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Abstract. Consider on [0, 1] the operator

Ly = i

(
1 0
0 −1

)
dy

dx
+
(

0 p(x)
q(x) 0

)
y, y =

(
y1

y2

)
,

where p(x), q(x) are 1-periodic functions, with Dirichlet (y1(0) = y2(0),
y1(1) = y2(1)), periodic (y(0) = y(1)), or antiperiodic (y(0) = −y(1))
boundary conditions. For large |n| the operator L has close to nπ a triple
of a Dirichlet eigenvalue µn and periodic (if n is even), or antiperiodic (if n
is odd) eigenvalues λ+

n , λ
−
n . Let ∆n be the diameter of the spectral triangle

with vertices µn, λ+
n , λ

−
n .

This note gives a series of results about the relationship between the
decay rate of the sequence (∆n) and the smoothness of the potential func-
tions p and q (measured by appropriate weighted Hilbert norms). Moreover,
finite-zone potentials are dense in the case where the Hilbertian norm is de-
fined by subexponential weights; the potentials, which lead to divergent
spectral decompositions, are dense as well.

0. We consider Dirac operators

L = iJ
d

dx
+ V, J =

(
1 0
0 −1

)
, V =

(
0 p
q 0

)
on I = [0, 1] with boundary conditions (bc) of three types: for F =

(
f1

f2

)
∈

H1 ×H1

Per+ : F (0) = F (1); Per− : F (0) = −F (1)

and

Dir : f1(0) = f2(0), f1(1) = f2(1).

A potential V is assumed to be in L2(I), i.e. complex valued functions p, q are
in L2(I). We consider them as periodic functions on R, V (x+ 1) = V (x), and
their smoothness is measured by a weight sequence

(1) Ω(k) ≥ 1, Ω(0) = 1, Ω(k) = Ω(−k), Ω(k)↗∞,
i.e. V ∈ H(Ω) if p =

∑
pk exp(2πikx) q =

∑
qk exp(2πikx) and

‖V |H(Ω)‖2 =
∑(

|pk|2 + |qk|2
)

(Ω(2k))2 <∞.
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If Ω(k) = (1 + k2)α/2, α > 0, then H(Ω) is a Sobolev space Hα.
Operators L with symmetric (or skew-symmetric) matrix functions V help

to solve - after Zaharov-Shabat [15] - non-linear Schroedinger equations. Al-
though our results are new even for special V, let us point again that we
consider any L2-potentials with complex valued p, q.

1. To localize the spectrum σbc(L) we need the following

Lemma 1. ([11]) If V ∈ H(Ω) and ‖V |L2‖ ≤ m, ‖V |H(Ω)‖ ≤M then σbc(L)
lies in the domain

Π(X, Y ) ∪
⋃
|k|>N

Dk,

where

Π(X,Y ) = {z ∈ C : |Rez| ≤ πN, |Imz| ≤ Y },
(2)

Dk = D(πk, δk) = {z ∈ C : |z − πk| < δk},
with
(3)
Y = K(1 +m2), N = min{n : δ2

n ≤ 1/(20M)}, δn = (1/Ω(n) + 1/
√
n)1/2.

Moreover, if

Pk =
1

2πi

∫
∂Dk

(z − Lbc)−1dz, |k| > N,

then dimPk = 2, 0, 1 if bc = Per+, P er−, Dir and k is even, and dimPk =
0, 2, 1 correspondingly if k is odd.

This lemma (see [11], Thm 1 and 2) improves (and completes) weaker ver-
sions of ”Counting Lemma” given in [10], [6], [7]. It guarantees that each disk
Dk, |k| > N, contains three and only three spectral points λ+

k , λ
−
k , µk, where

{λ+
k , λ

−
k } = σ(PkLbcPk), bc = Per+ if k is even, bc = Per− if k is odd, and

{µk} = σ(PkLDirPk), all k, |k| > N. (We put λ+
k = λ−k if this is a double root

of det(z − PkLbcPk), bc = Per±, even if its geometric multiplicity is one, i.e.
this block PkLbcPk is Jordan.)

In the case of symmetric V, and bc = Per+ or Per−, λk’s are real, γk =
λ+
k − λ

−
k are spectral gaps of L on R. In general case, we analyze relationship

between the rate of decay of sequences

(4) γk = |λ+
k − λ

−
k |, δk = |µk −

1

2
(λ+

k − λ
−
k )|

and the smoothness of potential V.
We will often require that Ω is a submultiplicative sequence, i.e.

(5) Ω(k + n) ≤ Ω(k)Ω(n), k, n ∈ Z.
This inequality holds if Ω(−n) = Ω(n), and

Ω(n) = exp h(n), n ≥ 0, h(0) = 0, h(n) ↑ ∞, h− concave.
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A weight Ω ∈ (1) is said to be slowly increasing if

(6) sup
n

Ω(2n)/Ω(n) <∞.

We consider also a class of rapidly increasing weights of the form

(7) Ω(n) = exp(ϕ(log |n|)), |n| ≥ 1,

where ϕ : [0,∞)→ [0,∞), ϕ(0) = 0, is twice differentialble function such that
(7.a) ϕ′(t)↗∞ as t↗∞;

(7.b) et/ϕ′(t)↗∞ as t↗∞;

(7.c) [ϕ′(t)− ϕ′′(t)]/logϕ′(t)→∞ as t→∞.
1. A first set of our results is about the rate of decay of the sequences (4).

Theorem 2. If V ∈ H(Ω), and Ω ∈ (5) + (1) then

(8)
∑
|λ+
n − λ−n |2(Ω(2n))2 <∞.

Theorem 3.

(9)
∑
|µn −

1

2
(λ+

n − λ−n )|2(Ω(2n))2 <∞.

In the case of Schroedinger operators this type statements have been proven
in [8], [9], and for Dirac operators - under special restrictions on growth of Ω
(at least, faster than nδ,∃δ > 0) - in [6], [7].

We also follow the general schemes of [8], [9] but in technical details there
are new essential difficulties. Eigenvalues {λ±n }, |n| ≥ N∗, bc = Per±, are
roots of quasi-quadratic equation

(10) det

(
α11
n (z)− z β12

n (z)
β21
n (z) α22

n (z)− z

)
= 0.

(compare (2.14), p. 624 in [8], or (14), p. 93 in [4]).
This matrix comes from 2D operator PkLbcPk where (with Dk from Lemma

1)

Pk =
1

2πi

∫
∂Dk

(z − Lbc)−1dz.

With α11 = α22 (compare Lemma 2.2 in [8]) the distance between the two roots
of (10) depends on β12 and β21. We do not write the explicit formulas for β’s
but some adjustment and simplification of their structure (with elimination of
unessential dependence on z, |z| ≤ π/2) can be seen in formulas below.

Lemma 4. If Ω ∈ (5)+(1) and V ∈ H(Ω) then for |z| < π/2, and |n| ≥ N∗ =
N∗(m,M), ∑

|n|≥N

|β12(n, z)|2(Ω(2n)|2 ≤

(
∞∑
ν=1

Sν

)2

,
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where
S2
ν :=

∑
|n|≥N

|β12
ν (n, z)|2(Ω(2n))2 ≤

∑
|n|≥N

σ2
ν ,

σn :=
∑

j1,...,j2ν 6=n

r(n+ j1)r(−j1 − j2)r(j2 + j3) . . . r(j2ν + n)

|n− j1||n− j2| . . . |n− j2ν |
,

with r(m) = (|p(m)|+ |q(m)|)Ω(m), and for N ≥ N∗,

∞∑
ν=1

∑
|n|≥N

σ2
ν(n)

1/2

≤ C‖r|`2‖2

N2
+ ε(N)R2(N),

where R2(N) =
∑
|n|≥N r

2(m), and ε(N)→ 0 as N → 0.

This statement lists a series of inequalities which lead to Thm 2 and 3.

2. Now we go to the opposite direction.

Theorem 5. If V is symmetric, and V ∈ L2(Ω), with Ω satisfying (1), (5)
and either (6) or (7.a-c) then (8) implies V ∈ H(Ω).

Theorem 6. Under conditions of Thm 5 but without the assumption that V
is symmetric, (8) together with (9) imply V ∈ H(Ω).

Again, the general plan of the proof follows our constructions in [4], [5]. But
instead of non-linear equations (39) in [4], Thm 9, or (37) in [5], Prop 3, now
we have to deal with an equation

(11) ξn = w(2n) +
∞∑
ν=1

Ψν(n,w),

where

(12) Ψν(n,w) =
∑

j1,...,j2ν 6=n

w(n− j1)w(j1 + j2)(−j2 − j3) . . . w(−j2ν + n)

(n− j1) . . . (n− j2ν)

Lemma 7. (compare [4], Thm 9 ). If

(13) w ∈ `2(Z) and ξ ∈ `2(Ω)

with Ω as in Thm 5 then w ∈ `2(Ω).

Remark. V. Tkachenko, [13], proved that in the case of geometric decay

(14) |λ+
n − λ−n |+ |µn −

1

2
(λ+

n + λ−n )| ≤ A exp(−a|n|), ∃A, a > 0,∀n ∈ Z,

the potential V is analytic as well, i.e.

|pn|+ |qn| ≤ B exp(−b|n|), B, b > 0.

However, like in Schroedinger case (compare the discussion in [4], Sect 5.4)
the choice of b, the type of decay, or the width of the strip of analyticity
of an extension of V (x), cannot be determined by a in (14). It depends on
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‖V |L2‖ as well. This phenomenon leads us with necessity to restriction on the
weight-sequences Ω we are dealing with in Thm 5 and 6. Certainly, Gevrey
weights

Ω(n) = (1 + n2)α exp(−a|n|γ), a > 0, γ ∈ (0, 1),

satisfy these restrictions because (7.a-c) hold.

3. This section deals with density of good (Thm 8) or bad (Thm 9) potentials
V. Theorems 8 and 9 are analogues of B.Mityagin [12] results in the case of
Schroedinger-Hill operators.

We say that V is a finite-zone potential if for some N∗ ≥ N ∈ (3) we have
λ+
k = λ−k = µk, |k| > N∗ and PkLbcPk, bc = Per±, are not Jordan.

Theorem 8. If

(15) sup log Ω(k)/k <∞,

then finite-zone potentials are dense in H(Ω). If V is symmetric (or skew-

symmetric), i.e. q(x) = p(x) (or q(x) = −p(x)), then approximating finite-
zone potentials can be chosen in the same class.

Quite different are potentials V ’s such that

(16) λ+
k 6= λ−k for |k| ≥ N∗∗ ≥ N, k even if bc = Per+, odd if bc = Per−

In this case 2D projectors

(17) P bc
k =

1

2πi

∫
∂Dk

(z − Lbc)−1dz

could be refined, i.e. presented in the form

(18) PkF = 〈F,Φ2k−1〉E2k−1 + 〈F,Φ2k〉E2k,

with

‖Ej‖ = 1, 〈Ej,Φk〉 = δjk, |j|, |k| > N∗∗, Φi ∈ L2.

The spectral decompositions

(19) F = P bc
∗ F +

∑
P bc
k F

where

P bc
∗ =

1

2πi

∫
∂Π

(z − Lbc)−1dz, Π ∈ (2),

converge in L2 for any F ∈ L2, (or even in Lp for any F ∈ Lp, 1 < p < ∞)
according to [11], Thm 3.

But if we want to write the eigenfunction decomposition

(20) F ≡ P bc
∗ F +

∑
〈F,Φj〉Ej

its convergence depends on boundedness of the sequence (Φj) ∈ (18).
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Theorem 9. If (15) holds then in H(Ω) there is a dense set of potentials V
with the following properties:

(a) (16) holds, but
(b) decompositions (20) do not necessarily converge in L2 if F ∈ L2; more

specifically,
‖Φj‖2 →∞ if j → ±∞.
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[14] V. Tkachenko, Characterization of Hill operators with analytic potentials, Integral

Equations and Operator Theory, 41 (2001), 360-380.
[15] V. E. Zaharov and A. B. Shabat, A plan for integrating the nonlinear equations of

mathematical physics by the method of the inverse scattering problem. I. (Russian)
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