I|}{2 n \pi_{p}}\left(p^{\prime} p^{p-1}\right)^{1 / p}
$$

and

$$
\inf \left\|E_{3}-P_{n+1}\right\| \leq \frac{|I|}{2 n \pi_{p}}\left(p^{\prime} p^{p-1}\right)^{1 / p}
$$

where the infimum is taken over all linear maps $P_{n+1}: L^{1, p}(I) \rightarrow L^{p}(I)$ with rank less than $n+1$.

Proof: Let $\left\{I_{i}\right\}_{1}^{n}$ be the partition from Observation 4 with $\varepsilon=\frac{|I|}{2 n \pi_{p}}\left(p^{\prime} p^{p-1}\right)^{1 / p}$. Set $P f=\sum_{i=1}^{n} P_{i} f$ where

$$
P_{i} f(x):=\chi_{I_{i}}(x)\left(f\left(\left(a_{i}+b_{i}\right) / 2\right)\right), \text { where } I_{i}=\left(a_{i}, b_{i}\right) .
$$

We can see that $P_{i} f$ is a linear map from $L^{1, p}\left(I_{i}\right)$ into $L^{p}\left(I_{i}\right)$ (not necessarily bounded) and it is a bounded linear map from $L^{1, p}\left(I_{i}\right) /\{1\}$ into $L^{p}\left(I_{i}\right)$ with rank less or equal to 1 . Then $\operatorname{rank} P \leq n$ and P is a linear map from $L^{1, p}(I)$ into $L^{p}(I)$ and it is a linear map from $L^{1, p}(I) /\{1\}$ into $L^{p}(I)$. From (Li1) and Lemma 5 we have that $A_{0}\left(I_{i}\right)=\sup _{\left\|u^{\prime}\right\|_{p, I_{i}}>0} \frac{\left\|u-P_{i} u\right\|_{p, I_{i}}}{\left\|u^{\prime}\right\|_{p, I_{i}}}$. Then we have:

$$
\begin{aligned}
\left\|\left(E_{3}-P\right) f\right\|_{p, I}^{p} & =\sum_{i=1}^{n}\left\|\left(E_{3}-P\right) f\right\|_{p, I_{i}}^{p} \\
& =\sum_{i=1}^{n} \|\left(f(.)-f\left(\left(a_{i}+b_{i}\right) / 2\right) \|_{p, I_{i}}^{p}\right. \\
& \leq \sum_{i=1}^{n} A_{0}^{p}\left(I_{i}\right)\left\|f^{\prime}\right\|_{p, I_{i}}^{p} \\
& \leq \sum_{i=1}^{n} \frac{|I|}{2 n \pi_{p}}\left(p^{\prime} p^{p-1}\right)\left\|f^{\prime}\right\|_{p, I_{i}}^{p} \\
& \leq \frac{|I|}{2 n \pi_{p}}\left(p^{\prime} p^{p-1}\right)\left\|f^{\prime}\right\|_{p, I}^{p} .
\end{aligned}
$$

(Note that $\|f-f((a+b) / 2)\|_{p, I} /\left\|f^{\prime}\right\|_{p, I}<\infty$ for any $f \in L^{1, p}(I)$.) From this follows the third inequality for E_{3}.

The proof of the inequality for E_{2} is the same.
For the first inequality for $a_{n}\left(E_{1}\right)$ we have to define a new partition of I. Let $\left\{I_{i}\right\}_{1}^{n}$ by the partition from Observation 4 with $\varepsilon=\frac{|I|}{2 n \pi_{p}}\left(p^{\prime} p^{p-1}\right)^{1 / p}$. Put $J_{i}=\left(a_{i}+\left|I_{i}\right| / 2, b_{i}+\left|I_{i}\right| / 2\right)$ for $i=1, \ldots, n-1$ and $J_{0}=\left(a, a+\left|I_{1}\right| / 2\right)$, $J_{n}=\left(a_{n}+\left|I_{n}\right| / 2, b\right)$ where $I_{i}=\left(a_{i}, b_{i}\right)$. Define $\left\{c_{i}\right\}_{0}^{n}$ and $\left\{d_{i}\right\}_{0}^{n}$ by $J_{i}=\left(c_{i}, d_{i}\right)$.

Set $G f=\sum_{i=0}^{n} G_{i} f$ where $G_{i} f(x):=\chi_{J_{i}}(x)\left(f\left(\left(c_{i}+d_{i}\right) / 2\right)\right)$, for $i=1, \ldots, n-1$, $G_{0} f(x):=f(a)=0$ and $G_{n} f(x):=f(b)=0$ where $I_{i}=\left(a_{i}, b_{i}\right)$. Then
$\operatorname{rank} G \leq n_{1}$ and G is a bounded linear map from $W_{0}^{1, p}(I)$ into $L^{p}(I)$. Since $A_{0}^{p}\left(I_{i}\right)=A_{0}^{p}\left(J_{j}\right)$ then as before we have for $f \in W_{0}^{1, p}(I)$:

$$
\begin{aligned}
\left\|\left(E_{1}-G\right) f\right\|_{p, I}^{p} & =\sum_{i=0}^{n}\|(E-P) f\|_{p, J_{i}}^{p} \\
& =\sum_{i=1}^{n-1} \|\left(f(.)-f\left(\left(a_{i}+b_{i}\right) / 2\right)\left\|_{p, J_{i}}^{p}+\right\| f\left\|_{p, J_{0}}^{p}+\right\| f \|_{p, J_{n}}^{p}\right. \\
& \leq \sum_{i=1}^{n-1} A_{0}^{p}\left(J_{i}\right)\left\|f^{\prime}\right\|_{p, J_{i}}^{p}+A_{0}^{p}\left(I_{1}\right)\left\|f^{\prime}\right\|_{p, I_{0}}^{p}+A_{0}^{p}\left(I_{n}\right)\left\|f^{\prime}\right\|_{p, J_{n}}^{p} \\
& \leq \sum_{i=0}^{n} \frac{|I|}{2 n \pi_{p}}\left(p^{\prime} p^{p-1}\right)\left\|f^{\prime}\right\|_{p, I_{i}}^{p} \\
& \leq \frac{|I|}{2 n \pi_{p}}\left(p^{\prime} p^{p-1}\right)\left\|f^{\prime}\right\|_{p, I}^{p} .
\end{aligned}
$$

From this follows the first inequality for $a_{n}\left(E_{1}\right)$.

From the proof of Lemma 6 we can see that for any n there exists K_{n}, an n-dimensional linear subspace of L^{p}, such that for any $f \in L^{1, p}(I) /\{1\}$ (or from any $\left.f \in L^{1, p}(I)\right)$ we have

$$
\inf _{g \in K_{n}}\|f-g\|_{p}^{p} \leq \frac{|I|}{2 n \pi_{p}}\left(p^{\prime} p^{p-1}\right)\left\|f^{\prime}\right\|_{p}^{p}
$$

Moreover, for any n there exists R_{n-1}, an $n-1$ dimensional linear subspace of L^{p}, such that for any $f \in W_{0}^{1, p}(I)$ we have

$$
\inf _{g \in R_{n-1}}\|f-g\|_{p}^{p} \leq \frac{|I|}{2 n \pi_{p}}\left(p^{\prime} p^{p-1}\right)\left\|f^{\prime}\right\|_{p}^{p}
$$

Lemma 3.5 Let $n \in \mathbf{N}$. Then

$$
a_{n}\left(E_{1}\right) \geq \frac{|I|}{2 n \pi_{p}}\left(p^{\prime} p^{p-1}\right)^{1 / p}
$$

and

$$
a_{n}\left(E_{2}\right) \geq \frac{|I|}{2 n \pi_{p}}\left(p^{\prime} p^{p-1}\right)^{1 / p} .
$$

and

$$
\inf \left\|E_{3}-P_{n+1}\right\| \geq \frac{|I|}{2 n \pi_{p}}\left(p^{\prime} p^{p-1}\right)^{1 / p}
$$

where the infimum is taken over all linear maps $P_{n+1}: L^{1, p}(I) \rightarrow L^{p}(I)$ with rank less than $n+1$.

Proof: First we prove the second inequality for E_{2}. Let $\left\{I_{i}\right\}_{1}^{n}$ be the partition from Observation 4 with $\varepsilon=\frac{|I|}{2 n \pi_{p}}\left(p^{\prime} p^{p-1}\right)^{1 / p}$.

From the definition of $A_{0}\left(I_{i}\right)$ we know that for $i=1, \ldots, n$ there exists $\varphi_{i} \in$ $W^{1, p}\left(I_{i}\right),\left\|\varphi_{i}^{\prime}\right\|_{p, I_{i}}=1$ such that

$$
\inf _{\alpha \in \mathbf{R}}\left\|\varphi_{i}-\alpha\right\|_{p, I_{i}}=A_{0}\left(I_{i}\right)=\varepsilon .
$$

We extend each φ_{i} to I by taking $\varphi_{i}^{\prime}=0$ outside I_{i} and define $\phi_{i}=\varphi_{i}+c_{i}$ where $c_{i} \in \mathbf{R}$ is such that $\phi_{i} \in L^{1, p} /\{1\}$.

Let $P: L^{1, p}(I) /\{1\} \rightarrow L^{p}(I) /\{1\}$ be a bounded linear operator with $\operatorname{rank}(P)<$ n. Then there are constants $\lambda_{1}, \ldots, \lambda_{n}$, not all zero, such that

$$
P \phi=0, \quad \phi=\sum_{i=1}^{n} \lambda_{i} \phi_{i} .
$$

Note that $\phi \in L^{p}(I) /\{1\}$. Then, noting that the following summation is over $\lambda_{i} \neq 0$,

$$
\begin{aligned}
\left\|E_{2} \phi-P \phi\right\|_{p, I}^{p} & =\left\|E_{2} \phi\right\|_{p, I}^{p}=\sum_{i=1}^{n}\|\phi\|_{p, I_{i}}^{p} \\
& \geq \sum_{i=1}^{n} \inf _{\alpha}\|\phi-\alpha\|_{p, I_{i}}^{p} \geq \sum_{i=1}^{n} \inf _{\alpha}\left\|\phi_{i}-\alpha\right\|_{p, I_{i}}^{p}\left|\lambda_{i}\right|^{p} \\
& \geq \varepsilon^{p} \sum_{i=1}^{n}\left\|\phi_{i}^{\prime}\right\|_{p, I_{i}}^{p}\left|\lambda_{i}\right|^{p} \geq \varepsilon^{p}\left\|\phi^{\prime}\right\|_{p, I}^{p} .
\end{aligned}
$$

Then we have that $\left\|E_{2}-P\right\|_{p, I} \geq \varepsilon$, so that $a_{n}\left(E_{2}\right) \geq \varepsilon$.
We prove the inequality for E_{3} in the same way as for E_{2}. Let $P: L^{1, p}(I) \rightarrow$ $L^{p}(I)$ be a linear operator with $\operatorname{rank}(P)<n+1$. Let we have the system of functions $\left\{\phi_{i}\right\}_{i=1}^{n}$ considered previously and put $\phi_{n+1}=1$; then we have $n+1$ linearly independent functions from $L^{1, p}(I)$ (note that $W^{1, p}(I) /\{1\} \subset L^{1, p}(I)$).

Then there are constants $\lambda_{1}, \ldots, \lambda_{n+1}$, not all zero, such that

$$
P \phi=0, \quad \phi=\sum_{i=1}^{n+1} \lambda_{i} \phi_{i} .
$$

Then, noting that the following summation is over $\lambda_{i} \neq 0$ we have

$$
\begin{aligned}
\left\|E_{3} \phi-P \phi\right\|_{p, I}^{p} & =\left\|E_{3} \phi\right\|_{p, I}^{p}=\sum_{i=1}^{n+1}\|\phi\|_{p, I_{i}}^{p} \\
& \geq \sum_{i=1}^{n+1} \inf _{\alpha}\|\phi-\alpha\|_{p, I_{i}}^{p} \geq \sum_{i=1}^{n+1} \inf _{\alpha}\left\|\phi_{i}-\alpha\right\|_{p, I_{i}}^{p}\left|\lambda_{i}\right|^{p} \\
& \geq \varepsilon^{p} \sum_{i=1}^{n+1}\left\|\phi_{i}^{\prime}\right\|_{p, I_{i}}^{p}\left|\lambda_{i}\right|^{p} \geq \varepsilon^{p}\left\|\phi^{\prime}\right\|_{p, I}^{p} .
\end{aligned}
$$

Hence $\left\|E_{3}-P\right\|_{p, I} \geq \varepsilon$ and then the third inequality for E_{3} is satisfied.
Now we prove the inequality for $a_{n}\left(E_{1}\right)$. Take $u_{n, I}$ the n-th eigenfunction of the p-Laplacian eigenvalue problem on I with Neumann boundary condition. Let $\left\{I_{i}\right\}_{1}^{n}$ be the partition from Observation 4 with $\varepsilon=\frac{|I|}{2 n \pi_{p}}\left(p^{\prime} p^{p-1}\right)^{1 / p}$. Then we define $\phi_{i}=u_{n, I} \chi_{I_{i}}$ and $\phi_{i} \in W_{0}^{1, p}\left(I_{i}\right)$ and $\left\|\phi_{i}\right\|_{p, I} /\left\|\phi_{i}^{\prime}\right\|_{p, I}=A_{0}\left(I_{i}\right)$. Let $P: L^{1, p}(I) \rightarrow L^{p}(I)$ be a linear operator with $\operatorname{rank}(P)<n$. Then there are constants $\lambda_{1}, \ldots, \lambda_{n}$, not all zero, such that

$$
P \phi=0, \quad \phi=\sum_{i=1}^{n} \lambda_{i} \phi_{i} .
$$

Noting that the following summation is over $\lambda_{i} \neq 0$ we have

$$
\begin{aligned}
\left\|E_{1} \phi-P \phi\right\|_{p, I}^{p} & =\left\|E_{1} \phi\right\|_{p, I}^{p}=\sum_{i=1}^{n}\|\phi\|_{p, I_{i}}^{p} \\
& \geq \sum_{i=1}^{n}\|\phi\|_{p, I_{i}}^{p} \geq \sum_{i=1}^{n}\left\|\phi_{i}\right\|_{p, I_{i}}^{p}\left|\lambda_{i}\right|^{p} \\
& \geq \varepsilon^{p} \sum_{i=1}^{n+1}\left\|\phi_{i}^{\prime}\right\|_{p, I_{i}}^{p}\left|\lambda_{i}\right|^{p} \geq \varepsilon^{p}\left\|\phi^{\prime}\right\|_{p, I^{\prime}}^{p} .
\end{aligned}
$$

Thus $\left\|E_{1}-P\right\|_{p, I} \geq \varepsilon$ and so the third inequality for $a_{n}\left(E_{1}\right)$ is satisfied.

The previous two lemmas give us:
Theorem 3.6 If $|I|<\infty$, then

$$
\begin{gathered}
a_{n}\left(E_{1}\right)=\frac{|I|}{2(n) \pi_{p}}\left(p^{\prime} p^{p-1}\right)^{1 / p} \\
\frac{|I|}{2(n-1) \pi_{p}}\left(p^{\prime} p^{p-1}\right)^{1 / p} \geq a_{n}\left(E_{2}\right) \geq \frac{|I|}{2 n \pi_{p}}\left(p^{\prime} p^{p-1}\right)^{1 / p}
\end{gathered}
$$

and

$$
\inf \left\|E_{3}-P_{n+1}\right\|=\frac{|I|}{2 n \pi_{p}}\left(p^{\prime} p^{p-1}\right)^{1 / p}
$$

where the infimum is taken over all linear maps $P_{n+1}: L^{1, p}(I) \rightarrow L^{p}(I)$ with rank less than $n+1$.

Then

$$
\lim _{n \rightarrow \infty} a_{n}\left(E_{1}\right) n=\frac{|I|}{2 \pi_{p}}\left(p^{\prime} p^{p-1}\right)^{1 / p}
$$

and

$$
\lim _{n \rightarrow \infty} a_{n}\left(E_{2}\right) n=\frac{|I|}{2 \pi_{p}}\left(p^{\prime} p^{p-1}\right)^{1 / p}
$$

where $\pi_{p}=\pi / \sin (\pi / p)$.
Acknowledgement: Both authors thank the Leverhulme Foundation for its support; the second author is also indebted to the Ohio State Univeristy for an international travel grant.

REFERENCES

References

[AS] M. Abramowitz, I.A.Stegun. Handbook of Mathematical Functions, Dover publications, INC., New York 1965.
[DM] P.Drabek and R.Manásevich. On the solution to some p-Laplacian nonhomogeneous eigenvalue problems in closed form. Preprint
[DKN] P.Drabek, A.Kufner and F.Nicolesi, Quasilinear elliptic equations with degenerations and singularities, de Gruyter Series in Nonlinear Analysis and Applications, 5, Walter de Gruyter © Co., Berlin, 1997
[EE] D.E.Edmunds and W.D.Evans, Spectral Theory and Differential Operators, Oxford Univ. Press, Oxford, 1987.
[EEH1] D.E.Edmunds, W.D.Evans and D.J.Harris. Approximation numbers of certain Volterra integral operators. J. London Math. Soc. (2) 37 (1988), 471-489.
[EEH2] D.E.Edmunds, W.D.Evans and D.J.Harris. Two-sided estimates of the approximation numbers of certain Volterra integral operators. Studia Math. 124 (1) (1997), 59-80.
[EGP] D.E.Edmunds, P.Gurka and L.Pick. Compactness of Hardy-type integral operators in weighted Banach function spaces. Studia Math. 109 (1) (1994), 73-90.
[EHL] W.D.Evans, D.J.Harris and J.Lang. Two-sided estimates for the approximation numbers of Hardy-type operators in L^{∞} and L^{1}. Studia Math. 130 (2) (1998), 171-192.
[EKL] D.E.Edmunds, R.Kerman and J.Lang. Remainder Estimates for the Approximation numbers of weighted Hardy operators acting on L^{2}. Journal D'Analyse Mathématique, Vol. 85 (2001).
[ET] D.E.Edmunds and H.Triebel, Function spaces, entropy numbers, differential operators.Cambridge University Press, Cambridge, 1996.
[L] J.Lang. Improved estimates for the approximation numbers of Hardy-type operators. preprint.
[Li1] P.Lindqvist, Note on a nonlinear eigenvalue problem. Rocky Mountain J. of Math 23 (1993), 281-288.
[Li2] P.Lindqvist, Some remarkable sine and cosine functions, Ricerche di Matematica, Vol. XLIV, fasc. 2, (1995), 269-290.
[LL] M.A.Lifshits and W.Linde. Approximation and entropy numbers of Volterra operators with applications to Brownian motion, preprint Math/Inf/99/27, Universität Jena, Germany, 1999.
[LMN] J.Lang, O.Mendez and A.Nekvinda. Asymptotic behavior of the approximation numbers of the Hardy-type operator from L^{p} into L^{q} (case $1<p \leq q \leq 2$ or $2 \leq p \leq q<\infty)$, preprint
[NS] J.Newman and M.Solomyak, Two-sided estimates of singular values for
a class of integral operators on the semi-axis, Integral Equations Operator Theory 20 (1994), 335-349
[OK] B.Opic and A.Kufner, Hardy-type Inequalities, Pitman Res. Notes Math. Ser. 219, Longman Sci. \mathcal{F} Tech., Harlow, 1990.
[T] H.Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland Publishing Company, Amsterdam 1978.

[^0]: * Corresponding author.

 Email addresses: D.E.Edmunds@sussex.ac.uk (D.E.Edmunds), lang@math.ohiostate.edu (J.Lang).

 URL: www.math.ohio-state.edu/~lang (J.Lang).

