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Abstract. This paper concerns analyticity of a classical steadily translating �nger

in a Hele-Shaw cell and nonexistence of solutions when relative �nger width � is

smaller than 1

2
. It is proved that any classical solution to the �nger problem, if it

exists for suÆciently small but nonzero surface tension and is close to some Sa�man-

Taylor zero-surface-tension solution and satis�es some algebraic decay conditions

at 1, must belong to the analytic function space chosen in a previous study [1] of

existence of �nger solutions. Further, it is proved that for any �xed � 2 (0; 1
2
),

there can be no classical steady �nger solution when surface tension is suÆciently

small, in disagreement with a previous conclusion based on numerical simulation.

1. Introduction

The problem of a less viscous 
uid displacing a more viscous 
uid in a Hele-Shaw

cell has been the subject of numerous investigations since 1950's. Reviews of the sub-

ject from a number of perspectives can be found in [2]-[7]. In a seminal paper, Sa�man

& Taylor [8] found experimentally that an unstable planar interface evolves through

�nger competition to a steady translating �nger, with relative �nger width � close to a

half at large displacement rates. Theoretical calculations [9], [8] ignoring surface ten-

sion revealed a one-parameter family of exact steady solutions, parametrized by width

�. When the experimentally determined � is used, the theoretical shape (usually re-

ferred to in the literature as the Sa�man-Taylor �nger) agreed well with experiment
1
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for relatively large displacement rates, or equivalently for small surface tension. How-

ever, in the zero-surface-tension steady-state theory, � remained undetermined in (0,

1) interval. The selection of � remained unresolved until the mid 1980's. Numerical

calculations [10], [11], [12], supported by formal asymptotic calculations in the the

steady �nger [13], [14], [15], [16], [17], [18], [19] and closely-related steady Hele-Shaw

bubble problem [16], [21], suggests that a discrete family of solutions exist for which

the the limiting shape, as surface tension tends to zero, approached the Sa�man-

Taylor with � = 1
2
. Subsequent numerical [22] and formal asymptotic calculations

[23] suggest that only branch is stable. However, the conclusion about existence of

steady states is not universally accepted. Based on numerical simulation of a time-

evolving interface for small but nonzero surface tension, and with the same model

equations used in [10]-[18], it was suggested [24] that the limiting steady shape was a

Sa�man-Taylor solution with � < 1
2
. In this paper, we conclude otherwise through

rigorous mathematical analysis. It is to be noted that selection of Sa�man-Taylor

�nger with � < 1
2
is possible for a more mathematically complicated model, which

incorporates thin-�lm e�ects [25]-[26], as shown in [27]-[28]. The same is true when

anisotropy [17] in surface tension or other perturbations near the tip are introduced.

There has been a rigorous study [29] for a problem mathematically similar, though

not identical, to the steady viscous �ngering problem considered here. In that case,

it has been proved that at least one �nger solution exists for �xed surface tension,

though the relative �nger width and shape remains unknown. On the other hand,

our primary focus is the selection of �nger width as surface tension tends to zero.

A mathematically rigorous study of selection is diÆcult in this limit since exponen-

tially small terms in surface tension play a critical role. While a rigorous theory of

exponential asymptotics for nonlinear ordinary di�erential equations is by now well
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developed ([30], for instance), this is not the case for integro-di�erential equations,

even though such problems have arisen in a number of other physical contexts like

dendritic crystal growth and water waves (See, for instance, [31]). Formal calcula-

tions rely on the assumption that integral terms do not contribute to exponentially

small terms, at least to the leading order. With this assumption, integro-di�erential

equations are simpli�ed to essentially nonlinear ordinary di�erential equation, where

variants of the procedure due to Kruskal & Segur [32]-[33] have been used. Recently

([34], [1]), we have shown how integral terms can be controlled and a rigorous theory

was developed for the integro-di�erential equation presented here.

Following [7], a steady symmetric �nger is equivalent to �nding function F analytic

in the upper-half � plane (Z+) and twice di�erentiable in its closure, i.e. in C2(�Z+),

such that the following conditions are satis�ed:

Condition (i): On the real � axis, F satis�es

(1.1) ReF =
�2

jF 0 +HjIm
�
F 00 +H 0

F 0 +H

�
;

where

(1.2) H(�) =
� + i


�2 + 1
;with 
 =

�

1� �
; �2 =

�2�B
4(1� �)2

;

where � is the relative �nger width and B is a non-dimensional surface tension pa-

rameter.

Condition (ii):

(1.3) F (�) ; �F 0(�)! 0 as � ! �1;

Condition (iii)(symmetry condition):

(1.4) Re F (��) = Re F (�) ; Im F (��) = �Im F (�) for real �:
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De�nition 1.1. Let R be the open connected set between Im � = 0 and `+ [ `�

where

`+ = f� : � = �ib + re�i'0; 0 < r <1; b > 0;
�

2
> '0 > 0 �xedg

`� = f� : � = �ib� rei'0 ; 0 < r <1; g

Also, we de�ne R� = R \ f� : Re � < 0g and R+ = R\ f� : Re � > 0g

De�nition 1.2. For �xed � 2 (0; 1),

Aj = fF : F (�) is analytic in fIm � � 0g [ R

with kFkj � sup
�2R

j(� � 2i)j+�F (�)j <1g; j = 0; 1; 2;

A0;Æ̂ = fF : F 2 A0; kFk0 � Æ̂g;A1;Æ̂1
= fF : F 2 A1; kFk1 � Æ̂1g;

Our previous result on the existence of solution [1] satisfying conditions (i)-(iii)

involved F 2 A0;Æ̂; F
0 2 A1;Æ̂1

, where Æ̂; Æ̂1 are assumed a priori to be small but

independent of �. In this function space, for � 2 [1
2
; �m), with �m � 1

2
small enough

(though independent of �), it was shown that solution existed if and only if 2��1
1��

=

�4=3 �n(�
2=3), where f�ng1n=1 is a sequence of functions, analytic at the origin.

However, there are two limitations of this result. The �rst is the choice of the

function space. Non-existence in this function space need not mean non-existence of

a classical solution F , analytic in Z+ and C2 in its closure �Z+. The second limitation

is the restriction on �. In this paper, we prove two theorems (Theorems 1.3 & 1.8)

to relax these restrictions to a great degree.

Theorem 1.3. For small enough �, any analytic function F in the upper half �-plane

Z+, which is C2 on its closure and satis�es conditions (i)-(iii) belongs to function

space A0;Æ̂, with F
0 2 A1;Æ̂1

, where Æ̂ = O(�2) and Æ̂1 = O(�), provided Assumptions

(i) and (ii) as stated below are also satis�ed:
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Assumption (i): There exists � independent of �, 0 < � < 1 so that

(1.5) sup
�2(�1;1)

j� � 2ij� jF (�)j � Æ <1

Assumption (ii): We assume that each of Æ1 and � ln
1
�
Æ2 are suÆciently small, where

(1.6) sup
�2(�1;1)

j� � 2ij1+� jF 0(�)j = Æ1; sup
�2(�1;1)

j� � 2ij2+� jF 00(�)j = Æ2;

Remark 1.4. Assumption (i), though stronger than condition (ii), is consistent with

the results from Mclean-Sa�man's formal procedure [10] near the tail of a �nger that

in our formulation implies F � a0 e
i��̂ =2 ���̂ as � ! +1, where �̂ is a positive root

of the transcendental equation cot(�
2
�̂ ) = �2�̂ 2 and a0 is real. The symmetry condition

(iii) implies similar behavior as � ! �1. This asymptotic relation was also found to

be consistent with numerical calculations [10]. While �̂ depends on �, we can clearly

choose � < �̂ independent of � for small � (� = 1
2
would suÆce for instance). The

following lemma shows that we need not assume a priori that Æ1 and Æ2 in assumption

(ii) exists and are �nite; only that Æ1 and � ln
1
�
Æ2 are small. These assumptions are

mild since the slope deviation from some Sa�man-Taylor solution (which scales as

Æ1 in the above theory) is observed to be small in experiment for large displacement

rates and in all numerical calculations for small �; we are not making any a priori

assumption on how this deviation scales with �. Also, the curvature deviation (which

scales as F 00, and hence Æ2) a priori is allowed to be large, though not as large as 1
� ln 1

�

.

Lemma 1.5. If F satis�es assumption (i) in addition to being analytic in Z+, C2 in

�Z+ and satisfying condition (i)-(iii), then

(1.7) (a) sup
�2Z+

j� + 2ij� jF (�)j = Æ < 1;

(1.8) (b) sup
�2Z+

j� + 2ij1+� jF 0(�)j = Æ1 < 1;
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(1.9) (c) sup
�2Z+

j� + 2ij2+� jF 00j = Æ2 < 1;

Proof of Lemma 1.5 relies on some straight forward properties of Hilbert transform

and use of Phragmen-Lindelof methods and is relegated to appendix A1.

Remark 1.6. From examining (1.1), sup
�2(�1;1)

j� � 2ij� jRe F (�)j = O(�2Æ2). From

Hilbert transform of Re F , (which gives Im F on the real axis), and using Lemma

A.1 with g = Re F and k = �, it follows from assumption (ii) and lemma 1.5 that

Æ = o(�).

De�nition 1.7. F will be called a classical solution if F is analytic in the upper-half

�-plane (Z+), C2 in its closure �Z+, satis�es Conditions (i)-(iii) and assumptions (i)

and (ii).

In section 4, we are going to prove

Theorem 1.8. For any �xed � 2 (0; 1
2
), there exists �0 > 0 small so that there can

be no classical solution F for any � in the interval (0; �0].

2. Analytic continuation to the lower half plane

De�nition 2.1. Let F be analytic in the upper half �-plane, �F is an analytic function

in the lower half �-plane de�ned by

(2.1) �F (�) = [F (��)]�

(2.2) �H =
� � i


�2 + 1
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We de�ne operator G so that

(2.3) G(f; g)[t] := 1

(f 0(t) +H(t))1=2(g0(t) + �H(t))1=2
�

�
f 00(t) +H 0(t)

f 0(t) +H(t)
� g00(t) + �H 0(t)

g0(t) + �H(t)

�

Lemma 2.2. If F is a classical solution as in de�nition 1.7, then

(2.4) G(F; �F )[�] = O(���); as � ! �1;

Proof. Since the right hand side of (1.1) can be written as �2

2i
G(F; �F )(�), the lemma

follows from (1.5). �

De�nition 2.3. we de�ne operator I so that

(2.5) I(�) � I(F )[�] = � 1

2�

Z 1

�1

G(F; �F )[t]dt
t� �

for Im � < 0:

Lemma 2.4. For I(�) in the lower half plane Z� = f� : Im � < 0g, we have

(2.6) sup
�2Z�

j� � 2ij� �2jI(�)j = sup
�2(�1;1)

j� � 2ij� jF (�)j = Æ

Proof. From (1.1), (2.3) and (2.5) lim
Im � ! 0�

�2I(�) = � �F (�) for � real. Since I(�)

is analytic in the lower half plane, the above lemma follows from Lemma A.5 in

Appendix 1. �

Lemma 2.5. Let F be a classical solution to the �nger problem. If F (�) can be

analytically continued at least to a part of Z�, then F satis�es :

(2.7) �2F 00(�) + L(�)F (�) = N (F; I; �F )[�]; for f� 2 Z�g;

where

(2.8) L(�) = �iH3=2(�) �H1=2(�) = � i
p

2 + �2(� + i
)

(�2 + 1)2
; �F (�) � [F (��)]�;
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and the operator N is de�ned as

(2.9) N (F; I; �F ) = �2
� �H 0H

�H
�H 0

�
� i�2(F 0 +H)3=2( �F 0 + �H)1=2I

+ iF
�
(F 0 +H)3=2( �F 0 + �H)1=2 �H3=2 �H1=2

�
+ �2

�
( �F 00 + �H 0)

F 0 +H
�F 0 + �H

�
�H 0H
�H

�
;

Proof. Since F is analytic in upper half �-plane and satis�es equation (1.1), using

Poission formula, we have in the upper half plane:

F (�) =
�2

�i

Z 1

�1

dt

(t� �)

1

jF 0(t) +H(t)jIm
�
F 00(t) +H 0(t)

F 0(t) +H(t)

�

= � �2

2�

Z 1

�1

G(F; �F )[t]dt
t� �

; Im � > 0;

(2.10)

Using Plemelj Formula [35], analytic continuation to the lower half �-plane leads to

(2.11) F (�) = �2I(�) +
�2

i
G(F; �F )(�); for Im � < 0;

Multiplying the above by i(F 0 +H)3=2( �F 0 + �H)1=2 results in (2.7) �

De�nition 2.6.

g1(�) = L�1=4(�) expf�P (�)
�
g;(2.12)

g2(�) = L�1=4(�) expfP (�)
�
g;(2.13)

where

(2.14) P (�) = i

Z �

�i


L1=2(t)dt = i

Z �

�i


(
 � it)3=4 (
 + it)1=4

(1 + t2)
dt;

We will use in this paper the following properties of P (�) that are shown in Appendix

2. Some of these properties were shown in the appendix of Xie & Tanveer [1] for the

restricted case � 2 [1
2
; �m).
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Property 1: Re P (�) decreases along negative Re � axis (�1; 0) with Re

P (�1) = 1. Re P (�) decreases monotonically on imaginary � axis from

�ib to 0 where 0 < b < minf1; 
g.
Property 2: There exists a constant R independent of � so that for j�j � R,

Re P (t) increases with increasing s along any ray r = ft : t = � � sei'; 0 <

s < 1; 0 � ' � '0 < �
2
g in R from � to � +1ei' and C1jt � 2ij�1 �

j d
ds

Re P (t(s)j � C2jt� 2ij�1, where C1 and C2 are constants, independent of

�, with C1 > 0.

Property 3: There exists suÆciently small � > 0 independent of � so that

d
ds
[ReP (t(s))] � C > 0 on the parametrized straight line ft(s) = �� +

se�i
�
4 ; 0 � s � p2�g, C is some constant independent of � and �.

Property 4: There exists b; '0, with � < b < minf1; 
g; 0 < '0 <
�
2
, each

independent of �, so that d
ds
Re P (t(s)) � C

jt(s)�2ij
on t(s) = �bi + sei(�+'0),

where C > 0 is independent of �.

g1(�); g2(�) are the two WKB solutions of the homogenueous equation corresponding

to (2.7); they satisfy the following equation exactly:

(2.15) �2g00(�) + (L(�) + �2L1(�))g(�) = 0;

where

(2.16) L1(�) =
L00(�)

4L(�)
� 5L02(�)

16L2(�)

Remark 2.7. By (2.8) and (2.16),L1(�) � O(��2), as j�j ! 1.

The Wronskian of g1 and g2 is

(2.17) W (�) = g1(�)g
0
2(�)� g2(�)g

0
1(�) =

2i

�
;
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De�nition 2.8. We de�ne operator V so that

(2.18) VF (�) � �2F 00(�) + (L(�) + �2L1(�))F (�)

Remark 2.9. Equation (2.7) implies

(2.19) VF (�) = N1(�) � N (F; I; �F )[�] + �2L1(�)F (�);

De�nition 2.10. Let D be an open connected (see Figure 1) domain in the lower

left complex � plane bounded by lines

R1 = f� : Im � = 0;�1 < Re � < ��g;

R2 = f� : � = �� + se��i=4g; 0 � s �
p
2�g

R3 = f� : Re � = 0;�b < Im � < �
p
2�g

R4 = f� : � = �bi + sei(�+'0); 0 � s < 1g

where �, �0 and b are chosen so that Properties 3 and 4 are satis�ed.

In addition to Properties 1-4 above, we show in Appendix 2 two other properties.:

Property 5: For any � 2 D, there is a path P(��; �) = ft : t = t(s)g,
parametrized by arclength s, going from �� to �, entirely contained in D,
so that d

ds
ReP (t(s)) � C > 0 for a constant C independent of �.

Property 6: For any � 2 D, there is a path P(�;�1) = ft : t = t(s)g
parametrized by arclength s going from � to �1 contained entirely in D
so that d

ds
[ReP (t(s))] � C

jt�2ij
> 0, where C > 0 is independent of �.

We introduce spaces of functions:
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ξ

ξRe

−bi

Im

−ν i

−ν

Figure 1. Region D in complex � plane.

De�nition 2.11.

Bj = fF (�) : F (�) is analytic in D and continuous in D;

with sup
�2D

j(� � 2i)j+�F (�)j <1g; j = 0; 1; 2;

kFkj := sup
�2D

j(� � 2i)j+�F (�)j

.

Remark 2.12. Bj are Banach spaces and B0 � B1 � B2:

De�nition 2.13. LetQ be any connected set in complex �-plane,we introduce norms:

kF (�)kj;Q := sup
�2Q

j(� � 2i)j+�F (�)j; j = 0; 1; 2.
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De�nition 2.14. Let ~Æ > 0; ~Æ1 > 0 be two constants, de�ne spaces:

B0;~Æ = ff : f 2 B0; kfk0 � ~Æg; B1;~Æ1
= fg : g 2 B1; kgk1 � ~Æ1g

Remark 2.15. A remark is in order about use of symbol C for constants that occur

through out the paper. In order to avoid proliferation of constants, we have used C

(and sometimes C1 and C2) as generic constant, whose value is allowed to di�er from

Lemma to Lemma, and sometimes even from step to step within a Lemma. However,

C does not depend on �. For more speci�c constants, we have reserved constant K,

K1, K2, etc.

Lemma 2.16. Let N 2 B2,then

f1(�) :=
1

�2
g2(�)

Z �1

�

N(t)

W (t)
g1(t)dt 2 B0; and kf1k0 � K1 kNk2;

where K1 is a constant independent of �.

Proof. Case 1: j�j � R,where R is large enough for Property 2 to hold, but inde-

pendent of �. On path P(�;�1) = ft : t = � � s; 0 < s < 1g, Re (P (t) � P (�))

increases monotonically from 0 to 1 as s increases.

(2.20) jf1(�)j =
����2�L�1=4(�)

Z
P(�;�1)

N(t)L�1=4(t) expf1
�
(P (�)� P (t))gdt

����
� kNk2jL�1=4(�)j

�
Z 1

0

j(t(s)� 2i)�2�� jjL�1=4(t(s))j
d
ds
ReP (t(s))

d

�
expf1

�
(ReP (�)� ReP (t(s)))g

�

Since j� � 2ij � jt(s)� 2ij for any s, we have jL�1=4(�)j � Cj� � 2ij1=2 and
d

ds
Re P (t(s)) = Re (P 0(t)t0(s)) � CjL1=2(t)j � Cjt(s)� 2ij�1

jL�1=4(�)j j(t(s)� 2i)�2�� jjL�1=4(t(s))j
d
ds
ReP (t(s))

� Cj� � 2ij�� ;
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So kf1k0 � K1kNk2 and the lemma follows.

Case 2: For � 2 D \ fj�j � Rg, by Property 6, there exists a path P(�;�1), so

that Re (P 0(t(s)t0(s)) � C
jt(s)�2ij

, then in (2.20)

(2.21) jL�1=4(�)j j(t(s)� 2i)�2�� jjL�1=4(t(s))j�� d
ds
ReP (t(s))

�� � C

and therefore lemma follows since � is bounded in this region. �

Lemma 2.17. Let N 2 B2, then for suÆciently small �0 > 0, we have for all

� 2 (0; �0],

f2(�) :=
1

�2
g1(�)

Z �

��

N(t)

W (t)
g2(t)dt 2 A0; and kf2k0 � K2 kNk2:

where K2 is independent of �.

Proof. Case 1:For the case j�j � 4R2, by Property 5, there is path P(��; �) entirely
in D so that d

ds
ReP (t(s)) � C > 0 for t(s) going from �� to �. So

jf2(�)j � CkNk2jL�1=4(�)j

�
Z 1

0

j(t� 2i)�2�� jjL�1=4(t)j
��d[expf�1

�
(ReP (�)�ReP (t))g]��
d
ds
Re P (t(s))

Since (2.21) holds here too, the result follows since j� � 2ij� is bounded in this case

as well.

Case 2: For the case where � 2 D; j�j � 4R2.

we choose path P(��; �) = P1 + P2 + P3, where

P1 = ft : t = �ei arg �; j�j � � �
p
j�jg;

P2 = ft : t = �ei arg �;
p
j�j � � � 2Rg;

P3 = P(��; �0);where �0 = 2R ei arg �;
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We break up integral
R
P
=
R
P3
+
R
P2
+
R
P1

and accordingly write f2 = f2;1+f2;2+f2;3.

Now from (2.14), from the asymptotics for large j�j and jtj, it follows that

(2.22) Re(P (t)� P (�)) � C1

Z jtj

j�j

1

r
dr � C1 ln(

jtj
j�j);where C1 is independent of �

jf2;1(�)j =
����2�L�1=4(�)

Z
P1

N(t)L�1=4(t) expf�1

�
(P (�)� P (t))gdt

����
� C

2

�
kNk2jL�1=4(�)j

Z j�j

p
j�j

��
3
2
�� expfC1

�
ln(

�

j�j)gd�

� CkNk2j�j�� :

(2.23)

Also, (2.22),(2.23) are still valid on P2, hence

jf2;2(�) =
����2�L�1=4(�)

Z
P2

N(t)L�1=4(t) expf�1

�
(P (�)� P (t))gdt

����
� C

2

�
kNk2jL�1=4(�)j

Z pj�j

j�0j

��
3
2
�� expfC1

�
ln(

�

j�j)gd�

� CkNk2jL�1=4(�)jj�j�C1
2�
� 1
4
� �
2

� CkNk2j�j�� for � < C1

On P3:

(2.24) jf2;3(�)j � kNk2jL�1=4(�)j

�
Z exp[� 1

�
(Re P (�)�Re P (�0))]

0

j(t(s)� 2i)�2�� jjL�1=4(t(s))j
d
ds
ReP (t(s))

d

�
expf1

�
(ReP (�)�ReP (t(s)))g

�

� CkNk2jL�1=4(�)j exp[�1

�
(Re P (�)�Re P (�0))] � CkNk2j�j�

C1
�
+ 1
2 � CkNk2j�j�� ;when � � C1

2

Combining bounds for f2;1, f2;2 and f2;3, the proof of the Lemma follows. �

De�nition 2.18. De�ne operator U : B2 ! B0; U1: B2 ! B1 so that

(2.25) UN(�) := � 1

�2
g1(�)

Z �

��

N(t)

W (t)
g2(t)dt+

1

�2
g2(�)

Z �

�1

N(t)

W (t)
g1(t)dt;
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(2.26) U1N(�) := � 1

�2
h1(�)g1(�)

Z �

��

N(t)

W (t)
g2(t)dt+

1

�2
h2(�)g2(�)

Z �

�1

N(t)

W (t)
g1(t)dt;

where

(2.27) h1(�) = � L0(�)

4L(�)
� 1

�
P 0(�); h2(�) = � L0(�)

4L(�)
+

1

�
P 0(�);

Lemma 2.19.

(2.28) sup
D
j(� � 2i)hj(�)j � K3

�
; j = 1; 2

where K3 is a constant independent of �.

Proof. The lemma follows from that P 0(�) = iL1=2(�) and equations (2.8),(2.14) and

(2.27). �

De�nition 2.20. Let R� = f� : Im � = 0; Re � < ��g.

Lemma 2.21. kN1k2;R� <1.

Proof. From (1.2), (2.2), (2.16), Lemmas 1.5 and 2.4, it follows that as � ! �1,

�H 0H
�H

�H 0 = O(��3); (F 0 +H)3=2( �F 0 + �H 0)1=2 I = O(��2��);

F [(F 0 +H)3=2( �F 0 + �H 0)1=2 �H3=2 �H1=2] = O(��2�2�);

and
�F 00 + �H 0

�F + �H
(F 0 +H)�

�H 0H
�H

= O(��2��); L1 F = O(��2��)

Using these relations in (2.9) and (2.19) in expression for N1, the lemma follows. �

Lemma 2.22. Let F (�) is a classical solution as in de�nition 1.7. If F can be

analytically extended to D, then F satis�es the following equation for � 2 D:

(2.29) F (�) = �g1(�) + UN1(�);
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where � is given by

(2.30) � = g�1
1 (��)

�
F (��)� 1

�2
g2(��)

Z ��

�1

N1(t)

W (t)
g1(t)dt

�

Proof. First we consider � 2 R� on the boundary of D. From continuity, (2.29) holds,

where I(�) occurring in N1(�) is understood as lim
Im �!0�

I(�). Using the method of

variation of parameter for � 2 R�, we have

(2.31) F (�) = C1g1 + C2g2 + UN1(�)

Since kN1k2;R� < 1, it follows on using Lemmas 2.16 and 2.17, restricted to R�

instead of D, that kUN1k0;R� <1. Since g1(�1) = 0 and g2(�1) = +1, it follows

from sup
�2R�

j� � 2ij� jF j <1 that C2 = 0. Using C2 = 0 in (2.31) and evaluating it at

� = ��, we obtain F (��) = C1g1(��)+UN1(��). Hence C1 = � as given by (2.30).

So (2.29) holds for � 2 R�. By analytic continuation of each side of the equation, it

follows that it must be valid in D as well. �

De�nition 2.23.

n1(�) = N (f; I; �F )[�] + �2 L1(�)f(�);

We consider the following integral equation:

(2.32) f(�) = �g1(�) + Un1(�);

where � is still given as before by (2.30).

Lemma 2.24. �F 0 2 B1; �F
00 2 B2, with k �F 0k1 � Æ1 and k �F 00k2 � Æ2

Proof. The lemma follows from De�nition 2.1 and Lemma 1.5. �

De�nition 2.25.

Hm � inf
�2D

�j� � 2ijjH(�)j; j� � 2ijj �H(�)j	
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Lemma 2.26. De�ne operator G1 so that

G1(f 0)[t] = (f 0(t) +H(t))3=2( �F 0(t) + �H(t))1=2;

Let f 0 2 B1;~Æ1
and ~Æ1; Æ1 < Hm

2
, where Æ1 is as de�ned in (1.8). Then, for � 2 D,

(2.33) jG1(f 0)[�]j � Cj� � 2ij�2

where C is independent of � .

Proof. From (1.2) and (2.2),

Hmj� � 2ij�1 � jHj � C2j� � 2ij�1;(2.34)

Hmj� � 2ij�1 � j �Hj � C2j� � 2ij�1;(2.35)

where C1; Hm are independent of independent of �.

jG1(f 0)j = jH3=2 �H1=2j
����f 0H + 1

����
3=2 ���� �F 0

�H
+ 1

����
1=2

� Cj� � 2ij�2;

�

Lemma 2.27. Let G2 be an operator so that

(2.36) G2(f 0)[�] =
�
( �F 00 + �H 0)

f 0 +H
�F 0 + �H

�
�H 0H
�H

�
(�);

If f 0 2 B1;~Æ1
,and Æ1; ~Æ1 < Hm

2
, then for � 2 D,

(2.37) jG2(f 0)[�]j � Cj� � 2ij�2�� [Æ1 + ~Æ1 + Æ2]

where C is independent of � and Æ1, Æ2 are as de�ned in (1.6).
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Proof. Note from (2.2),

(2.38) �H 0 = �(� � i
)2 + (
2 � 1)

(�2 + 1)2
= O(� � 2i)�2; for large j�j;

(2.39)
�H 0H
�H

= � [(� � i
)2 + (
2 � 1)](� + i
)

(�2 + 1)2(� � i
)
= O((� � 2i)�2); for large j�j

jG2(f 0)j =
����f 0 �H 0

�F 0 + �H
�

�H 0H
�H

�F 0

�F 0 + �H
+ �F 00 f

0 +H
�F 0 + �H

����
� Cj� � 2ij�2�� [Æ1 + ~Æ1 + Æ2]

�

Lemma 2.28. We de�ne operator G3 so that

(2.40) G3(f 0) = (f 0 +H)3=2( �F 0 + �H)1=2 �H3=2 �H1=2;

Assume that f 0 2 B1;~Æ1
with Æ1; ~Æ1 < Hm=2. Then for � 2 D

(2.41) jG3(f 0)[�]j � C j� � 2ij�2�� (Æ1 + ~Æ1)

where C is independent of �.

Proof. Using(2.40):

jG3(f)j � jH3=2 �H1=2j
�����
�
f 0

H
+ 1

�3=2� �F 0

�H
+ 1

�1=2

� 1

�����
� Cj� � 2ij�2

�� jf 0j
jHj + 1

�3=2 � j �F j
j �Hj + 1

�1=2

� 1

�

� Cj� � 2ij�2�� (Æ1 + ~Æ1)

�
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Lemma 2.29. Let f 2 B0;~Æ; f
0 2 B1;~Æ1

,then n1 2 B2 for ~Æ1; Æ1 < Hm=2, and

kn1k2 � K4(�
2(1 + Æ2) + Æ + ~Æ(�2 + ~Æ1 + Æ1))

where K4 is independent of �.

Proof. Note that

(2.42)

n1 = N (f; I(F ); �F ) = �2
� �H 0H

�H
�H 0

�
� i�2G1(f 0)I(F )+ ifG3(f 0)+ �2G2(f 0)+ �2L1f ;

(2.43)

�����2
� �H 0H

�H
�H 0

����� = �2
2


j(�2 + 1)(� � i
)j � C�2j� � 2ij�3;

from Lemmas 2.4 and 2.26,

(2.44) j�2G1(f 0)(�)I(F )[�]j � CÆj� � 2ij�2�� :

Applying Lemma 2.26-Lemma 2.28 to get

jf jjG3(f 0)j � Cj� � 2ij�2�� ~Æ(Æ1 + ~Æ1)

�2jG2(f 0)j � C�2j� � 2ij�2�� (~Æ1 + Æ1 + Æ2)

From the expression of L1(�),we have:

(2.45) j�2f jjL1(�)j � C�2j� � 2ij�2�� ~Æ;

On using the expression for n1 in (2.42), we have the proof by combining the above

inequalities. It is to be noted that terms like �2~Æ, �2Æ1, etc. do not appear because

they are smaller than terms explicitly appearing on the right hand side of the Lemma

statement. Clearly, for suitable choice of K4, such terms can be estimated away. �
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Lemma 2.30. Let G1 be as de�ned in Lemma 2.26. Let f 0j 2 B1;~Æ1
; j = 1; 2, then for

Æ1; ~Æ1 < Hm=2,

(2.46) jG1(f 01)(�)� G1(f 02)(�)j � Cj� � 2ij�2��kf 01 � f 02k1;

Where C is independent of � .

Proof. By straightforward algebra:

G1(f 01)� G1(f 02) =
(f 01 � f 02)(

�F 0 + �H)1=2[(f 01 +H)2 + (f 01 +H)(f 02 +H) + (f 02 +H)2]

(f 01 +H)3=2 + (f 02 +H)3=2

Lemma follows from above equation, on using upper and lower estimates for jf 0i +Hj
and j �F 0 + �Hj as in preceding lemmas. �

Lemma 2.31. Let f 0j 2 B1;~Æ1
; j = 1; 2. Let G2(f 0) be de�ned as in Lemma 2.27, then

for Æ1 < Hm=2,

(2.47) kG2(f 01)� G2(f 02)k2 � C(Æ2 + 1)kf 01 � f 02k1;

Proof. We note

j( �F 00 + �H 0)j � C

j� � 2ij2 +
Æ2

j� � 2ij2+� � Cj� � 2ij�2 (1 + Æ2)

Also,

j( �H + �F 0)�1j � 4

Hm
j� � 2ij

By straightforward algebra,

G2(f 01)� G2(f 02) =
( �F 00

2 + �H 0)

( �F 0
1 + �H)

(f 01 � f 02);

Using inequalities as above, we obtain the proof of the lemma. �
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Lemma 2.32. Let fj 2 B0;~Æ; f
0
j 2 B1;~Æ1

; j = 1; 2, then for ~Æ1; Æ1 < Hm=2,

kN (f1; I; �F )�N (f2; I; �F + �2L1(f2 � f1)k2

� K5

�
(�2 + Æ1 + ~Æ1)kf1 � f2k0 + (�2 + Æ + ~Æ + �2Æ2)kf 01 � f 02k1

�(2.48)

where K5 is independent of �.

Proof. From (2.42),

(2.49) N (f1; I; �F )�N (f2; I; �F ) = �i�2I(F ) (G1(f 01)� G1(f 02))

+ i(f1 � f2)G3(f 01) + if2 (G1(f 01)� G1(f 02)) + �2 (G2(f 01)� G2(f 02)) ;

On using Lemmas 2.4, 2.28, 2.30, 2.31 and expression for L1(�), we obtain

k�2I (G1(f 01)� G1(f 02))k2 � CÆkf 01 � f 02k1

k(f1 � f2)G3(f 01)k2 � C(Æ1 + ~Æ1)kf1 � f2k0

kf2 (G1(f 01)� G1(f 02))k2 � C~Ækf 01 � f 02k1

k�2 (G2(f 01)� G2(f 02))k2 � C�2(1 + Æ2)kf 01 � f 02k1

k�2L1(f1 � f2)k2 � C�2kf1 � f2k0

Combining all the above inequalities, we get the proof. �

Lemma 2.33. For suÆciently small �, we have

(2.50) k�g1k0 � K6(�
2 + Æ + �2Æ2);

where K6 is independent of �
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Proof. For j�j � R, from (2.30),

j�g1(�)j � j�g1(��)j � jF (��)j+ jUN1(��)j � Æ + kUN1k2;R�;

but from(2.9) and (2.19) and using Lemma 2.29 with domain D replaced by R�, and

f replaced by F (and hence ~Æ by Æ and ~Æ1 by Æ1), we get

kN1k2;R� � C(�2 + Æ + �2Æ2);

So kUN1k0 � C(K1+K2)(�
2+Æ+�2Æ2) from Lemma 2.16 and Lemma 2.17. Therefore

j�g1(��)j < ~K6(�
2 + Æ + �2Æ2) for some ~K6 independent of �. For j�j � R, on using

equations (2.12) and (2.22), which holds, jg1(�)g�1
1 (��)j < C

�
j�j 12�C1

�

�
, where C;C1

are independent of �. For � � C1
2
, above < Cj� � 2ij�� and the lemma follows.

�

Remark 2.34. The estimates in each of the Lemmas 2.16-2.33 generally depend on 


and therefore �, as quantities such as Hm and upper bounds for (��2i)H or (��2i) �H

have dependences on 
. If we consider � in any �xed compact subset of the interval

(0, 1), i.e. for 
 = �
1��

in a compact subset of (0;1), such dependences can be

removed since H and �H are continuous functions of 
 in this interval.

We de�ne spaces:

De�nition 2.35.

E := B�B1

For e(�) = (u(�); v(�)) 2 E,

kekE := ku(�)k0 + �kv(�)k1

It is easy to see that E is Banach space.We replace (f; f 0) by (u; v). Also we denote

operator n so that n(u; v)(�) = n1(�).
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De�nition 2.36. Let

O : E 7�! E

e(�) = (u(�); v(�)) 7�! O(e) = (O1(e);O2(e))

where

(2.51) O1(e) = �g1 + Un(u; v);

(2.52) O2(e) = �h1g1 + U1n(u; v);

De�nition 2.37. Let

(2.53) � = 8K(Æ + �2(1 + Æ2))

where

(2.54) K = maxfK6; (K1 +K2)K4; K3K6; K3K4(K1 +K2)g;

We de�ne space E� = fe 2 E : kekE � �g.

Lemma 2.38. If e = (u(�); v(�)) 2 E�, then for �, Æ1 and � ln 1
�
Æ2 each suÆciently

small (the latter two are part of Assumption (ii)), O(e) 2 E�.

Proof. If e 2 E�, it follows from the expression for �, that

(2.55)
�

�
� 8K[�+

Æ

�
+ �Æ2];

and this is small by assumption and remark 1.6. Thus, both kvk1 (and therefore ~Æ1)

and Æ1 can be taken smaller than Hm

2
so as to apply Lemmas 2.29 and Lemma 2.33
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which, together with Lemmas 2.16 and 2.17, gives:

kO1(e)k0 � k�g1k0 + kUn(u; v)k0

� K6(�
2 + Æ + �2Æ2) + (K1 +K2)K4[�

2(1 + Æ2) + Æ + kuk0(�2 + Æ1 + kvk1)]

� 2K[�2(1 + Æ2) + Æ] +Kkuk0(�2 + Æ1 + kvk1))

Using kuk0 � �; �kvk1 � � and (2.55), we get

Kkuk0(�2 + Æ1 + kvk1)) � �[K(�2 + Æ1) +K
�

�
]

So

kO1(e)k0 � �[
1

4
+K(�2 + Æ1) +K

�

�
]

From Lemma 2.19

�kO2(e)k1 � K3[k�g1k0 + kUn(u; v)k0]

� �[
1

4
+K(�2 + Æ1) +K

�

�
]

then, for suÆciently small �, Æ1 and � ln
1
�
Æ2,

kO(e)k = kO1(e)k0 + �kO2(e)k1

� �[
1

2
+ 2K(�2 + Æ1) + 2K

�

�
] � �

�

Lemma 2.39. If ej = (u(�); v(�)) 2 E�; j = 1; 2, then for �, Æ1 and � ln 1
�
Æ2 small

enough,

kO(e1)�O(e2)k � �1ke1 � e2k:

where

(2.56) �1 = ~K [2�+ Æ1 + �Æ2 +�=�]

where ~K = 2maxfK5(K1 +K2); K3K5(K1 +K2)g.
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Proof. Since (u1; v1); (u2; v2) 2 E�, it follows that each of ku1k0, ku2k0, �kv1k1 and
�kv2k1 are bounded by � and that we can assume each of kv1k1 and kv2k1 < Hm

2
so

as to apply Lemmas 2.32, 2.16 and 2.17, which, on using ~Æ � � and ~Æ1 � �
�
, gives:

kO1(e1)�O1(e2)k0

� (K1 +K2)K5

�
(�2 + Æ1 +

�

�
)ku1 � u2k0 + (� + �Æ2 +

Æ

�
+

�

�
)�kv1 � v2k1

�

� �1

2
ke1 � e2k

�kO2(e1 �O1(e2)k1

� K3(K1 +K2)K5

�
(�2 + Æ1 +

�

�
)ku1 � u2k0 + (�+ �Æ2 +

Æ

�
+

�

�
)�kv1 � v2k1

�

� �1

2
ke1 � e2k

So, proof of Lemma follows by combining the above. �

Theorem 2.40. For suÆciently small Æ1; � ln
1
�
Æ2 and �, the operator O is a contrac-

tion mapping from E� to E�. Therefore, there exists unique solution (u(�); v(�)) 2
E� to e = O(e) and hence to the integral equation (2.32), where f = u and f 0 = v.

Proof. From assumptions and remark 1.6, we know that �1 < 1. The theorem follows

from Lemmas 2.38 and 2.39. �

Lemma 2.41. If f is the solution in Theorem 2.40 and F is a classical solution as

de�ned earlier. Then f(�) � F (�) for � 2 (�1;��] for small enough �, Æ1 and

� ln 1
�
Æ2.

Proof. Let u = f � F; v = f 0 � F 0. From (2.29), (2.32), u and v satisfy the following

equations :

u = U(n1 �N1); v = U1(n1 �N1);
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By Lemma 2.32 restricted to domain R�, with f1 = f and f2 = F and using

k�2L1uk0;R� � C�2kuk0;R�

kn1 �N1k2;R� � C

�
(�2 + Æ1 +

�

�
)kuk0;R� + (�2 + �2Æ2 + Æ +�)kvk1;R�

�

So, from using Lemmas 2.16 and 2.17, restricted to domain R�,

kuk0;R� � C

�
(�2 + Æ1 +

�

�
)kuk0;R� + (�+ �Æ2 +

Æ

�
+

�

�
)�kvk1;R�

�

�kvk1;R� � C

�
(�2 + Æ1 +

�

�
)kuk0;R� + (� + �Æ2 +

Æ

�
+

�

�
)�kvk1;R�

�

where C is a constant independent of �. So, combining the above,

kuk0;R� + �kvk1;R� � C(�+ Æ1 +
�

�
+ �Æ2 +

Æ

�
)(kuk0;R� + �kvk1;R�)

Since the constant C is independent of � in the estimate on the right side of the above

equation. It follows that for small �, � ln 1
�
Æ2 and Æ1 (and hence small �

�
because of

Remark 1.6), (u; v) � 0. Hence, the Lemma follows. �

Theorem 2.42. If F is a classical solution satisfying assumptions (i) and (ii), then

for small enough �, then F 2 B0;� and F 0 2 B1;�
�

Proof. The theorem follows from Theorem 2.40 and Lemma 2.41. �

3. Analyticity in the triangular region

Let S = f� : Re � = �a;�� + a � Im � � 0g where 0 � a < � be a vertical

straight line segment in the triangular region T bounded by negative real axis,negative

imaginary axis and line segment f� : � = �� + se��i=4; 0 � s � p
2�g. This is the

triangular region (See Fig. 1), which is the complement of the region D in the third-

quadrant. It is to be noted that in the triangular region T , P (�) = P (0)+ i
�+O(�2)
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and so on S when � = �a � is, Re P increases monotonically with s such that

d
ds
Re P (�(s)) > C > 0, where C is independent of � and � for suÆciently small �.

We consider the following boundary value problem on the line segment S

�2f 00 + (L(�) + �2L1(�))f = N (f; I(F ); �F )[�] + �2L1f(�) � n1(�);

f(�a) = F (�a); f(�a1) = F (�a1)
(3.1)

where a1 = a+ i(� � a).

Lemma 3.1. f 2 C2(S) is a solution of boundary value problem (3.1) if only if f is

a solution of the following integral equation:

(3.2) f = �1g1 + �2g2 + U3n1

where

(3.3) U3n1 = � 1

�2
g1

Z �

�a

n1(t)

W (t)
g2(t)dt+

1

�2
g2

Z �

�a1

n1(t)

W (t)
g1(t)dt

(3.4) �1 =

1g2(�a1)� 
2g2(�a)

g1(�a)g2(�a1)� g1(�a1)g2(�a)

(3.5) �2 =

1g1(�a1)� 
2g1(�a)

g1(�a)g2(�a1)� g1(�a1)g2(�a)

where

(3.6) 
1 = F (�a)� 1

�2
g2(�a)

Z �a

�a1

n1(t)

W (t)
g1(t)dt

(3.7) 
2 = F (�a1) + 1

�2
g1(�a1)

Z �a1

�a

n1(t)

W (t)
g2(t)dt
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Proof. If f 2 C2(S) is a solution of boundary problem (3.1), then by variation of

parameters, we have

(3.8) f = �1g1 + �2g2 + U3n1

for some �1 and �2. Plugging the boundary conditions in (3.1), and solving for �1

and �2, we have (3.4) and (3.5). By straight forward computation, we get that a

solution of (3.2) is a solution of the boundary problem (3.1). �

Remark 3.2. 
1 and 
2 depend on f; f 0 through n1, 
1 and 
2 are functionals of f; f
0,

so are �1 and �2.We use notation �j(f; f
0) to indicate the dependence on f; f 0. The

norm k�k mean maximum norm k�k1 in this section.

Lemma 3.3. If ~n 2 C(S), let ~f1(�) =
1
�2
g2(�)

R �
�a1

~n(t)
W (t)

g1(t)dt,then ~f1 2 C(S) and

k ~f1k � K1k~nk for constant K1 independent of �.

Proof. Using monotonicity of Re P on S with s, as noted before,

j ~f1(�)j =
���� 12i�

Z �

�a1

L�1=4(�)L�1=4(t)~n(t) expf�1

�
(P (t)� P (�))gdt

����
� C

Z 1

expf� 1
�
(P (�a1)�P (�))g

jL�1=4(�)L�1=4(t)~n(t)j
d
ds
Re P (t(s))

d

�
expf�1

�
(P (t)� P (�))g

�

� K1k~nk

�

Lemma 3.4. If ~n 2 C(S), let ~f2 = 1
�2
g1(�)

R �
�a

~n(t)
W (t)

g2(t)dt,then ~f2 2 C(S) and

k ~f2k � K2kfk.

Proof. The proof is very similar to Lemma 3.3. �
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Lemma 3.5. Let fj 2 C(S); f 0j 2 C(S); j = 1; 2,then

kN (f1; I; �F )�N (f2; I; �F ) + �2L1(f1 � f2)k

� K5

�
(�2 + Æ1 + kf 01k)kf1 � f2k+ (�2 + Æ + kf2k+ �2Æ2)kf 01 � f 02k

�(3.9)

Proof. The proof parallels that of lemma 2.32, except that the domain is S instead

of D and the norm is the max norm. �

Lemma 3.6. If f 0 2 C(S) then �jgj 2 C(S) for j = 1; 2 and

(3.10) k�jgjk � k1 (jF (�a)j+ jF (�a1)j+ kn1k) ;where k1 is independent of �

Proof. Let

(3.11) D = g1(�a)g2(�a1)� g2(�a)g1(�a1)

Using (2.12), we have:

(3.12)

D = L�1=4(�a)L�1=4(�a1) expf1
�
(P (�a1)� P (�a))g

�
1� expf2

�
(P (�a)� P (�a1))g

�

Since Re P (�a1) > Re P (�a), D�1 is exponentially small in �, Re P (�) � Re P (�a)
for � 2 S. We also have

(3.13)

����g2(�a)g1(�)D

���� =
���� L�1=4(�)

L�1=4(�a1)
����
����expf1� (2P (�a)� P (�)� P (�a1i))g

1� expf2
�
(P (�a)� P (�a1))g

���� � C

with C independent of �. Also,

(3.14)

����g2(�a1)g1(�)D

���� =
���� L�1=4(�)

L�1=4(�a)
����
���� expf�1

�
(P (�)� P (�a))g

1� expf2
�
(P (�a)� P (�a1))g

���� � C

Similarly, we get constant upper bounds for g1(�a1)g2(�)
D

and g1(�a)g2(�)
D

. Using lemmas

3.3 and 3.4 in (3.6) and (3.7), we have

(3.15) j
1j � (jF (�a)j+K1kn1k)
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(3.16) j
2j � (jF (�a1)j+K2kn1k)

Using (3.13), (3.14) and similar bounds, in (3.4) and (3.5), we get the lemma. �

Lemma 3.7. If f 0j 2 C(S); j = 1; 2, then (�j(f1; f
0
1)� �j(f2; f

0
2)) gj 2 C(S) and

(3.17) k(�j(f1; f 01)� �j(f2; f
0
2)) gjk

� C(�2 + Æ1 + kf 01k)kf1 � f2k+ (�2 + kf2k+ Æ + �2Æ2)kf 01 � f 02k:

Proof.

(3.18) j(�1(f1; f
0
1)� �1(f2; f

0
2)) g1j

� j
1(f1; f 01)� 
1(f2; f
0
2)j
����g2(�a)g1(�)D

����+ j
2(f1; f 01)� 
2(f2; f
0
2)j
����g2(�a1)g1(�)D

����
Using (3.6),(3.7), Lemmas 3.3 and 3.4:

(3.19) j
1(f1; f 01)� 
1(f2; f
0
2)j � CkN (f1; I; �F )�N (f2; I; �F ) + �2L1(f1 � f2)k;

(3.20) j
2(f1; f 01)� 
2(f2; f
0
2)j � CkN (f1; I; �F )�N (f2; I; �F ) + �2L1(f1 � f2)k;

The lemma follows from (3.13), (3.14),(3.18) and Lemma 3.5. Similar proof for j =

2. �

We consider the following integral equations:

(3.21) f(�) = o3(f; f
0) := �1g1(�) + �2g2(�) + U3n1(�);

(3.22) f 0(�) = o4(f; f
0) := �1h1(�)g1(�) + �2h2(�)g2(�) + U4n1(�);

where

(3.23) U4n1 = � 1

�2
h1(�)g1

Z �

�a

n1(t)

W (t)
g2(t)dt+

1

�2
h2(�)g2

Z �

�a1

n1(t)

W (t)
g1(t)dt
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We de�ne spaces:

De�nition 3.8.

E(S) := C(S)� C(S)

For e(�) = (u(�); v(�)) 2 E(S),

kekE(S) := ku(�)k1 + �kv(�)k1

It is easy to see that E(S) is Banach space.

De�nition 3.9. We de�ne k3 independent of � so that

k3 � sup
�2T

f�jh1(�)j; �jh2(�)jg

De�nition 3.10.

(3.24) E�;S := fe = (u(�); v(�)) 2 E(S) : ku(�)k � 8k1�; kv(�)k � 8k1k3
�

�
g:

where k1 and k3 are O(1) constants, as de�ned in Lemma 3.6 and de�nition 3.9 and

� is as de�ned in (2.53).

De�nition 3.11. Let

O(S) : E(S) 7�! E(S)

e(�) = (u(�); v(�)) 7�! O(S)(e) = (O3(e);O4(e))

Theorem 3.12. For suÆciently small Æ1, � ln
1
�
Æ2 and �, the operator O(S) is

a contraction mapping from E�;S to E�;S. Therefore there exists unique solution

(u(�); v(�)) 2 E�;S to the equations (3.21), (3.22).

Proof. Replacing space Bj with C(S), the proof is parallel to that of Theorem 2.40.

�
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Theorem 3.13. Let F be the classical solution in Theorem 2.40, then F is analytic

inside the triangular region T .

Proof. Let f be the solution in Theorem 3.12, then f satis�es the boundary value

problem (3.1). Since all the coeÆcients in equation (3.1) are analytic in a neighbor-

hood of S, it follows from the classical local theory of ordinary di�erential equations

that f must be analytic in a neighborhood of S. Since a is arbitrary in interval (0; �),

f is analytic in T and continuous on the closure of T . From boundary conditons in

(3.1), f equals analytic function F on (��; 0) [ f� : � = �� + se��i=4; 0 � s � p2�g.
From properties of analytic continuation, f must be analytic continuation of F across

(��; 0) [ f� : � = �� + se��i=4g in the region T . Therefore, the theorem follows. �

Lemma 3.14. Let F be the classical solution in Theorem 2.40, then F is analytic on

the line segment on imaginary axis S0 = f� : Re � = 0;�b � Im � � 0g.

Proof. Considering the boundary problem for � 2 S0:

�2f 00 + (L(�) + �2L1(�))f = N (f; I(F ); �F )(�) + �2L1f(�) � n1(�);

f(�a) = F (�a); f(�bi) = F (�bi)
(3.25)

It follows from a variation of the proof of Theorem 3.12 that there exists an unique

solution f in E�;S0 to the above boundary problem. Since the coeÆcients of (3.25)

are all analytic in a neighborhood of S0, the solution must be analytic on S0 from

classical theory of di�erential equations. On the other hand, from Theorem 3.13, F

satis�es equation (3.25) in D [ T , since F and F 0 are continuous upto the closure of

D[T . From continuity, F restricted on S0 satis�es the boundary problem (3.25) and

F 2 E�;S0. By uniqueness, F � f , therefore theorem follows. �
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De�nition 3.15.

(3.26) k2 = sup
�2T

�j� � 2ij� ; j� � 2ij�+1
	

Remark 3.16. It is to be noted that

sup
�2T

j� � 2ij� jF (�)j � k2 sup
�2T

jF (�)j

sup
�2T

j� � 2ij�+1jF 0(�)j � k2 sup
�2T

jF 0(�)j

De�nition 3.17.

(3.27) �̂ = max f�; 8k1k2�; 8k1k2k3�g

Theorem 3.18. If F is a classical solution as in de�nition 1.7, then F is analytic

in R[ �Z+ and F 2 A0;�̂; F
0 2 A1;�̂=�.

Proof. Combining Theorems 2.42, 3.12 and 3.13 F is analytic in the domain R�, as

de�ned in de�nition 1.1, with

sup
�2R�

j� � 2ij� jF (�)j � �̂

and

sup
�2R�

j� � 2ij�+1jF 0(�)j � �̂

�

Since F is analytic in Z+ and from Lemma 3.14, analytic on the line segment S0
on the imaginary axis, from condition (iii) and successive Taylor expansions of F on

the imaginary �-axis, starting at � = 0, implies Im F = 0 on S0. From Schwartz

re
ection principle for � 2 R+, F (�) = [F (���)]� provides the analytic extension to

Re � > 0. Thus F is analytic in R and continuous upto its boundary, including the

real axis. Thus, F must be analytic in R [ �Z+. Since from re
ection, kFk0;R =

kFk0;R�; kF 0k1;R = kF 0k1;R� , the proof of theorem is complete. �
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Lemma 3.19. If F is a classical solution as in de�nition 1.7, then Æ; Æ1; Æ2, as de-

�ned in (1.5),(1.6), equals O(�2). Therefore, in the domain R, kFk0 = O(�2),

kF 0k1 = O(�).

Proof. Since F is analytic in R[ Z+ and decays algebraically at 1 in this region, it

follows from Cauchy's formula that for real � 2 (�1;1),

F (j)(�) =
j!

2�i

Z
l1[l2

F (t)

(t� �)j+1
dt

Using Lemma 2.11 in [1], it follows that

Æj � sup
�2(�1;1)

j� � 2ijj+� jF (j)(�)j � Cj kFk0 = O(�̂)

Therefore, using (1.1), on the real axis, sup
� 2 (�1;1)

j� � 2ij� jRe F (�)j = O(�2).

Further, on taking derviative of (1.1) with respect to �, and using O(�̂) a priori

bounds on F 0, F 00 and F 000 on the real axis as above, it follows that sup
� 2 (�1;1)

j� �
2ij�+1 jRe F 0(�)j = O(�2). Using Hilbert Transform property as in Appendix A

(Lemma A.1 for k = 1
2
), with g(�) = Re F (�) and using Im F (�) = H(Re F )[�],

it follows that sup
� 2 (�1;1)

j� � 2ij� jIm F (�)j = O(�2). Therefore, sup
� 2 (�1;1)

j� �
2ij� jF (�)j = O(�2). Hence Æ = O(�2). By taking upto third derivative of (1.1) and

using a priori bounds on all derivatives of F for real � occurring on the right of (1.1),

we get O(�2) upper bounds for j��2ij�+1jg0(�)j, j��2ij�+2jg00(�)j and j��2ij�+3jg000(�)j
where g(�) = Re F (�), as before. Using properties of Hilbert transform (Lemmas A.2

and A.3 in the appendix), it follows that j� � 2ij�+1jIm F 0(�)j, j� � 2ij�+2jIm F 00(�)j
also have O(�2) upper bounds. Hence Æ1; Æ2 = O(�2). Therefore, �̂ = O(�2),

where �̂ is as de�ned in de�nition 3.17. From previous theorem, in the domain R,
kFk0 = O(�2) and kF 0k1 = O(�). �

Proof of Theorem 1.3 follows from Theorem 3.18, after using the Lemma 3.19.
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4. Nonexistence of solution for � < 1
2

Rewriting (2.11), we have

(4.1) F (�) = �2I(�) +
�2

i(F 0(�) +H)1=2( �F 0(�) + �H)1=2

�
F 00(�) +H 0

F 0(�) +H
�

�F 00(�) + �H 0

�F 0(�) + �H

�
;

On multiplying (4.1) by (F 0 +H)3=2( �F 0 + �H)1=2 and introducing change of variable:

(4.2) � + i
 = i~k1�
4=7�;where ~k1 = (1� 
2)3=7[i �F 0(�i
) + i �H(�i
)]�1=7

(4.3) F (�(�)) =
~k21�

8=7G(�)

(1� 
2)

(4.1) becomes:

(4.4) G00 � 1� �3=2(1� G0

�
)3=2G = �4=7� ~A1(�

4=7�)[1� G0

�
+ �4=7� ~A2(�

4=7�)]

+

��
1� G0

�
+ �4=7� ~A2(�

4=7�)

�3=2

�
�
1� G0

�

�3=2 �
G�3=2

+ �4=7� ~A3(�
4=7�)[1� G0

�
+ �4=7� ~A2(�

4=7�)]3=2
�
G�3=2 + (�4=7�)3=2 ~A4(�

4=7�)

�

+ (�4=7�)3=2 ~A4(�
4=7�)

�
1� G0

�
+ �4=7� ~A2(�

4=7�)

�3=2
+ �4=7� ~A5(�

4=7�)

where ~Aj(�
4=7�) are analytic functions in �4=7�.

A further change of variable

(4.5) � = (
7

4
�)4=7; �3=2G(�) = ���(�)

leads to

(4.6) L� � d2�

d�2
+

5

7�

d�

d�
� (1 +

45

196�2
)� = �1

�
� 33

196�2
�

+ �f[1 + 4

49�
�+

4

7
�0]3=2 � 1g+ (��)4=7

�
E((��)2=7; �; �0; ��1);
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Remark 4.1. It is to be noted that E has a convergent series in �, �0:

(4.7) E = �1j1;j2�0Ej1;j2((��)
2=7;

1

�
)�j1(�0)j2

where we can choose �, C independent of � and � so that

jEj1;j2j < C ��j1�j2

in the domain q1
�
� j�j � R, for R suÆciently large and � small for some q1 indepen-

dent of �.

Theorem 4.2. Let F (�) be the solution to (4.1) as ensured by Theorem 1.3. After

change of variable (4.2),(4.3) and (4.5), �(�; �; a) satis�es (4.6) for q0�
�1 � j�j �

q1�
�1, at least for 0 � arg � � 5�

8
(where q0, q1 = O(
 � b)7=4 but independent

of � ). In that domain, �(�; �); �0(�; �) = O(�) as � ! 0+. Further, in this domain

j��j = O((
 � b)3=2); j��0j = O((
 � b)3=4; �
(
�b)1=4

). Also, on the positive real � axis

in the interval q0�
�1 � � � q1�

�1, Im � = 0.

Proof. Notice from transformation (4.2),(4.5), if � = O(��1); � + i
 = O(1) and if

0 � arg � � 5�
8
, then 0 � arg(
 + i�) � 5�

14
and for suitable q0; q1 = O(
 � b)7=4,

this corresponds to � 2 R� close to � = �ib, where F is known to satisfy (4.1)

with kFk0 = O(�2); kF 0k1 = O(�). Hence �(�; �) must satisfy transformed equation

(4.6).Also from (4.2),(4.3), (4.5), it is clear that as �! 0+; �(�; �); �0(�; �) = O(�) and

that �� = O(
 � b)3=2 and ��0 = O((
 � b)3=4; �(
 � b)�1=4). Since F (�) is real at

least on the imaginary � axis segment [�ib; 0], it follows from (4.2) that for suitable

q0; q1, Im � = 0 for � real and positive, at least when q0
�
� � � q1

�
. �

De�nition 4.3. R2;R = f� : R < Im �+Re � < ~k0�
�1; arg � 2 [0; 5�

8
);�Im �+R <

Re � < Im � + ~k0�
�1; arg � 2 (��

8
; 0]g, where q0 < ~k0 < q1.
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η

η

η

0

2
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Re
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Figure 2. Region R2;R.

De�nition 4.4. We de�ne ~�(�) (suppressing the � dependence) as the solution �(�; �)

in Theorem 4.1

De�nition 4.5.

(4.8) �1(�) = ��5=14e��; �2(�) = ��5=14e�;

�1(�); �2(�) satisfy the following equation exactly:

L� � d2�

d�2
+

5

7�

d�

d�
� (1 +

45

196�2
)� = 0
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The Wronskian of �1 and �2

(4.9) W(�1; �2)(�) = 2��5=7

Equation (4.6) can be rewritten as

(4.10) L� = N1(�; �
0; �)

where the operator N1 is de�ned by

(4.11)

N1(�; �
0; �)[�] = �1

�
� 33

196�2
�+�f[1+ 4

49�
�+

4

7
�0]3=2�1g+(��)4=7

�
E((��)2=7; �; �0; ��1);

De�nition 4.6.

(4.12) �0 = ~k0�
�1; �1 = ~k0�

�1 sin
�
4

sin �
8

e
5i�
8 ; �2 = i~k0�

�1;

Lemma 4.7. The solution ~�(�) as de�ned earlier satis�es the following integral equa-

tion:

~� = ��1(�)
Z �

�1

�2(t)

2t�5=7
N1(~�; ~�

0; �)[t]dt+ �2(�)

Z �

�0

�1(t)

2t�5=7
N1(~�; ~�

0; �)[t]dt

� �1(�)

�
�2(�1)~�

0(�1)� �02(�1)
~�(�1)

�
2�

�5=7
1

+ �2(�)

�
�1(�0)~�

0(�0)� �01(�0)
~�(�0)

�
2�

�5=7
0

;

(4.13)

Proof. By using variation of parameters on (4.6)(with �(�; �) replaced by ~�(�), we get

(4.14)

~�(t) = ��1(t)
Z t

�2

�2(s)

2s�5=7
N1(~�; ~�

0; �)[s]ds+�2(t)

Z t

�2

�1(s)

2s�5=7
N1(~�; ~�

0; �)[s]ds+A1�1(t)+A2�2(t);
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Evaluating (4.14) and its derivative at t = �2 and solve for A1; A2, we have

A1 =
~�(�2)�

0
2(�2)� ~�0(�2)�2(�2)

2�
�5=7
2

;

A2 =
~�(�2)�

0
1(�2)� ~�0(�2)�1(�2)

2�
�5=7
2

;

(4.15)

However,on using integration by parts twice:

� �1(t)

Z �1

�2

�2(t)

2t�5=7
L~�(t)dt+ �2(t)

Z �0

�2

�1(t)

2t�5=7
L~�(t)dt

= ��1(t)
�
�2(�1)~�

0(�1)� �02(�1)
~�(�1)

�
2�

�5=7
1

+ �2(t)

�
�1(�0)~�

0(�0)� �01(�0)
~�(�0)

�
2�

�5=7
0

� A1�1(t)� A2�2(t);

(4.16)

Using L~� = N1(~�; ~�
0; �) in (4.16) and using this expression in (4.14), we get (4.13)

and hence the lemma follows. �

De�nition 4.8.

(4.17) W = f� : �(�) is analytic in R2;R and continuous in its closure, with

k�k := sup
R2;R

j��(�)j <1; g

Lemma 4.9. Let N 2W,de�ne

 1(�) := �1(�)

Z �

�1

�2(t)

2t�5=7
N(t)dt;  2(�) := �2(�)

Z �

�0

�1(t)

2t�5=7
N(t)dt;

 3(�) := �01(�)

Z �

�1

�2(t)

2t�5=7
N(t)dt;  4(�) := �02(�)

Z �

�0

�1(t)

2t�5=7
N(t)dt;

Then k 1k � KkN(t)k; k 2k � KkN(t)k; k 3k � KkN(t)k; k 4k � KkN(t)k where

K is some constant independent of R; �.
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Proof. It is clear from the nature of the domain R2;R that any point � 2 R2;R can be

connected to �0 by a straight line entirely within R2;R so on line t(s), parametrized by

arclength s, Re (t(s)��) increases from � to �0 so that on the segment d
ds
Re (t(s)��) >

C1 > 0, where C1 is a constant independent of �. Further, on this straight line

0 < C2 < jt=�j where C2 is independent of �. Then

j 2(�)j =
����
Z �

�0

t�9=14��5=14e�(t��)(tN(t))dt

����
� C

�9=14
2 j�j�1kNk

Z 1

0

dfe�Re (t(s)��)g
d
ds
Re t(s)

� C�1
1 C

�9=14
2 j�j�1kNk

So k 2k � KkNk. Similarly for  4 since
j�02j

j�2j
� C.

Also, it is clear that any point � can be connected to �1 by a straight line entirely

within R2;R and on such a particular path t(s), d
ds
Re(� � t(s)) > C1 > 0,where C1 is

independent of �. Further on this straight line jt=�j > C2 > 0, C2 independent of �.

So

j 1(�)j =
����
Z �

�1

t�9=14��5=14e�(��t)tN(t)dt

����
� C

�9=14
2 C�1

1 j�j�1kNk � Kj�j�1kNk

Similarly for k 3k since j�
0

1

�1
j � C. �

De�nition 4.10. We de�ne �3 and �4 so that

(4.18) �3(�) = ��1(�)
�
�2(�1)~�

0(�1)� �02(�1)
~�(�1)

�
2�

�5=7
1

(4.19) �4(�) = �2(�)

�
�1(�0)~�

0(�0)� �01(�0)
~�(�0)

�
2�

�5=7
0

;
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Lemma 4.11.

k�03k; k�3k � C1

h
j�1 ~�(�1)j+ j~�0(�1)�1j

i
;

k�04k; k�4k � C1

h
j�0 ~�(�0)j+ j~�0(�0)�0j

i
;

where C1 is independent of �.

Proof. Since j�1j > j�j, it follows that
������1(�)�2(�1)�1(�

�5=7
1 )

����� = exp[Re �1 � Re �]j�1j�9=14j�j�5=14 � C1j�j�1

Also, since j�j < C j�0j, for constant C independent of �,

������2(�)�1(�0)�0(�
�5=7
0 )

����� = exp[Re � � Re �0]j�0j�9=14j�j�5=14 � C2j�j�1

Since �02(�) = �2(�)[1 � 5
14�

] and �01(�) = �1(�)[�1 � 5
14�

], the same arguments as

above show that

�����1(�)�02(�1)�1(�
�5=7
1 )

���� � C2j�j�1 and

�����2(�)�01(�0)�0(�
�5=7
0 )

���� � C1j�j�1. Hence, the lemma

follows from de�nition of �3 and �4 in de�nition 4.10. �

De�nition 4.12.

W� � f� 2W; k�k < �g

De�nition 4.13.

D(�; �0;
1

�
) � �f(1 + 4

49�

�

�
+

4

7
�0)3=2 � 1g =

X
j1+j2 �2

~Aj1;j2(�) �
j1(�0)

j2;

We de�ne constant ~�, independent of � and � in the domain R2;R so that

j ~Aj1;j2(�)j < C ~��j1�j2
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Lemma 4.14. If �; �0 2W�, then N1(�; �
0; �) 2W� and

kN1(�; �
0; �)k < 1 + C(

1

R3
� + ~k

4=7
0 +

�2

R�2
);

for R large enough so that �
~�R
; �
�R

� 1
2
, where � and ~� are as in remark 4.1 and

de�nition 4.13.

Proof. In (4.11),k �33
196�2

�k < c
R3k�k, k1=�k � 1.

The norm of the �rst nonlinear term in (4.11) can be estimated by noting

j�D(�; �0;
1

�
)j =

���� �
j1+j2�2

~Aj1;j2(�) �
j1�0j2�

����
� C �

j1+j2�2

1

j�jj1+j2�1

1

~�j1+j2
j��jj1j��0jj2

� C
�2

R~�2

The norm of the second nonlinear term in (4.11) can be estimated by using (4.7) and

noting

j(��)4=7Ej � (��0)
4=7

�����1j1;j2�0Ej1;j2((��)
2=7;

1

�
)�j1(�0)j2

����
� C(��0)

4=7

�
�1j1;j2�0

1

Rj1+j2

1

�j1+j2
�j1+j2

�
� C~k

4=7
0 = O(
 � b)

where � is as de�ned in remark 4.1. The lemma follows on combining above results.

�

Lemma 4.15. If � 2W�;  2W�; �
0 2W�;  

0 2W�, then for R > f2�
~�
; 2�
�
g

kN1(�; �
0; �)�N1( ;  

0; �)k � C[
1

R3
+

�

~�2R
+ ~k

4=7
0 ] (k��  k+ k�0 �  0k)

where �; ~� are as in remark 4.1 and de�nition 4.13 and C is independent of �,  and

�.
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Proof. k �33
196�2

(��  )k � C
R3k(��  )k, Note that

j�(�j1 j2 �  j1�j2)j = j��j1(�0j2 �  0j2) + � 0j2(�j1 �  j1)j

� k�kj1 1

Rj1+j2�1
j2(k�0k+ k 0k)j2�1k 0 � �0k+ k kj2

Rj1+j2�1
j1(k k+ k�k)j1�1k � �k

� (
�

R
)j1+j2�1[j2k 0 � �0k+ j1k��  k]

(4.20)

So in (4.11),

j�D(�; �0;
1

�
)� �D( ;  0;

1

�
)j � �

j1+j2�2
j ~Aj1;j2(�)jj�(�j1�0j2 �  j1 0j2)j

� C �
j1+j2�2

1

~�j1+j2
(
�

R
)j1+j2�1fj2k 0 � �0k+ j1k � �kg

� C

~�2
�

R
[k 0 � �0k+ k � �k]; for R >

2�

~�

From (4.7) and (4.20)

����(��)4=7
�
E(��)4=7;

1

�
; �; �0)� E((��)2=7;

1

�
;  ;  0)

�����
� Cj��0j4=7�j1;j2�0

1

�j1+j2
(
�

R
)j1+j2�1fj2k 0 � �0k+ j1k � �kg

� C~k
4=7
0 [k 0 � �0k+ k � �k] for R >

2�

~�

�

Consider the integral equation in the domain R2;R:

�(�) = L1�(�)� �1(�)

�
�2(�1)~�

0(�1)� �02(�1)
~�(�1)

�
2��5=7

1

+ �2(�)

�
�1(�0)~�

0(�0)� �01(�0)
~�(�0)

�
2�

�5=7
0

;

(4.21)
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Where

(4.22) L1� � ��1(�)
Z �

�1

�2(t)

2t�5=7
N1(�; �

0; �)[t]dt + �2(�)

Z �

�0

�1(t)

2t�5=7
N1(�; �

0; �)[t]dt

De�nition 4.16.

(4.23) E1 :=W �W; k(�; �0)kE1 = k�k+ k�0k;

This is clearly a Banach space. Similarly, E1
� = f(�; �0) 2 E1 with k(�; �0)k � �g.

De�ne

M : E1 ! E1;M(�; �0) = (M1(�; �
0);M2(�; �

0))

where

(4.24) M1(�; �
0) = L1�(�) + �3(�) + �4(�)

(4.25) M2(�; �
0) = L2�(�) + �03(�) + �04(�)

where

(4.26) L2� � ��01(�)
Z �

�1

�2(t)

2t�5=7
N1(�; �

0; �)dt+ �02(�)

Z �

�0

�1(t)

2t�5=7
N1(�; �

0; �)(t)dt

Theorem 4.17. For �xed � � 4K, where K is as de�ned in Lemma 4.9, there

exists ~k0 small enough but independent of � (i.e. b chosen so that 
 � b is small

but independent of �), and R large enough so that for any � small enough, M is a

contraction mapping from E1
� to E1

�.

Proof. Using Lemmas 4.9,4.11,4.14 in (4.24) and (4.25), it follows that

kM(�; �0)k = kM1(�; �
0)k+ kM2(�; �

0)k

� 2K

�
1 + C

�
�

R3
+ ~k

4=7
0 +

�2

R~�2

��

+ C1[j�0 ~�(�0)j+ j~�0(�0)�0j+ j�1 ~�(�1)j+ j�1 ~�0(�1)j]

(4.27)
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From Theorem 4.2, � ~�(�); � ~�0(�) = O((
 � b)3=4; �
(
�b)1=4

) for � = �0 or �1. But since

(
 � b)7=4 = O(~k0) it follows that ~k0 can be chosen small enough (but independent of

�) and R can be chosen large enough so that the the right hand side of (4.27) is less

than 4K for small enough �.

Further from Lemma 4.9 and Lemma 4.15

kM1;2(�1; �2)�M1;2(�2; �
0
2)k � KkN (�1; �

0
1; �)�N (�2; �

0
2; �)k

� KC[k�1 � �2k+ k�01 � �01k][
1

R3
+

�

~�2R
+ ~k

4=7
0 ]

So

kM(�1; �
0
1)�M(�2; �

0
2)k � 2KC[

1

R3
+

�

~�2R
+ ~k

4=7
0 ]k(�1 � �2; �

0
1 � �02)k

which is a contraction for ~k0 small and R large. �

Remark 4.18. Note that R can be chosen large enough and ~k0 small enough once for

all and Theorem holds for all small �. In otherwords, choice of R, ~k0 can be made

independent of �, though the Theorem also holds if R = O(1
�
) for suÆciently small

� and ~k0.

Corollary 4.19. The integral equation(4.21) has the unique analytic solution �(�)

and �(�) = ~�(�) in the domain R2;R.

Proof. Unique solution � follows from Thm 4.17 using contraction mapping theorem.

If we choose R = O(1
�
) suitably, then Theorem 4.2 applies to domain R2;R and from

Lemma 4.7, � = ~�. From analytic continuation, �� ~� = 0 everywhere on R2;R even

when R is independent of � but large. �

Lemma 4.20. The solution ~�(�) satis�es Im ~�(�) = 0 for R < � < q1
�
for suÆciently

large R and small enough �, for R independent of �.
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Proof. From Corollary 4.19, it follows that ~�(�) is analytic in particular on the real

axis for R < � <
~k0
�
. However, from Theorem 4.2, Im ~� = 0 for q0

�
� � � q1

�
. Since

~k0 > q0, the lemma follows. �

Lemma 4.21. For any �xed � in the domain f� : Re �+Im � > R; 5�
8
> arg � > ��

8
g,

lim�!0
~�(�; �) = �0(�), where �0(�) satis�es

(4.28) �0(�) = ��2(�)
Z �

1e5i�=8

N1(�0; �
0
0; 0)[t]

2t�5=7
dt+ �1(�)

Z �

1

N1(�0; �
0
0; 0)[t]

2t�5=7
dt

Proof. Follows from (4.13) by taking limit �! 0 and using Theorem 4.2,

~�(�1); ~�
0(�1); ~�(�0) and �

0(�0) all tend to 0 while �1(�)�2(�1)

2�
�5=7
1

! 0 and �2(�)�1(�0)

2�
�5=7
0

! 0 as

� ! 0 since �1; �0 ! 1. �

Corollary 4.22. �0(�) satis�es di�erential equation

(4.29) L1�0 = N1(�0; �
0
0; 0) =

�33
196�2

� 1

�
+ �0

�
(1 +

4

49

�0
�
+

4

7
�00)

3=2 � 1

�

with ��0(�) �nite as � !1, at least for arg � 2 (��
8
; 5�

8
).

Proof. L1�0 = N1(�0; �
0
0; 0) follows simply from applying L1 to (4.28). Since j��(�)j

was bounded independent of � in the domain R2;R, it follows that as � ! 0,j��0j is
also bounded at least for arg � 2 (��

8
; 5�

8
). �

Remark 4.23. It is known from general theory worked out by Costin [30] that (4.29)

has unique solution with asymptotic expansion

�0 � �1j=1

aj
�j
; valid for � �

2
< arg � < �

and that on the positive real axis

(4.30) Im �0 � S��5=14e��
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for some Stokes constant S (which is a pure number) that can be computed.

However, applying transformation (4.2),(4.3),(4.5) and going back to variable �

and G it is clear that lim
�!0

G(�(�)) = G0(�(�)) and that G0(�) satis�es

(4.31) G00
0 = 1 + (��G0

0)
3=2G0

If we use transformation

(4.32) V0(�) = (��G0
0)
�1=2

then it follows from (4.31) that V0(�) satis�es

(4.33) 2V 00
0 (�) = �� V �2

o

with V0(�)! ��1=2 as �!1, at least for 5�
14
� arg� � 0.

Combescot et al [18] considered (4.33) and by computing many terms in the asymp-

totic expansion for large �, was able to use a Borel summation procedure to compute

the constant ~S in the asymptotic expression

(4.34) Im V0(�) � ~S��3=8e�
4
7
�7=4

for large positive �. The number ~S was found to be nonzero. Using the transforma-

tion from � to �, it follows that S in (4.31) must also be nonzero.

Lemma 4.24. For all suÆciently small �

(4.35) Im ~�(�; �) 6= 0 for any � 2 (R;
q1
�
)

Proof. Since lim
�!0

~�(�) = �0(�), lim
�!0

Im ~�(�; �) = Im �0(�) 6= 0 from (4.30), since S is

nonzero. �
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Corollary 4.25. Im F 6= 0 on some imaginary � axis segment [�ib;�ib0] for some

b0 < b.

Proof. On using transformation (4.2), (4.3) and (4.5), the interval (R; q1
�
) in � cor-

responds to an Im � axis interval that includes [�ib;�ib0] for some suitably chosen

b0 < b. So, at least on this segment, Im F (�) = Im �(�(�)) 6= 0. �

Proof of Theorem 1.8 : We have shown any classical solution F (�), if it exists, is

analytic in R [ �Z+ and belongs to A0. It is also analytic in the Im � axis segment

[�ib; i1). From successive Taylor expansions on the imaginary � axis, starting at

� = 0, if follows that the symmetry condition (iii) implies Im F = 0 for � 2 [�ib; i1).

But this contradicts the previous corollary for all suÆciently small �. Hence proof of

Theorem 1.8 follows.
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Appendix A. Proof of some lemmas

Lemma A.1. Let g 2 C1(�1;1) such that k(� � 2i)�gk1 <1 for some 0 < � < 1

and let kj� � 2ij�+1g0k1 <1 as well. Then, for any k 2 (0; 1
2
],

(A.1) k(� � 2i)�H(g)k1 � C1 ln
1

k
k(� � 2i)�gk1 + C2kk(� � 2i)�+1g0k1

where C1 and C2 are independent of k and H is the Hilbert transform operater de�ned

as

(A.2) H(g)[�] � 1

�
(P )

Z 1

�1

g(� + �0)

�0
d�0
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Proof. We �rst take � � 1. Denote k0 = 2� k, clearly 3
2
� k0 < 2. We break up the

integral in (A.2) into four parts,

(A.3)

Z 1

�1

=

Z k�

�k�

+

Z �k�

�k0�

+

Z �k0�

�1

+

Z 1

k�

1

�

g(� + �0)

�0
d�0;

Consider the �rst term:���� 1� (P )
Z k�

�k�

g(� + �0)� g(�)

�0
d�0
���� �

���� 1�
Z k�

�k�

g0(�� + �)d�0
����

� 1

�
k(� � 2i)1+�g0k1

Z k�

�k�

j�� + � � 2ij���1d�0

where �� 2 (�k�; k�).
But Z k�

�k�

j�� + � � 2ij���1d�0 � j�(1� k)� 2ij�1��2k� � C2kj� � 2ij��

where C2 can be made independent of k 2 (0; 1
2
]. Hence

���� 1�
Z k�

�k�

g(� + �0)� g(�)

�0
d�0
���� � kC2j� � 2ij��k� � 2i)1+�g0k1

Consider the second term: on change of variable �0 + � = �00 and let L = (1� k)�, we
get

1

�

Z L

�L

g(�00)

(�00 � �)
d�00

We write this integral as

(A.4)
1

�

Z L

�L

g(�00)

(�00 � �)
d�00 =

1

�

Z L

�L

�
g(�00)

(�00 � �)
+
g(�00)

�

�
d�00 � 1

��

Z L

�L

g(�00)d�00

and estimate each term separately. The second term on the right hand side above

can be estimated as

(A.5)���� 1��
Z L

L

jg(�0)(�0 � 2i)� jj�0 � 2ij��d�0
���� � C

L1��

�
k(� � 2i)�gk1 � C��� k(� � 2i)gk1
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where C can be made independent of k. Now consider the �rst term in (A.4):���� 1�
Z L

�L

�
g(�00)

�00 � �
+
g(�00)

�

�
d�00
���� =

���� 1�
Z L

�L

g(�00)�00

(� � �00)�
d�00
����

� Ck(� � 2i)�gk1
Z L

�L

j�00j1��
(� � �00)�

d�00

� Ck(� � 2i)�gk1���
"Z 1�k

(1�k)

j�̂j1��
(1� �̂)

d�̂

#

� C1 ln
1

k
j� � 2ij�� k(� � 2i)�gk1

(A.6)

where C1 is independent of k, and ln 1
k
term accounts for the behavior of the estimate

on the right hand side as k ! 0+. We now estimate the third term in (A.3):����� 1�
Z �k0�

�1

g(�0 + �)

�0
d�0

����� =
���� 1�
Z 1

k0�

g(��0 + �)

�0
d�0
����

� k(� � 2i)�gk1 1

�

Z 1

k0�

(�0 � �)��

�0
d�0 � Ck(� � 2i)�gk1���

where C above can be chosen independent of k. Consider the 4th term in (A.3):���� 1�
Z 1

k�

g(�0 + �)

�0
d�0
���� � k(� � 2i)�gk1 1

�

Z 1

k�

(�0 + �)��

�0
d�0

� k(� � 2i)�gk1���
Z 1

k

(1 + �̂)��

�̂
d�̂ � C1 ln

1

k
k��gk1���

where C1 is chosen independent of k and ln 1
k
accounts for the asymptotic behavior of

the integral on the right hand side, as k ! 0+. Combinining all the terms above, we

obtain the proof of the Lemma for � > 1. Now for 0 � � � 1, we split the integral

in (A.2) into :

1

�

Z k

�k

g(�0 + �)� g(�)

�0
d�0 +

1

�

Z 1

k

g(�0 + �)

�0
d�0 +

1

�

Z �k

�1

g(�0 + �)

�0
d�0

First term:���� 1�
Z k

�k

g(�0 + �)� g(�)

�0
d�0
���� � 1

�

Z k

�k

jg0(�̂)d�0j � C2kk(� � 2i)1+�g0k1
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where C2 is independent of �. Second term:

1

�

Z 1

k

g(�0 + �)

�0
d�0 � Ck(� � 2i)�gk1

Z 1

k

j�0 + � � 2ij��
�0

d�0

� Ck(� � 2i)�gk1
Z 1

k

(�02 + 4)��=2

�0
d�0 � C1 ln

1

k
k(� � 2i)�gk1

where C1 is independent of k and ln 1
k
accounts for the asymptotic behavior of the

divergence on the righthand side estimate as k ! 0+. Consider the third term:���� 1�
Z �k

�1

g(�0 + �)

�0
d�0
���� �

���� 1�
Z 1

k

g(��0 + �)

�0
d�0
���� � k(� � 2i)�gk1 1

�

Z 1

k

j�0 � � � 2ij��
�0

d�0

� C1 ln
1

k
k(� � 2i)�gk1

where C1 is made independent of k by accounting for the asymptotic behavior of the

divergence of the right hand side estimate, as k ! 0+.

For � < 0, we note that

H(g)[�] =
1

�

Z 1

�1

g(�0)
d�0

�0 � �
= � 1

�

Z 1

�1

g(��0)d�0
�0 � (��)

which is negative of the Hilbert transform of the function g(��), evaluated at the

point �� > 0. Since g(��) satis�es the same conditions as those given for g(�) in

this Lemma, it follows all bounds also hold for � < 0. �

Lemma A.2. Let g 2 C2(�1;1) such that k(��2i)�gk1, and k(��2i)�+2g00k1 are

each bounded for some � 2 (0; 1). Then,

(A.7) k(� � 2i)�+1H(g0)k1 � C2k(� � 2i)�+2g00k1 + C0 k(� � 2i)�gk1

Proof. First, we consider the case � > 1. Then, we decompose

H(g0)[�] =
1

�

Z �=2

��=2

�
g0(� + �0)� g0(�)

�0

�
d�0 � 2

��

�
g(
3

2
�) + g(

�

2
)

�

+
1

�

 Z 1

�=2

+

Z � 3
2
�

�1

!
g(� + �0)

�02
d�0 +

1

�

Z � �
2

� 3
2
�

g(� + �0)

�02
d�0

(A.8)
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Using arguments similar to Lemma A.1 for k = 1
2
, it is clear that the �rst term on

the right of (A.8) is bounded by

j 1
�

Z �=2

��=2

�
g0(� + �0)� g0(�)

�0

�
d�0j � C1 j� � 2ij���1 k(� � 2i)�+2g00k1

The second term of (A.8) is easily seen to be bounded by

j 2
��

�
g(
3

2
�) + g(

�

2
)

�
j � C j� � 2ij���1 k(� � 2i)�gk1

Using arguments similar to Lemma A.1, with k = 1
2
, the third term in (A.8) is also

bounded:

j 1
�

 Z 1

�=2

+

Z � 3
2
�

�1

!
g(� + �0)

�02
d�0j

� C��1��k(� � 2i)�gk1
"Z 1

1=2

(1 + �̂)��

�̂2
d�̂ +

Z 1

3=2

(�̂ � 1)��

�̂2
d�̂

#

Now, on change of variable �0 + � = �00, the last term on the right of (A.8) can be

bounded by

(A.9) j
Z �=2

��=2

g(�00)

(�00 � �)2
d�00j = C��1�� k(� � 2i)�gk1

Z 1=2

�1=2

j�̂j��
(1� �̂)2

d�̂

Therefore, combining bounds on each term, we get

(A.10) jH(g0)[�]j � j� � 2ij�1��
�
C2k(� � 2i)�+2g00k1 + C0k(� � 2i)�gk1

�
We now consider 0 � � � 1. In this case, it is convenient to write

(A.11)

�H(g0)[�] =

Z 1

�1

g0(�0 + �)� g0(�)

�0
d�0�[g(� + 1) + g(� � 1)]+

�Z 1

1

+

Z �1

�1

�
g(� + �0)

�02
d�0

Consider �rst term in (A.11):

(A.12) j
Z 1

�1

g0(�0 + �)� g0(�)

�0
d�0j � C1k(� � 2i)2+�g00k1
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Consider second term in (A.11):

(A.13) jg(� + 1) + g(� � 1)j � C k(� � 2i)�gk0

Consider the third term in (A.11):

(A.14)

j
�Z 1

1

+

Z �1

�1

�
g(� + �0)

�02
j � Ck(� � 2i)�gk1

�Z 1

1

�0�2��d�0 +

Z 1

1

(�0 � 1)��

�02
d�0
�

Combining the above inequalities it follows that (A.10) holds for 0 � � � 1 as well.

Also, it is to be noted that as in Lemma A.1, for � < 0, H(g)[�] can be related

to the Hilbert transform of g(��) evaluated at ��. Thus, the same inequalities as

above hold for � < 0. Therefore, (A.10) holds for all � 2 (�1;1) and the lemma

follows. �

Lemma A.3. Let g 2 C3(�1;1) such that k(� � 2i)�gk1, k(� � 2i)�+1g0k1, k(� �
2i)�+3g000k1 are each bounded for some � 2 (0; 1). Then,

(A.15)

k(��2i)�+2H(g00)k1 � C3k(��2i)�+3g000k1+C1 k(��2i)�+1g0k1+C0 k(��2i)�gk1

Proof. For � > 1, we decompose

�H(g00)[�] =

Z �=2

��=2

g00(�0 + �)� g00(�)

�0
d�0 +

4

�2

�
�g(3

2
�) + g(

�

2
)

�
� 2

�

�
g0(

3

2
�) + g0(

�

2
)

�

+

 Z 1

�=2

+

Z � 3
2
�

�1

!
2g(�0 + �)

�03
d�0 +

Z �=2

��=2

2g(�00)

(�00 � �)3
d�00

(A.16)

For � > 1, we then get using estimates for each term in the above using the same

procedure as in previous lemma A.2, to get

(A.17)

jjH(g00)[�]j � j��2ij�2��
�
C3k(� � 2i)3+�g000k1 + C1k(� � 2i)1+�g0k1 + C0k(� � 2i)�gk1

�
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For 0 � � � 1, we decompose

�H(g00)[�] =

Z 1

�1

g00(�0 + �)� g00(�)

�0
d�0 +

�Z 1

1

+

Z �1

�1

�
2g(� + �0)

�03
d�0

+ [g(� � 1)� g(� + 1)� g0(� + 1)� g0(� � 1)]

(A.18)

As before in previous Lemma A.2, each term can be estimated and one gets (A.17)

valid again. Again, for � < 0, H(g)[�] can be related to the Hilbert transform

of g(��0) evaluated at ��; hence the inequality (A.17) is valid in that case as well.

Therefore, the Lemma follows. �

Lemma A.4. If F satis�es conditions (i)-(iii) and assumption (i), then sup
�2(�1;1)

j�+
2ij1+� jF 0j <1

Proof. De�ne g(�) = �2 Im ln
�
1 + F 0

H

�
on the real � axis. From condition (i),

g0(�) = ��2Im H 0

H
(�) + jF 0 +HjRe F = O(����1) as � ! �1

Hence, on integration, g(�) = O(���) as � ! �1. We note that ln (1 + F 0=H)

is analytic in Z+ and so on the real � axis, �2Re ln (1 + F 0=H) = H(g)[�]. Since

conditions of previous Lemma A.1 are met by g(�), it follows that

H(g)[�] = O(���) as � ! �1

and therefore �2 ln(1 + F 0

H
) = O(���) as � ! �1, which implies F 0 = O(��1��). The

lemma follows since F is continuously di�erentiable in (�1;1). �

Lemma A.5. If f is analytic in the upper half plane Z+ and continuous on �Z+, the

closure of Z+, and sup
�2(�1;1)

j� � 2ij�1jf(�)j = Æ <1 for some �1 > 0, then

(A.19) sup
�2Z+

j� + 2ij�1jf(�)j = Æ
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On the otherhand, if f were analytic in the lower half-plane Z� and continuous on

�Z� with sup
�2(�1;1)

j� � 2ij�1 jf(�)j = Æ < 1, then

(A.20) sup
�2Z�

j� � 2ij�1 jf(�)j � Æ

Proof. Since f is analytic in the upper half plane, sup
�2�Z+

jf(�)j �M0.

Let us de�ne integer n = Int [ �1
2
] + 2. Consider that h�1(�) =

1
(1�i��1)2n

, we have

jh�1(�)j =
1

(1 + �1Im �)2 + �21(Re �)
2)n

� 1

Consider g(�) = f(�)(� + 2i)�1h�1(�), and domain D := fIm � � 0; j�j � 2�1=2M0

�21Æ
g.

We will assume that �1 is small enough so that 2�1=2 M0

�21Æ
> 1. On circular part of

@D,

jg(�)j � M0[(Re �)
2 + (Im � + 2)2]�1=2

(1 + �1Im �)2 + (Re �)2�21
� 2

�1
2 M0[(Re �)

2 + (Im �)2]�1=2

�21((Re �)
2 + (Im �)2)n

� Æ

On straight part of @D,jgj � Æ. So jgj � Æ inside D, from maximum principle. Also

outside D, but for Im � � 0, it is clear that jgj � Æ. So for Im � � 0,jgj � Æ. So for

any �xed �, as �1 ! 0, g(�)! f(�)(� + 2i)�1 . So jf(�)jj� + 2ij�1 � Æ for all � 2 �Z+.

The proof of the second part is very similar. �

Proof of Lemma 1.5

(a) and (b) follow from Lemma A.5 on using Lemma A.4.

Since g(�) = �2Im ln(1 + F 0=H) satis�es

g0 = ��2Im H 0

H
+ jF 0 +HjRe F;

It is clear that g0 = O(��1��) as � ! �1.

Also

g00 = ��2Im (
H 0

H
)0 + jF 0 +HjRe F 0 + jF 0 +HjRe

�
F 00 +H 0

F 0 +H

�
Re F;
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Since H(g0)[�] is a priori O(��1) as � ! �1, it follows that

Re

�
�2
d

d�
ln (F 0 +H)� �2

H 0

H

�
= H(g0)[�] = O(��1) at least

Therefore, Re F 00+H0

F 0+H
= O(��1) for large j�j. Also, using large j�j behavior: Im �H0

H

�0
= O(��3),

jH + F 0j = O(��1), and using Re F = O(���) and part (b) result: Re F 0 =

O(��1��), it follows that g00 = O(��2��). From using Lemma A.2, it follows that

H(g0)[�] = O(��1��). So,

F 00 +H 0

F 0 +H
� H 0

H
= g0 + iH(g)[�] = O(��1��)

Therefore, F 00 = O(��2��) as � ! �1 and hence

sup
�2(�1;1)

j� � 2ij�+2jF 00(�)j � Æ2 < 1

Using previous Lemma A.5, with f replaced F 00, the proof of Lemma 1.5 is complete.

Appendix B. Properties of function P (�)

In this section,we discuss properties of the following function:

P (�) =

Z �

�i


iL1=2(t)dt

= i

Z �

�i


(
 � it)3=4(
 + it)1=4

(1 + t2)
dt

(B.1)

we choose branch cut f� : � = �i; � > 
g;�� � arg(
 + i�) � � for the function

(
+ i�)1=4 and branch cut f� : � = ��i; � > 
g;�� � arg(
� i�) � � for the function

(
 � i�)3=4.

Proof of Property 1:

(1.) First consider, � 2 (�1; 0),

Re P (�) =

Z 0

�

(
2 + t2)1=2

(1 + t2)
sinf1

2
arg(
 � it)gdt+Re P (0);
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Clearly,Re P (�1) = 1 since arg(
 � it) ! �
2
as t ! �1, and Re P (�) decreases

as � increases since arg (
 � it) 2 �
0; �

2

�
.

(2.) For �b < � < 0,

P (�i) = �
Z �

0

(
 + t)3=4(
 � t)1=4

(1� t2)
dt+ P (0);

so

ReP (�i) = �
Z �

0

(
 + t)3=4(
 � t)1=4

(1� t2)
dt+ReP (0);

On inspection as � increases in the interval (�b; 0), Re P (i�) decreases.
Proof of Property 2:

P 0(t) =
e
�
4
i(t + i
)3=4(t� i
)1=4

(t+ i)(t� i)

It is to be noted that jt� 2ijjP 0(t)j is nonzero upper and lower bounds in the domain

R. Further, on a ray t(s) = � � sei'; 0 � s <1 where 0 � ' < �=2, as s!1, it is

clear from the behavior of P 0(t) for large t that since argP 0(t(s)) � �5�
4
� ',

d

ds
Re P (t(s)) = Re

�
P 0(t(s))ei'+i�

�
= jP 0(t(s))j cos [arg P 0(t(s) + � + ')] >

C

jt(s)� 2ij

satis�es property 2.

Proof of Property 3:

P 0 � i
 as � ! 0. So P (�) = P (0) + i
� +O(�2).

So, on � = �� + se�i�=4; 0 � s � p2�,

P (�) � P (0) + i
(�� + se�i�=4) +O(�2) � P (0)� i
� + 
sei�=4 +O(�2);

d

ds
Re P (�(s)) � 
 cos �=4 +O(�) > C > 0

with C independent of � and � for suÆciently small �.
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Proof of Property 4:

(1) For 0 < 
 < 1

P 0(�) = i(
 + i�)1=4(
 � i�)3=4
1

(�2 + 1)

On l� =
�
� : � = �ib � ei�=4s

	
, it suÆces to consider arg(�ei�=4P 0) and ensure it is

in (��
2
; �
2
), modulo an additive multiple of 2�. This will ensure property 4, since

jP 0jj� � 2ij has a lower bound in the region D
Consider

�2 + 1 = 1� b2 + is2 + 2e3i�=4bs = (1� b2 �
p
2bs) + i(

p
2bs + s2);

arg(�2 + 1) = � � arctan(

p
2bs+ s2p

2bs� (1� b2)
):

put s =
p
2b� to get

arg(�2 + 1) = � � arctan

"
2b2(�2 + �)

2b2(�� 1�b2

2b2
)

#
= � � arctan

�
�2 + �

�� q

�

where q = 1�b2

2b2
. In the range � > q, the minimum of function �2+�

��q
is (
p
1 + q+

p
q)2.

Since q = 1�b2

2b2
� 1�
2

2
2
:= qmin, de�ne �min = tan�1(

p
1 + qmin +

p
qmin)

2 > �
4
, then

(B.2) �� + �min � � arg(�2 + 1) � 0

Consider

(B.3) arg i(
 + i�)1=4 = arg
�
ei�=2ei�=8(� � i
)1=4

�
=

5�

8
+

1

4
(�3�

4
;��

2
] = (

7�

16
;
�

2
];

Let �2 =
1
2
(�min � �

4
). Near � = �i
:

(B.4) P 0(�) =
i(2
)1=4

(1� 
2)
(
 � i�)3=4f1 +O(
 � i�)g
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Clearly, there exists R0 large enough (depending on b) so that for � 2 l�,

(B.5)
3

4
arg (
 � i�) 2 [

9

16
� � �2;

9

16
�) for j� + i
j � R0

and

3

4
arg (
 � i�) 2 [0;

9

16
� � �2) for j� + i
j < R0

From geometric consideration, it is clear that R0(b) ! 0 as b ! 
�. We choose b

so close to 
 so that the approximation in (B.4) is good enough to ensure that on l�,

arg(P 0(�)e�3�i=4) 2 (�5�

16
;
7�

16
); for j� + i
j < R0(b)

On the otherhand, on l� for j� + i
j � R0(b), using (B.5), along with (B.2) and

(B.3), it follows that

(B.6) arg(ei
�3�
4 P 0(�)) 2 (�3�

4
+
�

4
+ (�min � �

4
)� �2;

5�

16
) � (��

2
;
�

2
)

(2) Now consider 
 > 1 (i.e. � > 1
2
but restrict to 
 � 1 small enough so that we

can choose b so that 10(
 � 1) � jb � 1j. We want to show that on ray l� � f� =

�bi� sei�=3; 0 � s <1g.

(B.7)
d

ds
ReP (�(s)) = RefP 0(�)e�i2�=3g > C

j�(s)� 2ij > 0:

We note that since j� � 2ijjP 0 is bounded above and below by nonzero constants, it

suÆces to show that

arg
�
P 0(�(s))e�i2�=3

� 2 �
��
2
;
�

2

�
modulo 2�

Note:

(B.8) P 0(�) = i
(� � i
)

(� + i)

�

 + i�


 � i�

�1=4
1

(1 + i�)
;
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Let B(s) be the positive angle between �(s) + 
i and �(s) + i,then by geometry:

arg
�
e�i2�=3P 0(�)

� 2 (�B � 5�

12
; 0);

we can see that B < �
12

implies (B.7).

Let d1 = jb� 1j+ j
 � 1j, by geometry:

cosB =
(s2 � 2sjb� 1j sin �

3
+ jb� 1j2) + (s2 � 2sd1 sin

�
3
+ d21)� j
 � 1j2

2
p
(s2 � 2sjb� 1j sin �

3
+ jb� 1j2)

q
(s2 � 2sd1 sin

�
3
+ d21)

Let t = j
�1j2s
jb�1j sin �

3

; d = j
�1j
jb�1j

,

cosB =
(t� 1� d

2
)2 + (1 + d) cot2 �

3
� 1

4
d2q

(t� 1)2 + cot2 �
3

q
(t� 1� d)2 + (1 + d)2 cot2 �

3

The min of the above function over 0 < t < 1; d � 0:1 is :9688749307,but cos �
12

=

0:9330127,so B < �
12
.

Proof of Property 5 and 6:

Recall that in showing Property 4. we showed that there exists �0 and b with �
4
�

�0 <
�
2
; 0 < b < minf1; 
g so that on � = �ib� ei�0s

arg
�
P 0e�i(���0)

� 2 (��1; �2) � (��=2; �=2); where 0 < �1; �2 < �=2;

without loss of generality, it will be assumed that �=4 � �1; �2 < �=2. Then it is clear

that on � = �ib � ei�0s,

argP 0 2 (� � �0 � �1; (� � �0) + �2)

Note [�
2
; 3�

4
) � (���0� �1; (���0)+ �2). On the real axis, argP 0 = arg i+ 1

2
arg(
�

i�) 2 �
2
+(0; �=4) = (�

2
; 3�

4
). On the imaginary axis between O and ib, argP 0 = �

2
. In

all cases, on the boundary of the domainR�, bounded by negative real axis, imaginary
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axis between 0 and ib and line � = �bi�ei�0s, we have argP 0 2 (���0��1; ���0+�2).
On � = �bi � sei� for � < �0, as s!1, we have

arg(�+i
)! (�+�) ; arg(��i
)! (��+�) ; arg(�+i)! (�+�) ; arg(��i)! (��+�):

So, as s!1, argP 0 ! 3�
4
� � 2 (3�

4
� �0;

3�
4
). So as � ! 1 and � 2 R�, argP 0 2

(3�
4
��0; 3�4 ) � (�

2
; 3�

4
). Using Maximum Principle , argP 0 2 (���0� �1; ���0+ �2)

everywhere inside the domain R�.

Now if we choose P(�;�1) = ft : t = ��ei�0s; 0 < s <1g, it is clear on P, we have
d

ds
(Re P ) = jP 0j cos �arg(P 0e�i(���0))

�
>

C

j� � 2ij > 0;

where C can be made independent of 
 for 
 in a compact subset of (0; 1). Hence

property 6 follows.

Now to �nd P(�;��) so that Re P decreases monotonically from � to ��, we use

line P0 = ft = � + ei�0s; s > 0g where d
ds
Re P = jP 0j cos [argP 0 + �0] � � C

j��2ij
< 0.

This line intersects @D at some point �1 2 @D. Now, clearly �1 can be connected

to � = �� by P1(�1;��) on a path coinciding with @D so that Re P decreases

monotonically from �1 to �� such that � d
ds
(Re P ) > C

j��2ij
> 0. Then P(�;��) =

P0(�; �1)+P1(�1;��). Reversing this path, leads to the desired path P(��; �) having
property 5.
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