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Abstract. We give necessary and sufficient conditions for boundedness and
compactness of a general kernel integral operator Lf(x) =

∫
I `(x, t)f(t)dt,

where the kernel ` is assumed only to be measurable, from an arbitrary

weighted Banach function space into L∞. We give lower and upper bounds
for the distance of L from compact operators. The proofs are carried out by

means of a new method based on real-variable techniques.

1. Introbuction

The problem of boundedness and compactness of kernel integral operators
Lf(x) =

∫
I
`(x, t)f(t)dt, where `(x, t) is a general measurable function on I2 and

I is an interval, and their distance from compact operators, have been studied by
many authors (cf. e.g. [7], [3], [9], [8], or the monograph [2]). Usually, for Lp–Lq
type estimates with q < ∞, the authors use rather restrictive assumptions on the
kernels. Typically (see for example [[8], (1.3)]), the kernel is supposed to be posi-
tive, monotone in each variable, locally uniformly continuous, and satisfying certain
triangle inequality.

The situation turns out to be different when the target space is L∞. For example,
in [5], boundedness and compactness of the Hardy operatorHf(x) =

∫ x
0
f(t)dt from

a weighted Banach function space (X, v) into L∞ was characterized by relatively
simple conditions. The methods from [5] can be immediately generalized to kernel
operators Tf(x) =

∫∞
0
k(x, t)f(t)dt, but only when k is positive and monotone in

the first variable.
In this paper we develop a different method based on real-variable methods

and measure-theoretic considerations, which enables us to characterize completely
boundedness and compactness of the kernel operator, assuming only that the kernel
is measurable. A remarkable fact is that ` is allowed to take negative values. We
further give sharp lower and upper bounds for the distance of L from the set of
compact linear operators. Notably, it turns out that every compact operator can
be approximated by operators with kernels of the form k(x, t) =

∑n
i=1 χMi

(x)ψi(t),
where Mi ⊂ I and ψi

v ∈ (X ′, v) (here (X ′, v) denotes the associate space to (X, v)).
In the particular case when (X, v) is separable, some of the results were obtained

in [4].
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The paper is structured as follows: preliminary material and some basic facts on
Banach function spaces are collected in Section 2 (the standard general reference
is [6] or [1]). In Section 3 we characterize boundedness of L by means of the norm
of ` in L∞(X ′, v). This section also contains the key real-variable considerations.
In Section 4 we characterize compactness of L, and in Section 5 we present lower
and upper bounds for the distance of the Hardy operator from compact operators,
recovering thereby, in particular, a result from [5].

2. Preliminaries

Let −∞ ≤ a < b ≤ ∞ and let I = (a, b). Let M(I) and M(I2) denote the sets
of all measurable functions on I and I2. Let v be a weight (that is, a measurable
and a.e. positive and measurable function) on I.

Definition 2.1. We say that a normed linear subspace (X, v) of M(I) is a weighted
Banach function space if the following five axioms are satisfied:

the norm ‖f‖X,v is defined for all f ∈ M(I), and f ∈ (X, v) if and only if(2.1)

‖f‖X,v <∞;

‖f‖X,v = ‖ |f | ‖X,v for all f ∈ M(I);(2.2)

0 ≤ fn ↗ f a.e. in I, then ‖fn‖X,v ↗ ‖f‖X,v;(2.3)

if v(E) =
∫
E

v(t)dt <∞, then χE ∈ (X, v), where χE(2.4)

denotes the characteristic function of E;

for every E with v(E) <∞ there exists a constant CE such that(2.5) ∫
E

f(t)v(t)dt ≤ CE‖f‖X,v for all f ∈ (X, v)(I).

In what follows, (X, v) will be a fixed weighted Banach function space.

Definition 2.2. The set

(X ′, v) =
{
f ;

∫
I

|f(t)g(t)|v(t)dt <∞ for all g ∈ (X, v)
}

is called the associate space of (X, v). The space (X ′, v), equipped with the norm

‖f‖X′,v := sup
‖g‖X,v≤1

∣∣∣ ∫
I

f(t)g(t)v(t)dt
∣∣∣,

is also a weighted Banach function space. The Hölder inequality

(2.6)
∫
I

|fg|v ≤ ‖f‖X,v‖g‖X′,v

holds, and it is saturated in the sense that for every g ∈ M(I) and ε > 0 there
exists a function, f , such that ‖f‖X,v = 1 and

(2.7) (1− ε)‖g‖X′,v ≤
∫
I

fgv.
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Throughout the paper we shall work with a kernel operator L, defined for f ∈
(X, v) by

Lf(x) =
∫
I

`(x, t)f(t)dt,

where ` is a kernel, that is, ` ∈ M(I2).
Of course,

∫
I
`(x, t)f(t)dt need not have a sense for some functions from (X, v).

We say that the kernel ` is admissible, ` ∈ A, if there is a set J ⊂ I, |I \ J | = 0
(where |E| denotes the Lebesgue measure of E), such that for every f ∈ (X, v) the
function x 7→

∫
I
`(x, t)f(t)dt is defined everywhere in J .

Lemma 2.3. ` ∈ A if and only if `(x,.)
v(.) ∈ (X ′, v) for each x ∈ J .

Proof. Let x ∈ J and `(x,.)
v(.) ∈ (X ′, v). By Hölder’s inequality we have for f ∈ (X ′, v)∫

I

|`(x, t)f(t)|dt ≤
∥∥∥`(x, .)
v(.)

∥∥∥
(X′,v)

‖f‖(X,v) <∞.

Thus,
∫
I
`(x, t)f(t)dt has a sence and ` ∈ A.

Let ` ∈ A, x ∈ J . Assume `(x,.)
v(.) /∈ (X ′, v).

I. Suppose first `(x, t) ≥ 0 and set I+ = {t ∈ I; `(x, t) > 0}. Since
sup{

∫
I
|`(x, t)f(t)|dt; ‖f‖(X,v) ≤ 1} = ∞ there exists a sequence 0 ≤ fn,

‖fn‖(X,v) ≤ 1 and
∫
I
`(x, t)f(t)dt ≥ n3. Setting f0(t) = χI+(t)

∑∞
n=1 n

−2fn(t)
we easily obtain f0(t) ≥ 0, f0(t) = 0 for t ∈ I \ I+, f0(t) ∈ (X, v) and

(2.8)
∫
I

`(x, t)f0(t)dt = ∞.

Set Ik = [2k, 2k+1) and Ak = f−1
0 (Ik) for each k ∈ Z. Thus, I+ =

⋃
k∈Z Ak and

∞∑
k=−∞

2k
∫
Ak

`(x, t)dt ≤
∫
I+
`(x, t)f0(t)dt ≤ 2

∞∑
k=−∞

2k
∫
Ak

`(x, t)dt

which yields with (2.8)
∞∑

k=−∞

2k
∫
Ak

`(x, t)dt = ∞.

Let Z1, Z2 be disjoint subsets of Z with Z1 ∪ Z2 = Z and
∑
k∈Z1

2k
∫
Ak
`(x, t)dt =

∞ and
∑
k=Z2

2k
∫
Ak
`(x, t)dt = ∞. Set f1(t) =

∑
k∈Z1

f0(t)χAk
(t), f1(t) =∑

k∈Z2
f0(t)χAk

(t) and g = f1 − f2. Then g ∈ (X, v) and
∫
I
`(x, t)g(t)dt =∫

I
`(x, t)f1(t)dt−

∫
I
`(x, t)f2(t)dt has no sense which is a contradiction with ` ∈ A.

II. Let `(x, .) ∈ M(I) then we can write ` = `+ − `− and either `+(x,.)
v(.) /∈ (X ′, v)

or `−(x,.)
v(.) /∈ (X ′, v). Without loss of generality assume `+(x,.)

v(.) /∈ (X ′, v). Take
g ∈ (X, v) as bellow such that {t ∈ I; g(t) > 0} ⊂ {t ∈ I; `+(x, t) > 0} and∫
I
`+(x, t)g(t) has no sense. Then also

∫
I
`(x, t)g(t) =

∫
I
`+(x, t)g(t) has no sense

which contradicts to ` ∈ A.
�

Let us recall that f ∈ L∞ if f ∈ M(I) and

‖f‖L∞ = ess sup
x∈I

|f(x)| = inf
|M |=0

sup
x∈(I\M)

|f(x)| <∞.
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By ‖L‖ we denote the operator norm of L from (X, v) into L∞, i.e.,

(2.9) ‖L‖ = sup
‖f‖X,v≤1

ess sup
x∈I

∣∣∣ ∫
I

`(x, t)f(t)dt
∣∣∣.

3. Boundedness of a general kernel operator

Our goal in this section is to establish

Theorem 3.1. Let I be an arbitrary interval, (X, v) a Banach function space, and
` ∈ A. Then the function x 7→

∥∥∥ `(x,·)v(·)

∥∥∥
X′,v

is measurable. Moreover, setting

(3.1) ‖`‖L∞(X′,v) = ess sup
x∈I

∥∥∥`(x, ·)
v(·)

∥∥∥
X′,v

we have ‖L‖ = ‖`‖L∞(X′,v).

Let us start with the proof of the inequality ‖L‖ ≥ ‖`‖L∞(X′,v). Basically, we
have to interchange the supremum and the essential supremum in the definition of
‖L‖ (cf. (2.9)). We start with two measure-theoretic lemmas.

For A ⊂ I2, we denote by Ax the intersection of A with {x} × I, i.e., Ax =
{y; (x, y) ∈ A}. As usual, A÷B denotes the symmetric difference of A and B.
Convention. In the rest of this section we assume that (X, v) is a fixed weighted
Banach function space. We also, without any loss of generality, will assume that
I = [0, 1].

Lemma 3.2. Let Ω ⊂ I2 be an open set. Let M ⊂ I be a measurable set such that
|(x− δ, x+ δ) ∩M | > 0 for all x ∈M and δ > 0. Then for every ε > 0 there exist
a Z ⊂ I and an N ⊂M such that |N | > 0 and |Ωx ÷ Z| < ε for every x ∈ N .

Proof. Assume the contrary. Let ε > 0 be such that for every Z ⊂ I and N ⊂ M ,
|N | > 0, there is an x ∈ N such that |Ωx÷Z| > ε. Let x0 ∈M . Then Ωx0 is an open
subset of I, whence either Ωx0 = ∅ or Ωx0 =

⋃∞
i=1(ai, bi) for some 0 ≤ ai < bi ≤ 1.

By the regularity of measure, there is a K0 =
⋃n0
i=1[ci, di] such that K0 ⊂ Ωx0 and

(3.2) |Ωx0 \K0| <
ε

4
.

Now, K0 is compact. Therefore, the distance of {x0} ×K0 from I2 \ Ω is positive.
Thus, for a δ0 > 0 small enough we have

(3.3) (x0 − δ0, x0 + δ0)×K0 ⊂ Ω.

Set Z = Ωx0 and N = (x0 − δ0, x0 + δ0) ∩M . By our assumption, there is an
x1 ∈ (x0 − δ0, x0 + δ0) ∩M such that

(3.4) |Ωx0 ÷ Ωx1 | > ε.

Now, by (3.3), K0 ⊂ Ωx1 , (3.2), and (3.4),

(3.5) |Ωx1 \K0| >
3ε
4
.

Since Ωx1 \K0 is open, there exists a set R1 =
⋃n1
i=n0+1[ci, di] ⊂ (Ωx1 \K0) such

that

(3.6) |Ωx1 \ (R1 ∪K0)| <
ε

4
,
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and as a consequence of (3.5) and (3.6) we have

|R1| >
ε

2
.

Denote K1 = R1 ∪K0 =
⋃n1
i=1[ci, di]. Now, as above, K1 is compact, whence, for

δ1 > 0 small enough, we have

(x1 − δ1, x1 + δ1)×K1 ⊂ Ω.

Let Z = Ωx1 and N = (x1 − δ1, x1 + δ1) ∩M . By our assumption, there is an
x2 ∈ (x1 − δ1, x1 + δ1) ∩M such that |Ωx1 ÷ Ωx2 | > ε. As above, K1 ⊂ Ω and
|Ωx2 \K1| > 3ε

4 . Since Ωx2 \K1 is an open set, there is a set R2 =
⋃n2
i=n1+1[ci, di] ⊂

(Ωx2 \ K1) such that |Ωx2 \ (R2 ∪ K1)| < ε
4 , and, consequently, |R2| > ε

2 . Let
K2 = K1 ∪ R2 =

⋃n2
i=1[ci, di]. Then |K2| > ε

2 + ε
2 = ε. Since K2 is a compact

set, we have for δ2 small enough (x2 − δ2, x2 + δ2) × K2 ⊂ Ω. Let Z = Ωx2 and
N = (x2 − δ2, x2 + δ2) ∩M . Continuing this process we obtain after m steps for
large m ∈ N |Km| > |I|, which is a contradiction. �

Lemma 3.3. Let A ⊂ I2 be a measurable set and let M ⊂ I, |M | > 0. Then for
every ε > 0 there is a set N ⊂M , |N | > 0, such that

|Ax ÷Ay| < ε for all x, y ∈ N.

Proof. Let ε > 0 be fixed. In the case |A| = 0 it suffices to put N = M . Let
|A| > 0. Define P = {x; |Ax| > 0}. Clearly, |P | > 0, whence either |M \ P | > 0 or
|M ∩ P | > 0. In the case |M \ P | > 0, it suffices to put N = M \ P . Assume that
|M \ P | = 0. Denote M1 = M ∩ P and B = ∪x∈M1{x} ×Ax. Clearly, |B| > 0. By
the regularity of the Lebesgue measure there is an open set Ω, B ⊂ Ω, such that
|Ω \B| < ε

4 |M1|. Set

(3.7) Q = {x ∈M1; |Ωx \Bx| ≥
ε

4
}.

If |Q| = |M1|, then the Fubini theorem implies |Ω \B| ≥ ε
4 |Q| =

ε
4 |M1|, which is

a contradiction. Therefore, |Q| < |M1|.
Let M2 be a set of all density points of M1 \Q. By the Lebesgue density theorem

we have |M2| = |M1 \Q| > 0, and by (3.7) we obtain

|Ωx \Bx| = |Ωx \Ax| <
ε

4
for all x ∈M2.

By Lemma 3.2, there are sets Z ⊂ I and N ⊂M2, |N | > 0, such that

(3.8) |Ω÷ Z| < ε

8
for all x ∈ N.

Now, we fix x, y ∈ N . We shall estimate |Ax ÷Ay|. Since

Ax \Ay ⊂ Ωx \Ay ⊂ (Ωx \ Ωy) ∪ (Ωy \Ay),

it is easy to verify that

(3.9) |Ax \Ay| < |Ωx \ Ωy|+
ε

4
.

Moreover, Ωx \Ωy ⊂ (Ωx \Z)∪ (Z \Ωy) and Ωy \Ωx ⊂ (Ωy \Z)∪ (Z \Ωx), which
together with (3.8) yields

|Ωx ÷ Ωy| ≤ |Ωx ÷ Z|+ |Ωy ÷ Z| < ε

4
.
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Using (3.9), we obtain |Ax \Ay| < ε
2 , and, consequently, |Ax ÷Ay| < ε. The proof

is complete. �

In the sequel we denote by f |K the restriction of a function f to a set K.
We shall use the following notation. Let F be some subset of the unit ball of

(X, v). Then we define

FF (x) = F (x) = sup
f∈F

∫
I

`(x, t)f(t)dt, x ∈ I,

and
P = ess sup

x∈I
F (x).

We have to prove that F is measurable on I and that ‖L‖ ≥ P . We first adopt
certain restrictions on ` and F , which will be gradually chipped away later on.

Lemma 3.4. Let K ⊂ I2 be a compact set. Assume that ` ∈ A, ` ≥ 0, `|K is
continuous, and ` = 0 on I2 \K. Let C > 0 and F = {f ; ‖f‖X,v ≤ 1, 0 ≤ f ≤ C}.
Then F is a measurable function on I and ‖L‖ ≥ P .

Proof. By our assumptions on K and `, there exists a constant D > 0 such that
0 ≤ ` ≤ D on I2. Let ε > 0. We divide the proof into three steps. In the first two
steps we prove that F is measurable and in the third step we show ‖L‖ ≥ P .
Step 1. We claim that for a set M ⊂ I, |M | > 0, there is a set N ⊂ M , |N | > 0,
and f ∈ F , such that

F (x)− ε(1 + 2C + 4CD) ≤
∫
I

`(x, t)f(t)dt ≤ F (x) for all x ∈ N.

Let |M | > 0. By Lemma 3.3, there is M0 ⊂M , such that |M0| > 0 and

(3.10) |Kx ÷Ky| < ε for all x, y ∈M0.

Now, choose x0 ∈M0 such that for every δ > 0 we have |(x0− δ, x0 + δ)∩M0| > 0.
By the uniform continuity of `|K , there is a δ0 > 0 small enough and such that, for
x ∈M1 = (x0 − δ0, x0 + δ0) ∩M0 and t ∈ Kx ∩Kx0 ,

(3.11) |`(x, t)− `(x0, t)| < ε.

From the definition of F (x) we obtain the existence of f0 ∈ F satisfying

(3.12) F (x0)− ε ≤
∫
I

`(x0, t)f0(t)dt ≤ F (x0).

Set

G(x) =
∫
I

`(x, t)f0(t)dt for x ∈ I.

Clearly,

(3.13) G(x) ≤ F (x) for a.e. x ∈ I.

Let x ∈M1 and f ∈ F be fixed. We denote

R(x, f) =
∫
I

(`(x, t)− `(x0, t))f(t)dt.
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Using (3.10), (3.11), and 0 ≤ ` ≤ D, we get

|R(x, f)| ≤
∫
I

|`(x, t)− `(x0, t)|f(t)dt

=
∫
Kx∩Kx0

|`(x, t)− `(x0, t)|f(t)dt

+
∫
Kx\Kx0

`(x, t)f(t)dt+
∫
Kx0\Kx

`(x0, t)f(t)dt

≤ εC + 2εCD = ε(C + 2CD).

Now, setting f ≡ f0 we have

(3.14) |G(x)−G(x0)| ≤ ε(C + 2CD) for x ∈M1.

Let R(x) = supf∈F |R(x, f)|. We immediately obtain

(3.15) 0 ≤ R(x) ≤ ε(C + 2CD) for all x ∈M1.

Since ∫
I

`(x, t)f(t)dt =
∫
I

`(x0, t)f(t)dt+R(x, f),

we have
F (x) = sup

f∈F

( ∫
I

`(x0, t)f(t)dt+R(x, f)
)
,

and, consequently,

F (x) ≤ sup
f∈F

∫
I

`(x0, t)f(t)dt+R(x).

We can rewrite the last inequality as F (x) ≤ F (x0) + R(x), x ∈ M1. Thus, by
the above inequalities, (3.14), (3.12), and (3.15), we obtain for x ∈M1

G(x) ≥ G(x0)− ε(C + 2CD) ≥ F (x0)− ε(1 + C + 2CD)

≥ F (x)−R(x)− ε(1 + C + 2CD) ≥ F (x)− ε(1 + 2C + 4CD).

Now, it suffices to use (3.13) and the last inequality, and to set f = f0 and N = M1

to prove our claim.
Step 2. Let M = I. By Step 1, there exist N1 ⊂ I, |N1| > 0, and f1 ∈ F such
that

F (x)− ε(1 + 2C + 4CD) ≤
∫
I

`(x, t)f1(t)dt ≤ F (x) for x ∈ N1.

Assume that we have constructed sets Nβ and functions fβ for all ordinal numbers
β < α, where α is a fixed countable ordinal number. Set M = I \

⋃
β<αNβ . If

|M | = 0, we stop the construction. If |M | > 0, then by Step 1 we have Nα ⊂
I \

⋃
β<αNβ , |Nα| > 0, and there is an fα ∈ F such that

F (x)− ε(1 + 2C + 4CD) ≤
∫
I

`(x, t)fα(t)dt ≤ F (x) for x ∈ Nα.

This process will stop after countably many steps. Hence, there exists a countable
ordinal number γ such that for x ∈ Nβ , β < γ,

(3.16) F (x)− ε(1 + 2C + 4CD) ≤
∫
I

`(x, t)fβ(t)dt ≤ F (x),

and moreover
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Nα ∩Nβ = ∅ for α 6= β, |Nβ | > 0 for β < γ;(3.17)

|I \
⋃
β<γ

Nβ | = 0.(3.18)

Define a functionHε byHε(x) =
∑
β<γ χNβ

(x)
∫
I
`(x, t)fβ(t)dt. Since for every β <

γ the functions x 7→
∫
I
`(x, t)fβ(t)dt and χNβ

(x) are measurable, Hε is measurable
as well. Moreover, according to (3.16), (3.17)and (3.18) we have for a.e. x ∈ I

F (x)− ε(1 + 2C + 4CD) ≤ Hε(x) ≤ F (x),

which implies
F (x) = lim

n→∞
H1/n(x) for a.e. x ∈ I,

and, consequently, F is measurable.
Step 3. We claim ‖L‖ ≥ P . Observe that

‖L‖ = sup
‖f‖X,v≤1

ess sup
x∈I

∣∣∣ ∫
I

`(x, t)f(t)dt
∣∣∣ = sup

‖f‖X,v≤1

ess sup
x∈I

∫
I

`(x, t)f(t)dt.

By the definition of P , there is a set M , |M | > 0, such that

P − ε ≤ F (x) ≤ P for all x ∈M.

Now, by Step 1, there is a set N ⊂M , |N | > 0, and a function f0 ∈ F such that∫
I

`(x, t)f0(t)dt ≥ F (x)− ε(1 + 2C + 4CD) for all x ∈ N.

Thus,

‖L‖ = sup
‖f‖X,v≤1

ess sup
x∈I

∫
I

`(x, t)f(t)dt

≥ sup
f∈F

ess sup
x∈N

∫
I

`(x, t)f(t)dt

≥ ess sup
x∈N

∫
I

`(x, t)f0(t)dt ≥ F (x)− ε(1 + 2C + 4CD)

≥ P − ε(2 + 2C + 4CD).

Letting ε tend to zero we complete the proof. �

Lemma 3.5. Assume that ` ∈ A and 0 ≤ ` ≤ D for some D > 0. Let C > 0.
Define F = {f ; ‖f‖X,v ≤ 1 and 0 ≤ f ≤ C}. Then F is measurable and ‖L‖ ≥ P .

Proof. Let Kn be a sequence of compact sets, Kn ↗ I2, such that `|Kn
are contin-

uous functions. Set `n(x, t) = `(x, t)χKn
(x, t). Since 0 ≤ `n ≤ ` we have by Lemma

2.3 `(x,.)
v(.) ∈ (X ′, v) almost everywhere in I and so, `n(x,.)

v(.) ∈ (X ′, v) which implies
again by Lemma 2.3 `n ∈ A. Set

Lnf(x) =
∫
I

`n(x, t)f(t)dt for f ∈ (X, v),

Fn(x) = sup
f∈F

Lnf(x) and,

Pn = ess sup
x∈I

Fn(x).
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Clearly, 0 ≤ `n ↗ ` a.e. in I2. Then there is a set I1 ⊂ I, |I \ I1| = 0, such that
for every x ∈ I1 we have 0 ≤ `n(x, ·) ↗ `(x, ·) a.e. in I. Thus, 0 ≤ `n(x, t)f(t) ↗
`(x, t)f(t) for x ∈ I1 and f ≥ 0, whence

0 ≤
∫
I

`n(x, t)f(t)dt↗
∫
I

`(x, t)f(t)dt for x ∈ I1 and f ≥ 0.

Now, it is not difficult to verify that

0 ≤ Fn(x) ↗ F (x) for x ∈ I1.
By Lemma 3.4, Fn are measurable. Thus F is measurable as a pointwise limit

of Fn. Moreover, it is readily seen that

(3.19) 0 ≤ Pn ↗ P.

Moreover, it is clear that

‖L‖ = sup
‖f‖X,v≤1,f≥0

ess sup
x∈I

∫
I

`(x, t)f(t)dt,

and

‖Ln‖ = sup
‖f‖X,v≤1

ess sup
x∈I

∫
I

`n(x, t)f(t)dt.

For f ≥ 0 we have
∫
I
`n(x, t)f(t)dt ≤

∫
I
(x, t)f(t)dt. We thus obtain

(3.20) ‖L‖ ≥ ‖Ln‖ for any n ∈ N.
Observe that the kernels `n satisfy the assumptions of Lemma 3.5 and therefore
‖Ln‖ ≥ Pn, which via (3.19) and (3.20) implies ‖L‖ ≥ P . The proof is complete. �

For M ⊂ R measurable we denote by D(M) the set of all points of M which are
the Lebesgue density points of M . Recall that |M \D(M)| = 0.

Lemma 3.6. Let A ⊂ I2 and M ∈ I be measurable sets, |M | > 0. Then there
exists N ⊂ M , |M \ N | = 0, N = D(N) with the following property: for every
x ∈ N and ε > 0 there is a set B ⊂ N , such that

B = D(B),(3.21)

x ∈ B,(3.22)

|Ay ÷Az| < ε for y, z ∈ B.(3.23)

Proof. Fix ε > 0. By Lemma 3.3, there is a set M̃ε,1 ⊂ M , |M̃ε,1| > 0, such that
|Ay ÷Az| < ε for y, z ∈ M̃ε,1. Set Mε,1 = D(M̃ε,1). Clearly, |M̃ε,1 \Mε,1| = 0 and,
consequently, |Mε,1| > 0. Assume that we have constructed for an ordinal number
α the sets Mε,β , β < α, such that for any β we have

|Ay ÷Az| < ε for y, z ∈Mε,β and Mε,β = D(Mε,β).

If |M \
⋃
β<αMε,β | = 0, we set Mε =

⋃
β<αMε,β and we stop the construc-

tion. If |M \
⋃
β<αMε,β | > 0, then, by Lemma 3.3, there is an M̃ε,α ⊂

M \
⋃
β<αMε,β , |M̃ε,α| > 0 and |Ay÷Az| < ε for y, z ∈ M̃ε,α. Set Mε,α = D(M̃ε,α).

This process will stop after a countable number of steps. Hence there is a count-
able ordinal γε such that

|M \
⋃
β<γε

Mε,β | = 0,
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and for β < γε we have

Mε,β = D(Mε,β), and |Ay ÷Az| < ε for y, z ∈Mε,β .

Let us define
Mε =

⋃
β<γε

Mε,β .

Set

Ñ =
∞⋂
n=1

M 1
n

and N = D(Ñ).

Evidently, N ⊂ M . Moreover, |M \M 1
n
| = 0 for n ∈ N, hence |M \

⋂∞
n=1M 1

n
| =

|M \ Ñ | = 0, and, as |Ñ \N | = 0, we have |M \N | = 0. Clearly, N = D(N).
Let ε > 0 and x ∈ N . Fix n such that 1

n < ε. Then x ∈ M 1
n

=
⋃
β<γ 1

n

M 1
n ,β

.

Let α < γ 1
n

be an ordinal number such that x ∈ M 1
n ,α

. By the construction we
have M 1

n ,α
= D(M 1

n ,α
). Moreover,

|Ay ÷Az| <
1
n
< ε for y, z ∈M 1

n ,α
.

Now, to prove (3.21), (3.22) and (3.23), if suffices to take B = M 1
n ,α

∩N . �

Lemma 3.7. Let ` ∈ A and let |`| ≤ D a.e. in I2 for some D > 0. Let C > 0. Set
F = {f ; ‖f‖X,v ≤ 1 and |f | ≤ C}. Then F is measurable and ‖L‖ ≥ P .

Proof. Since ` ∈ A, there is a J ⊂ I, |I \ J | = 0, and the function x 7→∫
I
`(x, t)f(x)dt is well-defined for all x ∈ J and f ∈ (X, v). Then for x ∈ J

F (x) = sup
f∈F

∫
I

|`(x, t)|f(t)dt(3.24)

By Lemma 3.5, the last expression is a measurable function. Thus, F is measurable.
Let ε > 0. Then there is a set M ⊂ J, |M | > 0, such that

(3.25) P − ε ≤ F (x) ≤ P for all x ∈M.

Set

K+ = {(x, y) ∈ I2; `(x, t) > 0}, K− = {(x, y) ∈ I2; `(x, t) < 0}, K = K+∪K−,

and
PK+ = {x ∈ J ; |K+

x | > 0}, PK− = {x ∈ J ; |K−
x | > 0}.

Let further

M1 = PK+ ∩ PK− ∩M, M2 = (PK+ \ PK−) ∩M,

M3 = (PK− \ PK+) ∩M, M4 = (I \ (PK+ ∪ PK−)) ∩M.

Clearly, M =
⋃4
i=1Mi, and at least one of these sets has a positive measure. Set

`i(x, t) = `(x, t)χMi(x),

(Lif)(x) =
∫
I

`i(x, t)f(t)dt.

Clearly, by Lemma 2.3 we have `i ∈ A for 1 ≤ i ≤ 4. Fix i ∈ {2, 3, 4} and assume
|Mi| > 0. It is easy to see that 0 ≤ `2 ≤ D, −D ≤ `3 ≤ 0, `4 = 0 and

(3.26) ‖L‖ ≥ ‖Li‖.
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Define
Pi = ess sup

x∈I
sup

‖f‖X,v≤1,0≤f≤C

∫
I

|`i(x, t)|f(t)dt.

Then, by the definition of `i and (3.24), we have

Pi ≥ ess sup
x∈Mi

sup
‖f‖X,v≤1,0≤f≤C

∫
I

|`i(x, t)|f(t)dt

= ess sup
x∈Mi

sup
‖f‖X,v≤1,0≤f≤C

∫
I

|`(x, t)|f(t)dt = ess sup
x∈Mi

F (x).

By Lemma 3.5 we have ‖Li‖ ≥ Pi. Therefore, using also (3.25) and (3.26), we have

(3.27) ‖L‖ ≥ P − ε.

Now let us assume that |M2| = |M3| = |M4| = 0. Then |M1| > 0. There exist
sequences of compact sets K+

n ,K
−
n such that K+

n ↗ K+, K−
n ↗ K− and moreover

`|K+
n
, `|K−n are continuous functions. Set Kn = K+

n ∪K−
n . Fix n ∈ N. Now, Lemma

3.6 guarantees the existence of sets N+
n ⊂ M1, |M1 \ N+

n | = 0 and N+
n = D(N+

n )
such that for any x ∈ N+

n there is a set N+
x,n ⊂ N+

n which satisfies

N+
x,n = D(N+

x,n),(3.28)

x ∈ N+
x,n,(3.29)

|K+
n,y ÷K+

n,z| < ε for y, z ∈ N+
x,n.(3.30)

Analogously, there is a set N−
n with N−

n ⊂ M1, |M1 \N−
n | = 0, N−

n = D(N−
n ) and

for any x ∈ N−
n we have a set N−

x,n ⊂ N−
n such that

N−
x,n = D(N−

x,n),(3.31)

x ∈ N−
x,n,(3.32)

|K−
n,y ÷K−

n,z| < ε for y, z ∈ N−
x,n.(3.33)

Set Ñ1 =
⋂∞
n=1(N

+
n ∩ N−

n ) and N1 = D(Ñ1). Obviously, |M1 \ N1| = 0 and,
consequently, |N1| > 0. Denote for n ∈ N

PK+
n = {x ∈ J ; |K+

n,x| > 0}, PK−
n = {x ∈ J ; |K−

n,x| > 0}.
By the Fubini theorem, |M1| > 0, and Kn ↗ K, we can choose an n0 ∈ N large
enough in order that

|PK+
n ∩ PK−

n ∩M1| > 0 for all n ≥ n0.

Set
An = {x ∈ J ; |K+

x \K+
n,x| < ε and |K−

x \K−
n,x| < ε}.

Since for any n ∈ N the functions x 7→ |K+
x \ K+

n,x| and x 7→ |K−
x \ Kn| are

measurable, An are measurable as well. Moreover, An is a non-decreasing sequence
of sets.

Since K+
n ↗ K+ and K−

n ↗ K−, we obtain by the Fubini theorem K+
n,x ↗ K+

x

and K−
n,x ↗ K−

x for a.e. x ∈ J . So, there is a set J1 ⊂ J , |J \ J1| = 0 such that

(3.34) K+
n,x ↗ K+

x , K
−
n,x ↗ K−

x for all x ∈ J1.

Using the Fubini theorem again, we can find an n1 ∈ N such that |An ∩N1| > 0 for
any n ≥ n1. Let n2 = max{n0, n1}. Then we see that

(3.35) |K+
x \K+

n,x| < ε and |K−
x \K−

n,x| < ε for all x ∈ An ∩N1, n ≥ n2.
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Define `+n = `χK+
n

and `−n = `χK−n . Set `n = `+n − `−n . Let N2 = An1 ∩ N1 ∩ J1.
Clearly, |N2| > 0.

Let x0 ∈ D(N2). Since x0 ∈ N2 ⊂ N1 ⊂ M1 ⊂ M , we have from (3.25) and the
definition of F (x0) a function f0(t) such that

(3.36) P − 2ε ≤
∣∣∣ ∫
I

`(x0, t)f0(t)dt
∣∣∣ ≤ P.

Clearly, (3.34) and the fact that x0 ∈ J1 imply `+n (x0, t) ↗ `+(x0, t), `−n (x0, t) ↗
`−(x0, t). Since the constant function CD can serve as an integrable majorant, we
can write ∫

I

`+n (x0, t)f0(t)dt→
∫
I

`+(x0, t)f0(t)dt,

and ∫
I

`−n (x0, t)f0(t)dt→
∫
I

`−(x0, t)f0(t)dt.

Hence, there exists an n3 ≥ n2 such that∫
I

`+(x0, t)f0(t)dt− ε ≤
∫
I

`+n3
(x0, t)f0(t)dt ≤

∫
I

`+(x0, t)f0(t)dt+ ε,

and ∫
I

`−(x0, t)f0(t)dt− ε ≤
∫
I

`−n3
(x0, t)f0(t)dt ≤

∫
I

`−(x0, t)f0(t)dt+ ε.

Using these inequalities, `n(x0, t) = `+n (x0, t)− `−n (x0, t), and `(x0, t) = `+(x0, t)−
`−(x0, t), we obtain∣∣∣ ∫

I

`(x0, t)f0(t)dt
∣∣∣− 2ε ≤

∣∣∣ ∫
I

`n3(x0, t)f0(t)dt
∣∣∣ ≤ ∣∣∣ ∫

I

`(x0, t)f0(t)dt
∣∣∣ + 2ε.

Together with (3.36), this yields

(3.37) P − 4ε ≤
∣∣∣ ∫
I

`n3(x0, t)f0(t)dt
∣∣∣ ≤ P + 2ε.

Since `|Kn3
is continuous, there is an α0 > 0 such that, for x ∈ (x0−α0, x0 +α0)

and t ∈ Kn3,x0 ∩Kn3,x,

(3.38) |`n3(x, t)− `n3(x0, t)| < ε

Set N3 = (x0−α0, x0 +α0)∩N2 ∩N+
x0,n3

∩N−
x0,n3

. We know that x0 ∈ D(N2). By
(3.28), (3.29), (3.31) and (3.32) we have x0 ∈ N3, x0 ∈ D(N3) and, consequently,
|N3| > 0.

Recall that N3 satisfies the following inclusions:

N3 ⊂ N2 ⊂ An1 ,(3.39)

N3 ⊂ (x0 − α0, x0 + α0),(3.40)

N3 ⊂ N+
x0,n3

∩N−
x0,n3

.(3.41)

We shall estimate

G(x) =
∫
I

`(x, t)f0(t)dt, x ∈ N3.
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Clearly, for a fixed x ∈ N3, we have

G(x) =
∫
I

(`(x, t)− `n3(x, t))f0(t)dt

+
∫
Kn3,x0∩Kn3,x

(`n3(x, t)− `n3(x0, t))f0(t)dt

+
∫
Kn3,x0\Kn3,x

`n3(x, t)f0(t)dt

+
∫
Kn3,x\Kn3,x0

`n3(x0, t)f0(t)dt

+
∫
I

`n3(x0, t)f0(t)dt = I1 + I2 + I3 + I4 + I5.

Now, evidently,

|I1| ≤
∫
I

|`(x, t)− `n3(x, t)||f0(t)|dt

≤
∫
K+

x \K+
n3,x

`+(x, t)|f0(t)|dt+
∫
K−x \K−n3,x

|`−(x, t)||f0(t)|dt.

By (3.39), x ∈ N3 ⊂ An1 . Since n3 ≥ n2 ≥ n1, we have by (3.35) |I1| ≤ 2εCD. By
(3.38) and (3.40), |I2| ≤ εC. Using (3.30), (3.33) and (3.41), we get |K+

n,x÷K+
n,x0

| <
ε and |K−

n,x ÷K−
n,x0

| < ε, and therefore

|I3| ≤ εCD, |I4| < εCD.

Now, (3.37) and the estimates of I1, I2, I3, I4 give

‖L‖ ≥ sup
f∈F

ess sup
x∈I

∣∣∣ ∫
I

`(x, t)f(t)dt
∣∣∣ ≥ ess sup

x∈N3

∣∣∣ ∫
I

`(x, t)f0(t)dt
∣∣∣

= ess sup
x∈N3

|G(x)| ≥ |I5| − |I1| − |I2| − |I3| − |I4| ≥ P − ε(4 + C + 4CD).

We have proved that if |M2| = |M3| = |M4| = 0, then either ‖L‖ ≥ P − ε or
‖L‖ ≥ P − ε(4 + C + CD). Together with (3.27) this yields

‖L‖ ≥ P − ε(4 + C + 4CD).

Letting ε tend to zero, we obtain ‖L‖ ≥ P , and the proof is complete. �

Lemma 3.8. Let ` ∈ A, |`| ≤ D in I2 for some D > 0 and let F be the unit ball
of (X, v). Then F is measurable. Moreover, ‖L‖ ≥ P .

Proof. Let FC = {f ; ‖f‖X,v ≤ 1, |f | ≤ C} for any C > 0. Let a > 0 and h ∈ M(I).
We denote

ha(t) =


a if h(t) > a

h(t) if |h(t)| ≤ a

−a if h(t) < −a.
We define FC(x) = supf∈FC

|
∫
I
`(x, t)f(t)dt|.

Let J ⊂ I, |I \ J | = 0 and assume that
∫
I
`(x, t)f(t)dt exists for any x ∈ J

and f ∈ (X, v). Fix x ∈ J . Clearly,
∫
I
hC →

∫
I
h for C → ∞ if

∫
I
h exists in the

Lebesgue sense. Then∣∣∣ ∫
I

`(x, t)fC(t)dt
∣∣∣ → ∣∣∣ ∫

I

`(x, t)f(t)dt
∣∣∣ for C →∞.
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It is not difficult to prove from the above convergence that

FC(x) ↗ F (x).

By Lemma 3.7, the functions FC(x) are measurable and therefore F (x) is measur-
able as a monotone pointwise limit of FC(x).

Moreover, as FC(x) ↗ F (x) a.e. in I, we have also PC ↗ P . Now, Lemma 3.7
implies ‖L‖ ≥ PC for any C > 0, and thus ‖L‖ ≥ P . The proof is complete. �

Lemma 3.9. Let I = [0, 1]. Let δ > 0 and denote

M = {A; A ∈ M(I), |A| < δ}.

Then there exists a countable system C = {Mi}i∈N of sets, |Mi| < δ, such that for
every A ∈M and ε > 0 there is a k ∈ N such that |A÷Mk| < ε.

Proof. Set

C = {M ⊂ I; M =
n⋃
i=1

(ai, bi), n ∈ N, ai, bi rational, (ai, bi)∩ (aj , bj) = ∅ for i 6= j

and
n∑
i=1

(bi − ai) < δ}.

Clearly, C is a countable system, i.e. C = {Mi}i∈N.
Now, let A ∈ M and ε > 0. Fix a γ such that 0 < γ < min{ ε3 , δ − |A|}. By the

regularity of the Lebesgue measure, there is an open set G =
⋃∞
i=1(ci, di) such that

A ⊂ G and

(3.42) |G \A| < γ.

Since G ⊂ I, we have
∑∞
i=1(ci − di) ≤ 1, and there exists an n ∈ N such that

the set Gn, defined by Gn =
⋃n
i=1(ci, di), satisfies

(3.43) |G \Gn| < γ.

Let ai, bi ∈ Q, i = 1, 2, . . . , n, are such that

(ai, bi) ⊂ (ci, di) and |(ci, di) \ (ai, bi)| <
γ

n
.

Set M =
⋃n
i=1(ai, bi). Clearly, M ⊂ Gn and

(3.44) |Gn \M | ≤
n∑
i=1

|(ci, di) \ (ai, bi)| < γ.

Evidently, we have from (3.42)

|M | ≤ |M \A|+ |A| ≤ |G \A|+ |A| ≤ γ + |A| < δ,

which implies M ∈ C. Moreover, due to (3.42), (3.43), and (3.44) we can write

|A÷M | = |A \M |+ |M \A| ≤ |G \Gn|+ |Gn \M |+ |G \A| ≤ 3γ < ε,

which completes the proof. �

Lemma 3.10. Let ` ∈ A and let F be the unit ball of (X, v). Then F is measurable
and ‖L‖ ≥ P .
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Proof. Since ` ∈ A, there is a set J ⊂ I, |I \ J | = 0, and such that
∫
I
`(x, t)f(t)dt

has a sense for any x ∈ J and f ∈ (X, v). Set Bn = {(x, y) ∈ I2; |`(x, t)| ≤ n}.
Define

`n(x, t) = `(x, t)χBn(x, t), (Lnf)(x) =
∫
I

`n(x, t)f(t)dt.

Remark that by Lemma 2.3 we immediately obtain `n ∈ A.
Step 1. Now we claim that F is measurable. Note that F (x) is defined for every
x ∈ J . Fix x ∈ J . Clearly, |`n(x, t)| ↗ |`(x, t)| in I2, and, consequently,

(3.45) |`n(x, t)|f(t) ↗ |`(x, t)|f(t) for any f ≥ 0.

It is easy to see that

F (x) = sup
‖f‖X,v≤1,f≥0

∫
I

|`(x, t)|f(t)dt.

By (3.45), we have for f ≥ 0∫
I

|`n(x, t)|f(t)dt↗
∫
I

|`(x, t)|f(t)dt,

and, consequently,

Fn(x) := sup
‖f‖X,v≤1,f≥0

∫
I

|`n(x, t)|f(t)dt↗ F (x).

The function Fn can be expressed also by

(3.46) Fn(x) = sup
‖f‖X,v≤1

∣∣∣ ∫
I

`n(x, t)f(t)dt
∣∣∣.

Since `n ∈ A, we have from Lemma 3.8 that Fn are measurable. Then the fact that
Fn(x) ↗ F (x) for any x ∈ J shows that F is measurable.

Step 2. We will prove the inequality

(3.47) ‖L‖ ≥ ‖Ln‖ for any n ∈ N.

Fix n ∈ N. The norms ‖L‖ and ‖Ln‖ are well defined because `n, ` ∈ A.
If ‖L‖ = ∞, then (3.47) is trivial. Assume that ‖L‖ <∞.
If ‖Ln‖ = 0, then (3.47) is evident. Suppose ‖Ln‖ > 0. Choose 0 < ε0 <

1√
2

such that ε0 ≤ ‖Ln‖ is ‖Ln‖ <∞ and ‖L‖ < 1
ε 0
− 2ε0 if ‖Ln‖ = ∞. For ε ∈ (0, ε0)

we define

(3.48) Dε =

{
‖Ln‖ − ε if ‖Ln‖ <∞ and ε0 < ‖Ln‖;
1
ε if ‖Ln‖ = ∞ and ‖L‖ < 1

ε0
− 2ε0.

By the definition of ‖Ln‖, there exists a function f0, ‖f0‖X,v ≤ 1, and a set
M ⊂ J, |M | > 0, such that

(3.49) Dε ≤
∣∣∣ ∫
I

`n(x, t)f0(t)dt
∣∣∣ for x ∈M.

Let J1 ⊂ J, J2 ⊂ J be measurable sets such that

(3.50)

{
|
∫
I
`(x, t)f0(t)dt| <∞ for x ∈ J1,

|
∫
I
`(x, t)f0(t)dt| = ∞ for x ∈ J2.
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If |J2| > 0, then

‖L‖ ≥ ess sup
x∈J2

∣∣∣ ∫
I

`(x, t)f0(t)dt
∣∣∣ = ∞,

which is a contradiction. Thus, |I \ J1| = |J \ J1| = 0, or

(3.51)
∫
I

|`(x, t)||f0(t)|dt <∞ for a.e. x ∈ J1.

Let δ > 0. Set Aδ = {x ∈ J1; sup|A|<δ
∫
A
|`(x, t)||f0(t)|dt < ε}. Observe that

Aδ2 ⊂ Aδ1 for 0 < δ1 < δ2.
We will show now that Aδ is a measurable set. For x ∈ J1 we define the function

Hδ(x) = sup
|A|<δ

∫
A

|`(x, t)||f0(t)|dt.

By (3.51), Hδ(x) <∞ for x ∈ J1. Let C be a countable system of sets from Lemma
3.9. Let λ > 0 and fix x ∈ J1. By the definition of Hδ(x), there is a set A0, such
that |A0| < δ and

(3.52) Hδ(x)− λ ≤
∫
A0

|`(x, t)||f0(t)|dt ≤ Hδ(x).

The absolute continuity of the Lebesgue integral and (3.51) now give the existence
of η > 0 such that

(3.53)
∫
B

|`(x, t)||f0(t)|dt < λ for |B| < η.

Obviously, we can choose η < δ. Let N0 ∈ C such that |A0 ÷N0| < η. Then (3.52)
and (3.53) yield

Hδ(x) ≥ sup
N∈C

∫
N

|`(x, t)||f0(x)|dt ≥
∫
N0

|`(x, t)||f0(t)|dt

=
∫
A0

|`(x, t)||f0(t)|dt−
∫
A0\N0

|`(x, t)||f0(t) dt

+
∫
N0\A0

|`(x, t)||f0(t)|dt ≥ Hδ(x)− λ.

On letting λ→ 0+ we have Hδ(x) = supN∈C
∫
N
|`(x, t)||f0(t)|dt. Since the function

x 7→
∫
N
|`(x, t)||f0(t)|dt is measurable for any fixed N ∈ C, the function Hδ is

measurable as a supremum of countably many measurable functions. Moreover, as
Aδ = H−1

δ ((0, ε)), the set Aδ is measurable for any δ > 0.
Now, the absolute continuity of the Lebesgue integral and (3.51) give

⋃
δ>0Aδ =

J1. Hence there is a δ0 such that |Aδ0 ∩M | > 0. By Lemma 3.6, there is a set
M1 ⊂ (Aδ0 ∩M) with the following properties: |(Aδ0 ∩M)\M1| = 0, M1 = D(M1),
and for any x ∈M1 there is a set Nδ0,x ⊂M1 such that Nδ0,x = D(Nδ0,x), x ∈ Nδ0,x
and |Bn,y ÷Bn,z| < δ0 for y, z ∈ Nδ0,x. Let x0 ∈M1 be fixed. Then Nδ0,x0 satisfies

Nδ0,x0 = D(Nδ0,x0),(3.54)

x0 ∈ Nδ0,x0 ,(3.55)

|Bn,y ÷Bn,z| < δ0 for y, z ∈ Nδ0,x0 .(3.56)
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The properties (3.54) and (3.55) guarantee that |Nδ0,x0 | > 0. Set f1(t) =
f0(t)χBn,x0

(t). Clearly, ‖f1‖X,v ≤ 1. Fix x ∈ Nδ0,x0 . Note that (3.55) and (3.56)
give

(3.57) |Bn,x0 ÷Bn,x| < δ0.

Obviously,∫
I

`(x, t)f1(t)dt =
∫
Bn,x0

`(x, t)f0(t)dt

=
∫
Bn,x0∩Bn,x

`(x, t)f0(t)dt+
∫
Bn,x0\Bn,x

`(x, t)f0(t)dt

=
∫
I

`n(x, t)f0(t)dt−
∫
Bn,x\Bn,x0

`(x, t)f0(t)dt+
∫
Bn,x0\Bn,x

`(x, t)f0(t)dt.

By (3.49), (3.57) and Nδ0,x0 ⊂ Aδ0 , we have

Dε − 2ε ≤
∣∣∣ ∫
I

`(x, t)f1(t)dt
∣∣∣ for any x ∈ Nδ0,x0 .

Since |Nδ0,x0 | > 0, we have
‖L‖ ≥ Dε − 2ε.

If ‖Ln‖ = ∞, then ‖L‖ ≥ 1
ε − 2ε, which is a contradiction with (3.48). Thus,

‖Ln‖ <∞ and ‖L‖ ≥ ‖Ln‖ − 3ε. On letting ε→ 0+ we obtain (3.47).

Step 3. Denote Pn = ess supx∈I Fn(x) for n ∈ N, where Fn(x) is defined by
(3.46). Recall that P = ess supx∈N F (x). By Step 2, Fn and F are measurable,
and, consequently, P and Pn are well defined. We shall prove

(3.58) lim inf
n→∞

Pn ≥ P.

Denote for x ∈ J and f ∈ (X, v)

Fn(x, f) =
∣∣∣ ∫
I

`n(x, t)f(t)dt
∣∣∣ and F (x, f) =

∣∣∣ ∫
I

`(x, t)f(t)dt
∣∣∣.

Fix x ∈ J and f ∈ (X, v). Let

I+ = {t; `(x, t)f(t) > 0}, I− = {t; `(x, t)f(t) < 0}.

Obviously, the definition of `n gives

`n(x, t)f(t) ≥ 0 on I+, `n(x, t)f(t) ≤ 0 on I−,

and

`n(x, t)f(t) ↗ `(x, t)f(t) a.e. in I+ for n→∞,

`n(x, t)f(t) ↘ `(x, t)f(t) a.e. in I− for n→∞.

Of course, `n(x, t) = `(x, t) = 0 in I \ (I+ ∪ I−). Then

(`n(x, t)f(t))+ ↗ (`(x, t)f(t))+ for n→∞,

(`n(x, t)f(t))− ↗ (`(x, t)f(t))− for n→∞,

and, consequently,∫
I

`n(x, t)f(t)dt→
∫
I

`(x, t)f(t)dt for n→∞.
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The last relation implies

(3.59) Fn(x, f) → F (x, f) for any x ∈ J and f ∈ (X, v).

Let ε > 0. Set J1 = {x; F (x) < ∞, J2 = {x; F (x) = ∞. Fix x ∈ J1. By the
definition of F (x), there exists a function f0, ‖f0‖X,v ≤ 1, such that

(3.60) F (x)− ε ≤ F (x, f0) ≤ F (x).

By (3.59), it is possible to choose n0 such that for any n ≥ n0

F (x, f0)− ε ≤ Fn(x, f0) ≤ F (x, f0) + ε,

which together with (3.60) gives

F (x)− 2ε ≤ Fn(x, f0) ≤ F (x) + ε,

and, consequently,

F (x)− 2ε ≤ Fn(x, f0) ≤ sup
‖f‖X,v≤1

Fn(x, f) = Fn(x).

Thus, for any ε > 0 there is an n0 such that

F (x)− 2ε ≤ Fn(x) for n ≥ n0,

which in turn yields

(3.61) F (x) ≤ lim inf
n→∞

Fn(x) for any x ∈ J1.

Fix x ∈ J2. By the definition of F (x) there exists a function f0, ‖f0‖X,v ≤ 1,
such that 1

ε ≤ F (x, f0). By (3.59), we have n0 such that for n ≥ n0,

1
ε
− ε ≤ Fn(x, f0) ≤ sup

‖f‖X,v

≤ 1 = Fn(x, f) = Fn(x).

It proves limn→∞ Fn(x) = ∞ and, consequently, (3.61) holds for x ∈ J2.
Let In ⊂ J , |J \ In| = 0 such that

(3.62) Pn = ess sup
x∈I

Fn(x) = sup
x∈In

Fn(x).

Let J3 =
⋂∞
n=1 In. Clearly, |J \ J3| = 0. By (3.61) and (3.62),

P ≤ ess sup
x∈I

lim inf
n→∞

Fn(x) ≤ sup
x∈J3

lim inf
n→∞

Fn(x)

≤ lim inf
n→∞

sup
x∈J3

Fn(x) ≤ lim inf
n→∞

sup
x∈In

Fn(x)

= lim inf
n→∞

Pn,

which proves (3.58).

Step 4. We know from Step 1 that `n ∈ A. Moreover, |`n(x, t)| ≤ n in I2. Hence,
`n satisfies the assumptions of Lemma 3.8, and thus ‖Ln‖ ≥ Pn for any n ∈ N.
Using (3.47) and (3.58), we get

‖L‖ ≥ lim sup
n→∞

‖Ln‖ ≥ lim sup
n→∞

Pn ≥ lim inf
n→∞

Pn ≥ P

which completes the proof. �

Remark 3.11. Let ` ∈ A and let F be the unit ball of (X, v). Then P = ‖`‖L∞(X′,v)

where ‖`‖L∞(X′,v) is defined by (3.1).
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Proof. Since ` ∈ A we have that the function

F (x) = sup
f∈F

∫
I

`(x, t)f(t)dt

is measurable. Clearly, using (2.6) and (2.7) we obtain

F (x) = sup
f∈F

∣∣∣∣∫
I

`(x, t)f(t)dt
∣∣∣∣ =

∥∥∥`(x, ·)
v(·)

∥∥∥
X′,v

and thus
P = ess sup

x∈I
F (x) = ‖`‖L∞(X′,v).

�

We have proved one part of Theorem 3.1. To completely verify Theorem 3.1 it
remains to prove the following lemma.

Lemma 3.12. Let ` ∈ A. Then ‖L‖ ≤ ‖`‖L∞(X′,v).

Proof. By Lemma 3.10 the function x 7→
∥∥∥ `(x,·)v(·)

∥∥∥
X′,v

is measurable. The definition

of ‖`‖L∞(X′,v) guarantees that there is a set J , |I \ J | = 0, such that

‖`‖L∞(X′,v) = sup
x∈J

∥∥∥`(x, ·)
v(·)

∥∥∥
X′,v

.

For each ‖f‖X,v ≤ 1 we obtain

‖Lf‖∞ = inf
|M |=0

sup
x∈(I\M)

∣∣∣ ∫
I

`(x, t)f(t)dt
∣∣∣

≤ sup
x∈J

∣∣∣ ∫
I

`(x, t)f(t)dt
∣∣∣ ≤ sup

x∈J

∥∥∥`(x, ·)
v(·)

∥∥∥
X′,v

‖f‖X,v

≤ sup
x∈J

∥∥∥`(x, ·)
v(·)

∥∥∥
X′,v

= ‖`‖L∞(X′,v),

which yields ‖L‖ ≤ ‖`‖L∞(X′,v). The proof is complete. �

We define L∞(X ′, v) as the set of all ` ∈ A such that

‖`‖L∞(X′,v) <∞.

Lemma 3.13. The set L∞(X ′, v), equipped with the norm ‖·‖L∞(X′,v), is a Banach
space. Moreover, it satisfies

(i) ‖`‖L∞(X′,v) = ‖ |`| ‖L∞(X′,v);
(ii) if 0 ≤ `n ↗ ` a.e. in I2 and ` ∈ A, then ‖`n‖L∞(X′,v) ↗ ‖`‖L∞(X′,v).

Proof. Clearly, L∞(X ′, v) is a linear space, and ‖ · ‖L∞(X′,v) defines a norm. The
properties (i) is obvious. Let us prove (ii). By Lemma 2.3 it is `n ∈ A. Set Fn(x) =
‖ `n(x,·)

v(·) ‖X′,v, F (x) = ‖ `(x,·)v(·) ‖X′,v. Since (X ′, v) and L∞ are Banach function spaces
we have Fn(x) ↗ F (x) for a.e. x ∈ I and, consequently, ‖Fn‖L∞ ↗ ‖F‖L∞ , which
proves (ii). Let us prove the completeness of L∞(X ′, v). Let `n be a Cauchy
sequence in L∞(X ′, v). Take Jn,m ⊂ I such that |I \ Jn,m| = 0 and

‖`n − `m‖L∞(X′,v) = sup
x∈Jn,m

∥∥∥`n(x, ·)− `m(x, ·)
v(·)

∥∥∥
X′,v

.
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Set

J̃ =
∞⋂

n,m=1

Jn,m.

Clearly, |I \ J̃ | = 0.
Let ε > 0. Since `n is a Cauchy sequence in L∞(X ′, v)we have n0 such that

(3.63) ‖`n − `m‖L∞(X′,v) ≤ sup
x∈J̃

∥∥∥`n(x, ·)− `m(x, ·)
v(·)

∥∥∥
X′,v

< ε for all n,m > n0.

Fix x ∈ J̃ . Then the sequence `n(x,·)
v(·) is a Cauchy sequence in (X ′, v). Since (X ′, v)

is a Banach space there exists a unique function `(x, ·) such that `n(x,·)
v(·) → `(x,·)

v(·) in

(X ′, v). Thus, ‖ `(x,·)v(·) ‖X′,v <∞ and∫
I

|`(x, t)f(t)|dt ≤
∥∥∥`(x, ·)
v(·)

∥∥∥
X′,v

‖f‖X,v <∞

for each f ∈ (X, v) which proves that
∫
I
|`(x, t)f(t)|dt has a sense for all f ∈ (X, v)

and x ∈ J̃ . Consequently, ` ∈ A.
It remains to prove `n → ` in L∞(X ′, v). Let ε > 0 and x ∈ J̃ . Let n0

satisfies (3.63). Since `n(x,·)
v(·) → `(x,·)

v(·) in (X ′, v) we can find m > n0 such that

‖ `m(x,·)−`(x,·)
v(·) ‖X′,v < ε. Then∥∥∥`n(x, ·)− `(x, ·)
v(·)

∥∥∥
X′,v

≤
∥∥∥`n(x, ·)− `m(x, ·)

v(·)

∥∥∥
X′,v

+
∥∥∥`m(x, ·)− `(x, ·)

v(·)

∥∥∥
X′,v

< 2ε

which gives for n→∞

ess sup
x∈I

∥∥∥`n(x, ·)− `(x, ·)
v(·)

∥∥∥
X′,v

≤ sup
x∈J̃

∥∥∥`n(x, ·)− `(x, ·)
v(·)

∥∥∥
X′,v

→ 0

which finishes the proof. �

It is a routine procedure to extend the result of Theorem 3.1 to an arbitrary
interval I = [a, b], −∞ < a < b <∞. This finishes the proof of Theorem 3.1.

4. Compactness of a general kernel operator

In this section we investigate the distance of the operator L from the set of all
compact operators K : (X, v) → L∞. Define

D = inf{‖L−K‖; K ∈ K},

where K is the set of all compact operators. Denote by R the set of all kernels
k ∈ M(I2) that can be written as

k(x, t) =
n∑
i=1

χMi(x)ψi(t)

for some n ∈ N, χMi
∈ M(I), and ψi

v ∈ (X ′, v). Clearly, k ∈ R implies k ∈
L∞(X ′, v). Let C be the closure of R in L∞(X ′, v). Define further

d := inf{‖`− k‖L∞(X′,v); k ∈ C} = inf{‖`− k‖L∞(X′,v); k ∈ R}.
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Our main aim in this section is to prove that D is comparable to d and, conse-
quently, that an operator L is compact if and only if its kernel ` can be approximated
in L∞(X ′, v) by kernels from R.

Let L be a fixed linear operator given by a kernel ` ∈ L∞(X ′, v).

Theorem 4.1. d
2 ≤ D ≤ d.

The proof will be given in a series of lemmas.

Lemma 4.2. Let k ∈ R. Then the operator (Kf)(x) =
∫
I
k(x, t)f(t)dt is a finite-

dimensional bounded operator. Consequently, K is compact.

Proof. Let k(x, t) =
∑n
i=1 χMi

(x)ψi(t), χMi
∈ M(I) and ψi

v ∈ (X ′, v). Since
k ∈ L∞(X ′, v), the operator K is bounded by Theorem 3.1. Moreover,

Kf(x) =
n∑
i=1

∫
I

ψi(t)f(t)dtχMi(x) =
n∑
i=1

AiχMi(x).

Now, (2.6) gives |Ai(f)| ≤ ‖ψi

v ‖X′,v‖f‖X,v which implies Ai ∈ (X, v)∗ (the dual
space) and, consequently, K is a bounded operator. �

Now we are in a position to prove the second inequality in Theorem 4.1.

Lemma 4.3. D ≤ d.

Proof. By Lemmas 3.12 and 4.2, we can write

D ≤ inf
k∈R

sup
‖f‖X,v≤1

ess sup
x∈I

∫
I

|`(x, t)− k(x, t)||f(t)|dt

≤ inf
k∈R

sup
‖f‖X,v<1

ess sup
x∈I

∥∥∥`(x, ·)− k(x, ·)
v(·)

∥∥∥
X′,v

‖f‖X,v

= inf
k∈R

‖`− k‖L∞(X′,v) = d

which proves the assertion. �

In the rest of this section we show the first inequality in Theorem 4.1.

Definition 4.4. We say that a finite system of sets A = {Ωj ; j = 1, 2, . . . , n} is a
partition of I if Ωi ∩ Ωj = ∅ for i 6= j, and

⋃n
j=1 Ωj = I.

Lemma 4.5. Let n,N be positive integers. Let Ai = {Ωij ; j = 1, 2, . . . , N}, i =
1, 2, . . . , n be partitions of I. Then there is a positive integer m and a partition
A = {Ek; k = 1, 2, . . . ,m} of I such that

for any i ∈ {1, 2, . . . , n} and k ∈ {1, 2, . . . ,m} there exists(4.1)

a j ∈ {1, 2, . . . , N} such that Ek ⊂ Ωij .

Proof. We use the induction on n. Let n = 1. Then the assertion is obvious.
Assume that Ai = {Ωij ; j = 1, 2, . . . , N}, i = 1, 2, . . . , n+ 1, are partitions of I.

By the induction assumption, there is a partition of I, Ã = {Ẽk; k = 1, 2, . . . , m̃}
such that

for any i ∈ {1, 2, . . . , n} and k ∈ {1, 2, . . . , m̃} there exists

a j ∈ {1, 2, . . . , N} such that Ẽk ⊂ Ωij .
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Set Fkj = Ẽk ∩ Ωn+1
j , k ∈ {1, 2, . . . , m̃}, and j ∈ {1, 2, . . . , N}. Define a system

of sets A by

A = {Fkj ; k ∈ {1, 2, . . . , m̃} and j ∈ {1, 2, . . . , N}}.

It is not difficult to verify that A is a partition of I with the required properties.
�

Let B be the unit ball in (X, v). Let M ⊂ L∞ and η > 0. We say that N ⊂ L∞
is a η-net in M if for every f ∈M there is a g ∈ N with ‖f − g‖L∞ ≤ η.

Lemma 4.6. Let

σ = inf{η; there exists a finite η − net of L(B)}.

Then σ ≤ D.

Proof. Let ε > 0. Take K ∈ K such that

‖L−K‖ ≤ D + ε.

Since K ∈ K, there exists a finite ε-net {g1, g2, . . . , gn} of K(B). Let g ∈ L(B).
Then there is a function f ∈ B such that Lf = g. Choose gi with ‖Kf−gi‖L∞ ≤ ε.
Then

‖g − gi‖L∞ = ‖Lf − gi‖L∞ ≤ ‖Lf −Kf‖L∞ + ‖Kf − gi‖L∞ ≤ D + 2ε.

Thus, {g1, . . . , gn} is a finite (D + 2ε)-net of L(B) and, consequently, σ ≤ D + 2ε.
On letting ε→ 0+ we obtain the assertion. �

It is worth noting that Lemma 4.6 remains true under more general assumptions,
namely, for Banach spaces X,Y , a bounded linear operator T : X → Y , and σ, D
defined in an analogous way.

Lemma 4.7. Let λ be a measure on I such that λ-measurable sets coincide with the
Lebesgue measurable sets, and λ(E) = 0 if and only if |E| = 0. Let h(x, t) ∈ M(I2),
such that h(x, t)v(t) ∈ A. Then the function x 7→ ‖h(x, ·)‖X′,v is λ-measurable.
Moreover, for E ⊂ I measurable, 0 < λ(E) <∞, we have∥∥∥ 1

λ(E)

∫
I

h(x, ·)dλ(x)
∥∥∥
X′,v

≤ 1
λ(E)

∫
I

‖h(x, ·)‖X′,v dλ(x).

Proof. Define F (x) = ‖h(x, ·)‖X′,v. Clearly,

F (x) = sup
‖f‖X,v≤1

∫
I

|h(x, t)f(t)|v(t)dt = sup
‖f‖X,v≤1

∣∣∣ ∫
I

h(x, t)f(t)v(t)dt
∣∣∣.

By Theorem 3.1, the last expression is a Lebesgue measurable function, whence F
is Lebesgue measurable. Due to the assumptions on λ, F is λ-measurable, which
proves the first part of the lemma.

Now, using the Fubini theorem, we have∥∥∥ 1
λ(E)

∫
I

h(x, ·)dλ(x)
∥∥∥
X′,v

=
1

λ(E)
sup

‖f‖X,v≤1

∣∣∣ ∫
I

∫
I

h(x, t)f(t)v(t)dtdλ(x)
∣∣∣ = A,
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say. Assume that A <∞ (the case A+∞ can be handled analogously). Let ε > 0.
Then there is an f0 ∈ B such that

A− ε ≤ 1
λ(E)

∣∣∣ ∫
I

∫
I

h(x, t)f0(t)v(t)dtdλ(x)
∣∣∣

≤ 1
λ(E)

∫
I

F (x)dλ(x) =
1

λ(E)

∫
I

‖h(x, ·)‖X′,v dλ(x).

On letting ε→ 0+ we obtain the assertion. �

The main idea of the proof of the following lemma is taken from [10].

Lemma 4.8. The inequality d
2 ≤ σ holds.

Proof. Let ε > 0. Let {g1, g2, . . . , gn} be a finite (σ + ε)-net of L(B). Since L(B)
is bounded in L∞, the set {g1, g2, . . . , gn} is bounded in L∞, too. Hence there
exists an A > 0 such that ess supx∈I |gi(x)| ≤ A, i = 1, 2, . . . , n. We can even
assume that supx∈I |gi(x)| ≤ A because in the opposite case we simply change
every function gi on a set of measure zero.

Let {Ij ; j = 1, 2, . . . , N} be a partition of [−A,A] such that Ij are intervals and
|Ij | ≤ ε. Let Ωij = g−1

i (Ij), i = 1, 2, . . . , n, j = 1, 2, . . . , N . Then the systems
Ai = {Ωij ; j = 1, 2, . . . , N} are partitions of I. By Lemma 3.5, there is a partition
of I, say, A = {Ek; k = 1, 2, . . . ,m}, such that (4.1) holds.

Let B = {Ek ∈ A; |Ek| > 0}. Then we can write B = {Ek; k = 1, 2, . . . ,m1}
where m1 ≤ m. Clearly,

Ek1 ∩ Ek2 = ∅, k1, k2 ∈ {1, . . . ,m1}, k1 6= k2,(4.2) ∣∣∣I \ m1⋃
k=1

Ek

∣∣∣ = 0,(4.3)

and

for every i ∈ {1, 2, . . . , n} and k ∈ {1, 2, . . . ,m1} there is(4.4)

a j ∈ {1, 2, . . . , N} such that Ek ⊂ Ωij .(4.5)

We define the operator

(Pεf)(x) =
m1∑
k=1

χEk
(x)

∫
Ek
f(t)e−t

2
dt∫

Ek
e−t2dt

.

Then (Pεf)(x) is defined on
⋃m1
k=1Ek and therefore, by (4.3), it is defined a.e. on I.

It is not difficult to see that Pε : L∞ → L∞ is a bounded linear finite-dimensional
operator. Moreover, using (4.2), we obtain

(P 2
ε f)(x) =

m1∑
k=1

χEk
(x)

1∫
Ek
e−t2dt

∫
Ek

(Pεf)(t)e−t
2
dt

=
m1∑
k=1

χEk
(x)∫

Ek
e−t2dt

∫
Ek

m1∑
`=1

χE`
(t)

∫
E`
f(s)e−s

2
ds∫

E`
e−s2ds

e−t
2
dt

=
m1∑
k=1

χEk
(x)

∫
Ek
f(s)e−s

2
ds∫

Ek
e−s2ds

= (Pεf)(x),
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which proves
P 2
ε = Pε.

In other words, Pε is a projection. Further, due to (4.2),

‖Pεf‖L∞ ≤ ‖f‖L∞ ess sup
x∈I

m1∑
k=1

χEk
(x) = ‖f‖L∞ ,

which gives

(4.6) ‖Pε‖ ≤ 1.

Let Z be the finite-dimensional subspace of L∞ defined by

Z = {f =
m1∑
k=1

akχEk
(x); (a1, . . . , am1) ∈ Rm1}.

In fact, Pε : L∞ → Z. Moreover, let f =
∑m1
k=1 akχEk

(x) ∈ Z. Then, by (4.2), we
can write

(Pεf)(x) =
m1∑
k=1

χEk
(x)

1∫
Ek
e−t2dt

∫
Ek

ake
−t2dt

=
m1∑
k=1

akχEk
(x) = f(x),

which shows that

(4.7) Pεf = f for any f ∈ Z.

We claim that dist (gi, Z) ≤ ε for any i ∈ {1, 2, . . . , n}. Fix i ∈ {1, 2, . . . , n}.
By (4.4), for every k ∈ {1, 2, . . . ,m1} there is a set Ωijk such that Ek ⊂ Ωijk .
Consequently, gi(Ek) ⊂ Ijk . Choose γk ∈ Ijk , k = 1, 2, . . . ,m1 and define the
function ḡi by

ḡi(x) =
m1∑
k=1

γkχEk
(x).

Then ḡi ∈ Z and, moreover, |Ijk | ≤ ε implies that

(4.8) ‖gi − ḡi‖L∞ = sup
k∈{1,2,...,m1}

ess sup
x∈Ek

|gi(x)− γk| ≤ ε.

Let f ∈ B. We shall estimate ‖Lf−PεLf‖L∞ . Choose gi such that ‖Lf−gi‖L∞ ≤
σ + ε. Then

‖Lf − PεLf‖L∞ ≤ ‖Lf − gi‖L∞ + ‖Pε(Lf − gi)‖L∞ + ‖gi − ḡi‖L∞ + ‖ḡi − Pεgi‖L∞
≤ σ + ε+ ‖Pε‖(σ + ε) + ‖gi − ḡi‖L∞ + ‖ḡi − Pεgi‖L∞ .

Using (4.6)–(4.8) and ḡi = P ḡi, we get

‖Lf − PεLf‖L∞ ≤ 2σ + 3ε+ ‖Pε(ḡi − gi)‖L∞ ≤ 2σ + 4ε,

that is,

(4.9) ‖L− PεL‖ ≤ 2σ + 4ε.
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Now let us deal with (PεLf)(x). Clearly,

(PεLf)(x) =
m1∑
j=1

χEj (x)

∫
Ej

(Lf)(t)e−t
2
dt∫

Ej
e−t2dt

=
m1∑
j=1

χEj
(x)

1∫
Ej
e−t2dt

∫
Ej

∫
I

`(t, s)f(s)dse−t
2
dt

=
∫
I

( m1∑
j=1

χEj
(x)

∫
Ej
`(t, s)e−t

2
dt∫

Ej
e−t2dt

)
f(s)ds

=
∫
I

kε(x, s)f(s)ds,

where

(4.10) kε(x, s) =
m1∑
j=1

χEj
(x)

∫
Ej
`(t, s)e−t

2
dt∫

Ej
e−t2dt

=
m1∑
j=1

χEj
(x)ψj(t) say.

Thus, PεL is a kernel operator with the kernel kε(x, s). Now, ` ∈ M(I2) implies
ψj(s) ∈ M(I), and, consequently, kε ∈ M(I2).

Define the measure λ on I by λ(E) =
∫
E
e−t

2
dt. It is not difficult to prove that

λ satisfies the assumptions of Lemma 4.7. Moreover, we have 0 < λ(Ej) ≤ λ(I) =∫
I
e−t

2
dt ≤

∫∞
−∞ e−t

2
dt <∞ for any j ∈ {1, 2, . . . ,m1}. Setting h(x, t) = `(x,t)

v(t) , we
have h(x, t)v(t) ∈ A, and, using also Lemma 4.7, we can write∥∥∥ψj(s)

v(s)

∥∥∥
X′,v

=
∥∥∥∫

Ej

`(t, s)e−t
2

v(s)
∫
Ej
e−t2dt

dt
∥∥∥
X′,v

=
∥∥∥ 1
λ(Ej)

∫
Ej

h(t, ·)dλ(t)
∥∥∥
X′,v

≤ 1
λ(Ej)

∫
Ej

‖h(t, ·)‖X′,v dλ(t) =
1

λ(Ej)

∫
Ej

∥∥∥`(t, ·)
v(·)

∥∥∥
X′,v

dλ(t)

≤ ess sup
x∈Ej

∥∥∥`(x, ·)
v(·)

∥∥∥
X′,v

≤ ‖`‖L∞(X′,v),

which gives

(4.11)
∥∥∥ψj
v

∥∥∥ ≤ ∥∥∥`∥∥∥
L∞(X′,v)

.

This implies

‖`− kε‖L∞(X′,v) ≤ ‖`‖L∞(X′,v) + ‖
m1∑
j=1

χEj (x)ψj(s)‖L∞(X′,v)

≤ ‖`‖L∞(X′,v) +
m1∑
j=1

‖χEj
‖L∞

∥∥∥ψj
v

∥∥∥
X′,v

.

From (4.11) we obtain ‖`− kε‖L∞(X′,v) ≤ (1 +m1)‖`‖L∞(X′,v) and, consequently,
using also Lemma 3.12, we have `− kε ∈ A. Now, Theorem 3.1 yields

‖`− kε‖L∞(X′,v) = ‖L− PεL‖.
Together with (4.9) this implies

‖`− kε‖ ≤ 2σ + 4ε.
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By (4.10) and (4.11), kε ∈ R and, consequently,

d = inf
k∈R

‖`− k‖L∞(X′,v) ≤ ‖`− kε‖(X′,v) ≤ 2σ + 4ε.

On letting ε→ 0+ we obtain d ≤ 2σ, and the proof is complete. �

The first inequality in Theorem 4.1 now follows from Lemmas 4.5 and 4.7.

5. Application to the Hardy operator

Let I = [a, b], −∞ ≤ a < b ≤ +∞. We define the Hardy operator by Hf(x) =∫ x
a
f(t)dt. Further, let

U(x, ε) =


(x− ε, x+ ε) ∩ [a, b] if −∞ < x <∞
(−∞,− 1

ε ) ∩ [a, b] if x = −∞
( 1
ε ,∞) ∩ [a, b] if x = ∞.

We also denote

B(x) = lim
ε→0+

‖χU(x,ε)
1
v
‖X′,v, and B = sup

a≤x≤b
B(x).

In [5], a characterization of the boundedness and compactness of the Hardy
operator was characterized for I = [0,∞]. It was shown that H is bounded if and
only if 1

v ∈ (X ′, v), and that H is compact if and only if B = 0. We will apply
the results of Sections 3 and 4 to the Hardy operator and I = [a, b]. Observe
that the Hardy operator is given by the kernel h(x, t) = χ(a,x)(t), i.e.

∫ x
a
f(t)dt =∫

I
χ(a,x)(t)f(t)dt.

Theorem 5.1. The operator H is bounded from (X, v) into L∞ if and only if
‖ 1
v‖X′,v <∞.

Proof. By Theorem 3.1, H is bounded if and only if ‖h‖L∞(X′,v) < ∞. Moreover,
‖H‖ = ‖h‖L∞(X′,v). Then

‖H‖ = ess sup
x∈I

‖h(x, ·)
v(·)

‖X′,v = ess sup
x∈I

‖
χ(a,x)(t)
v(t)

‖X′,v = ‖1
v
‖X′,v,

which completes the proof. �

Lemma 5.2. The inequality d ≤ B holds.

Proof. Let ε > 0. From the definition of B we know that for every x ∈ [a, b] there
is an η(x) > 0 such that ∥∥∥χU(x,η(x))(t)

1
v(t)

∥∥∥
X′,v

≤ B + ε.

Since
⋃
x∈I U(x, η(x)) ⊃ I and I = [a, b] is a compact set in the topology induced

by U(x, ε), we can choose x1, . . . , xn ∈ I such that
⋃n
i=1 U(xi, η(xi)) ⊃ I. Denote

Ũi = U(xi, η(xi)). Take αi, βi, i = 1, 2, . . . , n, such that

Ui := (αi, βi) ⊂ Ũi, i = 1, 2, . . . , n,(5.1)

and ∑
i=1

nχUi
(x) = 1 a.e. in I.(5.2)
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Let us define k(x, t) =
∑n
i=1 χUi(x)χ(a,αi)(t). Clearly, by (5.1) and (5.2), we have

d ≤ ess sup
x∈I

∥∥∥ 1
v(t)

n∑
i=1

χUi
(x)(χ(a,x)(t)− χ(a,αi)(t))

∥∥∥
X′,v

= ess sup
x∈I

∥∥∥ 1
v(t)

n∑
i=1

χUi
(x)χ(αi,x)(t)

∥∥∥
X′,v

≤ ess sup
x∈I

∥∥∥ 1
v(t)

n∑
i=1

χUi
(x)χUi

(t)
∥∥∥
X′,v

≤ ess sup
x∈I

n∑
i=1

χUi
(x)

∥∥∥χUi
(t)

v(t)

∥∥∥
X′,v

≤ B + ε.

Therefore, d ≤ B + ε for any ε > 0, and the assertion follows. �

Lemma 5.3. The inequality B ≤ 4d holds.

Proof. Let ε > 0. Then, for some Mi and ψi, i = 1, . . . , n,

(5.3)
∥∥∥χ(a,x)(t)−

n∑
i=1

χMi
(x)ψi(t)

∥∥∥
L∞(X′,v)

≤ d+ ε.

Let x0 ∈ [a, b). Then there is a k ∈ {1, 2, . . . , n} such that |(x0, x0 + σ) ∩Mk| > 0
for any σ > 0. Set x1 = ess supMk, i.e., x1 = inf{y; |(y, b) ∩ Mk| = 0}. Let
Nk = Mk ∩ (x0, x1). Then (5.3) gives

d+ ε ≥ ess sup
x∈I

∥∥∥ 1
v(t)

(
χ(a,x)(t)−

n∑
i=1

χMi(x)ψi(t)
)
χNk

(x)χ(x0,x1)(t)
∥∥∥
X′,v

= ess sup
x∈I

∥∥∥ 1
v(t)

(
χ(x0,x)(t)− χ(x0,x1)(t)ψk(t)

)
χNk

(x)
∥∥∥
X′,v

= ess sup
x∈Nk

∥∥∥ 1
v(t)

(χ(x0,x)(t)(1− ψk(t))− χ(x,x1)(t)ψk(t)
∥∥∥
X′,v

.

Since (x0, x) ∩ (x, x1) = ∅ for every x ∈ Nk, we have

d+ ε ≥ ess sup
x∈Nk

∥∥∥ 1
v(t)

χ(x0,x)(t)(1− ψk(t))
∥∥∥
X′,v

=
∥∥∥ 1
v(t)

χ(x0,x1)(t)(1− ψk(t))
∥∥∥
X′,v

and

d+ ε ≥ ess sup
x∈Nk

∥∥∥ 1
v(t)

χ(x,x1)(t)ψk(t)
∥∥∥
X′,v

=
∥∥∥ 1
v(t)

χ(x0,x1)(t)ψk(t)
∥∥∥
X′,v

.

As a consequence we obtain∥∥∥χ(x0,x1)(t)
v(t)

∥∥∥
X′,v

≤
∥∥∥χ(x0,x1)(t)

1− ψk(t)
v(t)

∥∥∥
X′,v

(5.4)

+
∥∥∥χ(x0,x1)(t)

ψk(t)
v(t)

∥∥∥
X′,v

≤ 2d+ 2ε.(5.5)
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Let B+(x) = limε→0+ ‖
χ(x,x+ε)(t)

v(t) ‖X′,v for x ∈ [a, b) and, analogously, B−(x) =

limε→0+ ‖χ(x−ε,x)(x)

v(t) ‖X′,v for x ∈ (a, b]. Then B(a) = B+(a), B(b) = B−(b) and
B(x) ≤ B+(x) +B−(x) for x ∈ (a, b) which together with (5.4) yields

B(x0) ≤ B+(x0) +B−(x0) ≤ 4d+ 4ε.

Letting ε→ 0+, we obtain B(x0) ≤ 4d and, consequently, B ≤ 4d, which completes
the proof. �

Corollary 5.4. The inequalities B
8 ≤ D ≤ B hold. The Hardy operator is compact

if and only if B = 0.
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