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Abstract

We consider a Hardy-type integral operator T : Lp(a; b) ! Lp(a; b);

�1 � a < b � 1, which is de�ned by

(Tf) (x) = v(x)

Z x

a

u(t)f(t)dt:

In papers [EEH1],[EEH2] and [EHL2], upper and lower estimates and

asymptotic results were obtained for the approximation numbers an(T )

of T . In case p = 2 for \nice" u and v these results were improved in

[EKL]. In this paper we extend these results for 1 < p < 1 by using a

new technique from [EHL2]. We will show that under suitable conditions

on u and v,

lim sup
n!1

n1=2
�����p
Z b

a

ju(t)v(t)jdt� nan(T )

����
� c(ku0kp0=(p0+1) + kv

0kp=(p+1))(kukp0 + kvkp) + 3�pkuvk1;

where kwkp = (
R b
a
jw(t)jpdt)1=p and �p = A((0; 1); 1; 1).
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1 Introduction.

In [EEH1] and [EEH2] the approximation numbers an(T ) of

(Tf)(x) = v(x)

Z x

0

u(t)f(t)dt; (1. 1)

as an operator from Lp(R+) to itself were studied. Here R+ = (0;1), 1 < p <

1; and u; v are real{valued functions with u 2 Lp
0

loc(R
+), and v 2 Lp(R+); as

usual, p0 = p=(p� 1).

In [EEH1] it was shown that if T is bounded from L2(R+) to itself, then to

each " > 0 there corresponds N(") 2 N such that

aN(")+2(T ) �
"p
2
� aN(")(T ): (1. 2)

The estimate (1. 2) was improved in [EEH2], in which it was shown that

lim
n!1

nan(T ) =
1

�

Z 1

0

ju(t)v(t)jdt; (1. 3)

given certain restrictions on u and v. (For related results see also [NS].)

In [EHL2] it was showed that (1. 3) is true also for the Hardy-type operator

on trees and for 1 < p < 1. For cases p = 1 and p = 1 was found a similar

formula like (1. 3), see [EHL1] and [EHL2].

Further extensions were given in [LL] and [LMN] to deal with the cases in

which T is viewed as a map from Lp to Lq, for any p; q 2 [1;1].

In paper [EKL] an estimate (1. 3) was improved in the case p = 2 (L2 is the

Hilbert space and then it is simple to �nd the closes element from any closed

subspace). It was shown that under some conditions on u and v we have

lim sup
n!1

n1=2

�����nan(T )� 1

�

Z b

a

juvj
�����

� 3
p
2(ku0k2=3;I + kv0k2=3;I)(kuk2;I + kvk2;I) + 3

�
kuvjk1;I ;

I being an arbitrary interval in R.
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In the present paper we will extend this result to 1 < p < 1. Under

further conditions on u and v we get for the approximation numbers of the map

T : Lp(I)! Lp(I) the following estimates:

lim sup
n!1

n1=2

�����nan(T )� �p

Z b

a

juvj
�����

� 3c(p; p0)(ku0kp0=(p0+1);I + kv0kp=(p+1);I)(kukp0;I + kvkp;I)

+3�pkuvk1;I :

Thus,

an(T ) =
1

�n

Z
I

ju(t)v(t)jdt +O(n�3=2);

and under the conditions which we impose, the exponent �3=2 cannot be much
improved. This is the �rst theorem of this kind which is covering the case p 6= 2

and it is surprising that there is the same power n1=2 for any 1 < p < 1. We

do not know at the moment whether or not it is possible to show the existence

of a genuine second term in the expansion of an(T ). Our results follow from the

systematic use of the function A introduced in [EHL1] together with techniques

based on those in [EEH2] and [EKL].

2 Preliminaries.

Throughout the paper we shall assume that �1 � a < b � 1 and that

u 2 Lp0(a; b); v 2 Lp(a; b) and u; v > 0 on (a; b): (2. 1)

Under these restrictions on u and v it is well known (see, for example, [EEH1],

Theorem 1) that the norm kTk of the operator T : Lp(a; b)! Lp(a; b) in (1. 1)

satis�es

kTk � sup
x2(a;b)

ku�(a;x)kp0;(a;b)kv�(x;b)kp;(a;b): (2. 2)

Here �S denotes the characteristic function of the set S and

kfkp;I =
�Z

I

jf(t)jpdt
�1=p

; 1 < p <1; I � (a; b):
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Moreover, by F1 � F2 we mean that C�1F1 � F2 � CF1 for some positive

constant C � 1 independent of any variables in F1; F2 � 0.

Given any interval I = (c; d) � (a; b), de�ne

J(I) = sup
x2I

ku�(c;x)kp0;Ikv�(x;d)kp;I :

A straightforward modi�cation of Lemma 2.1 of [EHL1] shows that for any

d 2 (a; b); the function J((:; d)) is continuous and non-increasing on (a; d). Now,

for any x 2 I = (c; d) � (a; b); set

(TIf)(x) = v(x)�I (x)

Z x

a

u(t)�I(t)f(t)dt:

Then the norm of the operator TI : L
p(I)! Lp(I) satis�es

kTIk � J(I):

We next introduce a function A which will play a key role in the paper.

Given I = (c; d) � (a; b), set

A(I) := sup
kfkp;I=1

inf
�2R

kTf � �vkp;I :

From (2. 1) it follows that T is a compact operator from Lp into Lp (see

[EGP] or [OK]) and then from [EHL2, Theorem 3.8] we have that

A(I) = inf
x2I

kTx;I jLp(I)! Lp(I)k;

where

Tx;If(:) := v(:)�I (:)

Z :

x

v(t)�I (t)dt:

Lemma 2.1 Let I = (c; d) � (a; b) and 1 � p � 1, then kTx;I jLp(I)! Lp(I)k
is continuous in x.

Proof. See Lemma 3.4 in [EHL2] and put � = (a; b) and K = I . 2

Lemma 2.2 Suppose that u and v satisfy (2. 1) and a � c < d � b. Then:

1. The function A(:; d) is non-increasing and continuous on (a; d).

2. The function A(c; :) is non-decreasing and continuous on (c; b).

3. limy!a+ A(a; y) = limy!b� A(y; b) = 0:
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Proof. The proof of 1 illustrates the techniques necessary to prove 2 and 3 also.

That A(:; d) is non-increasing is easy to see. To get the continuity, �x y 2 (a; d):

Then, there exists h0 > 0 such that for 0 < h < h0

Ap(y; d) � Ap(y � h; d)

= sup
kfkp;(y�h;d)=1

inf
j�j�kukp0;(y�h0 ;d)

kv�(y�h;d)
�Z .

a

u(t)f(t)�(y�h;d)(t)dt� �

�
kpp;(y�h;d)

= sup
kfkp;(y�h;d)=1

inf
j�j�kukp0;(y�h0 ;d)

�
kv
�Z .

y�h

uf�(y�h;y)dt� �

�
kpp;(y�h;y)

+ kv
�Z .

y

uf�(y;d)dt� �+

Z y

y�h

ufdt

�
kpp;(y;d)

�

� sup
kfkp;(y�h;d)=1

inf
j�j�kukp0;(y�h0 ;d)

�
2pkv

Z .
y�h

uf�(y�h;y)dtkpp;(y�h;y)

+ 2p�pkvkpp;(y�h;y) + kv
�Z .

y

uf�(y;d)dt� �+

Z y

y�h

ufdt

�
kpp;(y;d)

�
� 2pkvkpp;(y�h;y)kukpp0;(y�h;y) + 2pkukpp0;(y�h0;d)kvk

p
p;(y�h;y) +Ap(y; d):

It follows that

lim
h!0+

A(y � h; d) = A(y; d):

In the same way we see that

lim
h!0+

A(y + h; d) = A(y; d);

and now the proof is complete. 2

Lemma 2.3 Suppose that T : Lp(a; b) ! Lp(a; b) is compact. Let I = (c; d)

and J = (c0; d0) be subintervals of (a; b), with J � I, jJ j > 0, jI � J j > 0,R b
a v

p(x)dx <1 and u; v > 0 on I. Then

A(I) > A(J) > 0: (2. 3)

Proof. Let 0 � f 2 Lp(J), 0 < kfkp;J � kfkp;I � 1 with supp f � J . Let

y 2 J then

kT(c0;y)kp;J > 0 and kT(y;d0)kp;J > 0
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and then from [EHL2, Lemma 3.5] we have

minfkT(c0;y)kp;J ; kT(y;d0)kp;Jg � min
x2J

kTx;Jkp;J

which means A(J) > 0.

Next, let us suppose that c = c0 < d0 < d: By [EHL2, Theorem 3.8], there

exist x0 2 J and x1 2 I such that A(J) = kTx0;Jkp;J and A(I) = kTx1;Ikp;I :
Since u; v > 0 on I , it is then quite easy to see that x0 2 Jo and x1 2 Io.

If x0 = x1, then, since u; v > 0 on I , we get

A(I) = kTx1;Ikp;I > kTx1;Ikp;J = kTx1;Jkp;J = A(J):

If x0 6= x1, then

A(I) = kTx1;Ikp;I � kTx1;Ikp;J � kTx1;Jkp;J > kTx0;Jkp;J = A(J):

The case c < c0 < d0 = d could be proved similarly and the case c < c0 <

d0 < d follows from previous cases and the monotonicity of A(I). 2

Remark 2.4 It follows from the continuity of A that for suÆciently small " > 0

there is an a1, a < a1 < b, for which A(a1; b) = ". Indeed, since T is compact,

there exists a positive integer N(") and points b = a0 > a1 > : : : > aN(") = a

with A(ai; ai�1) = "; i = 1; 2; : : : ; N(")� 1 and A(a; aN(")�1) � ".

Lemma 2.5 The number N(") is a non-increasing function of " which takes

on every suÆciently large an integer value.

Proof. Fix c; a < c < b. Then, (2. 3) ensures A(c; b) = "0 > 0. Moreover, as

observed in Remark 2.4, there is a positive integer N("0) and a partition b =

a0 > a1 > : : : > aN("0) = a such that A(ai; ai�1) = "0; i = 1; 2; : : : ; N("0) � 1

and A(a; aN("0)�1) � "0: Let d 2 (a1; b): According to Lemma 2.3, A(d; b) =

"00 < "0 and the procedure outlined above applied to "00 gives 1 > N("00) �
N("0) + 1: If N("00) = N("0) + 1; we stop.
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Otherwise, de�ne

"1 = supf" : 0 < " < "0 and N(") � N("0) + 1g:

We claim N("1) = N("0) + 1. Indeed, suppose N("1) � N("0) + 2 and the

partition b = a0 > a1 > : : : > aN("1) = a satis�es A(ai; ai�1) = "1; i =

1; 2; : : : ; N("1) � 1 and A(a; aN("1)�1) � "1. Decrease aN("1)�1 slightly to

a0N("1)
so that both A(a; a0N("1)

) < "1 and A(a0N("1)
; aN("1)�1) > "1, contin-

uing the process to get a partition of (a; b) having N("1) intervals such that

A(a; a0N("1)
) < "1 and A(a0i; a

0
i�1) > "1; i = 1; 2; : : : ; N("1) � 1; a00 = b: Taking

"2 � min2�i�N("1)�1A(a
0
i; a

0
i�1) we obtain "2 > "1 and N("2) � N("0) + 2;

a contradiction. This establishes the claim.

An inductive argument completes the proof. 2

The quantity N(") is useful in the derivation of upper and lower estimates

for the approximation numbers of T .

Lemma 2.6 For all " 2 (0; kTk);

aN(")+2(T ) � " � aN(")+1(T ):

Proof. This follows from [EHL2], Lemma 3.19 (put K = (a; b)).2

A version of this result, with a slightly di�erent N("), was �rst proved in

[EEH1] and was then extended in [EHL1]. For general u and v it is impossible

to �nd a simple relation between " and N("), but by using the properties of A

the behavior of "N(") when "! 0+ can be determined.

Lemma 2.7 Given v 2 Lp(a; b), u 2 Lp0(a; b) we have

lim
"!0+

"N(") = �p

Z b

a

ju(t)v(t)jdt:

This result follows from an adaptation of the argument of [EHL2]; see, in

particular, Theorem 6.4 of that paper. Together with Lemma 2.6 this shows,

again using the techniques of [EHL2], that the following theorem holds.
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Theorem 2.8 Given v 2 Lp(a; b), u 2 Lp
0

(a; b) the operator T de�ned in (1.

1) satis�es

lim
n!1

nan(T ) = �p

Z b

a

ju(t)v(t)jdt;

where �p = A((0; 1); 1; 1).

A result of this type was established under weaker conditions on u and v in

[EHL2].

3 Technical results.

Here we give some results of a technical nature which will prove very useful in

the sequel. We begin with some information about the function A.

Lemma 3.1 Let I = (c; d) � (a; b) and suppose that u and v are constant

functions over I. Then

A(I; u; v) = jI jjujjvjA((0; 1); 1; 1)

Proof. By de�nition,

A(I; u; v) = sup
f2Lp(I)

inf
�2R

kTf � �vkp;I=kfkp;I

= sup
kfkp;I�1

inf
�2R

kv
�Z .

c

ufdt� �

�
kp;I

= jvjjuj sup
kfkp;I�1

inf
�2R

k
Z .
c

fdt� �kp;I

= jvjjujjI j sup
kfkp;(0;1)�1

inf
�2R

k
Z .
0

fdt� �kp;(0;1)

2

Next, we investigate the dependence of A(I; u; v) on u and v.

Lemma 3.2 Let I = (c; d) � (a; b) and suppose that v 2 Lp(I) and u1; u2 2
Lp

0

(I): Then

jA(I; u1; v)�A(I; u2; v)j � ku1 � u2kp0;Ikvkp;I :

8



Proof. Without loss of generality we may suppose that A(I; u1; v) � A(I; u2; v):

Then

A(I; u1; v) = sup
kfkp;I�1

inf
�2R

kv
�Z .

c

(u1 � u2 + u2)fdt� �

�
kp;I

� sup
kfkp;I�1

inf
�2R

�
kv
Z .
c

(u1 � u2)fdtkp;I

+ kv(
Z .
c

u2fdt� �)kp;I
�

� sup
kfkp;I�1

inf
�2R

h
kvkp;Iku1 � u2kp0;I

+kv(
Z .
c

u2f � �)kp;I
i

� kvkp;Iku1 � u2kp0;I +A(I; u2; v):

The result follows. 2

Lemma 3.3 Let I = (c; d) � (a; b) and suppose that u 2 Lp
0

(I) and v1; v2 2
Lp(I): Then

jA(I; u; v1)�A(I; u; v2)j � kukp0;Ikv1 � v2kp;I :

Proof. We may suppose that A(I; u; v1) � A(I; u; v2). Then

A(I; u; v1) = sup
kfkp;I�1

inf
�2R

kv1
�Z .

c

ufdt� �

�
kp;I

= sup
kfkp;I�1

inf
j�j�kukp0;Ikfkp;I

kv1
�Z .

c

ufdt� �

�
kp;I

� sup
kfkp;I�1

inf
j�j�kukp0;I

�
k(v1 � v2)[

Z .
c

ufdt� �]kp;I

+kv2[
Z .
c

ufdt� �]kp;I
�

� kv1 � v2kp;Ikukp0;I +A(I; u; v2):

The proof is complete. 2

We now turn to the approximation of functions from Lp and Lp
0

by step-

functions.
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Suppose u 2 Lp0(a; b) and v 2 Lp(a; b) and let � > 0. We de�ne m� 2 N by

the following requirements:

There exist two step-functions, u� and v�, each with m� steps, say,

u�(x) :=

m�X
j=1

�j�w�(j)(x); v�(x) :=

m�X
j=1

 j�w�(j)(x); (3. 1)

where fw�(j)gm�

j=1 is a family of non-overlapping intervals covering (a; b), such

that for

�u := ku� u�kp0;(a;b) and �v := kv � v�kp;(a;b)

we have

(i)

max(�u; �v) � �; (3. 2)

and

(ii) for any step-functions u0�; v
0
� with less than m� steps, say n� steps,

n� < m�,

max(ku� u0�kp0;(a;b); kv � v0�kp;(a;b)) > �:

Thus, m� is the minimum number of steps needed to approximate u in Lp
0

and v in Lp with the required accuracy. Note that, plainly,

ku� u�kp0;(a;b) � �; kv � v�kp;(a;b) � �:

The best way to choose �i and  i for given fw�gm�

j=1 is by �nding �i and  i

such that: Z
w�(i)

ju(t)� �ijp0�1 sgn(u(t)� �i)dt = 0

and Z
w�(i)

jv(t)�  ijp�1 sgn(v(t)�  i)dt = 0

(see [S], Theorem 1.11).

It turns out that the relationship between � and m� is crucial for us; we

next address this matter.
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Lemma 3.4 Suppose u 2 C(a; b) \ Lp0(a; b) and v 2 C(a; b) \ Lp(a; b) , at

least one of them, say u, being non-constant. Then, when � decreases to 0, m�

increases to 1.

Proof. We show that given m 2 N there exists � > 0 having m� > m. The

fact that u is continuous and non-constant on (a; b) guarantees the existence

of pairwise disjoint subintervals I1; I2; : : : ; I2m of (a; b) on each of which u is

non-constant.

Fix � > 0 satisfying
Pm

j=1 ku� uIkj k
p0

p0;Ikj
> �p

0

for every set of m intervals

from among I1; I2; : : : ; I2m. Now, to any partition, fw�(j)gmj=1, of (a; b) into m

non-overlapping subintervals there correspond Ik1 ; Ik2 ; : : : ; Ikm such that each

Ikj is subset of some w�(i) and hence

mX
j=1

ku� uw�(j)kp
0

p0;w�(j)
�

mX
j=1

ku� uw�(j)kp
0

p0;Ikj
> �p

0

:

Therefore m� > m. 2

Lemma 3.5 Suppose u 2 C(a; b) \ Lp0(a; b) and v 2 C(a; b) \ Lp(a; b), at least
one of them, say u, being non-constant. Fix � > 0 and set �� = f�; 0 < � �
� and m� = m�g. Then, �� is an interval with  = inf �� and  2 ��:

Proof. Clearly, �� is nonempty, since � 2 ��. Again, m�1 � m�2 whenever

�1 < �2, so �� is convex and hence an interval, possibly equal to f�g.
It follows from Lemma 3.4 that  > 0. Now, if �� = f�g, so that  = �,

we are done. Otherwise, there exists a sequence f�ng in �� with �n & . Let

u�n =
Pm�

j=1 uw�n(j)�w�n (j) and v�n =
Pm�

j=1 vw�n (j)�w�n (j); as in (3. 1), so

that

max(ku� u�nkp0;(a;b); kv � v�nkp;(a;b)) � �n:

Assume the notation has been chosen to ensure the end points of w�n(j) =

(cjn; d
j
n) satisfy a = c1n < djn � cj+1

n < dm�
n = b; j = 1; 2; : : : ;m� � 1:
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There exists a sequence n(k); k = 1; 2; : : : of positive integers and numbers

c1; c2; : : : ; cm� ; d1; d2; : : : ; dm� such that

lim
k
cjn(k) = cj ; lim

k
djn(k) = dj ; j = 1; 2; : : : ;m�;

and

a = c1 � dj � cj+1 � dm� = b; j = 1; 2; : : : ;m�:

Observe that, setting

u =

m�X
j=1

u(cj;dj)�(cj ;dj) and v =

m�X
j=1

v(cj ;dj)�(cj ;dj);

we have

max(ku� ukp0;(a;b); kv � vkp;(a;b)) = ;

which forces m = m�. 2

Lemma 3.6 Suppose that u 2 Lp0(a; b) \ C(a; b) and v 2 Lp(a; b) \ C(a; b) are
not equal to zero on (a; b), indeed, assume at least one of u and v be non-constant

on (a; b). Then, there exists �0 > 0 such that given any �; 0 < � < �0, there

exists a �; 0 < � < �, with m� = m� + 1 or m� = m� + 2.

Proof. Say u is non-constant on (a; b). We take �0 to be the positive distance

of u from the closed set fk�I ; k 2 R; 0 < jI j < 1g in Lp
0

(a; b). Observe that

m� � 2 whenever 0 < � < �0.

Fix �; 0 < � < �0. By Lemma 3.5, m = m�, where  = inf ��. Hence,

there exists a partition fw(j)gm

j=1 of (a; b) whose corresponding step functions,

u =
Pm�

j=1 uw(j)�w(j) and v =
Pm�

j=1 vw(j)�w(j), satisfy

max(ku� ukp0;(a;b); kv � vkp;(a;b)) = :

If ku� ukp0;(a;b) > kv � vkp;(a;b) then for some some j0, 1 � j0 � m�,

ku� uw(j0)kp
0

p0;w(j0)
> 0:
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It is possible to �nd a point c in the interval w(j0) = (d; e) such that

ku� uw(j0)kp
0

p0;w(j0)
> ku� u(d;c)kp

0

p0;(d;c) + ku� u(c;e)kp
0

p0;(c;e):

Let w0(j) = w(j); j = 1; 2; : : : ; j0 � 1; j0 + 1; : : : ;m�; w
0
(j0) = (d; c) and

w0(m� +1) = (c; e). Then, fw0(j)gm�+1
j=1 is a partition of (a; b) with associated

step functions u0 =
Pm�+1

j=1 uw0

(j)
�w0

(j)
and v0 =

Pm�+1
j=1 vw0

(j)
�w0

(j)
such

that

max(ku� u0kp0;(a;b); kv � v0kp;(a;b)) = � < ;

and so m� = m� + 1:

Similarly, when kv � vkp;(a;b) > ku � ukp;(a;b), there is a � 2 (0; �) with

m� = m� + 1.

Suppose, then, kv � vkp;(a;b) = ku� ukp0;(a;b) =  > 0. As before, we can

�nd an interval w(j0) = (d0; e0) and a point c0 such that

ku� uw(j0)kp
0

p0;w(j0)
> ku� u(d0;c0)kp

0

p0;(d0;c0)
+ ku� u(c0;e0)kp

0

p0;(c0;e0)
;

and an interval w(j1) = (d1; c1) and a point c1 such that

kv � vw (j1)kpp;w(j1) > kv � v(d1;c1)kpp;(d1;c1) + kv � v(c1;e1)kpp;(c1;e1):

Now, if it is possible to have j0 = j1 and c0 = c1 we can get � 2 (0; �) with

m� = m� + 1. Otherwise, we can only conclude there is a � 2 (0; �) for which

m� is one of m� + 1 and m� + 2. 2

Lemma 3.7 Let �1 � a < b � 1 and suppose that u0 2 Lp
0=(p0+1)(a; b) \

C(a; b). For each small h > 0 de�ne

x1 = � 1

h
; xi+1 := xi + h for i 2 1; : : : ; [2=h2];

put Ji = (a; b) \ (xi; xi+1), i 2 1; : : : ; [2=h2]:

Then

Z b

a

ju0(t)jp0=(p0+1)dt = lim
h!0

[2=h2]X
i=1

jJijmax
x2Ji

ju0(x)jp0=(p0+1)

13



= lim
h!0

[2=h2]X
j=1

jJijmin
x2Ji

ju0(x)jp0=(p0+1):

Proof. Simply use the de�nition of the integral. 2

We are now prepared to establish an important estimate for lim sup�!0+ �m�:

Theorem 3.8 Suppose u 2 Lp
0

(a; b), v 2 Lp(a; b) and u0 2 Lp
0=(p0+1)(a; b) \

C(a; b), v0 2 Lp=(p+1)(a; b) \ C(a; b). Then,

lim sup
�!0+

�m� � c(p; p0)(ku0kp0=(p0+1);(a;b) + kv0kp=(p+1);(a;b)):

Proof. The result is trivial if both u and v are constant so we assume that at

least one of them, say u, is not.

Given �; 0 < � < infc2R ku�ckp0;(a;b); let w�(i) = (ai; ai+1); i = 1; 2; : : : ; nu�;

be a partition of (a; b) satisfying

ku� uw�(i)kp0;w�(i) = �; i = 1; 2; : : : ; nu� � 1;

and ku � uw�(i)kp0;w�(i) � �; i = nu�. Fix �; 0 < � < 1, and de�ne the [�nu� ]

points xk by the rule that if (a; b) is bounded, then

xk := a+
b� a

�nu�
k; k = 1; 2; : : : ; [�nu� ];

if (a; b) = (�1;1); then, with h = ( 2
�nu

�

)1=2;

x1 = � 1

h
; xk+1 = xk + h; k = 1; 2; : : : ; [�nu� ];

for other types of intervals we proceed in the same sort of way.

From the union of the points a1; a2; : : : ; anu
�
+ 1 and x1; x2; : : : ; x[�nu

�
]; ar-

range them in the ascending order and denote the resulting points by bj ; j =

1; 2; : : : ; J(�) + 1; so that nu� � J(�) � nu� + [�nu� ]: Put I
�
j = (bj ; bj+1); j =

1; 2; : : : ; J(�): We observe there are at least nu� � [�nu� ] intervals I
�
j with

I�j = w�(i)

14



for some i.

Now,
J(�)X
j=1

ku� uI�
j

kp0=(p0+1)

p0;I�
j

�
J(�)X
j=1

jI�j jmax
x2I�

j

ju0(x)jp0=(p0+1):

Again, setting N = #(fj : I�j = w�(i) for some i < nu�g); we have N �
nu� � [�nu� ]� 1 and

�p
0=(p0+1)(nu� � [�nu� ]� 1) � �p

0=(p0+1)N �
J(�)X
j=1

ku� uI�
j

kp0=(p0+1)

p0;I�
j

�
J(�)X
j=1

jI�j jmax
x2I�

j

ju0(x)jp0=(p0+1):

Thus, by Lemma 3.7,

lim sup
�!0+

�p
0=(p0+1)(nu� � [�nu� ]) �

Z b

a

ju0(x)jp0=(p0+1)dx: (3. 3)

Similarly, if neither v is constant, there exists, for 0 < � < infc2R kv �
ckp;(a;b); a partition fw0�(i)g

nv�
i=1 such that

kv � vw0

�
(i)kp;w0

�
(i) = �; i = 1; 2; : : : ; nv� � 1;

kv � vw0

�
(i)kp;w0

�
(i) � �; i = nv� ;

and

lim sup
�!0+

�p=(p+1)(nv� � [�nv� ]) �
Z b

a

jv0(x)jp=(p+1)dx: (3. 4)

Put � = max[(�p
0

(n�+[�n� ]))
1=p0 ; (�p(n�+[�n� ]))

1=p]; 0 < � < min[infc2R ku�
ckp0;(a;b); infc2R kv � ckp;(a;b)], where n� = nu� + nv� if v is not constant and

n� = nu� if it is. Note that (3. 3) and (3. 4) imply �! 0+ as � ! 0+.

Taking the re�nement of the partition fI�j gJ(�)j=1 and the analogous one for

v (if necessary) we get a partition of (a; b), of at most n� + [�n� ] subintervals,

whose corresponding step-functions u� and v� satisfy

max[ku� u�kp0;(a;b); kv � v�kp;(a;b)] � �max[(nu�)
1=p0 ; (nv�)

1=p] � �:

15



This means

m� � n� + [�n� ];

hence

lim sup
�!0+

(�m�) � lim sup
�!0+

(�m�)

+ lim sup
�!0+

(�m�)

� lim sup
�!0+

"
�p

0

(n� � [�n� ])
1=p0

�
n� + [�n� ]

n� � [�n� ]

�1=p0
#

+ lim sup
�!0+

"
�p(n� � [�n� ])

1=p

�
n� + [�n� ]

n� � [�n� ]

�1=p
#

�
 
lim sup
�!0+

h
�p

0

(n� � [�n� ])
1=p0
i

+ lim sup
�!0+

h
�p(n� � [�n� ])

1=p
i!�n� + [�n� ]

n� � [�n� ]

�

� c(p; p0)(ku0k(p0+1)=p0

p0=(p0+1);(a;b) + kv0k
(p+1)=p
p=(p+1);(a;b))

(1 + �)

(1� �)
:

Since � may be chosen arbitrarily small, we obtain

lim sup
�!0+

�m� � c(p; p0)(ku0kp0=(p0+1);(a;b) + kv0kp=(p+1);(a;b));

as asserted. 2

4 The Main theorem.

In this section we give the remainder estimate promised in the Introduction. To

begin, we prove

Theorem 4.1 Let �1 � a < b � 1, let u 2 Lp
0

(a; b), v 2 Lp(a; b) and

suppose that u0 2 Lp0=(p0+1)(a; b)\C([a; b]), v0 2 Lp=(p+1)(a; b)\C([a; b]). Then

lim sup
"!0+

������p
Z b

a

ju(t)v(t)jdt� "N(")

�����N1=2(")

16



� c(p; p0)(ku0kp0=(p0+1);(a;b) + kv0kp=(p+1);(a;b))
�kukp0;(a;b) + kvkp;(a;b)�

+3�pkuvk1;(a;b);

where �p = A((0; 1); 1; 1) and c(p; p0) is a constant depending only on p and p0.

Proof. Let � > 0. Then (see (3. 1) and (3. 2)) there are m� 2 N and

step-functions u�; v� such that

ku� � ukp0;(a;b) < �; kv� � vkp;(a;b) < �;

and fw�(j)gm�

j=1 is a corresponding family of non-overlapping intervals which

cover (a; b). Plainly,

j
Z b

a

(uv � u�v�)dtj � �(kukp0;(a;b) + kvkp;(a;b) + �): (4. 1)

Let " > 0 be small and let fIigN(")
i=1 be the non-overlapping intervals which occur

in the de�nition of N(").

Put J1 = fj; Ii � w�(j) for some ig, J2 = fj;w�(j) � Ii for some ig, J3 =
fj;w�(j) 6� Ii 6� w�(j); for all ig, L1 = fi; Ii � w�(j) for some jg and L2 =

fi; for all j; Ii 6� w�(j)g. Then we see from Lemma 3.1 that

�p

Z b

a

u�v�dt = �p

0
@X

j2J1

+
X
j2J2

+
X
j2J3

1
A �j j jw�(j)j

�
X
i2L1

A(Ii; u�; v�)

+2
X
i2L2

A(Ii; u�; v�)

+
X
j2J2

�p�j j jw�(j)j: (4. 2)

Lemmas 3.2, 3.3 as well as the estimates

�p�j j jw�(j)j � A(w�(j); u�; v�)

� A(w�(j); u; v) + ku� u�kp0;w�(j)kv � v�kp;w�(j)
+kukp0;w�(j)kv � v�kp;w�(j)
+ku� u�kp0;w�(j)kvkp;w�(j)
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and A(w�(j); u; v) � A(Ii; u; v) � " for w�(j) � Ii now show that the right-hand

side of (4. 2) may be estimated from above by

X
Ii�w�(j)

A(Ii; u; v) + 2
X

Ii 6�w�(j)

A(Ii; u; v) + "m�

+3

N(")X
i=1

(ku� u�kp0;Iikv � v�kp;Ii + kukp0;Iikv � v�kp;Ii (4. 3)

+ku� u�kp0;Iikvkp;Ii)

To proceed further, note that A(Ii; u; v) � ";

#fi; Ii � w�(j) for some jg � N(")

and

#fi; for all j; Ii 6� w�(j)g � m�:

It follows that

�p

Z b

a

u�v� � N(")"+ 3m�"

+3

N(")X
i=1

(ku� u�kp0;Iikv � v�kp;Ii + kukp0;Iikv � v�kp;Ii

+ku� u�kp0;Iikvkp;Ii)
� N(")"+ 3m�"+ 2�2 + 2�(kukp0;(a;b) + kvkp;(a;b)): (4. 4)

On the other hand, since A(Ii; u; v) = " for 1 � i � N(") � 1 and N(") �
2m� � #fi; Ii � w�(j) for some jg, we see that

(N(")� 2m� � 1)" �
X

Ii�w�(j)

A(Ii; u; v)

=
X

Ii�w�(j)

A(Ii; u�; v�)

+
X

Ii�w�(j)

[A(Ii; u; v)�A(Ii; u�; v�)]
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�
X

Ii�w�(j)

�pjIijj�j jj j j

+
X

Ii�w�(j)

(ku� u�kp0;Iikv � v�kp;Ii

+kukp0;Iikv � v�kp;Ii + ku� u�kp0;Iikvkp;Ii)

� �p

Z b

a

ju�v�jdt+ �2 + �(kukp0;(a;b) + kvkp;(a;b))

� �p

Z b

a

juvjdt+ 2�2

+2�(kukp0;(a;b) + kvkp;(a;b)); (4. 5)

the �nal inequality following from (4. 1). Together with (4. 4) and (4. 1) this

shows that

"(N(") � 2m� � 1)� 2�2 � 2�(kukp0;(a;b) + kvkp;(a;b))

� �p

Z b

a

juvjdt (4. 6)

� "(N(") + 3m�) + 3�2 + 3�(kukp0;(a;b) + kvkp;(a;b)):

From Lemma 3.4 we can see that for any small " > 0, we can �nd � > 0

such that m� � [N1=2(")] � m� � 2. Then (4. 6) gives

N1=2(")j�p
Z b

a

juvjdt�N(")"j � 3N(")"+ 3�2(N1=2(")� 1)

+3�(kukp0;(a;b) + kvkp;(a;b))N1=2("):

Let "! 0+; then m� � N1=2(") + 2!1 and so �! 0+. Hence

lim sup
"!0+

N1=2(")j�p
Z b

a

juvjdt�N(")"j

� 3 lim sup
"!0+

N(")"+ 3 lim sup
"!0+

�2N1=2(")

+3 lim sup
"!0+

�N1=2(")(kukp0;(a;b) + kvkp;(a;b)):

Since lim"!0 "N(") = �p
R b
a
juvjdt; by Lemma 2.8, we �nally see, with the help

of Lemma 3.8, that
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lim sup
"!0+

N1=2(")j�p
Z b

a

juvj �N(")"j

� 3�p

Z b

a

juvjdt
+3c(p; p0)(ku0kp0=(p0+1);(a;b) + kv0kp=(p+1);(a;b))(kukp0;(a;b) + kvkp;(a;b));

as required. 2

Armed with this result it is now easy to give the promised remainder estimate

for the approximation numbers of T : L2(a; b)! L2(a; b) given by (1. 1).

Theorem 4.2 Let �1 � a < b � 1, suppose that u 2 Lp
0

(a; b), v 2 Lp(a; b)
and let u0 2 Lp0=(p0+1)(a; b) \ C((a; b)), v0 2 Lp=(p+1)(a; b) \ C((a; b)). Then

lim sup
n!1

n1=2

������p
Z b

a

juvjdt� nan

����� � 3�p

Z b

a

juvjdt

+3c(p; p0)(ku0kp0=(p0+1);(a;b)+kv0j)kp=(p+1);(a;b))(kukp0;(a;b)+kvkp;(a;b)):

Proof. Simply use Theorem 4.1, Lemma 2.7, Lemma 2.6 and the fact that

lim
n!1

n1=2an(T ) = 0:

2

If the interval (a; b) is bounded, it follows immediately from H�older's in-

equality that Theorem 4.2 gives rise to

Theorem 4.3 Let �1 < a < b <1 and suppose that u0; v0 2 C([a; b]). Then

lim sup
n!1

n1=2j�p
Z b

a

juvjdt� nanj

� 3�p

Z b

a

juvjdt+3c(p; p0)(b�a)(ku0kp0;(a;b)+kv0kp;(a;b))(kukp0;(a;b)+kvkp;(a;b)):

From the following observation we can see that any optimal exponent from

Theorem 4.2 has to belong to [1=2; 1].
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Observation 4.4 Let �1 � a < b �1.

(i) Let � < 1=2. Then for every u 2 Lp
0

(a; b), v 2 Lp(a; b) with u0 2
Lp

0=(p0+1)(a; b) \ C([a; b]), v0 2 Lp=(p+1)(a; b) \ C([a; b]) we have

lim sup
n!1

n�

������p
Z b

a

juvjdt� nan(T )

����� = 0:

(ii) Let � > 1. Then there exist a and b, and functions u and v satisfying

the conditions of Theorem 4.2 on the interval de�ned by a and b, such that

lim sup
n!1

n�

������p
Z b

a

juvjdt� nan(T )

����� =1:

Proof. (i) follows from (4. 6) on putting m� = [N�(")] or [N�(")] + 1.

(ii) Take (a; b) = (0; 1) and u = 1, v = 1 + x. Then from (4. 6), with

m� = [N�(")] a lower bound results which is unbounded as " ! 0 and the

result follows. 2
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