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Abstract

A module M is called extending if every submodule of M is essential in a
direct summand. We call a module Fl-extending if every fully invariant sub-
module is essential in a direct summand. Initially we develop basic properties
in the general module setting. For example, in contrast to extending modules,
a direct sum of FI-extending modules is FI-extending. Later we largely fo-
cus on the specific case when a ring is FI-extending (considered as a module
over itself). Again, unlike the extending property, the FI-extending property
is shown to carry over to matrix rings. Several results on ring direct decom-
positions of F'I-extending rings are obtained, including a proper generalization
of a result of C. Faith on the splitting-off of the maximal regular ideal in a
continuous ring.

Key Words: extending, Fl-extending, fully invariant, quasi-Baer, semicentral
idempotent, nonsingular.

INTRODUCTION

In recent years the theory of extending modules and rings has come to play an
important role in the theory of rings and modules. Recall a module M is called an
extending (also known as a CS) module if every submodule of M is essential in a
direct summand. Although this generalization of injectivity is extremely useful, it



does not satisfy some important properties. For example, direct sums of extending
modules are not necessarily extending, and full or upper triangular matrix rings over
right extending rings are not necessarily right extending. Much work has been done
on finding necessary and sufficient conditions to ensure that the extending property
is preserved under various extensions. (cf., [1]).

Another way to look at this problem is to ask: How much of the extending
property is preserved in direct sums of extending modules or in matriz Tings over
right extending rings (without adding any additional conditions)? In this paper, we
determine a generalization of the extending property which is not only preserved
under various extensions including direct sums and several matrix constructions,
but it is an interesting topic to investigate in its own right. We say a module is
FI-extending if every fully invariant submodule is essential in a direct summand.
One advantage of this generalization of the extending property over various other
generalizations is that the underpinnings (i.e., the fully invariant submodules) form
a complete modular sublattice of the lattice of submodules and are well behaved with
respect to endomorphisms. The class of fully invariant submodules includes many of
the most significant submodules of a module (e.g., the Jacobson radical, the socle,
the singular submodule, etc.). Moreover, the lattice connection naturally follows the
lattice theoretic view that was originally indicated in von Neumann’s formulation
of continuous geometries [2] and Utumi’s formulation of continuous (regular) rings
[3].

Observe that when R is considered as a right R-module, then the two-sided
ideals of R are exactly the fully invariant submodules of Rr. Hence we say R is a
right (left) FI-extending ring if every ideal is right (left) essential in an idempotent
generated right (left) ideal of R. Observe that every prime ring is right and left
FI-extending. This condition has been previously considered in [4], [5], [6], and [7].
Many unpublished results from [7] are included in this paper. Recently, motivated
by an early version of this paper, Birkenmeier, Cilugareanu, Fuchs and Goeters [8]
investigated the F'I-extending property for Abelian groups.

After providing preliminaries and examples, in Section 1 we prove basic results
and properties of FI-extending modules. It is shown that any direct sum of F1I-
extending modules is FI-extending without any additional assumptions (Theorem
1.3) and that a direct product of FI- extending modules need not be FI-extending
(Example 1.6). In Section 2, we consider matrix constructions for FI-extending
rings. We prove that a ring R is right F'I-extending if and only if the upper triangu-
lar matrix ring is so (Proposition 2.2). Moreover it is shown that the FI-extending
property of a ring R carries over to the full matrix ring M,(R), n > 1. The fo-
cus in Section 3 is on rings which are F'I-extending on both sides. Ring direct
decompositions and generalized triangular matrix representations are obtained for
these rings. In [9], C. Faith has shown that the maximal regular ideal is a ring
direct summand in a two-sided continuous ring. As an application of the theory of
FI-extending modules, we obtain a proper generalization of this main result of [9]
by replacing the continuity of the ring on one side by the F'I-extending property
(Theorem 3.6). Our theory also enables us to obtain generalizations of other results
in [9]. Recall from [10] and [11], a ring R is (quasi-) Baer if the right annihilator of



every (ideal) nonempty subset S is generated, as a right ideal, by an idempotent. In
Section 4, we investigate the interconnections between the FI-extending condition
and various related conditions ( e.g., extending, quasi-Baer, quasicontinuous, etc.).
For rings, these connections become tighter in the presence of the semiprime, right
nonsingular, and/or complement bounded conditions. Some results are reminiscent
of a well known result of Chatters and Khuri ([12], Theorem 2.1) which illustrates
the relation between the right extending and Baer conditions in a right nonsingular
ring. Finally, in Section 5, we obtain a ring decomposition for a right nonsingular
right F'I-extending ring using the concept of an orthogonal pair of module classes.

Throughout this paper all rings are associative and R will always denote a ring
with unity. Modules are unital right R-modules unless indicated otherwise. Recall
that a submodule X of M is called fully invariant if for every h € Endg(M),
h(X) C X. If M is an R-module and A C M, then we use A < M, A <¢ M,
A < M, and E(M) to denote that A is a submodule, essential submodule, fully
invariant submodule, and the injective hull of M, respectively. If M = R then
A<, R(A<;R)and A <§ R (A <} R) denote that A is a right (left) ideal of R and
that A is right (left) essential in R, respectively. The singular and second singular
submodules of M are denoted by Z(M) and Zy(M), respectively. If § # X C R
then I(X) and r(X) denote the left and right annihilators of X in R, respectively.
Let e = €2 € R. Then e is called a left (right) semicentral idempotent if ze = exe
(ex = exe), for all z € R [13]. The set of all left (right) semicentral idempotents is
denoted by S;(R) (S,(R)). Also, we use B(R) for the set of central idempotents.
Observe B(R) = S;(R) N S;(R). Finally P(R), J(R), M(R), M,(R), and T,(R),
denote the prime radical of R, the Jacobson radical, the maximal regular ideal, the
full ring of n-by-n matrices over R, and the ring of n-by-n upper triangular matrices,
respectively.

1. FI-EXTENDING MODULES

Since fully invariant submodules are crucial to the development of our theory,
we begin this section by recording some basic facts about them.

LEMMA 1.1 Let M be a module.

(i) Any sum or intersection of fully invariant submodules of M is again a fully
invariant submodule of M (in fact the fully invariant submodules form a complete
modular sublattice of the lattice of submodules of M).

(ii) If X <Y < M such that Y is a fully invariant submodule of M and X is a
fully invariant submodule of Y, then X is a fully invariant submodule of M.

(iii) If M = & X; and S is a fully invariant submodule of M, then S = @ m;(S) =
i€l iel
®(X; N S), where 7; is the i-th projection homomorphism of M.

PROPOSITION 1.2  Let M be a module and X a fully invariant submodule of
M. If M is FI-extending, then X is F'I-extending.



Proof. Assume M is an F'I-extending module. Let S be a fully invariant submodule
of X. By Lemma 1.1 (ii), S is fully invariant in M. Hence there is a direct summand
D of M such that § <¢ D. Let # : M — D be the projection endomorphism. Then

S =x(S) <n(X)ND=n(X).
Hence S <°¢ 7(X) and 7(X) is a direct summand of X. O

THEOREM 1.3 Let M = & X;. If each X; is an FI-extending module, then M
el

is an F'I-extending module.

Proof. Assume each X; is an FI-extending module, and S is a fully invariant
submodule of M. Since, for each i such that m;(S) # 0, m;(S) is a fully invariant
submodule of X; there exists D;, a direct summand of X;, such that m;(S) <¢ D;.
Using Lemma 1.1 (iii), S = &m;(S) <¢ &D;. Since ®D; is a direct summand of M,
we have that M is an FI-extending module. [J

COROLLARY 1.4 If M is a direct sum of extending (e.g., uniform) modules, then
M is FI-extending.

Observe that every module with finite uniform dimension is an essential exten-
sion of an FI-extending module and is essential in an FI-extending module (e.g.,
its injective hull). Applying Theorem 1.3 to Abelian groups, we obtain the next
corollary.

COROLLARY 1.5 Let M be a Z-module (i.e., an Abelian group). If M satisfies
any of the following conditions, then M is an FI-extending Z-module.

(i) M is finitely generated.

(ii) M is of bounded order (i.e., nM = 0, for some positive integer n).

(iii) M is divisible.

Proof. (i) Every finitely generated Abelian group is a direct sum of uniform Z-
modules.

(ii) By ([14], p.262), M is a direct sum of cyclic torsion groups. Hence M is
again a direct sum of uniform Z-modules.

(iii) Since M is divisible it is an extending Z-module. [

EXAMPLE 1.6  There exists a Z-module M such that M is not FI-extending.
Let

M= IEIPZ /(p) (where p varies through all primes).
P

The torsion subgroup, 7M, is fully invariant and essentially closed. By ([14],
p.244), TM is not a direct summand of M. Hence M is not FI-extending. This



example also shows that a direct product of FI-extending modules need not be an
extending module.

Further results on FI-extending Abelian groups appear in [8]. The next two
results establish connections between an F'I-extending module and its injective hull.

PROPOSITION 1.7 Let M be a module. Then M is FI-extending if and only if
for each fully invariant submodule S of M there exists e = 2 € Endg(E(M)) such
that S <¢e(E(M)) and e(M) C M.

Proof. (=) Assume M is FI-extending. There exists a direct summand X of M
such that § <¢ X, and Y < M such that M = X @Y. Hence there exist injective
hulls E(X) and E(Y) such that E(M) = E(X) @ E(Y). Let e: E(M) — E(X) be
the projection endomorphism. Then e(M) < M and S <€ e(E(M)).

(<) Conversely, let S be a fully invariant submodule of M. Then S <¢ M N
e(E(M) = e(M). But e(M) is a direct summand of M. Hence M is FI-extending.
O

PROPOSITION 1.8 Let M be FI-extending and S = M N I, where I is a fully
invariant direct summand of E(M). Then S is a fully invariant direct summand of
M.

Proof. Let f € Endgr(M). There exists f € Endgr(E(M)) which extends f. Let
s €S8, then f(s) € M and f(s) = f(s) € I. So f(s) € S. Hence § is fully invariant
in M. Since M is FI-extending, there exists a direct summand X of M such that
S <¢X.Now E(S) =TI and E(X) ~ I. Since [ is fully invariant E(X) = I. Hence

XCMNEX)=MnNI=S5.S S=X.0

LEMMA 1.9 Let H= EndgM and e =¢* € H.
(i) For A< M, (eM + A) <« M if and only if (1 —e)H(eM) C A.
(ii) eM < M if and only if e € S;(H).

Proof. (i) (=) Let t € (1 —e)He and m € M. Then tm = tem € eM + A. But
tm=(1—-e)tme (1—e)A < A.

(<) Let h € H. Then h(eM) = (eh+(1—e)h)eM C eM+(1—e)HeM C eM+A.
Thus eM + A < M.

(ii) (=) Let h € H and m € M. Then there exists ¥ € M such that hem = ek.
Hence ehem = e’k = ek = hem. So e € S;(H).

(<) Let h € H and m € M. Then hem = ehem € eM. So eM <1 M. O

In the following result we consider the behavior of direct summands of M which
are essential extensions of fully invariant submodules of M.

PROPOSITION 1.10 Let H = EndrM, e = ¢®> € H, and A < M such that
A <¢eM. Then:
(i) (1 —e)H(eM) C Z(M).



(ii) eM + Z(M) < M.

(iii) If Zo(M) = fM for some f = f?, then eM + Zy(M) = (e + f — fe)M < M
and e + f — fe € §;(H).

(iv) If Z(M) C eM, then eM < M. Moreover, if A <¢ X, then X C eM. In
particular, Zo(M) C eM.

Proof. (i) Let m € M. There exists an essential right ideal L of R such that
emL C A. Then (1 —e)HemL CeM N (1 —e)M =0. So (1 —e)H(eM) C Z(M).

(ii) This part is a consequence of part (i) and Lemma 1.9 (i).

(iii) Let em + fk € eM + Zy(M), for some m,k € M. Since Zy(M) < M,
Lemma 1.9 (ii) yields f € S;(H). So ef = fef. Then (e+ f — fe)? = e+ f — fe and
(e+f—fe)(em+fk) = em+ fk. Hence (e+ f — fe)M = eM + Z3(M). From Lemma
1.9 (i) and part (i), eM + Z3(M) < M. By Lemma 1.9 (ii), e + f — fe € S§;(H).

(iv) By part (ii), eM < M. Let z € X. Then there exists an essential right ideal
L of R such that L C A. Then (1—e)z € Z(M) C eM.But z = ez +(1l—e)z € eM.
Thus X <eM. O

The next result shows that every right F'/-extending ring has a maximal non-
singular F'I-extending direct summand which is also a right nonsingular right F'I-
extending ring.

PROPOSITION 1.11 A ring R is right F'I-extending if and only if R = S® Z(RR)
(right ideal decomposition) with S and Zo(Rg) FI-extending R-modules.

Proof. Assume R is right FI-extending. From ([5],Theorem 2.2), R = S & Z»(RR)
(right ideal decomposition), where S is a right F'I-extending ring. Since S = eR,
where e € S;(R), every S-endomorphism is a R-homomorphism on S. Hence every
fully invariant R-submodule of § is a fully invariant S-submodule of S. Thus S is an
FI-extending R-module. By Proposition 1.2, Zs(Rpg) is an FI-extending R-module.
The converse follows from Theorem 1.3. O

2. FI-EXTENDING MATRIX RINGS

LEMMA 2.1 For an idempotent e of R, the following conditions are equivalent:
(i) e € Si(R);
(ii) 1 — e € S, (R);
(iii) Re = eRe;
(iv) (1 —e)Re = 0;
(v) eR is an ideal of R;
(vi) eR(1 — e) is an ideal of R and eR = eR(1 — €) @ Re, as a direct sum of left



Proof. This proof is routine. [

LEMMA 2.2 Let X be a right ideal of R and e = €? € R such that X <¢ eR.
Then M, (X) <¢ dM,(R), where d is the diagonal n-by-n matrix with e in all the
diagonal positions.

Proof. The proof involves a case-by-case verification as is illustrated in the following
proof for n = 2. Let a, b, ¢, d € R such that 0 # [ ¢ 0] [a b ] — [ ea eb ]

0 e c d ec ed
dMs(R).
Case 1. Assume ea # 0. Then there exists s € R such that 0 # eas € X. If

ecs = 0, then 0 # [ ca b ] [ s 0 ] € My(X). If ecs # 0, there exists & € R

ec ed 00
ea eb sa 0
such that 0 # ecsa € X. Hence 0 # [ cc ed] [ 0 0] € My(X).

Case 2. Assume ea = 0 but eb # 0. Then there exists u € R such that 0 # ebu €

0 e ][0 0 .
X. If edu = 0, then 0 # [ec ed] [u O] € My(X). If edu # 0, there exists
B € R such that 0 # eduf € X. H 0% @0 00
suc a edu . Hence cc ed u 0 9 .

Case 3. Assume ea = eb = 0, but ec # 0. Then there exists ¢ € R such that

0 0 t 0
0 # ect € X. Hence 0 # [ ec ed] [O O] € My(X).
Case 4. Assume ea = eb = ec = 0, but ed # 0. Then there exists v € R such
0 0 0 0
that 0 # edv € X. Hence 0 # [ 0 ed] [O v ] € My(X).
The above cases show that My(X) <¢ dMs(R). The proof for n > 2 follows a

similar pattern. O

PROPOSITION 2.3 If R is right F'I-extending, then M, (R) is right F'I-extending,
for all positive integers n.

Proof. Let I < M, (R). There exists X < R such that I = M, (X). Also there exists
e = e? € R such that X <° eR. Now the result is an immediate consequence of
Lemma 2.2. O

Example 4.5 shows that a full matrix ring of a right extending ring is not nec-
essarily right extending. At this time, the authors do not know if the right F'I-
extending property is a Morita invariant property and so this question is open.

THEOREM 2.4 Let M be an H-R-bimodule where H = Endr(M). Then Rg and
H

Mpg, are FI-extending if and only if T = [ 0

]\; ] is right F'I-extending.



Proof. (=) Assume Rg and Mp are FI-extending and 0 # I <1 T. Then there exists
X < H, Y QR, and K a H-R submodule of M such that MY C K, XM C K,
and I = [ i)( I; ] . Since K is a H-R submodule of M, then K is fully invariant
and there exists e = €2 € H such that K <€ eM. Also there exists ¢ = ¢2 € R such
that Y <€ cR.

We claim that I <¢ ¢ 0 T. Let 0 # ch em el 0 T. Consider
0 ¢ 0 ecr 0 c

the following cases:
Case 1. Assume em # 0. There exists b € R such that 0 # emb € K. If crb =0,

eh em 0 0 0 emb
a0 | o |[80) T8 em] o

If erb # 0, then there exists d € R such that 0 # crbd € Y. Hence 0 #

eh em 0 0| [0 embd cl

0 cr 0 bd | |0 crbd ’

Case 2. Assume eh # 0. Then there exists n € M such that 0 # [ eoh 667: ] [ 8 8 ] =
0 ehn

g e/(”;n .NowCaselcanbeusedtoshowo#([0 0 ]T>HI.

Case 3. Assume cr # 0, but em = 0. There exists d € R such that 0 #crd € Y.
eh em [0 0 0 0 e 01° e 0
Theno#[ 0 cr][() d]:[o crd]EI'Smce[O c] :[O C],T
is right F'I-extending.

(<) Conversely assume T is right F'I-extending. Observe R ~ [ 8 (1) ] T [ g 2 ]
0 0

and [ 0 1 ] € S;(T). By [5, Lemma 2.1], R is right F'I-extending. Now let 0 # K

be a fully invariant submodule of M. Then [ 8 Ig ] < T. Hence there exists

e:e2EHandnEMsuchthaten:nand[8 Ig] <€ [8 8

O;é:vEe(M).ThenO;é[e n][O z]:[O x]e[e n]T.Hencethere

] T. Let

00 00 00

. h m 0z h m 0 zr
ex1sts[0 T]ETsuchthatO#[O 0][0 r]_[o 0 ]EK.Therefore

K <¢e(M). So My is FI-extending. [J

COROLLARY 2.5 R is right FI-extending if and only if 7, (R) is right FI-
extending, for any n > 1.

Proof. For n = 2, let M = R in Theorem 2.4. Then H = R. For n > 2 a tedious
but straightforward proof can be made by induction on the proof of Theorem 2.4.
O



EXAMPLE 2.6 Let R = [ % é ] . By Corollary 2.5, R is right FI-extending.
We claim that R is neither right nor left extending. Assume to the contrary that
R is either right or left extending. Since R is both right and left nonsingular,
([12],Theorem 2.1) yields that R is a Baer ring. This is a contradiction ([11], p.16,

Exercise 2).
3. TWO-SIDED FI-EXTENDING RINGS

In this section we consider ring decompositions and matrix representations of
rings which are F'I-extending on both sides. For any given ideal A of such a ring,
we provide ring decompositions, such that the ideal is essential (on both sides) in
one of the ring direct summands under additional conditions. Applications include
several specific cases when the ideal is itself a ring direct summand. An upper
triangular matrix representation for a two-sided F'I-extending ring is provided.

LEMMA 3.1 Let A be an ideal of R and e € &/(R) such that A <¢ eR. If
I(A)N A =0, then I[(4) = R(1 —e).

Proof. Clearly R(1 —e) C I[(A). By Lemma 2.1 (v), eR < R so I(A) NeR = 0. From
Lemma 2.1 (vi), eR = Re® eR(1 —e). Hence [(A) N Re = 0. Thus [(A) = R(1 —e).
O

THEOREM 3.2 Let A be an ideal of R.

(i) If R is right FI-extending and ANI(A) = 0, then there exists e € S;(R) such
that A <f eR.

(ii) If R is left FI-extending and ANr(A) = 0, then there exists f € S;(R) such
that A < Rf.

(iii) If R is left and right FI-extending, AN I(A) =0, and AN r(A) = 0 then
there exists ¢ € B(R) such that A <7, cR and [(4) = r(4) = (1 —¢)R.

Proof. (i) There exists e = e? such that A <¢ eR. Let 0 # y € eR(1—e). There exists
s € R such that 0 # ys € A. But ysA C eR(1 —e)A = 0. Hence ys € ANI(A) =0,
a contradiction. Thus eR(1 —e) =0, and so e € S;(R), by Lemma 2.1.

(ii) The proof of this part is similar to part (i).

(iii) From (i) and (ii) A <{ eR and A <] Rf where e € S;(R) and f € S;(R),
respectively. Since e € S;(R), (1—e)R C r(A). Alsoe(r(A)) C eRNr(A) = 0. Hence
r(A) = (1—e)R. Similarly, [(A) = R(1— f). Since (1—e¢) € I(A) and (1-f) € r(A),
then [(A) = r(A). So (1—e)R = R(1— f). Therefore e = f € §;(R)NS,(R) = B(R).
Let e = ¢. The remainder of the proof is a consequence of Lemma 3.1. O

COROLLARY 3.3 Let R be left and right FI-extending, and let A be an ideal of
R. Then A is a ring direct summand of R if and only if ANI(A) =0= Anr(A)
and A = Ir(A).



Proof. Clearly if A is a ring direct summand then ANI(A) =0 = AN r(A) and
A =Ir(A). The converse is an immediate consequence of Theorem 3.2(iii). O

COROLLARY 3.4 Let R be a left and right FI-extending. Then every ideal,
which is semiprime (as a ring), is left and right essential in a ring direct summand.
In particular, an ideal which is maximal among semiprime ideals (considered as
rings) is a ring direct summand.

Proof. Let A be a semiprime ideal (considered as a ring). By Theorem 3.2 (iii), A
is left and right essential in a ring direct summand. Moreover by a Zorn’s Lemma
argument, A is contained in an ideal M which is maximal among semiprime ideals
(considered as rings). Since a ring direct summand which is either a right or left
essential extension of M must also be a semiprime ring, the maximality of M yields
that M is a ring direct summand. OJ

The following result generalizes a result of Jeremy on quasi-continuous rings
([15], Proposition 5.10).

COROLLARY 3.5 A left and right F'I-extending ring is a direct sum of a reduced
ring and a ring in which every nonzero ideal contains a nonzero nilpotent element

of R.
Proof. The proof is similar to that of Corollary 3.4. OJ

Let # denote a map on the class of all rings (including those not necessarily
having unity) such that #(R) is an ideal of R. We say R is #-regular if R/#R is von
Neumann regular and #(R) N M(R) = 0 (recall that M(R) is the maximal regular
ideal of R). For example every semilocal ring or semiregular ring [16] is J-regular,
every left continuous ring is J-regular and Z(rR)-regular, every commutative zero
dimensional ring is P-regular, etc. Observe that Faith’s [9] “top regular” rings
are just the J-regular rings. Our next result generalizes the main results of ([9],
Theorems 6, 7, 8, and 9). Note that if S is a nonempty subset of a ring 7" then we
say S is ideal essential in T if S has nonzero and nonempty intersection with every
nonzero ideal of 7.

THEOREM 3.6 Let R be a right FI-extending ring.

(i) If R is left FI-extending, then M(R) is left and right essential in a ring direct
summand of R.

(ii) If M(R) is a left annihilator ideal, then M(R) is a ring direct summand of R.

(iii) If R is #-regular and either M(R) is a maximal regular right ideal or R is
left FI-extending, then R = M(R) @ B (ring direct sum) and B is an ideal
essential extension of #(R) + Z(Rg).

10



(iv) If R is left continuous, then R = M(R) & B(ring direct sum), where B is an
ideal essential extension of J(R).

Proof. (i) This part is a direct consequence of Theorem 3.2(iii).

(ii) There exists X C R such that M(R) = [(X). Hence M(R) = I[(X) =
Irl(X) = lr(M(R)). Therefore, by Corollary 3.3, M(R) is a ring direct summand.

(iii) By Theorem 3.2(i), there exists e € S,(R) such that M(R) <¢ eR. Then
(I1—e)R is an ideal of R and #(R) C (1 —e)R. Hence R/(1 —e)R ~ eR is a regular
ring. If M(R) is a maximal regular right ideal then M(R) = eR. If R is left F1I-
extending then, by Theorem 3.2(iii), e is central. Hence eR is a regular ideal of R.
So M(R) = eR. Therefore in either case M(R) is a ring direct summand. So there
exists an ideal B of R such that R = M(R) @ B. Since B is right FI-extending
there exists f = f2 € B such that #(R) + Z(Rg) <¢ fB (note Z(Rg) = Z(Bg)).
By Proposition 1.10, fB < B. Let I < B such that f(B)NI=0.Let b=1b* € B
such that bR = B (i.e., b is the unity of B). Let c = b— f. Then ¢ € S,(B) and cR is
a regular ring with I C cR. Hence I is a regular ideal of R. So I C M(R)N B = 0.
Therefore B is an ideal essential extension of #(R) + Z(Rpg).

(iv) Since R is left continuous, R/J(R) is regular. Hence R is J-regular. Using
left-right symmetry and the fact that J(R) = Z(gR), this part is a consequence of
part (iii). O

Observe in Theorem 3.6(i) that the ring direct summand containing M(R) is a
semiprime quasi-Baer ring in which each nonzero one-sided ideal contains a nonzero
idempotent. The following examples illustrate and delimit Theorem 3.6.

EXAMPLE 3.7 There exist left and right F'I-extending rings R in which M(R) <ir
R, but R is neither left (nor right) extending nor regular. Let D be a commutative
integral domain which is not Priifer and let F' be its field of fractions. Let T be
the subring of [[°, F; (each F; ~ F') consisting of sequences whose components are
eventually from D. Then T is a commutative reduced extending ring with M(T") <¢
T, but T is not regular. Let R = M,(T). By Proposition 2.3, R is left and right
FI-extending. Clearly M(R) <f,_ R, but R is not regular. By an argument similar
to that used in ([11], p.17, Exercise 3), R is not a Baer ring. Since R is left and
right nonsingular, then R is neither right nor left extending ([12], Theorem 2.1).

EXAMPLE 3.8 Since every prime ring is left and right F'I-extending, every prime
ring R with nonzero socle has M(R) <j, R. See ([17], p.158) for such examples
which are neither regular nor extending.

EXAMPLE 3.9 There are rings R which are right F'I-extending, left continuous
but not right continuous. Let S be a left continuous regular ring which is not right
continuous (e.g., the endomorphism ring of an infinite dimensional vector space).
Then S is a semiprime Baer ring. By ([4], Lemma 2.2) S is left and right F1I-
extending. Let T be a continuous ring. Take R = S & T. Observe that T can be
chosen so that R is not regular.
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If R is left and right F'I-extending then, by Proposition 1.11, Zy(Rg) and Z2(gR)
are direct summands. It is easy to see that if Zo(Rgr) = Z2(rR), then Zy(Rpg) is a
ring direct summand ( [6], Lemma 3.5). However it is not known whether the two
second singular ideals coincide even for right and left self-injective rings [18].

PROPOSITION 3.10 Let R be left and right FI-extending and A be an ideal of
R which is right closed. If P(R) C A, then A <{ cR where ¢ € B(R).

Proof. Since R is right FI-extending, there exists e € §j(R) such that A = eR. By
Lemma 2.1 (vi), 7(A) = r(Re)Nr(eR(1—e)) = (1—e)RNr(eR(1—e)) C (1 —e)R.
Hence ANr(A) = 0. If L <; R such that r(A) < L, then AN L = 0. Hence
AL = 0. So r(A) is a left complement for A. There exists f € S,(R) such that
r(A) = Rf. From Lemma 2.1, Rf = fR® (1 — f)Rf and (1 — f)Rf < R. Since
(1-f)Rf CP(R) CAand (1—f)Rf C r(A),we have (1— f)Rf =0. So f € B(R).
Let c=1~— f. Then A <} cR. O

PROPOSITION 3.11  Let R be left and right F'I-extending. Then

R Rio Ri3
R=T~~ 0 Ry Ry |, where
0 0 R3

i) Ry is a left nonsingular left F'I-extending ring;
ii) R3 is a right nonsingular right FI-extending ring;

(
(
(iii) T [ Ry o ] is a right F'I-extending ring;
(

0 Rs
iv) each R;; is a R; — R; bimodule;
0 Rip Ri3
(v) Z2(rT)= | 0 Ry Ras |;
0 0 R3
i) 2o = | T2 T .
0 0 0
(Vll) 0 RQ R23 Q ZQ(TT) N ZQ(TT).
0 0 0

Proof. Since R is left FI-extending, there exists e € S;(R) such that R = Re &
R(1 — e) where R(1 — e) = Z3(rR). By Lemma 2.1 and the left-hand version of
Proposition 1.11, Re = eRe is a left nonsingular left FI-extending ring. Now
R ~ eke eR(1 —c) Since (1 —e) € S;(R), (1 —e)R(1 —e) is right FI-

1 0 (1-eRl—e) | rit, 8
extending by [5, Lemma 2.1]. Let R = (1 — e)R(1 — e). Then there exists ¢ € S;(R)
such that R = cR® (1—c)R, where cR = Zy(Ry) and 1 = 1—e. Hence 1—c € S,(R).

By Lemma 2.1 and Proposition 1.11, (1 —¢)R = (I — ¢)R(1 — ¢) is a right
nonsingular right F'I-extending ring. Now let e = e;, c = e, and 1 —e — c = e3.
Let R1 = €1R61, R2 = 62R62, R3 = €3R63, R12 = 61R62, R13 = 61R63, and

12



Ry Riz Ris

Ry3 = egRe3. Then R~ T = 0 Ry Ry |.Parts (i)-(vi), follow from the
0 0 Rs

above discussion, and part (vii) is a consequence of parts (v) and (vi). O

Note that if R is left and right extending, then in parts (i)-(iii) we may replace
“FI-extending” with “extending”.

4. FLLEXTENDING AND RELATED CONDITIONS

In this section we compare and contrast the F'I-extending condition with var-
ious related conditions. The motivation for some of these results is provided by a
theorem of Chatters and Khuri ([12], Theorem 2.1): Let R be any ring. Then R is
a right nonsingular right C'S ring if and only if R is a right cononsingular Baer ring.
Moreover, a condition which links the extending and F'I-extending conditions is
introduced. We say a module M is quasi-extending if for any X < M there exists a
direct summand D of M such that: (i) X < D; (ii) if K < M with K N D # 0,then
KnNX # 0 (equivalently, if 0 # Y < D then <Y > N X # 0, where < Y >
denotes the fully invariant submodule of M generated by Y). We begin with the
following two results which illustrate the connection between the quasi-Baer and
FI-enxtending conditions.

PROPOSITION 4.1 [19] A ring R is quasi-Baer if and only if whenever I is an
ideal of R there exists e € §;(R) such that I C eR, and I(I) NeR = eR(1 —e).

COROLLARY 4.2 [19] If R is a quasi-Baer ring and I is an ideal of R, then there
exists e € §)(R) such that I C eR and I + eR(1 — e) is right essential in eR and
eR(1 — e) is an ideal of R. In particular, if I contains the prime radical of R (e.g.,
R is semiprime) or e is central, then I is right essential in eR. Moreover if I is not
right essential in eR, then there exists a closed right ideal 0 # X = eX (1 — e) such
that TN X =0and I & X <{eR.

PROPOSITION 4.3 (i) If M is a quasi-extending module, then M is F'I-extending.
(ii) If every ideal of R is right essential in an ideal generated by a central idem-
potent, then Rp is quasi-extending.

(i) Let A < M. If A is essential in M, then we are finished. So assume X is a
nonzero relative complement of A in M. Then there exists e = e € Endgr(M) such
that X C eM and ANeM = 0. Hence A C (1 — e)M. If there exists Y < M such
that Y C (1 —e)M and ANY =0, then (X +Y)NA=0. HenceY C X, s0Y =
0. Therefore A <°¢ (1 —e)M.

(ii) Let X < Rp. f XN K # 0 for all 0 # K < R, then we are finished. So
assume 0 # C is maximal among ideals of R such that X N C' = 0. There exists
¢ € B(R) such that C <¢ cR. Then X NcR = 0. So C = cR and X C eR where
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e = 1—c. Assume K < R such that KNeR # 0. By the maximality of C'; KNX # 0.
Therefore Rp is quasi-extending. O

Thus if R is an Abelian ring (i.e., every idempotent is central), Corol-
lary 4.2 shows that the quasi-Baer condition implies the F'I-extending condition,
while Proposition 4.3 yields the equivalence of the FI-extending and the quasi-
extending conditions. However there are commutative self-injective rings which are
not Baer(e.g., Z4). Thus Corollary 4.2 has no converse.

PROPOSITION 4.4 Let R be right nonsingular. Then R is right F'I-extending if
and only if R is quasi-Baer and Ag <°¢ rl(A), for all A < R.

Proof. Assume R is right FI-extending and let A <« R. Then there exists e = €2
such that Ap <° eR. Since R is right nonsingular, [(A) = [(eR) = R(1 — e). Hence
R is quasi-Baer. Moreover A <€ eR = rl(eR) = rl(A). The converse is obvious. [J

PROPOSITION 4.5  Let R be right nonsingular and right FI-extending. The
following conditions are equivalent:

(i) R is semiprime;

(i) Si(R) = B(R);

(iii) the right essential closure equals the left essential closure for each ideal of
R.

Proof. By Proposition 4.4, R is quasi-Baer. Hence the equivalence, (i)<(ii), follows
from ([19], Proposition 1.4 (i)). For (ii)=-(iii), let A < R. By Proposition 4.4,
there exists e € §;(R) such that A <¢ eR. From (ii), e € B(R). Since R is right
nonsingular /(A) = [(eR) = (1 —e)R. Since 1 —e € B(R), [(A) C r(A). Again since
R is quasi-Baer there exists f € S§;(R) such that r(A) = fR. By (ii), f € B(R).
Hence [(A) = r(A) = (1 — e)R. Now there exists L <; R such that A® L <} eR.
Then AL C ANL =0. Hence L CeRN (1 —e)R = 0. Therefore the right essential
closure of A equals its left essential closure.

For (iii)=>(ii), let e € §;(R). From Lemma 2.1, eR(1 — e) < R. From ([20], p.20,
Exercise 11), l[(eR(1 —e)) <¢ R. Since R is quasi-Baer, /(eR(1 — e)) equals its left
essential closure. By (iii), [(eR(1 — e)) = R. Therefore eR(1 —e) =0, so e € B(R).
O

Motivated by [21] and [22], we say a module M is complement bounded if ev-
ery nonzero complement(i.e., essentially closed) submodule contains a nonzero fully
invariant submodule of M.

PROPOSITION 4.6 Let M be a complement bounded module. Then M is quasi-
extending if and only if M is extending.

Proof. Assume M is quasi-extending and X < M. There exists a direct summand
D such that X < D and if K < M with KN D # 0 then KNX #0. If X is
not essential in D, let C be a complement of X in D. Since D is a complement
submodule of M, then C is a complement submodule of M. Hence there exists
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a nonzero H <« M such that H C C' C D. Hence X N H # 0, a contradiction.
Therefore M is extending. The converse is obvious.

THEOREM 4.7 Consider the following conditions on a ring R.

a) Rp is FI-extending;

b) rR is FI-extending;

c) R is quasi-Baer;

d) every ideal is right(left) essential in a ring direct summand;

e) every ideal which is right (left) essentially closed is a direct summand;

f) Rp is quasi-extending;

g) Rp is extending;

h) R is Baer.

The following statements hold true for R:

(i) If R is semiprime, then a) through f) are equivalent.

(ii) If R is semiprime and Rp is complement bounded, the a) through g) are
equivalent.

(iii) If Rp is nonsingular and complement bounded, then a) through h) are
equivalent.

Proof. (i) From Lemma 2.1, S;(R) = S,(R) = B(R), using Theorem 3.2, it is
evident that a), b), and d) are equivalent. From([4], Lemma 2.2), c), d), and e) are
equivalent. Proposition 4.3 part (i) shows that f) implies a), and part (ii) shows
that d) implies f).

(ii) This is a consequence of part (i) and Proposition 4.6.

(iii) From([21], Theorem 10), R is a reduced ring. Hence part(ii) yields the
equivalence of a) through g). Since R is reduced, c) and h) are equivalent ([23],
Lemma 1). O

Observe that although in Theorem 4.7(iii) the nonsingular and complement
bounded conditions imply R is reduced, these conditions cannot be replaced by
just the reduced condition. For example, if R is a domain which is not right Ore,
then R satisfies a) through f) and h) but does not satisfy g). Moreover, there are
prime right(and left) uniform rings R for which Z(Rg) # 0 ([24]). These rings are
complement bounded, so Theorem 4.7(ii) holds. However, since Z(Rpg) # 0, such
rings are not Baer.

COROLLARY 4.8 Let R be right FPF. If R is semiprime (equivalently, right
nonsingular), then R is right and left F'I-extending.

Proof. In ([25], p.168), Faith shows that every semiprime right F'PF ring is quasi-
Baer. Now Theorem 4.7 yields the result. O

PROPOSITION 4.9 If R is right nonsingular and right quasi-continuous, then R

is semiprime.
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Proof. Let A <« R with A? = 0. Then Ag <° eR and by Proposition 1.10 e? = e €
Si(R).

Claim: eR and (1—e)R have no nonzero isomorphic submodules. Assume to the
contrary, let 0 # X <eR,0#Y < (1—e)R,and let & : X — Y be an isomorphism.
Then ®(X)NX = 0 implies that ® can be extended to an endomorphism of R, since
R is right quasi-continuous. Thus ® can be given as a left multiplication by an
element s of R. Hence ®(X) =sX =Y CeRN(1—e)R=0. Thus ® = s =0 so
eR and (1 — e)R are orthogonal.

Let t € R. Consider the map ¥ : (1 — e)R — eR, defined by ¥((1 —e)z) =
et(l1 — e)z € eR. Then Ker U <¢ eR. Since if not, then Ker ¥ N X = 0 yields
Ulx : X — ¥(X) is a monomorphism hence X ~ ¥(X), a contradiction. Hence
U((1 —e)R) = et(1 — e)R is singular, thus equals to zero as R is right nonsingular.
Therefore et(1—e)R = 0. Thus et(1—e) = 0 for all t € R, consequently eR(1—e) = 0.
So €% = e is central. Therefore, R = R; x Ry where R; = eR, A <° eR wheree? = ¢
is central.

Next, since A2 = 0, then a4 = 0 for all a € A. Thus a € Z(Ryg,) = 0 for all
a € A. We therefore conclude that A = 0 and R is semiprime. [

Observe that if R is the 2-by-2 ring of upper triangular matrices over a field, then
R is right and left extending and right and left nonsingular, but R is not semiprime.
Therefore the hypothesis in Proposition 4.9 requires the quasi-continuity (condition
Cs of [26], p.18) of the ring R and the result does not hold true even if R is FI-
extending on both sides.

The next three examples illustrate the contrast between the FI-extending con-
dition and various related conditions.

EXAMPLE 4.10 Let D be a commutative domain and R = M, (D). Then R is
a nonsingular prime ring. The primeness of R yields that R is quasi-Baer. So, by
Theorem 4.7(i), Rp is quasi-extending (hence F'I-extending). However, if n > 1 and
D is not a Priifer domain, then R is neither right nor left extending, nor Baer ([11],
p.17) and ([12], Theorem 2.1).

EXAMPLE 4.11 Let D be a simple domain which is not a division ring. Take R =
[ D DeD

0 D
R is neither Baer, nor right F'I-extending, nor left F'I-extending. The quasi-Baer
condition becomes apparent after computing the ideals of R.

To see that R is not Baer, let £ be a nonzero noninvertible element of D. Let

0#[8 @P]ET[g(%m]xmmaZOMMCZM—w

] . Then R is a quasi-Baer left and right nonsingular ring. However

Assume (to obtain a contradiction) that R is a Baer ring. Since r

1,0) |.
g ( 6 ) ] is
generated by an idempotent, we can take ¢ = 1. Hence z is invertible, a contradiction.
Thus R is not a Baer ring.

Sme:[O 0eD

0 0 ] < R and the nonzero idempotents of R are of the form
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1 (b,d) 0 (b,d) 10
[ 0 0 ] ’ [ o 1 0™ |g
direct summand nor a left ideal direct summand. Thus R is neither right nor left

FI-extending.

, I is essential in neither a right ideal

EXAMPLE 4.12  ([27], Example 9). There exists a ring R such that Z(Rg) #
0, Z(rR) = 0, R is strongly right bounded (i.e., every nonzero right ideal contains a
nonzero ideal), R is right F'I -extending, but R is neither right extending, nor quasi-
extending, nor quasi-Baer, nor left FI-extending. Let T' = Z3sA be the semigroup
ring with Zo, the integers mod 2, and A, the semigroup on the set {a, b} satisfying
the relation zy = y for z, y € A. Let R be the Dorroh extension of T' (i.e., the ring
with unity formed from T" x Z with componentwise addition and with multiplication
given by (z, k)(y, n) = (zy + nx + ky, kn)). Observe that R = (a, 1)R & (T, 0) as
right ideals. To see that R is not right extending observe that the right ideal {(k(a+
b), 2k)|k € Z} is not right essential in an idempotent generated right ideal. As Rp is
complement bounded, Proposition 4.6 shows that Rp is not quasi-extending. Since
r((T, 0)) = {(0, 2k)|k € Z} is not generated by an idempotent, then R is not a
quasi-Baer ring. By direct calculation R is right F'I-extending. However, since
Z(grR) = 0 and R is not quasi-Baer, Proposition 4.4 indicates that R is not left
FI-extending.

Observe that Examples 4.10 and 4.12 show that the quasi-extending condition
lies strictly between the extending and F'I-extending conditions.

5. NONSINGULAR FI-EXTENDING RING DECOMPOSITIONS

In this section we obtain a ring decomposition for a right nonsingular right F'I-
extending ring using the concept of an orthogonal pair of module classes. Recall,
from [26], two modules are called orthogonal if they have no nonzero isomorphic
submodules. For a class 2 of modules, A denotes the class of modules orthogonal
to all members of 2. Classes 2 and 9B form an orthogonal pair if A+ = B and
B+ =2. We use Q = Q(R) to denote the maximal right ring of quotients of R.

LEMMA 5.1 Let Z(Rg) = 0. Given any orthogonal pair 2 and B of classes of
R-modules, there exist ideals A and B of R, such that A and B are maximal among
the right ideals of R contained in 2 and %8, respectively, and A @ B <¢ Rpg.

Proof. Let 2 and B be an orthogonal pair. We can use Zorn’s lemma to obtain a
right ideal A which is maximal among the right ideals of R in 2 and a right ideal
B which is maximal among the right ideals of R in %B. It is clear that AN B = 0.
We claim that A @ B <¢ Rpg : if not, then there exists an 0 # X < Rp with
(A®B)NX = 0. Now if X has a nonzero submodule Y in 2, then (A® B)NY = 0.
Thus A® Y € 2 which contradicts the maximality of A. If X does not have any
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nonzero submodule Y in 2, then X € B. Then B @ X € ‘B, contradicting the
maximality of B. Thus A@® B <° Rr and Q = Q(R) = E(A) ® E(B). Thus
E(A) = eQ, where ¢ = ¢ is a central idempotent of Q (by using Z(Rg) = 0). Next,
A < eQNR € 2 then maximality of A yields A = eQNR. Similarly B = (1—e)QNR
holds as e is a central idempotent. Therefore A and B are ideals of R. (O

THEOREM 5.2  Let R be a right FI-extending ring with Z(Rg) = 0. Then any
orthogonal pair 2 and B8 of classes of R-modules yields a ring direct decomposition
R = R; X R, where R; and Ry are maximal among the right ideals of R in 2 and
B, respectively.

Proof: By Lemma 5.1, we obtain R; & Ry <° R where Ry = eQQ N R, and Ry =
(1—e)QNR, for some central idempotent e? = e in Q. Since R is right FI-extending,
R, <° fR, where f? = f is an idempotent of R.

Now E(R;) = E(fR) = eQ yieldse = f € R and hence R; = eR, Ry = (1—¢)R,
and R = R; ® Ry holds. [J

The next example shows that Theorem 5.2 fails if R is not right F'I -extending
in the hypothesis (the example also illustrates Lemma, 5.1).

EXAMPLE 5.3 Let F be any (finite) field and let F; = F, i € I, where I is infinite.
Define R= @ F;+1-F, and let I = I} U Is be a nontrival disjoint union. Then R
i€l
is a regular ring and A = @ F;, and B = @ F; are ideals of R.
i€ly i€l

Consider classes 2 = At and B = AL, then A® B <° Rg. Note that A and B
are maximal among ideals of R in 2 and B, respectively, since they are closed. O

From Theorem 1.3, we know that a direct sum of FI-extending modules is F'I
-extending. On the other hand, it is not known in general if the F'I -extending
property is inherited by direct summands of F'I-extending modules. The answer is
affirmative in the case of FI-extending Abelian groups [8].

OPEN PROBLEM. Show that a direct summand of an FI-extending module is
FI-extending or provide a counter-example. In the latter case, find necessary and
sufficient conditions for a direct summand of an F'I-extending module to be FI-
extending.
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