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ABSTRACT. Consider on [0, 1] the operator

weily B) (0 ) o=()

where p(x),g(x) are l-periodic functions, with Dirichlet (y;(0) = y2(0),
y1(1) = y2(1)), periodic (y(0) = y(1)), or antiperiodic (y(0) = —y(1))
boundary conditions. For large |n| the operator L has close to nw a triple
of a Dirichlet eigenvalue u,, and periodic (if n is even), or antiperiodic (if n
is odd) eigenvalues A\, .. Let A,, be the diameter of the spectral triangle
with vertices ptn, A7, A

n»'‘n-*

This note gives a series of results about the relationship between the
decay rate of the sequence (A,) and the smoothness of the potential func-
tions p and ¢ (measured by appropriate weighted Hilbert norms). Moreover,
finite-zone potentials are dense in the case where the Hilbertian norm is de-
fined by subexponential weights; the potentials, which lead to divergent
spectral decompositions, are dense as well.

0. We consider Dirac operators

.. d (1 0 (0 p
T (R R (Y

on I = [0,1] with boundary conditions (bc) of three types: for F' = (}2) €
H' x H'
Pert: F(0)= F(1); Per™: F(0)=—-F(1)
and
Dir: f1(0) = f2(0), fi(1) = f2(1).
A potential V is assumed to be in L*(I), i.e. complex valued functions p,q are

in L?(I). We consider them as periodic functions on R, V(z + 1) = V(z), and
their smoothness is measured by a weight sequence

1) Ok) =1, Q0)=1, k) =Q(—k), k) /o,
ie. Ve HQ)if p=> prexp(2mikx) q=>_ qrexp(2mikx) and

IVIH(Q)|]> = Z (Ipel* + 1ax]?) (2k))? < oc.
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If Q(k) = (1 + k)2, a > 0, then H () is a Sobolev space H®.

Operators L with symmetric (or skew-symmetric) matrix functions V' help
to solve - after Zaharov-Shabat [15] - non-linear Schroedinger equations. Al-
though our results are new even for special V| let us point again that we
consider any L?-potentials with complex valued p, q.

1. To localize the spectrum o,.(L) we need the following

Lemma 1. ([11]) If V € H(Q) and ||V|L?| < m, ||[V|H(Q)|| < M then oy.(L)
lies in the domain
(x,v)u | D

|k|>N
where
(X, Y)={z€C: |Rez| <7N, [Imz| <Y},
(2)
D, = D(?Tk‘,(sk) = {Z e C: |Z — 7T/{3| < (5k},
with

(3)
Y =K(1+m?, N=min{n: 62 <1/(20M)}, 4, = (1/Qn)+ 1//n)"2

Moreover, if

1
P, =— (z — Ly.)"'dz, |k| > N,
21 8Dy,
then dim P, = 2,0,1 if bc = Per™, Per~, Dir and k is even, and dim P}, =
0,2,1 correspondingly if k is odd.

This lemma (see [11], Thm 1 and 2) improves (and completes) weaker ver-
sions of ”Counting Lemma” given in [10], [6], [7]. It guarantees that each disk
Dy, |k| > N, contains three and only three spectral points A}, A, , g, where
N A = 0(PLyePy), be = Per™ if k is even, be = Per™ if k is odd, and
{pr} = o(PeLpi Py), all k, |k| > N. (We put A\ = A\, if this is a double root
of det(z — PpLy.Py), bc = Per®, even if its geometric multiplicity is one, i.e.
this block Py Ly, Py, is Jordan.)

In the case of symmetric V, and bc = Pert or Per~, A;’s are real, v, =
A — A\, are spectral gaps of L on R. In general case, we analyze relationship
between the rate of decay of sequences

_ 1 _
(4) M= — AL 5k:|ﬂk_§()‘;_)‘k)|

and the smoothness of potential V.
We will often require that €2 is a submultiplicative sequence, i.e.

(5) Q(k +n) < Qk)Qn), knel.
This inequality holds if Q(—n) = Q(n), and
Q(n) =exp h(n), n>0, h(0)=0, h(n) T oo, h — concave.
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A weight © € (1) is said to be slowly increasing if
(6) sup 2(2n)/Q(n) < oo.

We consider also a class of rapidly increasing weights of the form

(7) Qn) = exp(p(logn))), |n] =1,

where ¢ : [0, 00) — [0,00), ¢(0) = 0, is twice differentialble function such that
(7.a) O(t) /o0 as t /" oo;
(7.b) e/ (t) /oo as t /oo
(70)  [9(0) - () log () — oo as t— oo

1. A first set of our results is about the rate of decay of the sequences (4).

Theorem 2. If V € H(Q), and Q € (5) + (1) then

©) SN - A P@n)? < oo
Theorem 3.
9 Sl = 5 = ADP(©(2n) < oo

In the case of Schroedinger operators this type statements have been proven
in [8], [9], and for Dirac operators - under special restrictions on growth of €
(at least, faster than n°, 35 > 0) - in [6], [7].

We also follow the general schemes of [8], [9] but in technical details there
are new essential difficulties. Eigenvalues {\X}, |n| > N,, bc = Per®, are
roots of quasi-quadratic equation

o ()

(compare (2.14), p. 624 in [§8], or (14), p. 93 in [4]).
This matrix comes from 2D operator Py Ly. P, where (with Dy from Lemma

1)
1

Py = —
27 Jop,

(2 — Ly.) 'dz.

With o' = a?? (compare Lemma 2.2 in [8]) the distance between the two roots
of (10) depends on 32 and $*'. We do not write the explicit formulas for 3’s
but some adjustment and simplification of their structure (with elimination of
unessential dependence on z, |z| < 7/2) can be seen in formulas below.

Lemma 4. IfQ € (5)+ (1) and V € H(Q) then for |z| < w/2, and |n| > N, =
N.(m, M),

> 8% 2)P(Q2n)f < <Z 5u> :

[n|=N
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where

Sp= ) 182 2)PQen)’ < Y oy,

[n|>N [n|>N
. Z r(n+ j1)r(—j1 — j2)r(j2 +js) ... 7(jor + 1)
Op 1= - ; -
In —jilln = jgo| ... [0 — jau|
with r(m) = ([p(m)| + [g(m)[)Q2(m), and for N > N,

1/2

> oz | < R v rew),

?

where R*(N) = >,,5y7°(m), and e(N) — 0 as N — 0.
This statement lists a series of inequalities which lead to Thm 2 and 3.

2. Now we go to the opposite direction.

Theorem 5. If V is symmetric, and V € L*(Q), with Q satisfying (1), (5)
and either (6) or (7.a-c) then (8) implies V € H ().

Theorem 6. Under conditions of Thm 5 but without the assumption that V'
is symmetric, (8) together with (9) imply V € H ().

Again, the general plan of the proof follows our constructions in [4], [5]. But
instead of non-linear equations (39) in [4], Thm 9, or (37) in [5], Prop 3, now
we have to deal with an equation

(11) & = w(2n) + Z U, (n,w),

v=1

where

Z w(n — j1)w(ji + j2)(—Jj2 — J3) ... w(—Jjo, + 1)

(12) ¥, (n,w) = (n—71)...(n—jaw)

Lemma 7. (compare [4], Thm 9 ). If
(13) we *(Z) and €€ *(Q)
with Q as in Thm 5 then w € (*(Q).

Remark. V. Tkachenko, [13], proved that in the case of geometric decay
(14) N = Al i 5O+ A0 < Aexp(—alnl),  3A,0>0,%n € Z,
the potential V' is analytic as well, i.e.

|pn] + |gn] < Bexp(—=bln]), B,b>0.

However, like in Schroedinger case (compare the discussion in [4], Sect 5.4)
the choice of b, the type of decay, or the width of the strip of analyticity
of an extension of V(z), cannot be determined by a in (14). It depends on
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|V|L?|| as well. This phenomenon leads us with necessity to restriction on the
weight-sequences ) we are dealing with in Thm 5 and 6. Certainly, Gevrey
weights

Qn) = (1+n*)*exp(=aln]), a>0,7€(0,1),
satisfy these restrictions because (7.a-c) hold.

3. This section deals with density of good (Thm 8) or bad (Thm 9) potentials
V. Theorems 8 and 9 are analogues of B.Mityagin [12] results in the case of
Schroedinger-Hill operators.

We say that V' is a finite-zone potential if for some N* > N € (3) we have
A=)\, =, |k| > N* and PyLy.Py, bc = Per®, are not Jordan.

Theorem 8. If
(15) sup log Q(k)/k < oo,

then finite-zone potentials are dense in H(QY). If V' is symmetric (or skew-

symmetric), i.e. q(x) = p(x) (or q(x) = —p(x)), then approximating finite-
zone potentials can be chosen in the same class.

Quite different are potentials V’s such that
16) XS # X\, for |k| > N,. > N, keven if bc = Per™, odd if bc = Per™
k k

In this case 2D projectors

1
(17) P = (z — L) 'dz

27 Jop,

could be refined, i.e. presented in the form
(18) PLF = (F, ®op 1) Eop 1 + (F, Poy) By,
with

||E]|| :17<Ej7q)k>:5jk7 |]|7|k| >N>)<*7 CI)Z‘ELQ.
The spectral decompositions
(19) F=Prr+> PIF
where

1
Pb = o an(z — Ly) tdz, T e (2),

converge in L? for any F' € L? (or even in LP for any F € [P, 1 < p < o0)

according to [11], Thm 3.
But if we want to write the eigenfunction decomposition

(20) F=Prr+> (F ®;)E;

its convergence depends on boundedness of the sequence (®;) € (18).
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Theorem 9. If (15) holds then in H(SY) there is a dense set of potentials V
with the following properties:

(a) (16) holds, but

(b) decompositions (20) do nmot necessarily converge in L? if F € L?; more

specifically,
[@jll2 = 00 if j— Foo.
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