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ABSTRACT

A module M is called (strongly) FIL-extending if every fully invariant sub-
module is essential in a (fully invariant) direct summand. The class of strongly
FI-extending modules is properly contained in the class of Fl-extending mod-
ules and includes all nonsingular FI-extending (hence nonsingular extending)
modules and all semiprime FI-extending rings. In this paper we examine the
behavior of the class of strongly Fl-extending modules with respect to the
preservation of this property in submodules, direct summands, direct sums,
and endomorphism rings.

Key Words: extending, Fl-extending, strongly Fl-extending, fully invari-
ant, nonsingular, non-M-singular, polyform, semicentral idempotent, quasi-
Baer

0. INTRODUCTION

All rings are associative and R denotes a ring with unity. The word “ideal”,
used without the adjectives “left” or “right”, means two-sided ideal. All mod-
ules are unitary right R-modules unless indicated otherwise. Recall a sub-
module K of M is called fully invariant if A(K) C K for all A € Endg(M).
Many distinguished submodules of a module are fully invariant (e.g., the Ja-
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cobson radical, the singular submodule, the socle, torsion submodules, etc.).
Furthermore the fully invariant submodules of an injective module are quasi-
injective. Observe that the fully invariant submodules of Rp are exactly the
ideals of R. In (1), a module M is called Fl-extending if every fully invari-
ant submodule is essential in a direct summand of M. The Fl-extending
Z-modules (i.e., Abelian groups) were investigated in (2), where Z is the ring
of integers. Unlike the class of extending modules (M is an extending or CS
module if every submodule is essential in a direct summand), the class of FI-
extending modules is closed with respect to direct sums and n-by-n full and
upper triangular matrix rings. Hence the Fl-extending property indicates,
at a minimum, “how much” of the extending property is preserved in the
formation of direct sums of extending modules or of various matrix rings over
(right) extending rings.

Upon examining the Fl-extending property it is natural to ask: When
does a module have the property that every fully invariant submodule is es-
sential in a fully invariant direct summand? At first glance, this property
may seem to be an inconsequential specialization of the Fl-extending prop-
erty. However, this property is evident for nonsingular Fl-extending modules
(1, Proposition 1.10), for semiprime quasi-Baer rings (3, Lemma, 2.2), and was
characterized for Abelian groups in (2, Theorem 7.1). A module M is called
strongly FIl-extending if every fully invariant submodule is essential in a fully
invariant direct summand of M. If Rp (resp. rR) is strongly Fl-extending
then we say R is right (resp. left) strongly FI-extending. Other examples of
strongly Fl-extending modules and rings are: uniform modules, semisimple
modules, prime rings, semiprime right FPF rings, and semiprime right Noe-
therian group algebras. Moreover, if M is an Fl-extending module in which
the singular submodule is not essential, then M has a nontrivial strongly
Fl-extending direct summand. Further examples appear in the sequel.

In this paper, we investigate the class of strongly FI-extending modules.
Although the class of strongly Fl-extending modules and the class of extend-
ing modules are proper subclasses of the class of Fl-extending modules, we
show by examples that they are incomparable. However the class of strongly
FI-extending modules shares certain properties with the class of extending
modules which may not hold for the class of Fl-extending modules. For
example both the class of strongly Fl-extending modules and the class of ex-
tending modules are closed under direct summands which may not be true
in the class of Fl-extending modules. In contrast, the classes of right FI-
extending rings and right strongly Fl-extending rings are closed with respect
to n-by-n full and upper triangular matrix rings (see Corollary 4.3, (1), and
(4)), whereas the class of right extending rings is not closed under these ma-
trix ring constructions.
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In Section 1, we prove that for a nonsingular module M (and observe
that for a semiprime ring R) the following conditions are equivalent: (i) FI-
extending, (ii) strongly Fl-extending, (iii) every fully invariant essentially
closed submodule of M (resp. Rpg) is a direct summand. If a ring R is
right nonsingular, we provide a characterization of the (strongly) Fl-extending
property for R in terms of the idempotents of its right maximal ring of quo-
tients. Examples are provided which distinguish the classes of Fl-extending,
strongly Fl-extending, and extending modules, respectively.

It is presently unknown whether, in general, a direct summand of an FI-
extending module is Fl-extending (1), (2), and (5). In Section 2, we prove
that a direct summand of a strongly Fl-extending module does inherit the
strongly Fl-extending property. In particular, a nonsingular direct summand
of an Fl-extending module is (strongly) Fl-extending. We show that for a
left and right strongly Fl-extending ring R, every ideal can be embedded in
a smallest ring direct summand of R by a two-step process, such that it is
essential as an ideal in that ring direct summand.

Section 3 focuses on direct sums of strongly Fl-extending modules. It is
shown that an arbitrary direct sum of strongly Fl-extending modules is not
necessarily strongly Fl-extending. We prove that an arbitrary direct sum M
of strongly Fl-extending modules M; is strongly Fl-extending, if either the
M;’s are fully invariant in M or if the M;’s are isomorphic copies of each
other. As a consequence, if a ring R is right strongly Fl-extending, then so
is every projective right R-module.

It is well known that the right extending property is not a Morita invariant
property. In Section 4 we prove that the right strongly FI-extending property
is a Morita invariant property. We also show that the endomorphism ring of
a free strongly Fl-extending module is right strongly Fl-extending. Finally,
we mention that since a fully invariant submodule N of an R-module M is
just a A-R-bimodule where A = Endg (M), much of this theory carries over
to the general theory of bimodules.

Throughout this paper, if M is an R-module and A C M, then we use
A< M, A< M, A< M, and E(M) to denote that A is a submodule,
essential submodule, fully invariant submodule, and the injective hull of M,
respectively. If M = R then A <, R (A <, R) and A < R (A <{*® R)
denote that A is a right (left) ideal of R and that A is right (left) essential
in R, respectively. For a submodule X of M,(X), X¢ and X <® M denote
the fully invariant closure of X in M, an essential closure of X in M, and X
is a direct summand of M, respectively. For A < M and y € M,y 1(A) =
{r € R | yr € A}. The singular and second singular submodules of M are
denoted by Z(M) and Zs(M), respectively. Let ) # X C R then £r(X)
and 7g(X) denote the left and right annihilators of X in R, respectively
(we delete the subscript if the context is clear). A ring R is called (quasi-)
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Baer if the right annihilator of every (ideal) nonempty subset is generated
by an idempotent as a right ideal of R (6) and (7). Let e = €2 € R. Then
e is called a left (right) semicentral idempotent if ze = exe (ex = exe), for
all z € R (equivalently, eR (Re) is an ideal of R) (8). The set of all left
(right) semicentral idempotents is denoted by Sp(R) (S,(R)). Observe that
B(R) = Si(R) N S-(R), where B(R) is the set of all central idempotents. A
submodule N of M is rational (or dense) in M if for any z,y € M with 0 # z,
then z - y~1(N) # 0. A module M is called polyform (equivalently, non-M -
singular) (9, p.78) if every essential submodule is rational in M. The class of
modules which are non-M-singular properly contains the class of nonsingular
modules (e.g., every singular simple module M is non-M-singular). Note
if M = R then non-M-singularity is equivalent to nonsingularity. We use
the terms polyform or non-M-singular interchangeably, depending on which
seems most appropriate. Finally Z, Z,,, and Q denote the ring of integers,
the ring of integers modulo n, and the field of rationals, respectively.

1. NONSINGULAR FI-EXTENDING MODULES

In this section we show that for nonsingular (more generally, non-M-
singular) modules and for semiprime rings the Fl-extending and strongly
FI-extending conditions are equivalent. Moreover, we give an example of a
ring R such that Rp is strongly Fl-extending, Z(Rg) # 0, R is not semiprime,
and Rp is not extending. Criteria are determined for Mz to be strongly FI-
extending for an Fl-extending module Mg with (M, +) torsionfree. For a
right nonsingular ring R the Fl-extending property has been characterized in
terms of the idempotents of the right maximal ring of quotients Q(R) of R.
Examples are provided to show that the class of strongly FI-extending mod-
ules is properly contained in the class of Fl-extending modules and is distinct
from the class of extending modules. We begin with an example which shows
that even a well behaved extending ring may not be strongly Fl-extending.
Recall that a ring is strongly bounded if every nonzero one-sided ideal contains
a nonzero ideal and it is semicentral reduced if S;(R) = {0, 1} (10).

Example 1.1. There is a finite strongly bounded QF-ring which is neither
right nor left strongly Fl-extending: Let R = Z3[S3], the group algebra of
the symmetric group Ss over the field Z3z with three elements. It can be seen
that R is semicentral reduced. Let e = 2+7 € R, where 7 = (12) € S3. Then
e? = e and eRp, is uniform. From (11), R is strongly bounded. So there exists
a nonzero ideal I of R such that I C eR. Now if I < gR with g € S;(R),
then g = 1 and so I <{** R, a contradiction. Hence R is not right strongly

Fl-extending. Similarly, R is not left strongly Fl-extending.

Our first three lemmas are either known or routine facts which are useful in
the development of our results. We record these lemmas here for the reader’s



convenience.

Lemma 1.2. Let A = Endp(M) and e = e* € A. Then:
(i) e € Se(A) if and only if eM < M.
(ii) If b,c € Se(A), then there exists e € Sp(A) such that bM NcM = eM.
(iii) If e € Sp(A), then Hompg(eM, M) C Homg(eM,eM).

Proof: (i) This part is (1, Lemma 1.9).
(ii) Set e = bc then e? = e € Sy(A) and bM NcM = eM.
(iii) This part follows from the definition of a semicentral idempotent. O

Part (ii) of the next lemma follows from [12, 3.2].

Lemma 1.3. (i) Let 0 #Y <M and A<*Y. Ify €Y and K < M such
that AN K =0, then y~'(A) =y~ (A @ K).

(ii) If M is polyform and X < M, then X is polyform and X has a unique
essential closure.

Proof: (i) Clearly, y71(A) C y 1(A® K). Let s € y " '(A® K). Then
ys = a + k, where a € A and k € K. Thus ys—a € YNK = 0. So
s €y 1(A), hence y~1(A) =y (AP K).

(ii) Assume to the contrary that X is not polyform. Then there exists
L <®% X such that L is not rational. So there exists 0 # z € X and y € X
such that zy~!(L) = 0. Let K be a complement of L in M. Then L & K is
rational in M. By part (i), zy (L & K) = 0, a contradiction. Therefore X
is polyform.

Now assume X <% A and X <°° B such that A € B and B € A. Let
a € A and b € B such that 0 # a + b. By the above argument, A and B are
polyform. Hence X is rational in A and B. Therefore there exists r € a7 (X)
such that 0 # (a+b)r and ar € X. Also there exists s € (br)~1(X) such that
0 # (a+b)rs and brs € X. Thus 0 # (a + b)rs € X. Hence X <*° A + B.
Therefore X has a unique essential closure. ]

Lemma 1.4. (i) Let M be a non-M-singular module and X < M. Then
X< M.

(ii) If M is a strongly FI-extending module and K < M, then K is essential
in a unique (fully invariant) direct summand of M.

Proof: (i) Let k € X¢ and f € Endgr(M) such that f(k) # 0. Let I =
k=1(X). Then f(kI) = f(k)I C X since X < M. Let K be a complement,
of X. By Lemma 1.3, I = k~}(X @ K). Since X & K is rational in M,
0 # f(k)I C X. The uniqueness of X¢ yields f(k) € X¢. Therefore X¢ < M.

(ii) By Lemma 1.2(i), there exists e € Sp(A), where A = Endg(M) such
that K <®% eM. Assume that ¢ = ¢ € A and K <®% cM. Then (ce)? =
cece = ce and ceK = K. Hence K <°% ceM < c¢M, so ceM = c¢M. By (13,
Lemma 3.1) ceA < eA implies that ceM < eM, therefore cM < eM. But as
K <**eM, cM =eM. U
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Proposition 1.5. Let M be a non-M -singular module, then the following
conditions are equivalent:

(i) M is Fl-extending;

(ii) M is strongly FI-extending;

(iii) every fully invariant essentially closed submodule of M is a direct
summand.

Proof: This result follows from Lemma 1.4 and the non-M-singularity of M.
O

We remark that, in general, (i)=-(iii) in Proposition 1.5 always holds true
without the non-M-singular condition. Hence (i)=-(iii) generalizes (14, Corol-
lary 6.6). On the other hand, if M is not nonsingular then (iii)=-(ii) may not
hold true even when M is Fl-extending, in general, as the next example
illustrates.

Proposition 1.5 naturally motivates one to ask: If Rr is nonsingular and
M is an Fl-extending R-module then is M strongly Fl-extending? Again the
next example provides a negative answer to this question. It also shows that
the class of strongly Fl-extending Z-modules is properly contained in the class
of Fl-extending Z-modules.

FEzample 1.6. The module M = Z @ Z,, is an Fl-extending Z-module (i.e.,
Abelian group) for any prime p by (1, Theorem 1.3), however, M is not
strongly Fl-extending by (2, Theorem 7.1).

The following example illustrates Proposition 1.5, and with Example 1.1,
shows that the classes of extending modules and strongly FI-extending mod-
ules are distinct.

7 7
Ezample 1.7. (1, Example 2.6) Let R = (O Z) . Then Rr and rR are
Fl-extending but neither one is extending. Since Z(Rgr) = 0 = Z(rR), Rr
and pR are strongly Fl-extending.

Observe that from Proposition 1.5, if M is a nonsingular module which
is strongly Fl-extending then so is its injective hull F(M). However for the
ring R in Example 1.1, even though Soc(Rpg) is strongly Fl-extending (in
fact, every semisimple module is strongly Fl-extending), its injective hull
E(Soc(Rgr)) = Rg is not strongly Fl-extending.

A monoid G is called a u.p.-monoid (unique product monoid) if for any
two nonempty finite subsets A, B C G there exists an element z € G uniquely
presented in the form ab where a € A and b € B. The class of u.p.-monoids is
quite large and important (see (15) and (16)). For example, this class includes
the right or left ordered monoids, submonoids of a free group, and torsion-
free nilpotent groups. Every u.p.-monoid is cancellative. Especially, in (16)
group algebras of a u.p.-group are extensively studied in the investigation of



the zero divisor problem.

From (1, Theorem 4.7), we see that for a semiprime ring the conditions
(i), (ii), and (iii) of Proposition 1.5 are equivalent. The next result provides
a large class of strongly Fl-extending rings.

Proposition 1.8. (i) Let F[G] be a semiprime group algebra of a group
G over a field F. Then F[G] is right strongly FI-extending if and only if
each annihilator ideal is finitely generated. In particular, if F|G] is right
Noetherian, then F[G| is right strongly Fl-extending. If, in addition, F|G] is
commutative, then F[G] is a finite direct sum of domains (hence F|[G] is an
extending ring).

(ii) Let R[G| be the monoid ring of a u.p.-monoid G over a ring R. Then R
is a semiprime (right) strongly FI-extending if and only if R[G] is a semiprime
(right) strongly FI-extending ring.

Proof: (i) This result is a consequence of (1, Theorem 4.7) and (17, Propo-
sition 1.7 and Corollary 1.9).

(ii) Assume R is a semiprime (right) strongly Fl-extending ring. Then R
is quasi-Baer by (1, Theorem 4.7). Thus by (17, Theorem 1.2) R[G] is quasi-
Baer. To show that R[G] is semiprime, let & = a191+a2g92+- - -+angn € R[G]
with a; € R and g; € G such that aR[G]a = 0. Then by adopting the
technique for the proof of (17, Theorem 1.2) we have a;Ra; = 0, for all i.
Hence a; = 0 and thus a = 0. So R|G] is a semiprime ring. Therefore by (1,
Theorem 4.7) R[G] is (right) strongly Fl-extending.

Conversely, if R[G] is semiprime (right) strongly Fl-extending, then R is
semiprime. Thus by (1, Theorem 4.7) and (17, Theorem 1.2) R is (right)
strongly FI-extending. U

From (1, Theorem 4.7), the class of strongly Fl-extending rings includes all
semiprime right FPF rings (18, p.168). Note that Example 1.1 provides an
example of a non-semiprime finite QF group algebra which is not strongly
Fl-extending. Also there is a semiprime Noetherian integral group ring
which is not strongly Fl-extending (17, Example 1.10). Observe that, in gen-
eral, left and right strongly FI-extending rings need not be quasi-Baer (e.g.,
Z4). Although a right Fl-extending ring which is either right nonsingular or
semiprime is right strongly FI-extending, the following example provides a
finite right strongly Fl-extending ring, which is neither right nonsingular, nor
semiprime, nor right extending, nor quasi-Baer.

Ly 2Ly
0 Zg4
Fl-extending. By considering the ideals of R, it can be seen that Rp and
rR are strongly Fl-extending. However R is not semiprime, Z(Rg) # 0,
and Z(grR) # 0. Moreover by a routine calculation, R is not quasi-Baer and
neither Rp nor pR are extending.

Ezxample 1.9. Let R = . By (1, Corollary 2.5), Rr and rR are



Let R be a right nonsingular ring and let Q(R) denote its right maximal
ring of quotients. It is well known (13, Theorem 2.8) that R is right quasi-
continuous if and only if every idempotent of Q(R) lies in R. We obtain the
following analogue.

Theorem 1.10. Let R be a right nonsingular ring and let Q = Q(R) be the
right mazximal ring of quotients of R. Then R is right Fl-extending if and

only if for every idempotent e = €2 € Q) such that Re = eRe, there ewists
f € Se(R) such that eQ = fQ.

Proof: Assume R is right Fl-extending. Let e = e? € @) such that Re = eRe.
Then RNe( is an ideal of R. By Lemma 1.2 and Proposition 1.5 there exists
f € Si(R) such that RNeQ <* fR. Observe that R N e@ is essentially
closed in R, hence RNe@ = fR. So fR <°° e and therefore, eQ)Q = fQ
holds.

Conversely, let A be an ideal of R. Then Ap <®* eQg, for some e = €2 €
Q. Hence there exists an essential right ideal I of R with el C A. This yields
Rel C A, and hence (1 —e)Rel = 0. Therefore (1 —e)Re =0, as Z(Rg) = 0.
Thus Re = eRe holds, and so eQ = fQ for some f € S;(R) by hypothesis.
Hence Ar <°° fQgr and so Ar <°*® fRp. Therefore Ry is Fl-extending. [

Proposition 1.11. Let M be an Fl-extending R-module and R a ring such
that if L is an essential right ideal of R then LNZ -1 # 0. If (M,+) is
torsionfree then (M, +) is a strongly FI-extending Abelian group.

Proof: Let X be a fully invariant subgroup of (M,+). Then X is a fully
invariant submodule of M. Hence there exists a direct summand A of M
such that X <% A. Let 0 # a € A, then there is an essential right ideal I
such that Ia C X. There exists 0 #n € INZ - 1g since (M, +) is torsionfree,
0 # na € X. Hence X is essential in (A,+). Thus (M, +) is strongly FI-
extending. 0

2. SUBMODULES AND DIRECT SUMMANDS

In this section we consider the question: When is the strongly FI-extending
condition inherited by fully invariant submodules or by direct summands?
From (1, Proposition 1.2) (resp. (19, Corollary 1.2)), we know that a fully
invariant submodule of an Fl-extending (resp. extending) module is an FI-
extending (resp. extending) module. However this is not, in general, the case
for strongly Fl-extending modules as our next example demonstrates. This
example provides a right strongly Fl-extending ring R with an ideal I which is
not a strongly Fl-extending submodule of R but is a strongly Fl-extending
submodule of pR.

Ly 74

Example 2.1. Let R = ( 0 7,

). As indicated in Example 1.9, Rp is
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0 Z4

strongly Fl-extending. Consider the ideal I =
0 2Z4

) of R. It can be

seen that if g € Hom(Ig,Ip) = (2@44 %i) then g(a) = (;b ;) a, for

any a € I and for some a,b,c,d € Z4. Using this fact we can show that

J = (8 2%4> < R is also a fully invariant R-submodule of I. Now if Ip
were strongly Fl-extending, then there is a fully invariant summand Kg of

IR such that Jgp <®° Kpg. The only possible right R-direct summand Kpg of

IR, essential over Jpg, is 0 Z04 . However, 8 Z04 is not fully invariant
0 Z4 o 0 axr 0 Z4 .
(asg(o 0>—{<0 2bw>|x€Z4}Z<0 0>,f0rb—1€Z4).
Therefore, I = g 2%Z4 is not a strongly Fl-extending R-module. By
4

calculation, I is a strongly Fl-extending submodule of pR.

In view of Example 2.1, it is natural to ask: What conditions ensure that
fully invariant submodules of a strongly Fl-extending are also strongly FI-
extending? The following result and corollary provide an answer.

Proposition 2.2. Let M be a strongly FI-extending module and X < M. If
any of the following conditions is satisfied, then X 1is strongly FI-extending.

(i) X is indecomposable.

(ii) X is non-M -singular.

(iii) For any e,g € Endp(X) with e = €2, there exists g € Endg(M) such
that ge(X) = ge(X).

Proof: By (1, Proposition 1.2), X is Fl-extending. Clearly, any indecom-
posable Fl-extending module is strongly Fl-extending. Condition (ii) follows
from Proposition 1.5. So assume condition (iii). Let S < X. Since X < M,
then S < M. Hence there exists D < M such that M = B@®D and S <®% D.
Moreover X = (X NB) & (X N D). There exists e = e? € Endg(X) such that
e(X) =XnND. Let g € Endgr(X). Then we have g € Endr(M) such that
ge(X) = ge(X). Since e(X) I M, ge(X) Ce(X). Thus XND =e(X) <X,
so X is strongly Fl-extending. Il

Corollary 2.3. Let M be a strongly Fl-extending module. If M 1is either

non-M -singular or quasi-injective, then every fully invariant submodule of
M s strongly FI-extending.

Proof: This result is an immediate consequence of Proposition 2.2. 0

At this time, the following problem is open: Determine if a direct summand
of an Fl-extending module is FI-extending (1), (2), and (5). Note that in (2,
Theorem 3.2) an affirmative solution was obtained for Abelian groups. Our
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next results provide an affirmative answer for various cases including strongly
Fl-extending modules.

Theorem 2.4. FEwvery direct summand of a strongly FI-extending module is
strongly FIl-extending.

Proof: Let M be a strongly Fl-extending module and let B be a direct
summand of M. Let A = Endg(M). Hence there exists e = e € A such that
B =eM. Let X be fully invariant submodule of B = eM. Then AX < M.
Since M is strongly Fl-extending there exists f2 = f € Sy(A) such that
AX <% fM. Obviously X C AX NeM. Since X < eM, it can be seen that
AXNeM C X. Hence X = AX NeM <° fM NeM. Therefore eX CefM,
where (ef)? = (ef)(ef) = e(fef) = e(ef) = ef and efM C eM N fM
as f € Sp(A). Let z € eM N fM, then there exist m, m' € M such that
x = em = fm'. This implies that ex = em = efm’ = fefm' = fe-em =
fem = fx. Thus efM = eM N fM holds, where (ef)? = ef € H. Hence
X =eX <**®efM, and ef M is a direct summand of eM. Next we show that
efM < eM. It is easy to see that Endg(eM) = eAe, where A = Endg(M).
Now eAe-efM C e(Ae(fM)) C e(fM) since fM < M. Therefore ef M is a
fully invariant direct summand of B = eM, essential over X. O

Proposition 2.5. Let M be an extending (resp. non-M -singular FI-extend-
ing) module such that every essential submodule is fully invariant. Then
every submodule is extending (resp. strongly FIl-ertending).

Proof: Let X < M. There exists C < M such that X & C <5 M. Hence
XeC <M. If M is extending, then (19, Corollary 1.2(ii)) yields that X & C
is an extending module. Hence X is an extending module. If M is non-
M-singular Fl-extending, then by (1, Proposition 1.2), Proposition 1.5 and
Theorem 2.4, X is strongly Fl-extending. 0

Recall from (10) that an ordered set {by,...,b,} of nonzero distinct idem-
potents in R is called a set of left triangulating idempotents of R if all of the
following hold:

(i) 1=0b1+ -+ by;

(ii) b1 € Se(R); and

(iii) bgs1 € Se(ckReg), where ¢y =1 — (by +---+bg) for 1 <k <n-—1.

From part (iii) it can be shown that a set of left triangulating idempo-
tents is a set of pairwise orthogonal idempotents. We call an element of R
a triangulating idempotent if it is a member of some set of left triangulating
idempotents of R.

As can be seen in (2), the result (2, Lemma 2.2) effectively splits the study
of the Fl-extending property for Abelian groups into the torsion and torsion-
free cases. Using the above definition and Lemma 1.2(i), (2, Lemma 1.2) can
be generalized as follows.
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Proposition 2.6. Let M be an Fl-extending module and e = €2 € A =
Endr(M). If e is a triangulating idempotent of A, then eM and (1 — e)M
are Fl-extending.

Proof: This result follows from an induction argument using Lemma 1.2(3i),
the above definitions, and (2, Lemma 1.2). O

Proposition 2.7. If Ry is Fl-extending (resp. extending), then every non-
singular cyclic module is strongly Fl-extending (resp. extending).

Proof: Assume Rp is Fl-extending (the extending case is similar). Let M be
a nonsingular cyclic module. Then there exists X <, R such that M =2 R/X.
Let I/X < R/X. Then I < R, so there exists e = e? € R such that I <®* eR.
Let 0 # K/X < R/X such that K/X < eR/X. Let k € K such that
k ¢ X. There exists L <¢*° R such that kL C I. Since R/X is nonsingular,
kL ¢ X. Hence there exists y € L such that 0 # ky+ X € I/X N K/X. So
I/X <*% eR/X. Therefore, by Proposition 1.5, M is strongly Fl-extending.
O

The next result shows that if N is a nonsingular direct summand of an
Fl-extending module, then N is strongly Fl-extending.

Proposition 2.8. Let M be an Fl-extending module such that either K <9
M or KA M. If M/K is nonsingular, then M = Zo(M) & X @ Y, where
(i) Zo(M) is FI-extending;
(ii) K = Zo(M) @ X is Fl-extending;

(iii) X @Y is strongly FI-extending.
Proof: Since Z3(M) is a fully invariant closed submodule of M, by Lemma
1.2(i), there exists e € Sy(Endr(M)) such that Z2(M) = eM. First assume

M = K @& N for some N. Since M/K is nonsingular, Z2(M) C K. Thus
K = Z3(M) ® X, where X = (1 —e)M N K. By Propositions 1.5 and 2.6,
Z5(M) is Fl-extending and X @& N is strongly Fl-extending. So let Y = N.
Now assume K < M. Then there exists a direct summand D such that
K <®s D. Then D/K is a singular module. Hence D =K. So M =K &Y,
where M/K =Y. The remainder of the proof is as above. O

Observe, from Theorem 2.4, that if M is strongly FI-extending in Propo-
sition 2.8, then Z3(M) and K are strongly Fl-extending. Our next result,
which is the module version of (2, Proposition 3.1), shows that if M is an
Fl-extending module in which Z(M) is not essential, then M has a nontrivial
strongly FI-extending direct summand.

Corollary 2.9. Let M be a module. Then M 1is Fl-extending if and only if
M = S®Zy(M) where S is strongly Fl-extending and Zy(M) is FI-extending.

Proof: This result follows from Proposition 2.8 with K = Zy(M) and (1,
Theorem 1.3) U
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If M = R in Corollary 2.9, further details are available on the decomposi-
tion in (20, Theorem 2.2).

A ring has the IFP (Insertion of Factors Property) if ab = 0 implies aRb =
0 (equivalently, r(a) < R for all a € R) (21). Note that every reduced ring or
every left or right duo ring has the IFP.

Corollary 2.10. If R is a right Fl-extending ring with IFP, then R is right
strongly Fl-extending and every nonsingular cyclic submodule of a projective
module is projective and strongly FI-extending.

Proof: Since every idempotent is central in a ring with IFP, R is right
strongly Fl-extending. Let P be a projective R-module. We can take P <©®
®ie ; R;i, where each R; = R. Let xR be a nonsingular cyclic submodule of P.
Then 2R = R/r(x). Now r(z) = N;err(x;), where the x; are the components
of z in R. Since each r(z;) < R, then r(z) < R. Now Proposition 2.8 yields
the result. O

In [22] Vanaja defines the second M-singular submodule, Z3;(N), of N €
o[M] to be the submodule of N where Zy(M/Zy(N)) = Z2,(N)/Zp(N). Tt
can be seen that Z2,(N) < N and Z2,(N) C Z5(N). From [22, Lemma 3.2],
Z%,(N) is closed in N. It now follows that Proposition 2.8, Corollary 2.9,
Corollary 2.10, and the comment between Proposition 2.8 and Corollary 2.9
remain true if nonsingular, singular, Z(M), and Zs(M) are replaced by non-
M -singular, M-singular, Zp;(M), and Z2,(M), respectively. One advantage
of this replacement can be seen in Corollary 2.9 in that it provides a “larger”
strongly Fl-extending direct summand S.

We say a submodule N of M is invariantly essential in M, denoted N <°%°
M,if KNN #0forall0# K <M.

Theorem 2.11. Let M be a strongly Fl-extending module such that A =
Endr(M) a left strongly Fl-extending ring. If K < M, then there exists
b€ Se(A) and c € B(A) such that bA <{*° cA and K <5 bM <°% c¢M.

Proof: By Lemma 1.2(i), there exists b € S;(A) such that K <®5 bM.
Since bA < A, there exists ¢ € Sp(A) such that bA <§* Ac. Then Ac < A,
(1—c)Ac < A, and Ac = cA & (1 — ¢)Ac (right ideal direct sum). So bc = b =
beb. But b € Sp(A), hence be = b = ¢b. Then bA C cA. So (1 — ¢)Ac = 0.
Thus ¢ € B(A) and AbA <°% ,cA. Let 0 # X < M such that X < ¢M and
bM N X = 0. There exists d € Sg(A) such that X <% dM. Since dA < A
and dA < cA, then bANdA # 0. Consequently, b M NdM = bAM NdAM # 0,
a contradiction. O

The following corollary generalizes a result in (23) for nonsingular FI-
extending rings and shows that for a left and right strongly Fl-extending ring
any ideal can be “essentially” embedded in a ring direct summand. In par-
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ticular this can be done for various radical ideals, the socles and the singular
ideals.

Corollary 2.12. Let R be left and right strongly Fl-extending. If I < R then
there exists b € Sy(R), e € S,(R) and ¢ € B(R) such that I < bR <§*
cR,I <3*° Re <{* cR, and I <°*®° cR.

Proof: The result is a consequence of Theorem 2.11. ]

The following example shows that both the left and right strongly FI-
extending conditions are needed in Corollary 2.12 to ensure that the two-step
process essentially embeds I in a ring direct summand. Moreover it provides
an example of a ring which is right strongly FI-extending but not left strongly
Fl-extending.

Ezxzample 2.13. Let T = (‘g Aé), where S = Zy4, M = (8 ZO4) and

R = Z04 %4 . The ideals of T" have the form (1(? g) where P < S,
4

L < R, and N is an S-R bimodule of M, satisfying ML C N and PM C N.
By a straightforward case by case calculation, we can show that every ideal
of T is essential in an ideal direct summand. Hence T is a right strongly FI-
extending ring. Next, let I = <8 J\(;I) Then I <5 ((1) 8) T. Assume

. e h 10
there exists ¢ € B(T') such that ¢ = <0 g) and <0 0

e=0orleZy

) T <37 cT'. Hence

B (0 h . 0 h f m\ _
Case 1. e =0. Then c = 0 g).SmcecEB(T),(O g) (0 r)_

(8 Z:) and (g T) (8 Z) = (8 fh;i—gmg)’ it follows that g €
B(R) and hr = fh + mg for all f,m,r. In particular, if m = 0 and r = 0,

then fh = 0 for all f € Z4. So h = 0. Thus mg = 0 for all m € M. Since
g € B(R), g = (é (1)> or 0. But since Mg = 0, g = 0. Therefore ¢ = 0, a

contradiction.

. (1 h 1 h f m\ _
Case 2. e = 1. Thenc—(O g)EB(T). Sofrom(0 g> (0 )—

-
<£ m;;]”) and (é T) <(1) Z) = ({; fh:—gmg) we have g €
B(R) and m + hr = fh + mg for all f,m,r. In particular, if m = 0 and

r = 0 then fh = 0 for all f € Z4. Thus h = 0. Soc:((l] 2) with

g € B(R) and m = mg for all m € M. Therefore g = ((1) (1)) or g = 0.
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1 0 1 0 T4 7
Hence g = 0 1) andsoc:<0 1>.LetA:annR(MR):<04 04>.
0 O 0 O 1 0 1 0 .
Then (O A)ﬂTand<0 A>ﬂ<0 O>T—O. So <0 0>Tlsnotleft

essential in 7" and, from Corollary 2.12, T' cannot be left strongly Fl-extending
(in fact, T is not even left Fl-extending).

3. DIRECT SUMS

Although a direct sum of Fl-extending modules is Fl-extending, our next
example shows that a similar result fails for strongly FI-extending modules.
In fact, the following example exhibits a right Fl-extending ring R such that
every proper right direct summand is strongly Fl-extending, but the ring
itself is neither right nor left strongly FI-extending. In spite of this example,
we determine criteria to ensure some direct sums of strongly Fl-extending
modules are strongly Fl-extending.

Example 3.1. Let R = ((ZO2 ZO2 ) ; Z) denote the Dorroh extension of
Lo 7o e . .
0 0 by Z. This ring is isomorphic to the ring in (24, Example 9). From

(1), (3) and (24), this example has Z(Rg) # 0, Z(rR) = 0, R is strongly right
bounded, R is right Fl-extending, but R is neither right extending, nor quasi-
Baer, nor left Fl-extending. Through calculation it can be shown that every
proper direct summand is strongly FI-extending, but R is not right strongly

Fl-extending. Let e = 2 = ((é g) ,1); then Z(eRr) = Z(Rr)NeR =0

because eR = { <<n O) ,n) |n € Z}. Hence this example also illustrates

0 0
Proposition 2.8.

Also observe in Example 1.1, R is QF; thus R is a right and left FI-
extending ring. Moreover R is a direct sum of uniserial (hence strongly FI-
extending) modules, but R is neither right nor left strongly Fl-extending.

Theorem 3.2. Let M = ®iel N; and let N; < M, for all ©. Then M is
strongly Fl-extending if and only if N; is strongly FI-extending, for all i € I.

Proof: If M is strongly Fl-extending then each N; is so, by Theorem 2.4.

Conversely, let each N; be strongly Fl-extending. Write N; = e; M, where
e} = e; € A =Endr(M). Now if X <4 M, then X = @,;;e; X. It can be
seen that e; X < e;M = N, for all i € I, as (e;Ae;)(e; X) = e;(Ae; X) C e, X,
since Ae; X C X as X < M. Therefore there exists S; <® N; = e¢; M, where
S; < N; such that ;X <**° S;. Thus X = @;c;ei X < P, Si <® M,
and GazelslﬂM O
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In Example 3.1, R = Z3(Rgr) & X where Rp is Fl-extending, and Z>(Rg)
and X are strongly Fl-extending. Since Rp is not strongly Fl-extending
but Z3(Rgr) < R, this example shows that the condition requiring that each
N; < M is not superfluous in Theorem 3.2.

Theorem 3.3. Let M = @iel M;, where M; = M;, and M; is strongly
Fl-extending for all 1,7 € I. Then M is strongly FI-extending.

Proof: Let N < M. Then N = @, ;(N N M;), where N N M; < M;. Since
M; is strongly Fl-extending, we can write M; = e;M; & (1 — e;) M;, where
NNM; <*% e;M; and e; € S¢(Endg(M;)). Set 0;5 to be the isomorphism from
M; to M;. Since N <°®% @iel e;M; <® M, to complete the proof it suffices
to show that @,;c;eiM; I M. Let h € Endg(M), and let x € @;; esM;.
Without loss of generality we assume x = e;m; for some 7 € I. There-
fore h(z) = h(e;mi) = ;¢ ymj, for some J C I, |J| < oo. To show that
h(eim;) € @;c;eiM; we consider without loss of generality m;h(e;m;) = mg,
and then show that m € e;M;, where 7y : M — My, k € I are the natural
projections. Note that m;h(e;m;) = m;hm;(e;m;), hence aigl(wjhm)(eimi) =

ai_jl(m;-). The map (aglehmﬂMi € Endgr(M;) and e; € Sy(Endgr(M;)).
Hence (eiai_jlehm)(eimi) = ai_jl(m;.), where ei(ai_jlehm)(eimi) € e; M;.
Thus Jij(eiaiglehﬂ'i)(eimi) = m; Now, as 0;5 : M; — M; is an iso-

morphism, with N N M; = N N M; under o;; and since each e;M; is a
unique direct summand essential over N N M; (Lemma 1.4(ii)) it follows that
e;M; = e; M; under o;; also. Hence aij(eiafjlehm)(eimi) = mg €e;jM;. As
€; € Se(EndR(Mi)), we obtain (aijai_jlehm)(eimi) = (thwi)(eimi) = m; €
e;jM;. This shows that ®ie 7 €iM; is a fully invariant direct summand of M.
O

Corollary 3.4. Assume Rpg is strongly Fl-extending. Then every projective
right R-module is strongly FI-extending.

Proof: This result follows from Theorems 2.4 and 3.3. O

In (25, Example 12.20) an example of a commutative continuous (hence
extending and strongly Fl-extending) regular ring is provided having a finitely
generated free module F' which is not extending. However, by Corollary 3.4,
F' is strongly Fl-extending.

Corollary 3.5. Let Ry be Fl-extending. If R is (semi-) hereditary, then every
(finitely generated) submodule of a projective module is strongly FI-extending.
4. MORITA INVARIANCE AND ENDOMORPHISM RINGS

In this section, we investigate the endomorphism rings of strongly FI-
extending modules. We are able to show that the strongly Fl-extending
property is a Morita invariant, unlike the case for the extending property. In
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addition, we are able to show that the endomorphism ring of a nonsingular
Fl-extending module is quasi-Baer. This is somewhat reminiscent of the fact
that the endomorphism ring of a nonsingular quasi-injective module is a right
selfinjective regular ring (hence a Baer ring).

Lemma 4.1. Let Mp be a generator in the category Mod-R of right R-
modules. Let A = Endr(M) and let A, B be right ideals of A. Then (AN
B)M = AM N BM.

Proof: This proof follows from the proof of (26, Theorem 1.3(2)). O

Theorem 4.2. Let R be a right strongly Fl-extending ring. Then for any
projective generator P in Mod-R, Endg(P) is a right strongly FI-extending
ring.

Proof: By Corollary 3.4, P is strongly Fl-extending. Let I' = Endg(P)
and I be an ideal of I'. Then IP is a fully invariant R-submodule of P.
Since P is strongly Fl-extending, Lemma 1.2(i) yields e € Sp(T") such that
IP <°% eP = eI'P. We show that I <®% eI'. For 0 # ey € eI’ with v € T,
assume to the contrary that INeyl’ = 0. Then 0 = (INeyI")P = IPNey'P =
IPNeyP by Lemma 4.1. But since 0 # eyP C eP and IP <®% eP, we have
a contradiction. Thus I <®° el' and eI’ < I'. Therefore I' is a right strongly
Fl-extending ring. O

Corollary 4.3. The right strongly Fl-extending property is a Morita invari-
ant property.

The next lemma from (27, Lemma 3.4) is a consequence of (26, Theorem
1.3).

Lemma 4.4. Let F be a free right R-module and set A = Endg(F). Let U
and V be right ideals of A such that U C V. Then U is an essential right
A-submodule of V' if and only if UF is an essential R-submodule of VF'.
Also, A is a right nonsingular ring if F' is a nonsingular R-module.

Lemma 4.5. Let M be an R-module, and A = FEndgr(M). Then for any
ideal I of A, there exists a fully invariant submodule IM < M. Conversely,

for every fully invariant submodule K of M, there exists an ideal L = {s €
A|sM C K} QA

Proof: Let I < A. Then IM C M and IM < M since for any h € A,
h(IM) = (hI)(M) C IM. Conversely, let K < M. Set L ={s € A | sM C
K}. It can be seen that Lt C L and tL C L for any ¢ € A. Therefore L < A.
O

Using Lemma 4.5 we can show that the endomorphism ring of an (strongly)
Fl-extending free module is (strongly) FI-extending.

Theorem 4.6. Let M be a free R-module and A = Endg(M). If M is an
Fl-extending or a strongly Fl-extending module then so is Ap.
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Proof: Let M be an Fl-extending module and let I/ < A. Then by Lemma
4.5 IM < M. There exists e = €2 € A such that IM <®°% eM = eAM.
Using Lemma 4.4, it follows that I <®% eA. This shows that A is a right FI-
extending ring. The case for M strongly Fl-extending follows from Theorems
2.4 and 4.2. 0

Corollary 4.7. If Ry is (strongly) Fl-extending then so is Ay, where A =
Endg(F) and F is a free R-module.

Proof: This result is a consequence of (1, Theorem 1.3), Corollary 3.4, and
Theorem 4.6. O

We note that from (28, Exercise 8, p.220), the endomorphism ring of a
torsionfree Abelian group of rank m can be represented by column-finite m-
by-m matrices over Q. Hence, by Corollary 4.7, these endomorphism rings
are right strongly FI-extending.

Proposition 4.8. Let M be a non-M -singular FIl-extending module. Then
Endgr(M) is a quasi-Baer ring.

Proof: Let A = Endg(M) and I < A. Since IM < M, there exists e € Sp(A)
such that IM < eM and I C eA. Clearly A(1 —e) C lp(]). Let a € £p(1)
and em € eM. Then aem(em)~1(IM) = 0. Since M is non-M-singular,
aem = 0. So aeM = 0. Hence o € £p(e) = A(1 —e). Therefore ¢5(I) =
A(l—e). O

Open Problems. (i) Characterize the classes of rings satisfying the con-
dition that every (cyclic, finitely generated, projective, etc.) module is FI-
extending.

(ii) Characterize the classes of rings satisfying the condition that every
(cyclic, finitely generated, projective, etc.) module is strongly FI-extending.

(iii) Characterize the classes of rings such that every (finite) direct sum of
strongly Fl-extending modules is strongly FI-extending.

(iv) For various classes of rings describe all (cyclic, finitely generated, etc.)
modules which are Fl-extending or strongly Fl-extending (see (2, Theorem
7.1) for a description of the strongly Fl-extending Abelian groups).

(v) Characterize the classes of rings for which every (principal, finitely gen-
erated, etc.) right ideal is FI-extending or every (principal, finitely generated,
etc.) right ideal is strongly Fl-extending.
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