Behaviour of the approximation numbers of a Sobolev embedding in the one-dimensional case.

D.E.Edmunds^a, J.Lang^{b,*}

^aCentre for Mathematical Analysis and its Applications, University of Sussex, Falmer, Brighton BN1 9QH, UK

^b The Ohio State University, Department of Mathematics, 100 Math Tower, 231 West 18th Avenue, Columbus, OH 43210-1174, USA

Abstract

We consider the Sobolev embeddings

$$E_1: W_0^{1,p}(a,b) \to L^p(a,b) \quad \text{or} \quad E_2: L^{1,p}(a,b)/\{1\} \to L^p(a,b)/\{1\},$$

with $-\infty < a < b < \infty$ and $1 . We show that the approximation numbers <math>a_n(E_i)$ of E_i have the property that

$$\lim_{n \to \infty} na_n(E_i) = c_p(b-a) \qquad (i = 1, 2)$$

where c_p is a constant dependent only on p. Moreover we show the precise value of $a_n(E_1)$ and we study the unbounded Sobolev embedding $E_3 : L^{1,p}(a,b) \to L^p(a,b)$ and determine precisely how closely it may be approximated by n-dimensional linear maps.

Key words: Approximation numbers, Sobolev Embedding, Hardy-type operators, Integral operators 1991 MSC: 47G10, 47B10

* Corresponding author.

Email addresses: D.E.Edmunds@sussex.ac.uk (D.E.Edmunds), lang@math.ohio-state.edu (J.Lang).

Preprint submitted to OSU MRI Preprint Series

URL: www.math.ohio-state.edu/~lang (J.Lang).

1 Introduction.

Let Ω be a bounded subset of \mathbf{R}^n with smooth boundary, let 1 and consider the embedding

$$E_1: W_0^{1,p}(\Omega) \to L^p(\Omega)$$

where $W_0^{1,p}(\Omega)$ is the usual first-order Sobolev space of functions with zero trace. This space is a closed subspace of the Sobolev space $W^{1,p}(\Omega)$. It is wellknown that E_1 is compact. More precise information about E_1 is available via its approximation numbers, for there are positive constants c_1 and c_2 , depending only on p and Ω , such that the m-th approximation number $a_m(E_1)$ of E_1 satisfies

$$\frac{c_1}{m} \le a_m(E_1) \le \frac{c_2}{m}, \qquad m \in \mathbf{N}$$
(1)

Of course, this is a very special case of quite general results concerning the approximation numbers of embeddings between function spaces, for which we refer to (T) and (ET).

When p = 2 it is possible to sharpen (1) by using the familiar relation

$$a_m(E_1) = \frac{1}{\lambda_m^{1/2}}$$

between the approximation numbers of E_1 and the eigenvalues λ_m of the Dirichlet Laplacian. Since the behaviour of the eigenvalues is well-known, it follows that $\lim ma_m(E_1)$ exists; and even sharper statements about the asymptotic behaviour of $a_m(E_1)$ can be made. It is natural to ask whether or not $\lim ma_m(E_1)$ exists when p is not equal to 2.

In (EHL) a new technique was given for the study of the approximation numbers of the Hardy-type operator T on a tree Γ :

$$(Tf)(x) = v(x) \int_{0}^{x} f(t)u(t)dt, \qquad x \in \Gamma.$$

Using this it was shown that $T: L^p(\Gamma) \to L^p(\Gamma)$ has approximation numbers $a_m(T)$ for which $\lim ma_m(T)$ exists, when $1 \leq p \leq \infty$. This technique was improved and extended in (EKL), where in the case in which Γ is an interval and p = 2, remainder estimates were obtained. These results were extended in (L) to cover the cases 1 .

In the present paper we obtain sharper information about $a_m(E_1)$ than was previously known. We deal only with the case in which n = 1 and Ω is a bounded interval in the line. The techniques of this paper are based on methods derived from (EHL), (EKL), (L), (Li2) and (DM). In more detail, for the Sobolev embeddings

$$E_1: W_0^{1,p}(I) \to L^p(I) E_2: L^{1,p}(I)/\{1\} \to L^p(I)/\{1\},$$

where $I = (a, b), -\infty < a < b < \infty$ and $L^{1,p}(I)$ is the space of all $u \in L^p_{loc}(I)$ with derivative $u' \in L^p(I)$, we show that there is a positive constant α_p such that

$$\lim_{m \to \infty} m a_m(E_i) = \alpha_p |I| \qquad \text{for } i = 1 \text{ or } 2.$$

Moreover, it turns out that for every $m \in \mathbf{N}$, there is a linear map P_m with rank $P_m = m$ such that

$$||E_2 - P_m|| = \alpha_p |I|/m \ge a_{m+1}(E_2) \ge \alpha_p |I|/(m+1).$$

For embedding E_1 we have that for every $m \in \mathbf{N}$, there is a linear map B_m with rank $B_m = m$ such that

$$||E_1 - B_m|| = \alpha_p |I| / (m+1) = a_{m+1}(E_1).$$

We also study the best approximation of the unbounded Sobolev embedding

$$E_3: L^{1,p}(I) \to L^p(I)$$

by linear maps of finite rank. We show that for every $m \in \mathbf{N}$, there is a linear map R_m with rank $R_m = m$ such that

$$||E_3 - R_m|| = \alpha_p |I|/(m) = \inf\{||E_3 - P||; P \text{ linear map, rank } P < m+1\}$$

We also show that $\alpha_p = (\frac{1}{\lambda_{n,I}})^{1/p}$ where $\lambda_{n,I}$ is the first eigenvalue of a p-Laplacian eigenvalue problem.

Our conclusion appears to be the first result of this kind in the literature, apart from the special case p = 2. It remains to be seen whether or not this can be extended to higher dimensions.

2 Preliminaries and technical results.

Throughout the paper we shall assume that $-\infty < a < b < \infty$ and that I = (a, b). We also assume that $1 and denote by <math>\|.\|_p$ or $\|.\|_{p,I}$ the usual norm on the Lebesgue space $L_p(I)$.

By the Sobolev space $W_0^{1,p}(I)$ we understand, as usual, the space of all functions $u \in L^p(I)$ with finite norm $||u'||_{p,I}$ and zero trace. We consider the embedding

$$E_1: W_0^{1,p}(I) \to L^p(I) \tag{2}$$

and define the norm of E_1 by

$$||E_1|| = \sup_{||u'||_{p,I} > 0} \frac{||u||_{p,I}}{||u'||_{p,I}}.$$
(3)

Plainly $||E_1|| < \infty$; moreover, it is well known (see, for example, (EE), Theorem V.4.18) that E_1 is compact.

We will consider in this paper also the approximation numbers for the embedding

$$E_2: L^{1,p}(I)/\{1\} \to L^p(I)/\{1\},\$$

where $L^{1,p}(I)$ is the space of all functions $u \in L^p_{loc}(I)$ with finite pseudonorm $||u'||_{1,p}$ which vanishes on the subspace of all constant functions. By $L^{1,p}/\{1\}$ we mean the factorization of the space $L^{1,p}(I)$ with respect to constant functions, equipped with the norm $||u'||_{p,I}$. Then we have $f \in L^{1,p}/\{1\}$ if and only if $||f||_{p,I} = \inf_{c \in \Re} ||f - c||_{p,I}$. In a similar way $L^p(I)/\{1\}$ is defined. The norm of E_2 is defined by

$$||E_2|| = \sup_{||u'||_p > 0} \frac{||u||_p}{||u'||_p}.$$

It is obvious that $||E_2|| = a_1(E_2) < \infty$ and also $\lim_{n\to\infty} a_n(E_2) = 0$.

We will also consider the unbounded embedding

$$E_3: L^{1,p}(I) \to L^p(I).$$

Since $L^{1,p}(I)$ is defined by the pseudonorm $||u'||_{1,p}$ and E_3 is unbounded, we

will study the best approximation of E_3 by linear maps of finite rank $(a_n(E_3)$ are not well defined).

Definition 2.1 Let $J = (c, d) \subset I$. We define

$$A_0(J) = \sup_{\|u'\|_{p,J} > 0} \inf_{\alpha \in \Re} \frac{\|u - \alpha\|_{p,J}}{\|u'\|_{p,J}}.$$

Since every function in $W^{1,p}(J)$ is absolutely continuous, we can rewrite $A_0(J)$ as

$$A_0(J) = \sup_{\|u'\|_{p,J} > 0} \inf_{\alpha \in \Re} \frac{\|\int_c^x u'(t)dt + u(c) - \alpha\|_{p,J}}{\|u'\|_{p,J}}.$$

From this we can see the connection between A_0 and the Hardy operator.

Lemma 2.2 Let I_n be a decreasing sequence of subintervals of I with $|I_n| \to 0$ as $n \to \infty$. Then $\{A_0(I_n)\}$ is a decreasing sequence bounded above by $A_0(I)$ and with limit 0.

Proof. In this proof we extend $u \in W^{1,p}(I_{n+1})$ outside I_{n+1} by a constant, i.e. u' = 0 outside I_{n+1} . From the definition of A_0 we have for $I_{i+1} \subset I_i$,

$$\begin{aligned} A_0^p(I_{i+1}) &= \sup_{\|u'\|_{p,I_{i+1}} > 0} \inf_{\alpha \in \Re} \frac{\|\int_c^x u'(t)dt - \alpha\|_{p,I_{i+1}}^p}{\|u'\|_{p,I_{i+1}}^p} \\ &\leq \sup_{\|u'\|_{p,I_{i+1}} > 0} \inf_{\alpha \in \Re} \frac{\|\int_c^x u'(t)dt - \alpha\|_{p,I_i}^p}{\|u'\|_{p,I_i}^p} \\ &\leq \sup_{\|u'\|_{p,I_i} > 0} \inf_{\alpha \in \Re} \frac{\|\int_c^x u'(t)dt - \alpha\|_{p,I_i}^p}{\|u'\|_{p,I_i}^p} = A_0^p(I_i) \end{aligned}$$

and so $A_0(I_i) \ge A_0(I_{i+1})$. For $A_0(J)$ we have

$$A_{0}(J) \leq \sup_{\|u'\|_{p,J}=1} \frac{\left\|\int_{c}^{x} u'(t) dt\right\|_{p,J}}{\|u'\|_{p,J}}$$

=
$$\sup_{\|u'\|_{p,J}=1} \left\|\int_{c}^{x} |u'(t)| dt\right\|_{p,J}$$

$$\leq \sup_{\|u'\|_{p,J}=1} \left\|\left(\int_{J} |u'|^{p}\right)^{1/p} |J|^{1/p'}\right\|_{p,J} = |J|^{1/p'}.$$

From this observation it follows that $A_0(I_n) \to 0$ as $I_n \to 0$. \Box

Lemma 2.3 Let $J = (x, y) \subset I$. Then $A_0((x, y))$ is a continuous function of x and y.

Proof. Let us suppose that there are $x, y \in I$ and $\varepsilon > 0$ such that $A_0(x, y + h_n) - A_0(x, y) > \varepsilon$ for some sequence $\{h_n\}$ with $0 < h_n \searrow 0$. Then we have that there is $\varepsilon_1 > 0$ such that $A_0^p(x, y + h_n) - A_0^p(x, y) > \varepsilon_1$ for any $n \in \mathbf{N}$. But for all h > 0,

$$\begin{split} A_0^p(x,y+h) - A_0^p(x,y) &= \sup_{\|u'\|_{p,(x,y+h)>0}} \inf_{\alpha \in \mathbf{R}} \frac{\|\int_x^t u' - \alpha\|_{p,(x,y+h)}^p}{\|u'\|_{p,(x,y+h)}^p} \\ &- \sup_{\|u'\|_{p,(x,y)>0}} \inf_{\alpha \in \mathbf{R}} \frac{\|\int_x^t u' - \alpha\|_{p,(x,y)}^p}{\|u'\|_{p,(x,y)}^p} \\ &\leq \sup_{\|u'\|_{p,(x,y+h)>0}} (\inf_{\alpha \in \mathbf{R}} \frac{\|\int_x^t u' - \alpha\|_{p,(x,y+h)}^p}{\|u'\|_{p,(x,y+h)}^p} \\ &- \inf_{\alpha \in \mathbf{R}} \frac{\|\int_x^t u' - \alpha\|_{p,(x,y)}^p}{\|u'\|_{p,(x,y+h)}^p}) \\ &\leq \sup_{\|u'\|_{p,(x,y+h)>0}} (\inf_{\alpha \in \mathbf{R}} \frac{\|\int_x^t u' - \alpha\|_{p,(x,y)}^p}{\|u'\|_{p,(x,y+h)}^p} \\ &+ \inf_{\alpha \in \mathbf{R}} \frac{\|\int_x^t u' - \alpha\|_{p,(x,y+h)}^p}{\|u'\|_{p,(x,y+h)}^p} - \inf_{\alpha \in \mathbf{R}} \frac{\|\int_x^t u' - \alpha\|_{p,(x,y)}^p}{\|u'\|_{p,(x,y+h)}^p}) \\ &\leq \sup_{\|u'\|_{p,(x,y+h)>0}} \inf_{\alpha \in \mathbf{R}} \frac{\|\int_x^t u' - \alpha\|_{p,(x,y)}^p}{\|u'\|_{p,(x,y+h)}^p} \\ &\leq \sup_{\|u'\|_{p,(x,y+h)>0}} \inf_{\alpha \in \mathbf{R}} \frac{\|\int_x^t u' - \alpha\|_{p,(x,y)}^p}{\|u'\|_{p,(x,y+h)}^p} \\ &\leq \sup_{\|u'\|_{p,(x,y+h)>0}} \frac{\|\int_y^t u'\|_{p,(y,y+h)}^p}{\|u'\|_{p,(y,y+h)}^p} \\ &\leq |(y, y + h)|^{p/p'} \leq h^{p/p'}, \end{split}$$

and we have a contradiction. Hence $A_0(x, y+h) \to A_0(x, y)$ as $h \to 0$. Similarly we find that $A_0(x+h, y) \to A_0(x, y)$ as $h \to 0$ and the result follows. \Box

Lemma 2.4 Let $J = (c, d) \subset I$. Then there is a function $f \in W^{1,p}(J)$ such that

$$A_0(J) = \frac{\|f\|_{p,J}}{\|f'\|_{p,J}} = \inf_{\alpha \in \mathbf{R}} \frac{\|f - \alpha\|_{p,J}}{\|f'\|_{p,J}}.$$

Proof: It is possible to find a sequence $\{f_n\}_{n=1}^{\infty}$ of functions in $W^{1,p}(J)$ such

that for each n in \mathbf{N} ,

$$\frac{\|f_n\|_{p,J}}{\|f'_n\|_{p,J}} + 1/n = \inf_{\alpha \in \mathbf{R}} \frac{\|f_n - \alpha\|_{p,J}}{\|f'_n\|_{p,J}} + 1/n > A_0(J)$$

and $||f_n||_{W^{1,p}(J)} = 1$. Since E is compact, it follows that there exists a subsequence of $\{f_n\}$, again denoted by $\{f_n\}$ for convenience, which converges weakly in $W^{1,p}(J)$, to f, say, and this subsequence converges strongly to f in $L^p(J)$. By a standard compactness argument we get that f_n converges strongly to f in $W^{1,p}(J)$ and then

$$A_0(J) = \frac{\|f\|_{p,J}}{\|f'\|_{p,J}} = \inf_{\alpha \in \mathbf{R}} \frac{\|f - \alpha\|_{p,J}}{\|f'\|_{p,J}}.$$

г			
L			
L	_	_	

Lemma 2.5 Let $J = (c, d) \subset I$ and let f be as in the previous lemma. Then f(x) = 0 only for x = (c+d)/2, f is monotone and $f'(c_+) = f'(d_-) = 0$.

Proof: Let f be from the previous lemma. Let $f_+(x) = \max\{f(x), 0\}$ and $f_-(x) = \max\{-f(x), 0\}$; then $||f_+||_{p,J}^p = ||f_-||_{p,J}^p$, $f = f_+ - f_-$ and $|\{x : f(x) = 0\}| = 0$. Since we know that for any $g \in W^{1,p}(J)$, $g \ge 0$ we have $||g'||_{p,J} \ge ||(g^*)'||_{p,(0,|J|)}$ (where g^* is the non-increasing rearrangament of the function g). Then we have that

$$\frac{\|f_{+}^{*}\|_{p,(0,|J|)}^{p} + \|f_{-}^{*}\|_{p,(0,|J|)}^{p}}{\|(f_{+}^{*})'\|_{p,(0,|J|)}^{p} + \|(f_{-}^{*})'\|_{p,(0,|J|)}^{p}} = A_{0}^{p}(J).$$

Now define $r = |\{x : f(x) > 0\} \cap J|$ and $g(x) = f_+^*(c+r-x)$ for $c \le x \le c+r$ and $g(x) = -f_-^*(c+r+x)$ for $c+r \le x \le d$. Then

$$\frac{\|g\|_{p,J}}{\|g'\|_{p,J}} = A_0(J),$$

and $||g_+||_{p,J}^p = ||g_-||_{p,J}^p$.

From all this we can see that we have found a function g such that: g is monotone, g(c+r) = 0 where c < c+r < d and $(||g||_{p,J}/||g'||_{p,J}) = A_0(J)$.

Now we show that g((c+d)/2) = 0 (i.e. r = (c+d)/2). Put $J_1 = (c, c+r)$ and $J_2 = (c+r, d)$; then we have

$$\frac{\|g\|_{p,J_1}^p + \|g\|_{p,J_2}^p}{\|g'\|_{p,J_1}^p + \|g'\|_{p,J_2}^p} = A_0^p(J).$$
(4)

Since $A_0(J) = |J|A_0((0, 1))$, we see that

$$\frac{\|g\|_{p,J_1}^p}{\|g'\|_{p,J_1}^p} \le A_0^p((0,1))|J_1|^p 2^p.$$

For if not then we can define h(x) = g(x) on (c, c+r) and h(x) = -g(-x+2(r+c)) on (c+r, c+2r) and we have that $\inf_{\alpha \in \Re} \|h-\alpha\|_{p,(c,c+2r)} = \|h\|_{p,(c,c+2r)}$ and

$$\frac{\|h\|_{p,(c,c+2r)}^p}{\|h'\|_{p,(c,c+2r)}^p} > A_0^p((c,c+2r)),$$

which is a contradiction with the definition of A_0 . Similarly we have

$$\frac{\|g\|_{p,J_2}^p}{\|g'\|_{p,J_2}^p} \le A_0^p((0,1))|J_2|^p 2^p.$$

Observe that (4) holds if and only if

$$\frac{\|g\|_{p,J_1}^p}{\|g'\|_{p,J_1}^p} = \frac{\|g\|_{p,J_2}^p}{\|g'\|_{p,J_2}^p} = A_0^p(J)$$

(do not forget that $||g||_{p,J_1}^p = ||g||_{p,J_2}^p$). This means that c + r = (c + d)/2 and moreover we can suppose that g(x) = -g(-x + (c + d)) (i.e. g(x) is odd with respect to (c + d)/2).

Next we show that g'(c) = g'(d) = 0. Note that $g(c) = -g(d) \ge 0$. Suppose that g'(c) = -g'(d) < 0; then there are a number z > 0 and a sequence of numbers $\{x_n\}_{n=1}^{\infty}$ such that $x_n > c$, $x_n \to c$ and

$$\frac{g(c) - g(x_n)}{c - x_n} < z < 0$$

(i.e. $\int_{c}^{x_n} g'(t) dt < (x_n - c)z$). A similar procedure can be carried out in the neighbourhood of d.

Then we have $|z|(x_n - c) < \int_c^{x_n} |g'(t)| dt \le (\int_c^{x_n} |g'(t)|^p dt)^{1/p} (x_n - c)^{1/p'}$. And also we have

$$A_0^p(J) = \frac{\int_{x_n}^d |g|^p + \int_c^{x_n} |g|^p}{\int_{x_n}^d |g'|^p + \int_c^{x_n} |g'|^p} \le \frac{\int_{x_n}^d |g|^p + (x_n - c)|g(c)|^p}{\int_{x_n}^d |g'|^p + (x_n - c)|z|^p}$$

Since $A_0(J) > 0$ and |z| > 0, plainly

$$|g(c)|^{p} < |z|^{p}A_{0}^{p}(J) + |g(c)|^{p}$$

and there exists $n_1 \in \mathbf{N}$ such that for any $n > n_1$ we have

$$(x_n - c)|g(c)|^p < (x_n - c)|z|^p \frac{\int_{x_n}^d |g|^p}{\int_{x_n}^d |g'|^p} + (x_n - c)|g(c) - z(x_n - c)|^p$$

and then

$$\begin{split} (\int_{x_n}^d |g|^p) (\int_{x_n}^d |g'|^p) + (x_n - c)|g(c)|^p (\int_{x_n}^d |g'|^p) < \\ (\int_{x_n}^d |g|^p) (\int_{x_n}^d |g'|^p) + (x_n - c)|z|^p (\int_{x_n}^d |g|^p) \\ + (x_n - c)|g(c) - z(x_n - c)|^p (\int_{x_n}^d |g'|^p) \\ + |z|^p |g(c) - z(c - x_n)|^p (c - x_n)^2. \end{split}$$

From this it follows that for any $n > n_1$,

$$\frac{\int_{x_n}^d |g|^p + (x_n - c)|g(c)|^p}{\int_{x_n}^d |g'|^p + (x_n - c)|z|^p} < \frac{\int_{x_n}^d |g|^p + (x_n - c)|g(x_n)|^p}{\int_{x_n}^d |g'|^p}.$$

But this means that for $l_n = \chi_{(x_n,d)}g + \chi_{(c,x_n)}g(x_n)$ we have:

$$A_0^p(J) < \frac{\int_c^d |l_n|^p}{\int_c^d |l'_n|^p}$$
 for any $n > n_1$.

In view of the antisymmetry of g we define a function $r_n(x) = \chi_{(c,d+c-x_n)}g(x) + \chi_{(d+c-x_n,d)}g(d+c-x_n)$, and have

$$A_0^p(J) < \frac{\int_c^d |r_n|^p}{\int_c^d |r'_n|^p}$$
 for any $n > n_1$.

Finally we define $k_n(x) = \chi_{(x_n,d+c-x_n)}g(x) + \chi_{(d+c-x_n,d)}g(d+c-x_n) + \chi_{(c,x_n)}g(x_n)$. Then for n large enough we have

$$A_0(J) < \inf_{c \in \mathbf{R}} \frac{\|k_n - c\|_{p,J}}{\|k'_n\|_{p,J}}.$$

But this contradicts the definition of $A_0(J)$: hence g'(c) = g'(d) = 0.

Now we recall the *p*-Laplacian eigenvalue problem, which is defined, for $1 , <math>\lambda > 0$ and T > 0 by

$$(|u'|^{p-2}u')' + \lambda |u|^{p-2}u = 0, \text{ on } (0,T),$$

 $u'(0) = 0, \qquad u'(T) = 0.$

The set of eigenvalues of this problem is given by

$$\lambda_n := \left(\frac{2n\pi_p}{T}\right)^p \frac{1}{p'p^{p-1}} \text{ for each } n \in \mathbf{N}.$$

The corresponding eigenfunctions are $u_0(t) = c, c \in \mathbf{R} \setminus \{0\}$ and

$$u_n(t) = \frac{T}{n\pi_p} \sin_p \left(\frac{n\pi_p}{T} (t - \frac{T}{2n}) \right).$$

Here for p > 1 we put $p' = \frac{p}{p-1}$ and $\pi_p = 2B(\frac{1}{p}, \frac{1}{p'}) = \pi/\sin(\pi/p)$, where *B* denotes the beta function. Moreover $\sin_p(.)$ can be defined as the unique (global) solution to the initial-value problem

$$(|u'|^{p-2}u')' + \frac{2^p}{p'p^{p-1}}|u|^{p-2}u = 0$$
$$u(0) = 0, \qquad u'(0) = 1.$$

Also \sin_p can be expressed in terms of hypergeometric functions, see ((AS), p.263),

$$\operatorname{arcsin}_p(s) = ps^{1/p}F(\frac{1}{p}, \frac{1}{p}, 1 + \frac{1}{p}; s),$$

or

$$\operatorname{arcsin}_p(s) = B(\frac{1}{p}, \frac{1}{p'}, (\frac{2s}{p})^p)$$

where F(a, b, c; s) denotes the hypergeometric function and B is the incomplete beta function

$$B(1/q, 1/p', x) = \int_{0}^{x} z^{1/q-1} (1-z)^{-1/p} dz,$$

see (AS).

Moreover, for $s \in [0, p/2]$ we have

$$\arcsin_p(s) = \frac{p}{2} \int_{0}^{\frac{2s}{p}} \frac{dt}{(1-t^p)^{1/p}},$$

(note that this integral converges for all $s \in [0, p/2]$).

We note that in this paper we are using the definition of π_p and \sin_p functions from the paper (DM) which is slightly different from the definition of π_p and the \sin_p function used in (Li1) and (Li2).

Note that as $\arcsin_p : [0, p/2] \to [0, \pi_p/2]$ is strictly increasing then its inverse function $\sin_p : [0, \pi_p/2] \to [0, p/2]$ is also strictly increasing.

We extended \sin_p from $[0, \pi_p/2]$ to all **R** as a $2\pi_p$ periodic function by the usual way as in the p = 2 case (i.e. from sin).

For later use let us define $\cos_p(t) := \sin'_p(t)$. We have that

$$\left(\frac{p}{2}\right)^p |\cos_p(t)|^p + |\sin_p(t)|^p = 1 \text{ for all } t \in \mathbf{R}$$

and

$$\pi_p = \pi_{p'}$$

From (DM) we have

$$\int_{0}^{T} |\sin_{p}(\frac{n\pi_{p}}{T}t)|^{p} dt = \frac{Tp'p^{p}}{2^{p}(p'+p)}$$

and

$$\int_{0}^{T} |\frac{d}{dt} \sin_{p}(\frac{n\pi_{p}}{T}t)|^{p} dt = \frac{n^{p}\pi_{p}^{p}p}{T^{p-1}(p'+p)}.$$

See (Li2) for more information about $\sin_p(.)$ and $\cos_p(.)$ functions.

Definition 2.6 Given $J = [c, d] \subset \mathbf{R}$ we denote by $u_{n,J}(t)$ the n-th eigenfunction of the p-Laplacian eigenvalue problem on J and by $\lambda_{n,J}$ the corresponding n-th eigenvalue.

Note that

$$u_{0,J} = C,$$

$$u_{n,J}(t) = \frac{|J|}{n\pi_p} \sin_p \left(\frac{n\pi_p}{|J|} (t - \frac{|J|}{2n} - c) \right), \quad \text{for } n \ge 1$$

and

$$\lambda_{n,J} = \left(\frac{2n\pi_p}{|J|}\right)^p \frac{1}{p'p^{p-1}}, \quad \text{for each } n \in \mathbf{N},$$

where $\pi_p = \pi / \sin(\pi/p)$. It is simple to see that for any $n \in \mathbf{N}$, $\{u_{i,J}\}_{i=1}^n$ is a linearly independent set.

Lemma 2.7 Let $J = (c, d) \subset I$. Then

$$A_0(J) = \frac{\|u_{1,J}\|_{p,J}}{\|u_{1,J}'\|_{p,J}} = \inf_{\alpha \in \mathbf{R}} \frac{\|u_{1,J} - \alpha\|_{p,J}}{\|u_{1,J}'\|_{p,J}} = \left(\frac{1}{\lambda_{1,J}}\right)^{1/p}.$$

Proof: We can see that

$$A_0(J) = \sup_{u \in K(J)} \frac{\|u_{1,J}\|_{p,J}}{\|u'_{1,J}\|_{p,J}}$$

where $K(J) = \{f; 0 < ||f'||_{p,J} < \infty, \inf_{\alpha} ||f - \alpha||_{p,J} = ||f||_{p,J}\}$. After taking the Fréchet derivative of $A_0^p(J)$ we can see that this lemma follows from the previous observation about eigenfunction and eigenvalues for the *p*-Laplacian problem with Neumann boundary value conditions together with Lemma 4 (more can be found in (DKN)) \Box

We recall that, given any $m \in \mathbf{N}$, the *m*-th approximation number $a_m(T)$ of a bounded linear operator $T: X \to Y$, where X and Y are Banach spaces, is defined by

$$a_m(T) := \inf \|T - F| X \to Y \|,$$

where the infimum is taken over all bounded linear maps $F : X \to Y$ with rank less than m.

A measure of non-compactness of T is given by

$$\beta(T) := \inf \|T - P|X \to Y\|,$$

where the infimum is taken over all compact linear maps $P : X \to Y$. In our case we have $X = W^{1,p}(I)$ and $Y = L^p(I)$. Then since $L^p(I)$ has the approximation property for $1 \le p \le \infty$, T is compact if and only if $a_m(T) \to 0$ as $m \to \infty$, and $\beta(T) = \lim_{n \to \infty} a_n(T)$.

3 The Main Theorem.

Definition 3.1 Let $\varepsilon > 0$ and $I = (a, b) \subset \mathbf{R}$. We define

$$N(\varepsilon, I) = \inf\{n; I = \bigcup_{i=1}^{n} I_i, A(I_i) \le \varepsilon, |I_i \cap I_j| = 0 \text{ for } i \ne j\}.$$

From our previous observation that $A_0(J) = \left(\frac{1}{\lambda_{1,J}}\right)^{1/p} = (p'p^{p-1})^{1/p} \frac{|J|}{2\pi_p}$ we have:

Observation 3.2 i) Given any $\varepsilon > 0$ we have $N(\varepsilon, I) < \infty$.

ii) Let $\varepsilon > 0$. Then there is a covering set of intervals (that is, a set of non-overlapping intervals)

 $\{I_i\}_{i=1}^{N(\varepsilon)}$ such that $A_0(I_i) = \varepsilon$ for $i = 1, ..., N(\varepsilon)$ and $A_0(I_{N(\varepsilon,I)}) \le \varepsilon$.

iii) For any $n \in \mathbf{N}$ there exist $\varepsilon > 0$, such that $n = N(\varepsilon, I)$ and corresponding covering sets $\{I_i\}_{i=1}^{N(\varepsilon,I)}$ for which $A_0(I_i) = \varepsilon$ for $i = 1, ..., N(\varepsilon, I)$.

Moreover we can see:

Observation 3.3 Let $n \in \mathbf{N}$ and $\varepsilon \in \left[\frac{|I|}{2n\pi_p}(p'p^{p-1})^{1/p}, \frac{|I|}{2(n-1)\pi_p}(p'p^{p-1})^{1/p}\right)$. Then $N(\varepsilon, I) = n$.

From this observation we obtain the following two lemmas as in (EEH2).

Lemma 3.4 Let $n \in \mathbb{N}$. Then

$$a_n(E_1) \le \frac{|I|}{2n\pi_p} (p'p^{p-1})^{1/p}$$

and

$$a_{n+1}(E_2) \le \frac{|I|}{2n\pi_p} (p'p^{p-1})^{1/p}$$

and

$$\inf \|E_3 - P_{n+1}\| \le \frac{|I|}{2n\pi_p} (p'p^{p-1})^{1/p}$$

where the infimum is taken over all linear maps $P_{n+1} : L^{1,p}(I) \to L^p(I)$ with rank less than n + 1.

Proof: Let $\{I_i\}_1^n$ be the partition from Observation 4 with $\varepsilon = \frac{|I|}{2n\pi_p} (p'p^{p-1})^{1/p}$. Set $Pf = \sum_{i=1}^n P_i f$ where

$$P_i f(x) := \chi_{I_i}(x) (f((a_i + b_i)/2)), \text{ where } I_i = (a_i, b_i).$$

We can see that $P_i f$ is a linear map from $L^{1,p}(I_i)$ into $L^p(I_i)$ (not necessarily bounded) and it is a bounded linear map from $L^{1,p}(I_i)/\{1\}$ into $L^p(I_i)$ with rank less or equal to 1. Then rank $P \leq n$ and P is a linear map from $L^{1,p}(I)$ into $L^p(I)$ and it is a linear map from $L^{1,p}(I)/\{1\}$ into $L^p(I)$. From (Li1) and Lemma 5 we have that $A_0(I_i) = \sup_{\|u'\|_{p,I_i} > 0} \frac{\|u - P_i u\|_{p,I_i}}{\|u'\|_{p,I_i}}$. Then we have:

$$\begin{aligned} \|(E_3 - P)f\|_{p,I}^p &= \sum_{i=1}^n \|(E_3 - P)f\|_{p,I_i}^p \\ &= \sum_{i=1}^n \|(f(.) - f((a_i + b_i)/2)\|_{p,I_i}^p \\ &\leq \sum_{i=1}^n A_0^p(I_i)\|f'\|_{p,I_i}^p \\ &\leq \sum_{i=1}^n \frac{|I|}{2n\pi_p} (p'p^{p-1})\|f'\|_{p,I_i}^p \\ &\leq \frac{|I|}{2n\pi_p} (p'p^{p-1})\|f'\|_{p,I}^p. \end{aligned}$$

(Note that $||f - f((a+b)/2)||_{p,I}/||f'||_{p,I} < \infty$ for any $f \in L^{1,p}(I)$.) From this follows the third inequality for E_3 .

The proof of the inequality for E_2 is the same.

For the first inequality for $a_n(E_1)$ we have to define a new partition of I. Let $\{I_i\}_1^n$ by the partition from Observation 4 with $\varepsilon = \frac{|I|}{2n\pi_p} (p'p^{p-1})^{1/p}$. Put $J_i = (a_i + |I_i|/2, b_i + |I_i|/2)$ for $i = 1, \ldots, n-1$ and $J_0 = (a, a + |I_1|/2)$, $J_n = (a_n + |I_n|/2, b)$ where $I_i = (a_i, b_i)$. Define $\{c_i\}_0^n$ and $\{d_i\}_0^n$ by $J_i = (c_i, d_i)$.

Set $Gf = \sum_{i=0}^{n} G_i f$ where $G_i f(x) := \chi_{J_i}(x) (f((c_i + d_i)/2))$, for i = 1, ..., n-1, $G_0 f(x) := f(a) = 0$ and $G_n f(x) := f(b) = 0$ where $I_i = (a_i, b_i)$. Then rank $G \leq n_1$ and G is a bounded linear map from $W_0^{1,p}(I)$ into $L^p(I)$. Since $A_0^p(I_i) = A_0^p(J_j)$ then as before we have for $f \in W_0^{1,p}(I)$:

$$\begin{split} \|(E_{1}-G)f\|_{p,I}^{p} &= \sum_{i=0}^{n} \|(E-P)f\|_{p,J_{i}}^{p} \\ &= \sum_{i=1}^{n-1} \|(f(.) - f((a_{i}+b_{i})/2)\|_{p,J_{i}}^{p} + \|f\|_{p,J_{0}}^{p} + \|f\|_{p,J_{n}}^{p} \\ &\leq \sum_{i=1}^{n-1} A_{0}^{p}(J_{i})\|f'\|_{p,J_{i}}^{p} + A_{0}^{p}(I_{1})\|f'\|_{p,I_{0}}^{p} + A_{0}^{p}(I_{n})\|f'\|_{p,J_{n}}^{p} \\ &\leq \sum_{i=0}^{n} \frac{|I|}{2n\pi_{p}}(p'p^{p-1})\|f'\|_{p,I_{i}}^{p} \\ &\leq \frac{|I|}{2n\pi_{p}}(p'p^{p-1})\|f'\|_{p,I}^{p}. \end{split}$$

From this follows the first inequality for $a_n(E_1)$.

From the proof of Lemma 6 we can see that for any n there exists K_n , an n-dimensional linear subspace of L^p , such that for any $f \in L^{1,p}(I)/\{1\}$ (or from any $f \in L^{1,p}(I)$) we have

$$\inf_{g \in K_n} \|f - g\|_p^p \le \frac{|I|}{2n\pi_p} (p'p^{p-1}) \|f'\|_p^p.$$

Moreover, for any n there exists R_{n-1} , an n-1 dimensional linear subspace of L^p , such that for any $f \in W_0^{1,p}(I)$ we have

$$\inf_{g \in R_{n-1}} \|f - g\|_p^p \le \frac{|I|}{2n\pi_p} (p'p^{p-1}) \|f'\|_p^p.$$

Lemma 3.5 Let $n \in \mathbb{N}$. Then

$$a_n(E_1) \ge \frac{|I|}{2n\pi_p} (p'p^{p-1})^{1/p}$$

and

$$a_n(E_2) \ge \frac{|I|}{2n\pi_p} (p'p^{p-1})^{1/p}.$$

and

$$\inf \|E_3 - P_{n+1}\| \ge \frac{|I|}{2n\pi_p} (p'p^{p-1})^{1/p}$$

where the infimum is taken over all linear maps $P_{n+1}: L^{1,p}(I) \to L^p(I)$ with rank less than n + 1.

Proof: First we prove the second inequality for E_2 . Let $\{I_i\}_1^n$ be the partition from Observation 4 with $\varepsilon = \frac{|I|}{2n\pi_p} (p'p^{p-1})^{1/p}$.

From the definition of $A_0(I_i)$ we know that for i = 1, ..., n there exists $\varphi_i \in W^{1,p}(I_i), \|\varphi'_i\|_{p,I_i} = 1$ such that

$$\inf_{\alpha \in \mathbf{R}} \|\varphi_i - \alpha\|_{p, I_i} = A_0(I_i) = \varepsilon.$$

We extend each φ_i to I by taking $\varphi'_i = 0$ outside I_i and define $\phi_i = \varphi_i + c_i$ where $c_i \in \mathbf{R}$ is such that $\phi_i \in L^{1,p}/\{1\}$.

Let $P: L^{1,p}(I)/\{1\} \to L^p(I)/\{1\}$ be a bounded linear operator with rank(P) < n. Then there are constants $\lambda_1, ..., \lambda_n$, not all zero, such that

$$P\phi = 0, \qquad \phi = \sum_{i=1}^{n} \lambda_i \phi_i.$$

Note that $\phi \in L^p(I)/\{1\}$. Then, noting that the following summation is over $\lambda_i \neq 0$,

$$||E_{2}\phi - P\phi||_{p,I}^{p} = ||E_{2}\phi||_{p,I}^{p} = \sum_{i=1}^{n} ||\phi||_{p,I_{i}}^{p}$$

$$\geq \sum_{i=1}^{n} \inf_{\alpha} ||\phi - \alpha||_{p,I_{i}}^{p} \geq \sum_{i=1}^{n} \inf_{\alpha} ||\phi_{i} - \alpha||_{p,I_{i}}^{p} |\lambda_{i}|^{p}$$

$$\geq \varepsilon^{p} \sum_{i=1}^{n} ||\phi_{i}'||_{p,I_{i}}^{p} |\lambda_{i}|^{p} \geq \varepsilon^{p} ||\phi'||_{p,I}^{p}.$$

Then we have that $||E_2 - P||_{p,I} \ge \varepsilon$, so that $a_n(E_2) \ge \varepsilon$.

We prove the inequality for E_3 in the same way as for E_2 . Let $P: L^{1,p}(I) \to L^p(I)$ be a linear operator with rank(P) < n + 1. Let we have the system of functions $\{\phi_i\}_{i=1}^n$ considered previously and put $\phi_{n+1} = 1$; then we have n+1 linearly independent functions from $L^{1,p}(I)$ (note that $W^{1,p}(I)/\{1\} \subset L^{1,p}(I)$).

Then there are constants $\lambda_1, ..., \lambda_{n+1}$, not all zero, such that

$$P\phi = 0, \qquad \phi = \sum_{i=1}^{n+1} \lambda_i \phi_i.$$

Then, noting that the following summation is over $\lambda_i \neq 0$ we have

$$||E_{3}\phi - P\phi||_{p,I}^{p} = ||E_{3}\phi||_{p,I}^{p} = \sum_{i=1}^{n+1} ||\phi||_{p,I_{i}}^{p}$$

$$\geq \sum_{i=1}^{n+1} \inf_{\alpha} ||\phi - \alpha||_{p,I_{i}}^{p} \geq \sum_{i=1}^{n+1} \inf_{\alpha} ||\phi_{i} - \alpha||_{p,I_{i}}^{p} |\lambda_{i}|^{p}$$

$$\geq \varepsilon^{p} \sum_{i=1}^{n+1} ||\phi_{i}'||_{p,I_{i}}^{p} |\lambda_{i}|^{p} \geq \varepsilon^{p} ||\phi'||_{p,I}^{p}.$$

Hence $||E_3 - P||_{p,I} \ge \varepsilon$ and then the third inequality for E_3 is satisfied.

Now we prove the inequality for $a_n(E_1)$. Take $u_{n,I}$ the *n*-th eigenfunction of the *p*-Laplacian eigenvalue problem on *I* with Neumann boundary condition. Let $\{I_i\}_1^n$ be the partition from Observation 4 with $\varepsilon = \frac{|I|}{2n\pi_p} (p'p^{p-1})^{1/p}$. Then we define $\phi_i = u_{n,I}\chi_{I_i}$ and $\phi_i \in W_0^{1,p}(I_i)$ and $\|\phi_i\|_{p,I}/\|\phi'_i\|_{p,I} = A_0(I_i)$. Let $P: L^{1,p}(I) \to L^p(I)$ be a linear operator with rank(P) < n. Then there are constants $\lambda_1, ..., \lambda_n$, not all zero, such that

$$P\phi = 0, \qquad \phi = \sum_{i=1}^{n} \lambda_i \phi_i.$$

Noting that the following summation is over $\lambda_i \neq 0$ we have

$$\begin{split} \|E_{1}\phi - P\phi\|_{p,I}^{p} &= \|E_{1}\phi\|_{p,I}^{p} = \sum_{i=1}^{n} \|\phi\|_{p,I_{i}}^{p} \\ &\geq \sum_{i=1}^{n} \|\phi\|_{p,I_{i}}^{p} \geq \sum_{i=1}^{n} \|\phi_{i}\|_{p,I_{i}}^{p} |\lambda_{i}|^{p} \\ &\geq \varepsilon^{p} \sum_{i=1}^{n+1} \|\phi_{i}'\|_{p,I_{i}}^{p} |\lambda_{i}|^{p} \geq \varepsilon^{p} \|\phi'\|_{p,I}^{p}. \end{split}$$

Thus $||E_1 - P||_{p,I} \ge \varepsilon$ and so the third inequality for $a_n(E_1)$ is satisfied. \Box

The previous two lemmas give us:

Theorem 3.6 If $|I| < \infty$, then

$$a_n(E_1) = \frac{|I|}{2(n)\pi_p} (p'p^{p-1})^{1/p},$$
$$\frac{|I|}{2(n-1)\pi_p} (p'p^{p-1})^{1/p} \ge a_n(E_2) \ge \frac{|I|}{2n\pi_p} (p'p^{p-1})^{1/p}$$

and

$$\inf ||E_3 - P_{n+1}|| = \frac{|I|}{2n\pi_p} (p'p^{p-1})^{1/p}$$

where the infimum is taken over all linear maps $P_{n+1}: L^{1,p}(I) \to L^p(I)$ with rank less than n+1.

Then

$$\lim_{n \to \infty} a_n(E_1)n = \frac{|I|}{2\pi_p} (p'p^{p-1})^{1/p},$$

and

$$\lim_{n \to \infty} a_n(E_2)n = \frac{|I|}{2\pi_p} (p'p^{p-1})^{1/p},$$

where $\pi_p = \pi / \sin(\pi/p)$.

Acknowledgement: Both authors thank the Leverhulme Foundation for its support; the second author is also indebted to the Ohio State University for an international travel grant.

REFERENCES

References

- [AS] M. Abramowitz, I.A.Stegun. Handbook of Mathematical Functions, Dover publications, INC., New York 1965.
- [DM] P.Drabek and R.Manásevich. On the solution to some *p*-Laplacian nonhomogeneous eigenvalue problems in closed form. *Preprint*
- [DKN] P.Drabek, A.Kufner and F.Nicolesi, Quasilinear elliptic equations with degenerations and singularities, de Gruyter Series in Nonlinear Analysis and Applications, 5, Walter de Gruyter & Co., Berlin, 1997
- [EE] D.E.Edmunds and W.D.Evans, Spectral Theory and Differential Operators, Oxford Univ. Press, Oxford, 1987.
- [EEH1] D.E.Edmunds, W.D.Evans and D.J.Harris. Approximation numbers of certain Volterra integral operators. J. London Math. Soc. (2) 37 (1988), 471–489.
- [EEH2] D.E.Edmunds, W.D.Evans and D.J.Harris. Two-sided estimates of the approximation numbers of certain Volterra integral operators. *Studia Math.* 124 (1) (1997), 59–80.
- [EGP] D.E.Edmunds, P.Gurka and L.Pick. Compactness of Hardy-type integral operators in weighted Banach function spaces. *Studia Math.* 109 (1) (1994), 73–90.
- [EHL] W.D.Evans, D.J.Harris and J.Lang. Two-sided estimates for the approximation numbers of Hardy-type operators in L^{∞} and L^1 . Studia Math. 130 (2) (1998), 171–192.
- [EKL] D.E.Edmunds, R.Kerman and J.Lang. Remainder Estimates for the Approximation numbers of weighted Hardy operators acting on L². Journal D'Analyse Mathématique, Vol. 85 (2001).
- [ET] D.E.Edmunds and H.Triebel, Function spaces, entropy numbers, differential operators. *Cambridge University Press, Cambridge*, 1996.
- [L] J.Lang. Improved estimates for the approximation numbers of Hardy-type operators. *preprint*.
- [Li1] P.Lindqvist, Note on a nonlinear eigenvalue problem. Rocky Mountain J. of Math 23 (1993), 281-288.
- [Li2] P.Lindqvist, Some remarkable sine and cosine functions, *Ricerche di Matematica*, Vol. XLIV, fasc. 2, (1995), 269–290.
- [LL] M.A.Lifshits and W.Linde. Approximation and entropy numbers of Volterra operators with applications to Brownian motion, *preprint* Math/Inf/99/27, Universität Jena, Germany, 1999.
- [LMN] J.Lang, O.Mendez and A.Nekvinda. Asymptotic behavior of the approximation numbers of the Hardy-type operator from L^p into L^q (case $1 or <math>2 \le p \le q < \infty$), preprint
- [NS] J.Newman and M.Solomyak, Two-sided estimates of singular values for

a class of integral operators on the semi-axis, *Integral Equations Operator Theory* 20 (1994), 335–349

- [OK] B.Opic and A.Kufner, Hardy-type Inequalities, Pitman Res. Notes Math. Ser. 219, Longman Sci. & Tech., Harlow, 1990.
- [T] H.Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland Publishing Company, Amsterdam 1978.