BOUNDEDNESS AND COMPACTNESS OF GENERAL KERNEL
INTEGRAL OPERATORS FROM A WEIGHTED BANACH
FUNCTION SPACE INTO L

JAN LANG, ALES NEKVINDA, AND LUBOS PICK

ABSTRACT. We give necessary and sufficient conditions for boundedness and
compactness of a general kernel integral operator Lf(x) = [,£(x,t)f(t)dt,
where the kernel ¢ is assumed only to be measurable, from an arbitrary
weighted Banach function space into Loo. We give lower and upper bounds
for the distance of L from compact operators. The proofs are carried out by
means of a new method based on real-variable techniques.

1. INTROBUCTION

The problem of boundedness and compactness of kernel integral operators
Lf(z) = [;(x,t)f(t)dt, where {(z,t) is a general measurable function on I? and
I is an interval, and their distance from compact operators, have been studied by
many authors (cf. e.g. [7], [3], [9], [8], or the monograph [2]). Usually, for L,—L,
type estimates with g < co, the authors use rather restrictive assumptions on the
kernels. Typically (see for example [[8], (1.3)]), the kernel is supposed to be posi-
tive, monotone in each variable, locally uniformly continuous, and satisfying certain
triangle inequality.

The situation turns out to be different when the target space is Lo,. For example,
in [5], boundedness and compactness of the Hardy operator H f(x) = foz f(t)dt from
a weighted Banach function space (X,v) into L., was characterized by relatively
simple conditions. The methods from [5] can be immediately generalized to kernel
operators T'f(x) = fom k(x,t) f(t)dt, but only when k is positive and monotone in
the first variable.

In this paper we develop a different method based on real-variable methods
and measure-theoretic considerations, which enables us to characterize completely
boundedness and compactness of the kernel operator, assuming only that the kernel
is measurable. A remarkable fact is that ¢ is allowed to take negative values. We
further give sharp lower and upper bounds for the distance of L from the set of
compact linear operators. Notably, it turns out that every compact operator can
be approximated by operators with kernels of the form k(z,t) = Y| xar, ()5 (¢),
where M; C I and % € (X',v) (here (X’,v) denotes the associate space to (X,v)).

In the particular case when (X, v) is separable, some of the results were obtained
in [4].
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The paper is structured as follows: preliminary material and some basic facts on
Banach function spaces are collected in Section 2 (the standard general reference
is [6] or [1]). In Section 3 we characterize boundedness of L by means of the norm
of £ in Lo(X’,v). This section also contains the key real-variable considerations.
In Section 4 we characterize compactness of L, and in Section 5 we present lower
and upper bounds for the distance of the Hardy operator from compact operators,
recovering thereby, in particular, a result from [5].

2. PRELIMINARIES

Let —0o < a < b < oo and let I = (a,b). Let M(I) and M (I?) denote the sets
of all measurable functions on I and I2. Let v be a weight (that is, a measurable
and a.e. positive and measurable function) on I.

Definition 2.1. We say that a normed linear subspace (X, v) of M(I) is a weighted
Banach function space if the following five axioms are satisfied:

(2.1) the norm ||fllxv is defined for all f € M(I), and f € (X,v) if and only if
1l x,0 < 005

(2.2) [fllxo = II'1f] Ix.0 for all f € M(I);

(23) 0< fn /[ ae inl, then | fullxo /" [[fllx.0:

(2.4) ifv(E) :/ v(t)dt < oo, then xg € (X,v), where xg
E

denotes the characteristic function of F;

(2.5) for every E with v(E) < oo there exists a constant Cg such that
/f (t)dt < Cgl||fllx,o for all f € (X,v)(I).

In what follows, (X, v) will be a fixed weighted Banach function space.

Definition 2.2. The set
/|f t)dt < oo for all gG(X,v)}

is called the associate space of (X,v). The space (X', v), equipped with the norm

Iflxi= sw_| [ s,

llgllx,o<1

is also a weighted Banach function space. The Holder inequality

(2.6) / Falo < Il x.ollglx e

holds, and it is saturated in the sense that for every g € IM(I) and € > 0 there
exists a function, f, such that || f||x» =1 and

(2.7) (1= )lgllxro < / fav.
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Throughout the paper we shall work with a kernel operator L, defined for f €

(X,v) by
/€ x,t)f

where ¢ is a kernel, that is, ¢ € 9)?([2

Of course, [, €(x,t)f(t )dt need not have a sense for some functions from (X, v).
We say that the kernel ¢ is admissible, £ € A, if there is a set J C I, [T\ J| =0
(where | E| denotes the Lebesgue measure of E), such that for every f € (X, v) the
function = — [} £(x,t) f(t)dt is defined everywhere in J.

Lemma 2.3. ¢ € A if and only if % € (X',v) for each x € J.

Proof. Let x € J and éfjf’)) (X’,v). By Hélder’s inequality we have for f € (X', v)

/|€xt

Thus, [, {(x,t)f(t)dt has a sence and £ € A.

Let £ € A, x € J. Assume ZI()”(”_’)') ¢ (X', v).

I. Suppose first £(z,t) > 0 and set I™ = {t € I;{(x,t) > 0}. Since
sup{ [, [€(x, 1) f(t)|dt; ||fH(X,U) < 1} = oo there exists a sequence 0 < f,,

[fallixwy < 1and [, e(z,t)f(t)dt > n®. Setting fo(t) = xr+(t) 302y n™ > fu(t)
we easily obtain fo(t) >0, fo(t) =0fort € I\ IT, fo(t) € (X,v) and

(2.8) /e 1) fo(t)dt =

Set Ij, = [2,28+1) and Ay = fi ' (I) for each k € Z. Thus, IT = |J; ., A and

22’“ €xtdt</£xtf0 dt<2z2k Oz, t)dt

Ay

oy Il < 0.

k=—o0

which yields with (2.8)

22’“ Ext = 00.

k=—o0
Let Z1, Z2 be disjoint subsets of Z with Zy UZy = Z and 3,y 2% [, U(x,t)dt =
oo and Zk:% ok fAk lz,t)dt = oo. Set fi(t) = Zkezl fo)xa, (), f1(t)
Yowez, fot)xa,(t) and g = fi — fo. Then g € (X,v) and [} {(x,t)g(t)dt =
J; x,t) fr(t)dt — [} £(x,t) f2(t)dt has no sense which is a contradiction with £ € A.

II. Let £(x,.) € M(I) then we can write £ = £T — £~ and elther (( ) D) ¢ (X' v)

g’:‘ (X',v). Take
(z,
(t

or % ¢ (X',v). Without loss of generality assume

€ (X,v) as bellow such that {t € I;¢g(t) > 0} c {t € I o
J; ¢ (x,t)g(t) has no sense. Then also [, {(x,t)g(t) = [, (T (x,t)g
which contradicts to £ € A.

t) > 0} and
) has no sense

O
Let us recall that f € L if f € (1) and

[fllz =ess sup|f(z)[ = inf — sup |f(z)] < oo.
zel | M|=0 ze(1\M)
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By ||L|| we denote the operator norm of L from (X, v) into L, i.e.,
(2.9) IL|| = sup ess sup‘/é x,t)f dt‘
Ifllxn<1 =€l

3. BOUNDEDNESS OF A GENERAL KERNEL OPERATOR
Our goal in this section is to establish

Theorem 3.1. Let I be an arbitmry interval, (X,v) a Banach function space, and
¢ e A. Then the function x —

18 measurable. Moreover, setting

(JJ,')

v() HX/,v

v() HX/

(3.1) 14|z x,

we have ||L|| = [[€]| 1 (x7,v)-

Let us start with the proof of the inequality ||L|| > [|£| 1 (x’.). Basically, we
have to interchange the supremum and the essential supremum in the definition of
IL|| (cf. (2.9)). We start with two measure-theoretic lemmas.

For A C I?, we denote by A, the intersection of A with {x} x I, i.e., 4, =
{y; (z,y) € A}. As usual, A + B denotes the symmetric difference of A and B.
Convention. In the rest of this section we assume that (X, v) is a fixed weighted
Banach function space. We also, without any loss of generality, will assume that
I=10,1].

Lemma 3.2. Let Q C I? be an open set. Let M C I be a measurable set such that
(x — 8,4+ ) NM| >0 forallz € M and 6 > 0. Then for every e > O there exist
aZ CI and an N C M such that |N| > 0 and |, + Z| < € for every x € N.

Proof. Assume the contrary. Let € > 0 be such that for every Z C [ and N C M,
|N| > 0, there is an « € N such that |2, +Z| > €. Let xg € M. Then Q,, is an open

subset of I, whence either Q,, =0 or Qg = J;~, (a;, ;) for some 0 < a; < b; < 1.

By the regularity of measure, there is a Ko = J°, [¢;, d;] such that Ko C Q,, and
€

(3.2) |9, \ Ko| < T

Now, Kj is compact. Therefore, the distance of {zo} x Ky from I?\ € is positive.

Thus, for a §y > 0 small enough we have

(3.3) (xo — do, o + 50) x Ko C Q.

Set Z = Qy, and N = (29 — o, o + do) N M. By our assumption, there is an
x1 € (xo — o, o + 0p) N M such that

(3.4) |y + Qg | > €.
Now, by (3.3), Ko C Q,, (3.2), and (3.4),

3¢
(3.5) €22, \ Ko| > R

Since Q,, \ Ko is open, there exists a set Ry = (J/2,, [ci,di] C (R, \ Ko) such
that

(3.6) 00, \ (B U Kp)| < Z
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and as a consequence of (3.5) and (3.6) we have
€

Denote K1 = Ry U Ko = U, [ci, di]. Now, as above, K; is compact, whence, for
61 > 0 small enough, we have
(Il — 51,1‘1 +51) X Kl c Q.

Let Z = Q,, and N = (z1 — é1,21 + 61) N M. By our assumption, there is an
x9 € (x1 — 01,21 + 01) N M such that |Q,, + Q.| > . As above, K1 C Q and
Q,, \ K1| > 2. Since Q,, \ K is an open set, there is a set Ry = U2, filei,di] €
(4, \ K1) such that [Q, \ (R2 U K1)| < §, and, consequently, |Ry| > 5. Let
Ky = K1 URy = J:2,[ci,d;]. Then |Ks| > 5+ 5 = ¢ Since K3 is a compact
set, we have for d; small enough (2 — 02,22 + d2) x Ko C Q. Let Z = Q,, and
N = (x93 — 02,22 + 02) N M. Continuing this process we obtain after m steps for
large m € N |K,,,| > |I|, which is a contradiction. O

Lemma 3.3. Let A C I? be a measurable set and let M C I, |[M| > 0. Then for
every € > 0 there is a set N C M, |[N| > 0, such that

Ay + Ayl <e forall z,yeN.

Proof. Let € > 0 be fixed. In the case |A| = 0 it suffices to put N = M. Let
|A| > 0. Define P = {x; |4,| > 0}. Clearly, |P| > 0, whence either |M \ P| > 0 or
|M N P| > 0. In the case |[M \ P| > 0, it suffices to put N = M \ P. Assume that
|M \ P| =0. Denote My = M NP and B = Ugep, {x} x A;. Clearly, |[B| > 0. By
the regularity of the Lebesgue measure there is an open set Q, B C €2, such that
|\ B| < §|M;]. Set

(3.7) Q=o€ Mi; [\ Bo| = 2}

If |Q| = [My], then the Fubini theorem implies |2\ B| > £|Q| = | M|, which is
a contradiction. Therefore, |Q| < |Mq].

Let Ms be a set of all density points of M7\ Q. By the Lebesgue density theorem
we have |Ma| = |M;y \ Q| > 0, and by (3.7) we obtain

10, \ Ba| = Q0 \ Ag| < Z forall  x € M.
By Lemma 3.2, there are sets Z C I and N C M, |N| > 0, such that
(3.8) 0+ 7| < % forall =z € N.
Now, we fix x,y € N. We shall estimate |4, + A,|. Since
Ax\ Ay €O\ Ay C (2 \ Q) U (Qy \ Ay),
it is easy to verify that
(3.9) A\ Ayl < 122\ 2+ 7.

Moreover, Q,;\ Q, C (2 \ Z)U(Z\ Q) and Q, \ Q; C (2 \ Z) U(Z\ Q;), which
together with (3.8) yields

|Qm+9y|g|9x+2\+|szy+2|<2
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Using (3.9), we obtain |A, \ 4,| < §, and, consequently, |4, + A,| < e. The proof
is complete. ([

In the sequel we denote by f|x the restriction of a function f to a set K.
We shall use the following notation. Let F be some subset of the unit ball of
(X,v). Then we define

Fr(x)=F(z) = ?lelg/lﬁ(x,t)f(t)dt, zel,

and
P = ess sup F(x).
el

We have to prove that F' is measurable on I and that || L] > P. We first adopt
certain restrictions on ¢ and F, which will be gradually chipped away later on.

Lemma 3.4. Let K C I? be a compact set. Assume that £ € A, £ > 0, l|x is
continuous, and £ =0 on I?\ K. Let C >0 and F = {f; |fllx» <1, 0< f < C}.
Then F' is a measurable function on I and ||L|| > P.

Proof. By our assumptions on K and ¢, there exists a constant D > 0 such that
0<¢<DonlI? Let e > 0. We divide the proof into three steps. In the first two
steps we prove that F is measurable and in the third step we show ||L|| > P.
Step 1. We claim that for a set M C I, |M| > 0, there is a set N C M, |[N| > 0,
and f € F, such that

F(z) —e(14+2C+4CD) S/ﬁ(m,t)f(t)dtSF(m) for all x € N.
I

Let |M]| > 0. By Lemma 3.3, there is My C M, such that |My| > 0 and
(3.10) |Ky +~ Ky| <e for all z,y € Mp.

Now, choose x¢ € My such that for every § > 0 we have |(zg — 6, zg + &) N My| > 0.
By the uniform continuity of £|, there is a 4y > 0 small enough and such that, for
T € M = (1‘0 —(50,.1304—50) N My and t € meme

(3.11) [0(x,t) — l(zo,t)] < €.
From the definition of F'(x) we obtain the existence of fy € F satisfying
(3.12) Flag) - < /E(xo,t)fo(t)dt < Flay).
I
Set

G(z) = / U, t)folt)dt for z € 1.
Clearly, '
(3.13) G(z) < F(x) for ae. x €.
Let x € My and f € F be fixed. We denote

Rz, f) = / (€ ) — O, 1) ().
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Using (3.10), (3.11), and 0 < ¢ < D, we get
IR(z, )] < / 0, ) — O, D (£)dt
— [ et~ a0
KoNK,,

+ /K « Oz, t)f(t)dt + / " U(xo, t) f(t)dt
<eC+2CD =¢(C+2CD).

Now, setting f = fy we have

(3.14) |G(z) — G(xo)| < e(C+2CD) for x € M.
Let R(z) = sup ez |R(z, f)|. We immediately obtain

(3.15) 0 < R(z) <e(C+2CD) for all = € M;.
Since

/ U 1)1 (1)t = / Uwo, 1) f(£)dt + Rz, f),
I

we have
= sup /f xo,t) f(t)dt + R(x, f))
feF
and, consequently,
<sup/€x0, t)dt + R(x).
fer

We can rewrite the last inequality as F(x) < F(xo) + R(x), € M;. Thus, by
the above inequalities, (3.14), (3.12), and (3.15), we obtain for € M;

G(z) > G(xg) —e(C +2CD) > F(xg) —e(1+ C +2CD)
> F(z) — R(z) —e(1+ C +2CD) > F(z) —e(1+2C + 4CD).

Now, it suffices to use (3.13) and the last inequality, and to set f = fo and N = M;
to prove our claim.

Step 2. Let M = I. By Step 1, there exist Ny C I, |[Ny| > 0, and f; € F such
that

F(z)—e(14+2C+4CD) < /K(x,t)fl(t)dt < F(z) for xe€ Nj.
I

Assume that we have constructed sets Ng and functions fg for all ordinal numbers
B < a, where a is a fixed countable ordinal number. Set M = I'\ Uz, Ng. If
|M| = 0, we stop the construction. If |M| > 0, then by Step 1 we have N, C
I\Up<o N3, [Nal > 0, and there is an f, € F such that

Fz) — (14 2C + 4CD) < /é(az,t)fa(t)dt <F) for z€N,
I

This process will stop after countably many steps. Hence, there exists a countable
ordinal number v such that for x € Ng, 5 <,

(3.16) F(z) — (14 2C + 4CD) < /I () fo(t)dt < F(a),

and moreover
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(3.17) NoNNg=0 for a#p, [Ng| >0 for B<wy;
(3.18) T\ |J Nsl =0.
B<y

Define a function H. by He(z) = 3 5., xn,(2) J; Oz, t) fa(t)dt. Since for every 8 <
7 the functions x — [ £(x,t) f3(t)dt and xn,(x) are measurable, H, is measurable
as well. Moreover, according to (3.16), (3.17)and (3.18) we have for a.e. x € T

F(x) —e(142C +4CD) < H.(x) < F(x),
which implies
F(z) = lim Hy/p,(x) for a.e. zel,
n—oo

and, consequently, F' is measurable.
Step 3. We claim ||L|| > P. Observe that

IL|| = sup ess sup‘/é(m,t)f(t)dt’ = sup ess sup/é(x,t)f(t)dt.
I fllx0<1 zel I Ifllxo<1 zel JI
By the definition of P, there is a set M, |M| > 0, such that
P—e<F(x)<P forall =€ M.
Now, by Step 1, there is a set N C M, |N| > 0, and a function fy € F such that

/ o) fo(B)dt > F(z) — (1 +2C +4CD)  forall z € N.
I
Thus,

IL|| = sup ess sup/ﬁ(x,t)f(t)dt
I

”fHX,vS1 zel

> sup ess sup/f(x,t)f(t)dt
fEF zeEN I

> ess sup/ﬁ(%t)fo(t)dt > F(x) —e(1+2C+4CD)
zEN I
> P—c(2+2C +4CD).

Letting € tend to zero we complete the proof. O

Lemma 3.5. Assume that £ € A and 0 < ¢ < D for some D > 0. Let C > 0.
Define F = {f; |fllxp <1 and 0 < f < C}. Then F is measurable and ||L|| > P.

Proof. Let K,, be a sequence of compact sets, K,, /' I, such that |, are contin-
uous functions. Set ¢, (z,t) = £(z,t)xk, (z,t). Since 0 < £,, < £ we have by Lemma
2.3 Zf}”(“:’)') € (X',v) almost everywhere in I and so, é”v((%)") € (X’,v) which implies

again by Lemma 2.3 ¢,, € A. Set

L,f(z)= /Ién(x,t)f(t)dt for f € (X,v),
F,(z) = sup L, f(z) and,
fer

P, = ess sup F,(x).
xel
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Clearly, 0 < ¢,, / £ a.e. in I2. Then there is a set I; C I,|I \ I;| = 0, such that
for every x € I we have 0 < ¢,,(x,-) / £(z,-) a.e. in I. Thus, 0 < £, (z,t)f(t) /
Uz, t)f(t) for z € I; and f > 0, whence

Og/jaaﬂﬂﬂﬁ/a/amﬂﬂﬂﬁ forz € Iy and f > 0.
I T
Now, it is not difficult to verify that

0< F,(z) / F(z) for x € I.

By Lemma 3.4, F),, are measurable. Thus F' is measurable as a pointwise limit
of F,,. Moreover, it is readily seen that

(3.19) 0< P, /P
Moreover, it is clear that
IIL|| = sup ess sup/é(x,t)f(t)dt,
IFllx,0<1,f>0 =€l JI

and
Lol = sup_ess sup [ £u(at) (00t
Ifllx <1 zel JI
For f > 0 we have [, ,(x,t)f(t)dt < [,(z,t)f(t)dt. We thus obtain
(3.20) L] > || Ln| for any n € N.

Observe that the kernels ¢,, satisfy the assumptions of Lemma 3.5 and therefore
|Ln|| > Py, which via (3.19) and (3.20) implies | L|| > P. The proof is complete. [

For M C R measurable we denote by D (M) the set of all points of M which are
the Lebesgue density points of M. Recall that |M \ ©(M)| = 0.

Lemma 3.6. Let A C I? and M € I be measurable sets, |M| > 0. Then there
exists N C M, |M \ N| =0, N = D(N) with the following property: for every
x € N and € > 0 there is a set B C N, such that

(3.21) B =9(B),
(3.22) z€B,
(3.23) A, ~ Al <e for wy,z € B.

Proof. Fix € > 0. By Lemma 3.3, there is a set J,\Zs’l C M, |]T/.f/5,1| > 0, such that
|Ay + Al <efory,ze ]/\\/I;,l. Set M1 = @(]/\\/[/5,1). Clearly, |M. 1\ M. 1| =0 and,
consequently, | M, 1| > 0. Assume that we have constructed for an ordinal number
o the sets M. g, 8 < «, such that for any 3 we have

Ay~ A.| <e for y,ze€ Mg and M. 3 =D (M. p).
If [M\ Upeo Megl = 0, we set M. = U, Mcp and we stop the construc-
tion. If |M \ Us., Mep| > 0, then, by Lemma 3.3, there is an M&a C

M\Uﬂ<a M. s, ‘M&a‘ > 0 and IAy+AZ| <efory,z e Ma,a- Set M, o = Q(Ma,a)~
This process will stop after a countable number of steps. Hence there is a count-
able ordinal v, such that

|M\ U M. 5| =0,
B<7e
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and for # < . we have
M. 3 =9(M.p), and |Ay + Al <e  for y,z€ M.pg.

Let us define
M.= | M.p.
B<e

Set

~ 0 ~

N=()M. and N = D(N).

n=1
Evidently, N C M. Moreover, |[M \ M1| =0 for n € N, hence [M \ (" _, M| =
M\ N| =0, and, as |N \ N| = 0, we have |[M \ N| = 0. Clearly, N = D(N).
Let € > 0 and z € N. Fix n such that = < e. Then z € M1 = Usery, M1 g

Let o < 1 be an ordinal number such that z € M1 g
have M1 , = D(M1 ,). Moreover,

«- By the construction we

1
|Ay+AZ|<E<6 for y,z€ My

Now, to prove (3.21), (3.22) and (3.23), if suffices to take B = M1 , N N. O

Lemma 3.7. Let £ € A and let |¢| < D a.e. in I? for some D > 0. Let C > 0. Set
F=A{f; Ifllxp <1 and|f| <C}. Then F is measurable and |L| > P.

Proof. Since £ € A, there is a J C I, |I\ J] = 0, and the function z
J; (x,t) f(x)dt is well-defined for all # € J and f € (X, v). Then for z € J

(3.24) F(z) = sup /[ [0(x,t)| f(t)dt

fer

By Lemma 3.5, the last expression is a measurable function. Thus, F is measurable.
Let € > 0. Then there is a set M C J,|M| > 0, such that

(3.25) P—ec<F(z)<P forall =z e M.
Set
Kt ={(z,y) € I* U(z,t) >0}, K ={(x,y) € I* {(2,t) <0}, K=KTUK",
and
PK* ={x € J; |K}| >0}, PK~ ={z € J;|K,|>0}.

Let further

M, =PK*NPK NM, My = (PKY\ PK™ )N M,

Mz = (PK~\ PKY)Nn M, My=(I\(PKTUPK™))Nn M.
Clearly, M = U?Zl M;, and at least one of these sets has a positive measure. Set

&(x,t) = £($7t)XMi (x)’

(Lif)(x) = / G, 1) f (1)t

I

Clearly, by Lemma 2.3 we have ¢; € A for 1 <i < 4. Fix i € {2,3,4} and assume
|M;| > 0. It is easy to see that 0 < ¢y < D, —D < {3 <0, {4, =0 and

(3.26) 1Ll = (L]l
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Define
P —esssup  sup / 163 (2, )| f (1)t
el || flxn<1,0<f<C U1
Then, by the definition of ¢; and (3.24), we have

P; > ess sup sup / [€;(x,t)| f(¢t)dt
zeM; | fllx,.<1,0<f<CJT

= ess sup sup / |¢(x,t)| f(t)dt = ess sup F(z).
z€M; ||fllx,0<1,0<f<CJT zEM;

By Lemma 3.5 we have ||L;|| > P;. Therefore, using also (3.25) and (3.26), we have
(3.27) |L||> P —e.

Now let us assume that |Ms| = |M3| = |My| = 0. Then |M;| > 0. There exist
sequences of compact sets K7, K such that K 7 K*, K, / K~ and moreover
Ol g+l - are continuous functions. Set K, = K;F UK, . Fixn € N. Now, Lemma
3.6 guarantees the existence of sets N,” C M, |M; \ N;f| = 0 and N,7 = D(N,))

such that for any z € N, there is a set N\, C NI which satisfies

(3.28) NS, =9(N;,),
(3.29) r €N,

+ gt +
(3.30) Ky, ~ K, | <e for y,z€ N.,.

Analogously, there is a set N,, with N, € My,|M;\ N, | =0,N,; = D(N,;) and
for any x € N, we have a set N, C N, such that

(3.31) Ny =9D(N, ),
(3.32) re N,
(3.33) K, , ~ K, |<e for y,z€ N, .

Set Ny = (22, (N;f N N;7) and Ny = D(N;). Obviously, [M; \ Ni| = 0 and,
consequently, |[N1| > 0. Denote for n € N
PK ={z e J; \K;r|>0}7 PK, ={r e J;|K, | >0}
By the Fubini theorem, |M;| > 0, and K,, /" K, we can choose an ng € N large
enough in order that
|PK;" N PK,, N M| >0 for all n > ny.
Set
Ap={zeJ;|K]\ K], | <eand |[K; \ K, | <c}.
Since for any n € N the functions z — |K} \ K,! | and z — |K; \ K,| are
measurable, A,, are measurable as well. Moreover, A,, is a non-decreasing sequence
of sets.

Since K,/ K* and K /' K, we obtain by the Fubini theorem K~ K}
and K, . /' K, fora.e. x € J. So, there is a set J; C J, [J\ Ji| = 0 such that
(3.34) Kt /K5 K, , /K, foraluzel.

Using the Fubini theorem again, we can find an n; € N such that |4, N N1| > 0 for
any n > ny. Let ng = max{ng,n1}. Then we see that

(335) |KF\K[,|<e and |K;\K,, <e forallze€ A, NN, n>no.
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Define £} = xp+ and £, = xp—. Set £, = £ — £, Let Ny = A,, N N1 N Jy.
Clearly, |Na| > 0.
Let xg € D(N3). Since xg € No C Ny C My C M, we have from (3.25) and the
definition of F(x¢) a function fo(t) such that
(3.36) P2 / a0, 1) folt)dt] < P.
I
Clearly, (3.34) and the fact that zo € Jy imply £} (zo,t) / €1 (20,t),¢, (x0,t) /

£~ (x0,t). Since the constant function C'D can serve as an integrable majorant, we

can write
[ ottt — [ ¢ @ost)saltra
I I

/ 05 (2o, ) folt)dt — / 0 (0, ) folt)dt
I I

Hence, there exists an n3 > ns such that

/ * (20, 1) fot)dt — & < / 0 (20, 8) fo(t)dt < / (20, ) fo (D)dt + &,
I I I
nd

and

a

/ (l’o, )fo( )dt*é‘ S/ (l'o, )fo( )dt S/ (SC(), )fo( )dt+€

I I I

Using these inequalities, £,,(zo,t) = £} (zo,t) — £, (z0,t), and £(zg,t) = €T (xg,t) —
£~ (zp,t), we obtain

| [ to oyt - 22 <| [ tustoo. o] < | [ ttan,t1so(0rit] + 22
I I I
Together with (3.36), this yields
(3.37) Pl < ’ /ém (:co,t)fo(t)dt’ < P+ 2.
I

Since €|K”3 is continuous, there is an «p > 0 such that, for z € (xg — ag, o + ap)
and t € Ky, », N Kiy o,

(3.38) [€ng (x,8) — €y (0, )| < €
Set N3 = (xg — ag, 2o+ cg) N No ﬂNjo ns N Noo ny- We know that 2o € D(Na). By

(3.28), (3.29), (3.31) and (3.32) we have xy € N3, 9 € D(N3) and, consequently,
‘N3| > 0.
Recall that N3 satisfies the following inclusions:

(3.39) N3 C N2 C Ay,
(340) N3 (SCO — Qp, X9 + Ck()),
(3.41) N3 C NI0 ns NV Nagng-

We shall estimate
- /é(x,t)fo(t)dt, z € N,
I
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Clearly, for a fixed z € N3, we have

m@:ﬂmwfmmmmwt

I

+/ (0 (211) — g (0, ) folt)dt
K NK

ng,xrq ng,xr

+Aﬁ Oy (2, 1) fo ()t

w0\ Kng.o

+ /K O (20, 8) fo(£)dt

n3,x\Kn3,m0
+/@Amﬁh@ﬁ=h+b+h+h+h
I

Now, evidently,
IMS/W%U4m@mm®W
I

+ T (e .
S/K:\K:Sf @Ol + | 1€ (D)l folt) dt

EY ng,r

By (3.39), © € N3 C A,,. Since n3 > ny > ny, we have by (3.35) |I;| < 2eCD. By
(3.38) and (3.40), |I| < £C. Using (3.30), (3.33) and (3.41), we get |K;\, = Kt , | <
e and |K, , + K, , | <e¢, and therefore

I <eCD, L] < CD.
Now, (3.37) and the estimates of Iy, I, I3, I, give

|IL|| > sup ess sup ‘ /If(amt)f(t)dt‘ > ess sup ‘ /Iﬁ(xﬂf)fo(t)dt

feF =zel zEN3
=ess sup |G(x)| = [I5| = [I1] — [L2| — [{3] — [14] = P —e(4 + C +4CD).
rE€N3

We have proved that if |My| = |M3| = |My| = 0, then either |L|] > P — ¢ or
IL|| > P —e(44 C + CD). Together with (3.27) this yields

|L|| > P —e(4+4 C +4CD).
Letting e tend to zero, we obtain ||L|| > P, and the proof is complete. O

Lemma 3.8. Let £ € A, || < D in I? for some D > 0 and let F be the unit ball
of (X,v). Then F is measurable. Moreover, |L|| > P.

Proof. Let Fo ={f; |fllx» <1, |f] < C}forany C > 0. Let a > 0 and h € M(I).
We denote

a if h(t) >a
ha(t) = < h(t) if |h(@t)]<a
—a if h(t) < —a.

We define Fo(x) = supsez, | [ £(x,t) f(t)dt].

Let J C I, [T\ J| = 0 and assume that [, {(x,t)f(t)dt exists for any z € J
and f € (X,v). Fix x € J. Clearly, [,hc — [, h for C — oo if [, h exists in the
Lebesgue sense. Then

‘/Ié(a:,t)fc(t)dt‘ - ‘/Ié(a:,t)f(t)dt’ for €' — oo,
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It is not difficult to prove from the above convergence that
Fo(x) /' F().

By Lemma 3.7, the functions Fo(x) are measurable and therefore F'(x) is measur-
able as a monotone pointwise limit of F ().

Moreover, as Fe(z) / F(x) a.e. in I, we have also P/ P. Now, Lemma 3.7
implies ||L|| > P¢ for any C' > 0, and thus ||L|| > P. The proof is complete. O

Lemma 3.9. Let I =[0,1]. Let 6 > 0 and denote
M={A; Ae M(I),|A| <}

Then there exists a countable system C = {M;}ien of sets, |M;| < 0, such that for
every A € M and e > 0 there is a k € N such that |A + M| < e.

Proof. Set

C={McI;M= U(ai,bi), n € N, a;,b; rational, (a;,b;)N(aj,b;) =0 for i # j
i=1

and Z(b’ —a;) <0}
i=1
Clearly, C is a countable system, i.e. C = {M,};en.
Now, let A€ M and € > 0. Fix a v such that 0 <y < min{$,d — |A[}. By the

regularity of the Lebesgue measure, there is an open set G = |J;2, (¢;, d;) such that
AC G and

(3.42) |G\ Al <.

Since G C I, we have Y .2 (¢; — d;) < 1, and there exists an n € N such that
the set G,,, defined by G,, = ", (¢;, d;), satisfies

(3.43) |G\ Gp| <.
Let a;,b; € Q,i=1,2,...,n, are such that
(aib) C (civds)  amd (e d) \ (ai,bi)| <

Set M =J;_,(ai, b;). Clearly, M C G,, and

(3.44) G\ MI <Y (e di) \ (ai.b)] < 7

Evidently, we have from (3.42)
|M[ < [MA\A|+ A < |G\ A[+[A] < v+ |A] <,
which implies M € C. Moreover, due to (3.42), (3.43), and (3.44) we can write
A+ M| =[A\ M|+ M\ A < [G\Gn| +|Gn \ M[+[G\ A <37 <&,
which completes the proof. O

Lemma 3.10. Let £ € A and let F be the unit ball of (X,v). Then F is measurable
and ||L|| > P.
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Proof. Since £ € A, there is a set J C I, [I'\ J| = 0, and such that [, £(x,t)f(t)dt
has a sense for any # € J and f € (X,v). Set B, = {(x,y) € I?; [{(z,t)] < n}.
Define

bn(z,t) = Lz, t)x, (,1),  (Luf)(z) = /En(fc,t)f(t)dt-

I
Remark that by Lemma 2.3 we immediately obtain /,, € A.
Step 1. Now we claim that F is measurable. Note that F(z) is defined for every
x € J. Fix x € J. Clearly, |l,(z,t)| / |¢(z,t)| in I?, and, consequently,

(3.45) [ln (2, )| f(£) /" [€(z, )| f(t)  forany f=>0.
It is easy to see that
F(z) = sup /|£ x, t)|f(t)
1fllx,0<1,f>0

By (3.45), we have for f >0

/ (0, 1) (D)t 7 / 0, )] £ (1)t
I I

and, consequently,
Fu@)i= swp [0l Fla).
Ifllx,0<1,f>0J1
The function F;, can be expressed also by
(3.46) F,(z) = sup ‘/5 z,t) f(t)dt|.
[fllx0<t

Since £,, € A, we have from Lemma 3.8 that F;, are measurable. Then the fact that
F,(z) /" F(x) for any « € J shows that F' is measurable.

Step 2. We will prove the inequality
(3.47) [ L]l > || Ln || for any neN.

Fix n € N. The norms ||L|| and ||L,]|| are well defined because £,,¢ € A.
If ||L|| = oo, then (3.47) is trivial. Assume that || L] < oco.
If || Ly|| = 0, then (3.47) is evident. Suppose ||L,| > 0. Choose 0 < gy < %

such that eg < ||L,]| is || L,|| < oo and || L] < %0—250 if || Ly || = oco. For e € (0,g0)
we define

548 D :{Lnn—e if [|Laf <oo and o < |ILul;

i if ||Lp|| =00 and |L| < % — 2gp.

€

By the definition of ||L,||, there exists a function fo, ||follx» < 1, and a set
M C J, |M] > 0, such that

(3.49) D, < ‘/fn(mt)fo(t)dt for ze M.
I

Let J; C J, Jo C J be measurable sets such that

{| I, 6z, 8) fo(t)dt] < o0 for z € Jy,

(3.50) | [ (1) fo(t)dt| = oo for a € Ja.
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If |J2| > 0, then

|L|| > ess sup ‘ /f(xyt)fo(t)dt = 00,
e Ja I

which is a contradiction. Thus, |I\ Ji| = |J\ J1| =0, or
(3.51) /|€(m,t)|\f0(t)|dt < oo forae zelJi.
I

Let 0 > 0. Set A; = {z € Ju; sup s [, [0(z,1)][fo(t)|dt < e}. Observe that
A52 C A§1 for 0 < 61 < bo.
We will show now that As is a measurable set. For « € J; we define the function

1M@$2AH%WR@W

By (3.51), Hs(x) < oo for & € J1. Let C be a countable system of sets from Lemma
3.9. Let A > 0 and fix z € J;. By the definition of Hs(z), there is a set Ag, such
that |Ag| < ¢ and

(3.52) m@ww§/|mwMMMﬁgm@»

Ap

The absolute continuity of the Lebesgue integral and (3.51) now give the existence
of n > 0 such that

(3.53) /B\e(x,t)nfo(t)mt <A for |B|<n.

Obviously, we can choose 7 < d. Let Ny € C such that |Ag + No| < 7. Then (3.52)
and (3.53) yield

zmsz%AWameWz/memmmm

No

[ el > Hy(w) -2
No\ Ao

()] fo(t) dt

On letting X\ — 04 we have Hs(z) = supyee [y [€(2,1)|] fo(t)|dt. Since the function
x — [y |0(z,t)|| fo(t)|dt is measurable for any fixed N € C, the function Hjs is
measurable as a supremum of countably many measurable functions. Moreover, as
As = H; '((0,¢)), the set As is measurable for any & > 0.

Now, the absolute continuity of the Lebesgue integral and (3.51) give (Js. 0 As =
Ji. Hence there is a dy such that |As, N M| > 0. By Lemma 3.6, there is a set
My C (As, N M) with the following properties: |(As, "M)\ M1| =0, My = D (M),
and for any x € M; there is a set N, , C M such that Ny, , = ©(Ns, 2), ¢ € N,z
and |By, , + By, 2| < do for y, 2z € N5, 5. Let zg € M be fixed. Then Ny, ,, satisfies

(3.54) Néo,mg = z)(]\/.50@0)’
(3.55) 2o € Nog o
(3.56) |Bn,y + Bn,z| < do for y,z € Nogzo-
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The properties (3.54) and (3.55) guarantee that |Ns, .| > 0. Set fi(t) =
fo(O)xB,.., (). Clearly, ||fil[x,, < 1. Fix x € Ns, 4,. Note that (3.55) and (3.56)
give

(3.57) Busy = Bu.s| < 0.
Obviously,
Lﬁmwﬁwmz/ U ) folt) e
I Bn,eg
- / O, t) folt)dt + / U, t) fo(t)dt
Br,ogNBn,a Brn,2g\Bn,o

- [t s - [ to.)folt)dt + | (1) folt)
I Bu.o\Bun.xg Brwo\Bn.o
By (3.49), (3.57) and Nj, 5, C As,, we have
D, —2 < ‘ /E(x,t)fl(t)dt‘ for any x € Ns, -
I
Since |Ns,,z,| > 0, we have

ILI| > D —2=.

If | L,,|| = oo, then ||L|| > 1 — 2e, which is a contradiction with (3.48). Thus,
|Ln|| < oo and ||L|| > ||Ln|| — 3e. On letting e — 04 we obtain (3.47).

Step 3. Denote P, = ess sup,; Fn(z) for n € N, where F, () is defined by
(3.46). Recall that P = ess sup,cy F(z). By Step 2, F,, and F are measurable,
and, consequently, P and P, are well defined. We shall prove

(3.58) liminf P, > P.

n—oo

Denote for z € J and f € (X, v)

Fo(z, f) = ’/Zn(x,t)f(t)dt and  F(z, f) = \ /e(a;,t)f(t)dt .
I I
Fix z € J and f € (X,v). Let
It = {t; Uz, t)f(t) > 0}, I~ ={t; (x,t)f(t) < 0}
Obviously, the definition of ¢, gives
lo(z,t)f(t) >0 on IT, lo(z, t)f(£) <0 on I,

and
Loz, ) f() 7 L(x,t) f(¥) a.e.in It for n— oo,
Loz, t) f(t) N\ L(z, 1) f(¢) ae.in I~ for n — oc.
Of course, £y, (z,t) = l(z,t) =0in I\ (/T UI"). Then
(Eala, ) O)F /7 () (B)F for n— oo,
(Ealw O (0)™ /7 (0 f(B) for n— oo,

and, consequently,

/En(m,t)f(t)dt — /E(m,t)f(t)dt for n — oo.
1 I
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The last relation implies

(3.59) F,(x,f) — F(x, f) forany ze€J and fe€(X,v).

Let € > 0. Set J1 = {z; F(z) < o0, Jo = {z; F(z) = co. Fix z € Jj.

definition of F'(x), there exists a function fy, || follx,» < 1, such that
(3.60) F(z) —e < F(x, fo) < F(x).
By (3.59), it is possible to choose ng such that for any n > ng
F(z, fo) —e < Fu(z, fo) < F(z, fo) +¢,
which together with (3.60) gives
F(z) — 2e < Fy(x, fo) < F(z) + ¢,
and, consequently,

F(z) —2e < Fyp(x, fo) < sup Fu(z, f) = Fu(x).
lfllx,v<1

Thus, for any € > 0 there is an ng such that
F(z) — 2e < Fy(x) for n > ny,
which in turn yields

(3.61) F(z) <liminf F,(x) for any =z € Jp.

By the

Fix x € Jy. By the definition of F(z) there exists a function fo, ||follx,» < 1,

such that 1 < F(z, fo). By (3.59), we have ng such that for n > nq,

Lc< R fo) < s <1=F(ef) = Fale).

[l £l

It proves lim, ., F;, () = 0o and, consequently, (3.61) holds for z € Js.
Let I, C J, |J\ I,| = 0 such that

(3.62) P,, = ess sup F,,(z) = sup F,(z).
rzel z€l,

Let J3 = (.~ I,. Clearly, |J\ J3| = 0. By (3.61) and (3.62),
P < ess supliminf F,,(z) < sup liminf F,(z)

xzel n—oo z€J3 "X

< liminf sup F,(z) < liminf sup F,(z)

=00 zeds n—=oo zel,

= liminf P,,
n—oo

which proves (3.58).

Step 4. We know from Step 1 that ¢, € A. Moreover, |(,(z,t)| < n in I2. Hence,
¢, satisfies the assumptions of Lemma 3.8, and thus ||L,|| > P, for any n € N.

Using (3.47) and (3.58), we get
||| > limsup||L,| > limsup P, > liminf P, > P

n—oo

which completes the proof.

O

Remark 3.11. Let £ € A and let F be the unit ball of (X,v). Then P = ||£||1__(x’ )

where [|£|| 1, (x’.v) is defined by (3.1).
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Proof. Since ¢ € A we have that the function

—sup/fmt
feF

is measurable. Clearly, using (2.6) and (2.7) we obtain

[t = |42

P =ess sIupF(x) = 1l 1. (x7 )
e

= sup
fer

and thus

O

We have proved one part of Theorem 3.1. To completely verify Theorem 3.1 it
remains to prove the following lemma.

Lemma 3.12. Let £ € A. Then ||L|| < [|€]|1(x"v)-

Uz H
’U() X' v
of ||||1.(x’ ) guarantees that there is a set J, |I'\ J| = 0, such that

is measurable. The definition

Proof. By Lemma 3.10 the function x —

160z = o

For each || f||x,» <1 we obtain

ILf|loo = 1nf sup ’/6 (z,t)f dt’
IM|=0 gz (1\M)

< sup ’ /If(x,t)f(t)dt‘ < z) X,ﬂ)Hf”X,v

zeJ

xzeJ

< sup
xzeJ

= 2o (x7 05

X" v

which yields [|L|| < ||€][z_(x’,v)- The proof is complete. O
We define Lo, (X', v) as the set of all £ € A such that
1l Loe (x7,0) < 00

Lemma 3.13. The set Lo (X', v), equipped with the norm ||-||.__(x’ ), is a Banach
space. Moreover, it satisfies

(1) [l pwx,0) = M £ (x7,0)5

(i) if 0< by, /L ace. in I? and L € A, then |[plln_(xrv) /" 1l Lo (x70)-

Proof. Clearly, Lo (X', v) is a linear space, and || - || (x’,) defines a norm. The
properties (i) is obvious. Let us prove (ii). By Lemma 2.3 it is ¢,, € A. Set F,,(z) =

B (w | xr 0, Flz) = = e(x ) 7 l|x7,- Since (X', v) and Lo are Banach function spaces
we have F,(z) /" F(x) for a.e. ¢ € I and, consequently, ||F,|z.. / ||F|lc.., which
proves (ii). Let us prove the completeness of Lo, (X', v). Let ¢, be a Cauchy
sequence in Lo (X', v). Take Jy ., C I such that |1\ J, m| =0 and

Pl el
v(-) X'

1en — lullL (x/0) = SUD ‘
z€Jn,m
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Set
n,m=1
Clearly, |1\ J| = 0.
Let € > 0. Since £, is a Cauchy sequence in Lo, (X', v)we have ng such that
;) = bm(z,) H
mEJ ’U()
n(x,) -

Fix 2 € J. Then the sequence =07 is a Cauchy sequence in (X', v). Since (X', v)

is a Banach space there exists a unique function £(z, -) such that bn ((I)’ ) % in

(X',v). Thus, H%Hxlﬂ, < oo and

/|€:Et

for each f € (X, v) which proves that [, |€ x,t) f(t)|dt has a sense for all f € (X,v)
and z € J. Consequently, £ € A. N

It remains to prove ¢, — £ in L. (X',v). Let ¢ > 0 and z € J. Let ng
satisfies (3.63). Since e"v((?)") — eq(]?)') in (X’,v) we can find m > ng such that
| eeleas 8 v, < e Then

(3~63) ||£n* m”Loc(X/

< ¢ forall n,m > ng.
X'

o Il < o0
X’

T I R T e Gl PR
which gives for n — oo
ess sop || o
which finishes the proof. O

It is a routine procedure to extend the result of Theorem 3.1 to an arbitrary
interval I = [a,b], —00 < a < b < co. This finishes the proof of Theorem 3.1.
4. COMPACTNESS OF A GENERAL KERNEL OPERATOR

In this section we investigate the distance of the operator L from the set of all
compact operators K : (X,v) — Ls. Define

— inf{|[L - K; K € K},

where IC is the set of all compact operators. Denote by SR the set of all kernels
k € 9(I?) that can be written as

D=3 var (@)i(t)
i=1

for some n € N, xp, € M(I), and % € (X',v). Clearly, & € R implies k €
Lo (X',v). Let € be the closure of R in Lo (X', v). Define further

d:=inf{|[l — k|l x/v); k€ =inf{|[{ —k||lL_(xv):keR}
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Our main aim in this section is to prove that D is comparable to d and, conse-
quently, that an operator L is compact if and only if its kernel ¢ can be approximated
in Lo (X', v) by kernels from fR.

Let L be a fixed linear operator given by a kernel £ € Lo, (X’,v).

Theorem 4.1. g <D <d.
The proof will be given in a series of lemmas.

Lemma 4.2. Let k € R. Then the operator (K f)(x fI t)dt is a finite-
dimensional bounded operator. Consequently, K is compact

Proof. Let k(x,t) = > i, xan (2)i(t), xm, € ML) and % € (X',v). Since
k € Loo(X’,v), the operator K is bounded by Theorem 3.1. Moreover,

Z / G (D dbxas, (@ ZAIXM

Now, (2.6) gives |A;(f)] < |% x|l fllx,» which implies A4; € (X,v)* (the dual

space) and, consequently, K is a bounded operator. (I

Now we are in a position to prove the second inequality in Theorem 4.1.
Lemma 4.3. D <d.

Proof. By Lemmas 3.12 and 4.2, we can write

D < inf sup ess sup/\ﬁ x,t) — k(z, t)|| f(¢)|dt
KER | rlx,0<1  w€l
)H

RUEE

< inf sup ess supH
FER | fllx, o<1 wel

= inf |[{ —k ry =d
Jnf 116 = Kll oo (x,0)
which proves the assertion. ([l
In the rest of this section we show the first inequality in Theorem 4.1.

Definition 4.4. We say that a finite system of sets A ={Q;; j=1,2,...,n} is a
partition of I if Q;NQ; =0 fori # j, and J;_, Q; = I.

Lemma 4.5. Let n, N be positive integers. Let A; = {Q;;j =1,2,...,N}, i =

1,2,...,n be partitions of I. Then there is a positive integer m and a partition
A={E; k=1,2,...,m} of I such that
(4.1) forany i€{1,2,....,n} and ke{l,2,...,m} there exists

a j€{1,2,...,N} suchthat Ej C Q;
Proof. We use the induction on n. Let n = 1. Then the assertion is obvious.
Assume that A; = {Q%; j =1,2,...,N},i=1,2,...,n+ 1, are partitions of I.

By the induction assumption, there is a partition of I, A= {Ek; k=1,2,...,m}
such that

forany i€ {1,2,...,n} and ke {1,2,...,m} there exists
a je€{1,2,...,N} such that EkCQE
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Set Fy; = Ep N Q}LH, ke{1,2,...,m}, and j € {1,2,..., N}. Define a system
of sets A by
A={Fy;; ke{l,2,...,m}and j € {1,2,...,N}}.

It is not difficult to verify that A is a partition of I with the required properties.
O

Let B be the unit ball in (X,v). Let M C Lo, and n > 0. We say that N C Lo,
is a p-net in M if for every f € M thereis a g € N with ||f — gllL.. <.

Lemma 4.6. Let
o = inf{n; there exists a finite n — net of L(B)}.
Then o < D.
Proof. Let € > 0. Take K € K such that
IL— K| <D+e.

Since K € K, there exists a finite e-net {g1,92,...,9n} of K(B). Let g € L(B).
Then there is a function f € B such that Lf = g. Choose ¢; with || K f—g;||r.. <e.
Then

lg —gillee = ILf —gille. < Lf = Kfllz. +|1Kf —gille, <D+ 2e.

Thus, {g1,...,9n} is a finite (D + 2¢)-net of L(B) and, consequently, 0 < D + 2e.
On letting € — 04 we obtain the assertion. ]

It is worth noting that Lemma 4.6 remains true under more general assumptions,
namely, for Banach spaces X,Y, a bounded linear operator T: X — Y, and o, D
defined in an analogous way.

Lemma 4.7. Let A be a measure on I such that A\-measurable sets coincide with the
Lebesgue measurable sets, and \(E) = 0 if and only if |E| = 0. Let h(x,t) € M(I?),
such that h(z,t)v(t) € A. Then the function x — ||h(x,-)||x’ v is A-measurable.
Moreover, for E C I measurable, 0 < A\(E) < oo, we have

L 1
I /I )N, < @/f I, )0 dA(a).
Proof. Define F(z) = ||h(z, )| x’. Clearly,

F(z)= sup /\hxt v(t)dt = sup ‘/ x,t) f(t)v(t)dt|.
[1fllx,0<1 1fllx, <1
By Theorem 3.1, the last expression is a Lebesgue measurable function, whence F'
is Lebesgue measurable. Due to the assumptions on A\, F' is A-measurable, which
proves the first part of the lemma.
Now, using the Fubini theorem, we have

Hﬁ/jh(m,~)d)\(x)HX/7 - ﬁ\lfl\xuﬂ //h (2, 8) f(t)o(t)dtd\(z)| = A,
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say. Assume that A < co (the case A+ oo can be handled analogously). Let ¢ > 0.
Then there is an fy € B such that

‘// (0, 8) fo()v(t)dtdA(z )‘
§A<>/I” 55 I ara)

On letting € — 04 we obtain the assertion. (]
The main idea of the proof of the following lemma is taken from [10].
Lemma 4.8. The inequality % < o holds.

Proof. Let € > 0. Let {g1,92,.-.,9,} be a finite (¢ + ¢)-net of L(B). Since L(B)
is bounded in Lo, the set {g1,92,...,9,} is bounded in L., too. Hence there
exists an A > 0 such that ess sup,c;|gi(z)] < A, ¢ =1,2,...,n. We can even
assume that sup,c;|gi(z)] < A because in the opposite case we simply change
every function g; on a set of measure zero.

Let {I;; j =1,2,...,N} be a partition of [—A, A] such that I; are intervals and
|I;] < e. Let Q; = g;l(Ij), i1 =1,2,...,n, j = 1,2,...,N. Then the systems
A = {Q;, j=1,2,...,N} are partitions of I. By Lemma 3.5, there is a partition
of I, say, A= {Ey; k=1,2,...,m}, such that (4.1) holds.

Let B = {E) € A; |Ex| > 0}. Then we can write B = {E; k = 1,2,...,m1}
where m; < m. Clearly,

(42) by, NEy, = @, ki,ko € {]., ce ,ml}, k1 7& ko,
(4.3) ‘I\ U Ek( =0,
k=1

and

(4.4) for every i€ {1,2,...,n} and ke€{1,2,...,m;} thereis
(4.5) a je€{1,2,...,N} suchthat E;C Q..

We define the operator

& g, F(0)e "t
ZXEk W-

Then (P. f)(z) is defined on [ J;}; E), and therefore, by (4.3), it is defined a.e. on I.
It is not difficult to see that P. : Lo, — L4 is a bounded linear finite-dimensional
operator. Moreover, using (4.2), we obtain

Z X, (@ _t2 7 / (P.f)(t)e " at

2
XE. ( Je=*ds
= eV dt
-3 _tzdt/wzl IR
o I f(s)efs ds

= ZXE,C(I)W = (P-f)(x),
Ey

k=1
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which proves
P2 =P..

£

In other words, P is a projection. Further, due to (4.2),

mi
IPeflliw < fllLw ess sup Y xe, (@) = [ £l Lo
L= -

which gives
(4.6) [Pl < 1.

Let Z be the finite-dimensional subspace of L., defined by

Z={f=3 arxp, (@) (@1,...,am) €R™}.
k=1

In fact, P. : Lo — Z. Moreover, let f = > apxg, (z) € Z. Then, by (4.2), we

can write

my 1 »
(P.f)(x) :;XE,C($)W/E’€ are U dt

= ZakXEk () = f(z),
k=1

which shows that
(4.7) P.f=f forany feZ.

We claim that dist (g;,Z) < e forany i € {1,2,...,n}. Fix i € {1,2,...,n}.
By (4.4), for every k € {1,2,...,m1} there is a set Q) such that E, C Q.
Consequently, g;(Er) C I,. Choose v, € I, k = 1,2,...,m; and define the

function g; by

my
gi(x) = wxm, (x).
k=1
Then g; € Z and, moreover, |[;, | < ¢ implies that

(4.8) lg: — GillL., = sup ess sup |g;(x) — vi| < e.
ke{1,2,....m1} TEE}

Let f € B. We shall estimate |[Lf — P.Lf]|| ... Choose g; such that ||Lf —g;||r.. <

o +e. Then

ILf = PeLflleo S WLS = gillLow + 1P(Lf = gi)llLo + 195 = Gill o + 119 —

<ot+e+|P(o+e)+llgi — Gl +113i — Pegill .-
Using (4.6)—(4.8) and g; = Pg;, we get
ILf = P-Lflr.. <20+ 3+ |Pe(gi — i)l <20+ 4e,
that is,
(4.9) IL — P.L|| < 20 + 4e.

PsgiHLoo
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Now let us deal with (P.Lf)(z). Clearly,

™ ij (Lf)(t)e*dt
PLf ZXEJ ij €_t2dt
:ZXEJ-( *tht/ /Et s)f(s)dse™" “dt

s)etdt

-/ (ZXE W)f<s>ds
- / ke, 8) £(5)ds,

I
where
mq (( S)e—tht my

(4.10) ZXE (z) ey XE,; (x);(t) say.

j=1
Thus, P.L is a kernel operator with the kernel k.(z,s). Now, ¢ € 9(I?) implies
¥;(s) € M(I), and, consequently, k. E M(1?%).
Define the measure A on I by A(E) = [, e € ~t*q¢. It is not difficult to prove that
A satisfies the assumptlons of Lemma 4.7. Moreover, we have 0 < A(E;) < A1) =

Jre Pt < [ ~*dt < oo for any j € {1,2,...,my}. Setting h(z,t) = Z(Tt?, we
have h(x t)u(t) € A, and, using also Lemma 4.7, we can write

HX' - H/ fE e_;dtdtHX’,v - H)\(;?]) /Ej h(t’.)d)\(t)HX',v
< A(lEJ)/E [A(t, )] x7,0 dA(t) = A(;j) /Ej ‘fit())HX

<z (x7,0)5

Y0

X'

z€E;

which gives

(4.11)

= H HLOO(X',v)'
This implies

mi
1€ = kel oo x vy < WLy 7y + 11D X2, (2)85(8) | Lo (307 0)
j=1

mi
fw,
<l Lo xrwy + D lIx, “LwHﬁH
j:l

X',UI
From (4.11) we obtain ||€ — kc||1_(x7v) < (1 4+ m1)||4] L. (x'v) and, consequently,
using also Lemma 3.12, we have ¢ — k. € A. Now, Theorem 3.1 yields
1€ = kell Lo (x70) = IL = PeL]|.
Together with (4.9) this implies
I1£ — k|| < 20 4+ 4e.
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By (4.10) and (4.11), k. € JR and, consequently,
=i f — ’ < — ’ < 2 4 .
d Jnf 16 =Kl Lo xr o) S €= kell(xr,0) < 20 +4e

On letting € — 04 we obtain d < 20, and the proof is complete. O

The first inequality in Theorem 4.1 now follows from Lemmas 4.5 and 4.7.

5. APPLICATION TO THE HARDY OPERATOR

Let I =a,b], —0o < a < b< +oo. We define the Hardy operator by H f(z) =
[ f(t)dt. Further, let

(x—eg,x+e)Nja,b] if —oco<z<oo
U(z,e) = { (o0, —=1)N[a,b] if z=-o00
(1,00)N[a,b] if x=o0.
We also denote
! | X705 and B = sup B(z).

B(z) = lim [Ixv(.e] sup,

In [5], a characterization of the boundedness and compactness of the Hardy
operator was characterized for I = [0, 00]. It was shown that H is bounded if and
only if % € (X',v), and that H is compact if and only if B = 0. We will apply
the results of Sections 3 and 4 to the Hardy operator and I = [a,b]. Observe
that the Hardy operator is given by the kernel h(z,t) = x(q,0)(1), i-e. f; ft)dt =

Ji X(a,2) () f()dt.

Theorem 5.1. The operator H is bounded from (X,v) into Lo if and only if
1170 < 0.

Proof. By Theorem 3.1, H is bounded if and only if ||A[|_ (x,») < 0o. Moreover,
[ HI| = |7l 1o (x7,0)- Then

h(z,-)
v()

which completes the proof. ([l

|lx/ . = ess sup ||X(Q7HX/ v = ||1||X’ v
’ xzel U(t) ’ v ’

[H|| = ess sup||
xel

Lemma 5.2. The inequality d < B holds.

Proof. Let € > 0. From the definition of B we know that for every x € [a, b] there
is an n(x) > 0 such that

1
HXU(x,n(x))(t)@HX, LS B+e.

Since (J,¢; U(z,n(z)) D I and I = [a,b] is a compact set in the topology induced
by U(z,¢e), we can choose z1,...,2, € I such that |J;_, U(z;,n(z;)) D I. Denote
U, =U(zi,n(z;)). Take o;, B;, i =1,2,...,n, such that

(5.1) U, = (ai7ﬁi) C ﬁi, 1=1,2,...,n,
and

(5.2) anUi (x)=1 a.e. in I.
i=1



GENERAL KERNEL OPERATORS 27

Let us define k(2,t) = 37 1 XU, (%)X (a,a:)(t). Clearly, by (5.1) and (5.2), we have

d< esgsceslup ZXU (a,z) (t) — X(a,oci)(f))HX/JJ
= esies;lp ZXU X(vi,2) )ngy
< esgsﬂeslup U ZXUi, (@)xu, (t)HX,’U
. ebi;}lp;’( HMHX <B+e.
Therefore, d < B + ¢ for any € > 0, and the assertion follows. N

Lemma 5.3. The inequality B < 4d holds.
Proof. Let ¢ > 0. Then, for some M; and ¢;,i=1,...,n

(5.3) HX(a o (t ZXM <d+e.

H Lo (X' 0)

Let xg € [a,b). Then there is a k € {1,2,...,n} such that |(zg,x0 + o) N My| > 0
for any 0 > 0. Set x; = ess sup My, ie., 1 = inf{y; |(y,b) N Mg| = 0}. Let
Ny = My, N (z9,21). Then (5.3) gives

e 2 ess s |5 (e ) ZXM 0 P o
= ess sup L(X(gﬂ ) (1) = X(z0,2 )(t)¢k(t)>XN (@H
35 o X o e
1
= S S —_— T0.T 1 - t - xT,T t H
ess sup || (X(zo,2) (1) (1 = ¥i(t)) = X (1) () (2) o
Since (xg, z) N (z,21) = 0 for every x € N, we have
d+ € > ess sup H xo,x) t)(1 - ¢k(t))H
zEN, X' v
| e @@ =],
and
1
P H I ), -
ez eisezsvlip X(x e (V(?) X' v(t)X(xo’xl)( J(t) X'
As a consequence we obtain
X(wo,wl 1 - wk(t)
N L P SR
(5 ) X0 — X( 0, 1)() ’U(t) X' v
Vi (t)
5.5 me t H < 2d + 2.
(5.5) + [ X (wo, 1)( ) v(t) lxrw +2¢
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Let B*(z) = lim._o, ||X(’5(7+t§)(t)||xrv for © € [a,b) and, analogously, B~ (z) =
lim, o, [|X=52 |y, for « € (a,b]. Then B(a) = B*(a), B(b) = B~ (b) and
B(xz) < B (x) 4+ B~ (z) for x € (a,b) which together with (5.4) yields

B(xg) < BT (20) + B~ (z0) < 4d + 4e.

Letting ¢ — 04, we obtain B(xg) < 4d and, consequently, B < 4d, which completes
the proof. O

Corollary 5.4. The inequalities g < D < B hold. The Hardy operator is compact
if and only if B = 0.
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