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Abstract

We consider a Hardy-type integral operator T : L?(a,b) — LP(a,b),
—00 < a < b < oo, which is defined by

(T () = v(a) / u(®)F(B)dt.

In papers [EEH1],|[EEH2] and [EHL2], upper and lower estimates and
asymptotic results were obtained for the approximation numbers a,(T")
of T. In case p = 2 for “nice” w and v these results were improved in
[EKL]. In this paper we extend these results for 1 < p < co by using a
new technique from [EHL2]. We will show that under suitable conditions

on u and v,

lim sup nl/?

n—oo

b
ap/ |u(t)v(t)|dt — nan(T)

< c(llwllp /41y + 10 o/ ) Ul + 110lln) + 3epfluvlls,

where ||wl||, = (fab lw(t)|Pdt)'/? and a, = A((0,1),1,1).
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1 Introduction.

In [EEH1] and [EEH2] the approximation numbers a,(T") of

T
Th@) =) [ uds@a (1)
0
as an operator from L?(R7T) to itself were studied. Here RT = (0,00), 1 < p <
00, and u,v are real-valued functions with u € Lf;c(Rﬂ, and v € LP(R1); as
usual, p’ = p/(p—1).
In [EEH1] it was shown that if T' is bounded from L?(R™) to itself, then to
each € > 0 there corresponds N(g) € N such that

an(e)+2(T) < <an)(T). (1. 2)

e

The estimate (1. 2) was improved in [EEH2], in which it was shown that

lim nan(T) = 1/000 u(t)o(t)]dt, (1. 3)

n—00 T

given certain restrictions on u and v. (For related results see also [NS].)

In [EHL2] it was showed that (1. 3) is true also for the Hardy-type operator
on trees and for 1 < p < co. For cases p = 1 and p = oo was found a similar
formula like (1. 3), see [EHL1] and [EHL2].

Further extensions were given in [LL] and [LMN] to deal with the cases in
which T is viewed as a map from L? to LY, for any p,q € [1, c0].

In paper [EKL] an estimate (1. 3) was improved in the case p = 2 (L? is the
Hilbert space and then it is simple to find the closes element from any closed
subspace). It was shown that under some conditions on u and v we have

lim sup n'/?
n— 00

1 rb
na,(T) — —/ |uv|
™ a

3
< 3V2(|[u'lags,r + 110'23,) (lullz,r + [[0]]2,r) + —llwolllL,

I being an arbitrary interval in R.



In the present paper we will extend this result to 1 < p < oo. Under
further conditions on u and v we get for the approximation numbers of the map
T :LP(I) — LP(I) the following estimates:

lim sup n'/
n—o00

b
2 na,(T) —ap/ |uv|
a

< 3e, ) 1l s 1)1 + 110" lp oy, ) (el 1+ N0]]p,1)
+3ay,||uv||1,1.

Thus,
an(T) = in/1|u(t)v(t)|dt+0(n—3/2);

™

and under the conditions which we impose, the exponent —3/2 cannot be much
improved. This is the first theorem of this kind which is covering the case p # 2
and it is surprising that there is the same power n'/2 for any 1 < p < co. We
do not know at the moment whether or not it is possible to show the existence
of a genuine second term in the expansion of a, (T"). Our results follow from the
systematic use of the function A introduced in [EHL1] together with techniques
based on those in [EEH2] and [EKL].

2 Preliminaries.

Throughout the paper we shall assume that —oo < a < b < oo and that
we L (a,b), ve LP(a,b) andu,v >0 on (a,b). (2. 1)

Under these restrictions on u and v it is well known (see, for example, [EEH1],
Theorem 1) that the norm ||T|| of the operator T' : L?(a,b) — LP(a,b) in (1. 1)

satisfies

1T ~ sup |[uX(a,e)llpr(a,6) 10X (2,5) I, (art) - (2. 2)

z€(a,b)

Here xs denotes the characteristic function of the set S and

1/p
[ fllpr = (/I|f(t)|pdt> , l<p<oo, IC(a,b).



Moreover, by Fy ~ F, we mean that C™'F; < F, < CF) for some positive
constant C' > 1 independent of any variables in Fy, F5 > 0.
Given any interval I = (¢,d) C (a,b), define

JUI) = sup [[uxe 10X @, s

A straightforward modification of Lemma 2.1 of [EHL1] shows that for any
d € (a,b), the function J((.,d)) is continuous and non-increasing on (a, d). Now,

for any z € I = (¢,d) C (a,b), set

T

(T1f) (&) = (@) () / u(t)x1(6)£ (1) dt.

a

Then the norm of the operator Ty : LP(I) — LP(I) satisfies
IT7[| ~ J(I).

We next introduce a function A which will play a key role in the paper.

Given I = (¢,d) C (a,b), set

A(I):= sup inf ||Tf—avl|pr.
I7llp.r=1 2€R ’

From (2. 1) it follows that 7" is a compact operator from L? into L? (see

[EGP] or [OK]) and then from [EHL2, Theorem 3.8] we have that
A(l) = inf ||To,ILP(I) — LP(D)],
T

where

T, =0 () [ oo,

Lemma 2.1 Let I = (c,d) C (a,b) and 1 < p < oo, then ||Ty, 1| LP(I) — LP(I)]|

1S continuous in x.
Proof. See Lemma 3.4 in [EHL2] and put I' = (a,b) and K =1. O

Lemma 2.2 Suppose that u and v satisfy (2. 1) and a < ¢ <d <b. Then:
1. The function A(.,d) is non-increasing and continuous on (a,d).
2. The function A(c,.) is non-decreasing and continuous on (c,b).

3. limy_,q, Aa,y) = limy_,,_ A(y,b) = 0.



Proof. The proof of 1 illustrates the techniques necessary to prove 2 and 3 also.
That A(.,d) is non-increasing is easy to see. To get the continuity, fix y € (a,d).
Then, there exists hg > 0 such that for 0 < h < hg

A‘D(y,d) S Ap(y - hv d)

= sup inf lvX (y—h.d) {/ w(t) f(t)X (y—h,a)(t)dt — 04} ||Z7(y_h,d)

1 lp. cy—nay=1 el <lwllpr (- hg,a) a
( )

= sup inf {Hv [/ wfX(y—n, dt—a} .
o 1@l ully cymno yon ) Py=hy)

. v
+ ||v [/ wfX(y,a)dt —a +/ ufdt} “z,(y,d)]
y

y—h

inf {QPIIU/ thX(yfh,y)dt“g,(yfh,y)

N Nl cy—n,ay=1 @IS lellpr (y—ng.a)
. y

+ 2pap||v||z,(y_h,y) + v {/ wfX(y,a)dt —a+ / ufdt} ”z,(y,d)}
< 2p”v”;(y*h,y)Hu”i’,(y*h,y) + 2p||u||g’,(y*ho7d)”v”;(y*h,y) + A%y, d).

IN

y y—h

It follows that
lim A(y — h,d) = A(y, d).

h—04

In the same way we see that
lim A(y + h,d) = A(y,d),
h—>0+

and now the proof is complete. O

Lemma 2.3 Suppose that T : LP(a,b) — LP(a,b) is compact. Let I = (c,d)
and J = (¢,d'") be subintervals of (a,b), with J C I, |J| > 0, |[I —J| > 0,
fab vP(z)dr < oo and u,v >0 on I. Then

A(I) > A(J) > 0. (2. 3)

Proof. Let 0 < f € LP(J), 0 < [|fllp,s < [[fllp,r < 1 with supp f C J. Let
y € J then
I T(er llp,s >0 and T(y,ayllp,s >0



and then from [EHL2, Lemma 3.5] we have

min{||Tr y)llp,s5 1 T(y,a)lp.s} < min T |lp,.s

which means A(J) > 0.

Next, let us suppose that ¢ = ¢ < d’ < d. By [EHL2, Theorem 3.8], there
exist ¢p € J and x1 € I such that A(J) = ||Ty,,7llp,0 and A(I) = ||Ty, 1llp,1-
Since u,v > 0 on I, it is then quite easy to see that x¢o € J° and x; € I°.

If g = x1, then, since u,v > 0 on I, we get
AL = Tz 1llp.r > ([ Tor 1llp.s = [|Toy,allp,0 = A(J).
If zg # x1, then
A(I) = 1Ty 1llp,r 2 1Ty 1llp,g 2 (1 Toy g llp,s > ([ Tao,sllp,s = A(T).

The case ¢ < ¢ < d' = d could be proved similarly and the case ¢ < ¢’ <

d'" < d follows from previous cases and the monotonicity of A(I). O

Remark 2.4 It follows from the continuity of A that for sufficiently smalle > 0
there is an a1, a < a1 < b, for which A(a1,b) = €. Indeed, since T is compact,
there exists a positive integer N () and points b = ap > a1 > ... > an) = a

with A(a;,a; 1) =¢,i=1,2,...,N(e) — 1 and A(a,an()-1) < €.

Lemma 2.5 The number N(¢) is a non-increasing function of € which takes

on every sufficiently large an integer value.

Proof. Fix ¢,a < ¢ < b. Then, (2. 3) ensures A(c,b) = g9 > 0. Moreover, as
observed in Remark 2.4, there is a positive integer N (eo) and a partition b =
ag > ai > ... > an(s,) = a such that A(a;,a;—1) =0, i =1,2,...,N(go) — 1
and A(a,an(,)-1) < €o- Let d € (ar,b). According to Lemma 2.3, A(d,b) =
€y < €o and the procedure outlined above applied to & gives oo > N(gp) >

N(eo) + 1. If N(gj,) = N(eo) + 1, we stop.



Otherwise, define
g1 =sup{e:0<e <egpand N(g) > N(eo) + 1}.

We claim N(e1) = N(eo) + 1. Indeed, suppose N(e1) > N(eo) + 2 and the
partition b = ap > a1 > ... > an(,) = a satisfies A(a;,a; 1) = €1,i =
1,2,...,N(e1) — 1 and A(a,an(,)-1) < €1- Decrease ay(,)—1 slightly to
a?v(gl) so that both A(a,a?v(gl)) < g1 and A(a’N(El),aN(El),l) > g1, contin-
uing the process to get a partition of (a,b) having N(e;) intervals such that
A(a,a?v(sl)) < ey and A(aj,ai_;) > e1,i=1,2,...,N(e1) — 1,a{, = b. Taking
€9 < miny<icn(s,)—1 A(aj,aj_;) we obtain g2 > £; and N(e2) > N(eo) + 2,
a contradiction. This establishes the claim.

An inductive argument completes the proof. O

The quantity N(e) is useful in the derivation of upper and lower estimates

for the approximation numbers of T'.

Lemma 2.6 For all € € (0,||T]]),

an(e)+2(T) < e <an(e)41(T).

Proof. This follows from [EHL2], Lemma 3.19 (put K = (a,b)).0

A version of this result, with a slightly different N(e), was first proved in
[EEH1] and was then extended in [EHL1]. For general u and v it is impossible
to find a simple relation between ¢ and N (), but by using the properties of A

the behavior of eN(¢) when € — 04 can be determined.

Lemma 2.7 Given v € L”(a,b), u € L? (a,b) we have

b
lim =N () = a, / lu(t)o(t)|dt.
6*}04, a

This result follows from an adaptation of the argument of [EHL2]; see, in
particular, Theorem 6.4 of that paper. Together with Lemma 2.6 this shows,

again using the techniques of [EHL2], that the following theorem holds.



Theorem 2.8 Given v € L?(a,b), u € L¥ (a,b) the operator T defined in (1.
1) satisfies

lim na,(T) = ap/ lu(t)v(t)|dt,

n—o0

where a = A((0,1),1,1).

A result of this type was established under weaker conditions on u and v in

[EHL2].

3 Technical results.
Here we give some results of a technical nature which will prove very useful in

the sequel. We begin with some information about the function A.

Lemma 3.1 Let I = (¢,d) C (a,b) and suppose that u and v are constant

functions over I. Then
AL u,v) = [I|ullv[A((0,1),1,1)
Proof. By definition,

A(Lu,v) = sup inf ITF —avllp,r/l|fllp.1
ferLr(I) o€

sup inf |jv </ ufdt—a) [|p.1
17llp.r <1 <€R "

jollul wplﬂH/fﬁ—Wn

[fllp, 1<

oljullZ]  sup iﬁH/fﬁ—MMQn
1115, 00,1y <1 aeR " Jo

Next, we investigate the dependence of A(I,u,v) on u and v.

Lemma 3.2 Let I = (¢,d) C (a,b) and suppose that v € LP(I) and uj,us €
L (I). Then

|A(L w1, v) = AL ug, v)| < lus = usllp rl[ollp,r-



Proof. Without loss of generality we may suppose that A(I,u1,v) > A(I,us,v).
Then

Al up,v) = sup inf |jv [/ (u1 — ua + u2) fdt — a] lIp,1
lI£]lp <1 ¥ER c
< sup inf [nv [ = )l
lI£]lp <1 ¥ER c
ot [ st - )l
c
< sup inf Iyl = uslly.s
1]lp.r <1 o€RLTT 8
ol [ wa = )l
(&
< llp,rllur — wallp 1 + AL uz,v).

The result follows. O

Lemma 3.3 Let I = (¢,d) C (a,b) and suppose that u € LP (I) and vy,vy €
L?(I). Then

|A(L, u,01) = AL,y 02)| < |ullp gllor = v2lp1-
Proof. We may suppose that A(I,u,v1) > A(I,u,vs). Then

Al u,v) = sup inf ||vg {/ ufdt—a} lp.1

I£llp <1 a€R

= sup inf [lvy [/ ufdt—a] lp.1
171l r<t lel <l ol fllo.r . p

o=ttt = all.

sup inf
1 £llp.r <t lal<llullyr 1

oot [ s - a]n,,,,]

< o = vallp,rllullpr + AL, u, 02).

The proof is complete. O
We now turn to the approximation of functions from L? and L? by step-

functions.



Suppose u € L? (a,b) and v € L?(a,b) and let o > 0. We define m, € N by
the following requirements:

There exist two step-functions, u, and v,, each with m, steps, say,
Uo(7) = ijXwa(j) (), Vo (T) 1= Zi/]ija(j) (z), (3. 1)
j=1 j=1

where {wq(j)}2 is a family of non-overlapping intervals covering (a, b), such

j=1
that for
ay = |[u = Uallpy (a,p) and ay = ||v = vallp,(a,b)

we have

(i)

max(ay, &) < a; (3. 2)

and

(i) for any step-functions !, , v, with less than m, steps, say n, steps,
No < My,

max(||u — uylly () 1V = V4 llp.(ap) > @

Thus, m, is the minimum number of steps needed to approximate u in v

and v in LP with the required accuracy. Note that, plainly,
e = vallp@p <@ v =vallpap < a

The best way to choose §; and 1); for given {wq}7 is by finding &; and 1;
such that:
/ Ju(t) — &P " sgn(u(t) — &)dt =0
we (%)
and

[, O =i senieto) — e =0

(see [S], Theorem 1.11).
It turns out that the relationship between a and m, is crucial for us; we

next address this matter.

10



Lemma 3.4 Suppose u € C(a,b) N L? (a,b) and v € C(a,b) N LP(a,b) , at
least one of them, say u, being non-constant. Then, when a decreases to 0, m,

increases to oo.

Proof. We show that given m € N there exists a > 0 having m, > m. The
fact that v is continuous and non-constant on (a,b) guarantees the existence
of pairwise disjoint subintervals I, I, ..., Is;, of (a,b) on each of which u is
non-constant.

! 1
. . . m _ P P .
Fix o > 0 satisfying 377 [[u — u,, ||p,71k]_ > aPf for every set of m intervals

from among I1, Iz, ..., Izm. Now, to any partition, {wa(j)}jL;, of (a,b) into m
non-overlapping subintervals there correspond I, , I,,. .., I, such that each

I}, is subset of some w, (i) and hence

m

’ 7
ZHU_UWQU p,wa Z u_uwa(j)HZ’,ij >ar.

Therefore my, > m. O

Lemma 3.5 Suppose u € C(a,b) N L¥ (a,b) and v € C(a,b) N LP(a,b), at least
one of them, say u, being non-constant. Fiz a > 0 and set A, = {$;0 < 8 <

a and mg = mq}. Then, A, is an interval with v = inf A, and v € A,.

Proof. Clearly, A, is nonempty, since @ € A,. Again, my,, > my, whenever
A1 < Az, s0 A, is convex and hence an interval, possibly equal to {a}.

It follows from Lemma 3.4 that v > 0. Now, if Ay = {a}, so that v = a,
we are done. Otherwise, there exists a sequence {a,} in A, with a, N\, 7. Let
Yo, = D5 Uy, () Xway (7) A0 Vo, = D20 Vs () Xuwa, ()5 @S i0 (3. 1), so
that

max(|lu = vay [l (a.0) [1V = Vau [lp,(a.p)) < n-
Assume the notation has been chosen to ensure the end points of w,, (j) =

(ch,di) satisfy a = ¢}, < dJ, < it <dMe =b,j=1,2,...,my — 1.

n»-'n

11



There exists a sequence n(k),k = 1,2,... of positive integers and numbers

e e, ...,cme db d?, ..., d™ such that

: J — H J — i s

hlgncn(k) =, hlrcndn(k) =d’, 7=12...,mq,
and

a=c <& <JIT < dme =, j=1,2,...,mg.

Observe that, setting
Ma Ma
Uy =Y U(er a5)X (el a9) and Uy =D V(er, )X ()
i=1 i=1
we have

max(||u = tyllp (0,6 1V = V3 11p.(a5) = Vs

which forces m, = mq. O

Lemma 3.6 Suppose that u € L¥ (a,b) N C(a,b) and v € LP(a,b) N C(a,b) are
not equal to zero on (a,b), indeed, assume at least one of u and v be non-constant
on (a,b). Then, there exists ag > 0 such that given any o, 0 < a < ay, there

exists a 3,0 < B < a, with mg =mqy + 1 or mg = mq + 2.

Proof. Say u is non-constant on (a,b). We take ag to be the positive distance
of u from the closed set {kxr;k € R,0 < |I| < oo} in L (a,b). Observe that
meq > 2 whenever 0 < a < ag.

Fix o,0 < @ < op. By Lemma 3.5, m, = m,, where v = inf A,. Hence,
m

., of (a,b) whose corresponding step functions,

there exists a partition {w,(j)};

Uy = D255 U, () Xuw, (5) A0 0y = 3772 Vo, ()X, (j)» SALESEY
max(|[u — vyl (a,0)5 1V = V5 1lp,(ap) =7

If |lu — uylly (ap) > |V = Vyllp,(a,p) then for some some jo, 1 < jo < Mg,

p’
||U - Uw~,(jo)||pf7w7(j0) > 0.

12



It is possible to find a point ¢ in the interval wy(jo) = (d, e) such that
llu — v, (jo)”z/,w7 Go) = llu— u(d,c)||z/7(d7c) + 1l = u(e,e) ||£r7(c7e)-
Let w’ly(.]) =w (.])7 .] = 1727"'7j0 - 17j0 + 17"'7m015 wfly(.]o) = (d,C) and

N
w’,(mqy + 1) = (c,e). Then, {w! (4) ;.n:"1+1 is a partition of (a,b) with associated

. ot atl
step functions u’, = E;n:1+ Uw! (5) Xw!, (5) and v, = ET:J Yuw! () Xw!, (5) such
that
max(|lu —ul [l (a,p)s [V = VL |lp,ap) = B <,

and so mg = mq, + 1.

Similarly, when [[v — vy ||, (a,0) > |t = tq[lp,(a,p), there is a 8 € (0,a) with
mg = mq + 1.

Suppose, then, |[v — v, ||y (a,p) = [|v — Uyl (ap) =7 > 0. As before, we can

find an interval wy (jo) = (do,€o0) and a point ¢o such that
llu — U’I.U'y(jo)||g”w7 (jo) > |lu— U(do,co) ||g/,(d0,00) + [Ju — U(co,en) ”g’,(Co,eo)’

and an interval w,(j1) = (di,c1) and a point ¢; such that

[l — vwv(ﬁ)”i,wﬂh) > [lo - v(d1701)||£,(d1,c1) + v - U(Chel)Hg,(cl,el)'

Now, if it is possible to have jo = j; and ¢y = ¢; we can get 8 € (0,«) with
mg = mq + 1. Otherwise, we can only conclude there is a 8 € (0, ) for which

mg is one of mq + 1 and mq +2. O

Lemma 3.7 Let —o0o < a < b < co and suppose that u' € L”’/(plﬂ)(a,b) N
C(a,b). For each small h > 0 define

1
TL= s Tivl T +hforiel,... [2/h?;
put J; = (a,b) N (z;,z541), 1 € 1,...,[2/h?].
Then
' /( ) R /( )
1P/ ("1 - 1 ) 10\ P /(P +1
[ wopro e = g > Vil o)

13



2/h2)
_ il () [P/ D)
lim ]Z:; [7i| min |u' ()] :

Proof. Simply use the definition of the integral. O

We are now prepared to establish an important estimate for lim sup,, 0, XMq.

Theorem 3.8 Suppose u € L” (a,b), v € LP(a,b) and u' € LP/¥'+V(a,b) N
C(a,b), v' € LP/®tV (q,b) N C(a,b). Then,

lim sup ama < @, 2) (1 1y /o +1),(asb) 1V lp/ ot 1), 00))-
a—04

Proof. The result is trivial if both u and v are constant so we assume that at
least one of them, say u, is not.

Given 3,0 < f < inf.er [lu—cl| (ap), let ws(i) = (a;,ai11), i =1,2,.. g,
be a partition of (a,b) satisfying

||’u’_uwﬁ(i)||p’,w5(i) :Ba 7::1727"'777’%_17

and [|u — Uy ()l pws ) < By 0 = ng. Fix A, 0 < A < 1, and define the [Ang]
points xj by the rule that if (a,b) is bounded, then

b—a

T :=a+ ——
/\ng

k, k=1,2,...,[Ang];

if (a,b) = (—00,00), then, with h = (2)'/2,
5

mlz—%, Tpy1 = Xk + h, k=1,2,...,[Ang];
for other types of intervals we proceed in the same sort of way.

From the union of the points ay,as, .. Sy + 1 and z1,zo, ... s T[Any]; aT-
range them in the ascending order and denote the resulting points by b;,j =
1,2,...,J(8) + 1, so that n% < J(B) < nf% + [An4]. Put I} = (bj,bj41),5 =
1,2,...,J(B). We observe there are at least nj — [Ang] intervals Ijﬁ with

I} = ws(i)

14



for some 7.

Now,
J(B) L J(B) o
Z | — U[B”p,/(g +1) < Z |I]B| max |u/ (z)|? /('+1)
= i P st zEIf

Again, setting N = #({j : I]-B = wg(i) for somei < nj}), we have N >
ng — [Ang] — 1 and

J(8)
pr'/e +1)(ng —[An¥] —1) < P /)N < Z | — qu”if,/I(g +1)
=1 ’
J(B) r r
< I [max [u () [P/ P,
i zel?
j=1 J
Thus, by Lemma 3.7,
b
lim sup 87/ +1) (n4 — [An]) < / |u! () [P/ PV d., (3. 3)
B—04 a

Similarly, if neither v is constant, there exists, for 0 < 8 < inf.cr |lv —

cllp,(a,p), & partition {wf(i)};7, such that

10 = v (i) lp,wr, iy = B, i=1,2,...,n% -1,
10 = v (i) lpwr i) < 655 i =nj,
and .
lim sup 87+ (n% — An]) < / ! (2) [P/ P+ . (3. 4)
B—04 a

Put o = max[(8* (ng+[\ng]))'/”", (87 (ns+[ns]))'/7], 0 < § < minfinfeer |lu—
cllp (a,p), infeer [[v = €llp (a,p)]; Where ng = nf + n} if v is not constant and
ng = nj if it is. Note that (3. 3) and (3. 4) imply o — 04 as 8 — 0.

Taking the refinement of the partition {I f }]Jg) and the analogous one for
v (if necessary) we get a partition of (a,b), of at most ng + [Ang] subintervals,

whose corresponding step-functions u, and v, satisfy

max(|[u = ually (), 10 = vallp )] < Bmax[(n§)'/?", (n5)"/7] < a.
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This means

mq < ng + [Ang];

hence

limsup(amgy) < limsup (amg)
a~>0+ 054)0+
+ lim sup (amy)
a~>0+
< limsup |87 (ng — [Ang])'/?’ (M)Upl
T B0y ng — [Ang]
/p
. ng + [Png]\'
+limsup | 8P (ng — [Ang])'/? <7
B0y [ s~ gl ns — [Ang]
< (hm sup [,Bpl (ng — [Ang])l/p’}
B—04
. + [Ang]
+ lim su P(ng — [Ang])'/P <n57
msup |5 (n ~ [ng) ]) T
! @' +1)/p r(p+1)/p (1+X)
< clp,p)(|lu ||pr/(pr+1)7(a7b) + |v ||p/(p+1),(a,b))

(1=

Since A may be chosen arbitrarily small, we obtain

lim sup ama < c(p, ') (14 [lp/(pr+1),(a,8) + 1Vl (91, (a,0))

a—04

as asserted. O

4 The Main theorem.

In this section we give the remainder estimate promised in the Introduction. To

begin, we prove

Theorem 4.1 Let —00 < a < b < oo, let u € LP (a,b), v € LP(a,b) and
suppose that u' € LP/®'+1 (a,b)NC([a,b]), v € LY/ P+ (a, )N C([a,b]). Then

lim sup
e—04

oy /b lu(t)o(t)|dt —eN ()| N*/2(e)
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< e, P )l /r+1),(ast) + 10 p o1, (anty) (Nellpr (o) + 1011, cat))
+3aplluv||i,(a,p)s

where a = A((0,1),1,1) and c(p,p’) is a constant depending only on p and p'.

Proof. Let a > 0. Then (see (3. 1) and (3. 2)) there are m, € N and

step-functions w4, v, such that
lua = ully (ap) < lva =vllp @) <

and {wa(j)};-”;l is a corresponding family of non-overlapping intervals which

cover (a,b). Plainly,

| / — wava)dt] < alllully (as) + ol an + ). (4. 1)

Let € > 0 be small and let {I; }N(E) be the non-overlapping intervals which occur
in the definition of N (¢).

Put J1 = {j;I; C wy(j) for some i}, Jo = {j;wa(j) C I; for some i}, J3 =
{Jiwa(§) € Ii ¢ wa(j), for all i}, Ly = {i;I; C wu(j) for some j} and Ly =
{i; for all j,I; ¢ wa(j)}. Then we see from Lemma 3.1 that

b
ap/a UaUadlt = Z Z Z ivjlwa(h)l

JjE€EJ1 jEJ2 jEJ3
Z A(Iiauaava)
i€l
+2 Z A(Iiauaava)

i€ Lo

+ 3 apitlwa)l. (4. 2)

JEJ2

IN

Lemmas 3.2, 3.3 as well as the estimates

apéiilwa(4)]

IN

A(wa(j)>uayva)

IN

A(wa (), u,v) + llu = tallp w. (7)1 = vallpwa )
FHlully waiyllv = vallpwa )

Fllu = vallpy wa () 10]lpwa ()

17



and A(wqa (f), u,v) < A(L;,u,v) < efor wy (j) C I; now show that the right-hand

side of (4. 2) may be estimated from above by

Z AL, u,v) + 2 Z AL, u,v) + emg
I; Cwa (5) Ligwa (5)
N(e)

£33 (lu = ually.r,
i=1

+u = vallp 1;

v = Vallp,r; + llullp i llv = vallp,r (4. 3)

Vllp,1;)
To proceed further, note that A(I;,u,v) < e,
#{i1 I C wa () for some j} < N(e)

and
#{i, for all ,I; & wa(j)} < mq.

It follows that

b
ap/ UqVqy
a

IN

N(e)e + 3mqe

N(e)

+3 Z (v = wallp 1
i=1

+u = wallp,1;

[v = vallp,z: + |ullp 1 llv = vallp,n

Vllp,z:)

< N(e)e +3mae + 20” + 20(|[ully () + [V]lp,ap)- (4 4)

On the other hand, since A(I;,u,v) = ¢ for 1 <i < N(¢) — 1 and N(e) —
2my < #{i;I; C w,y(j) for some j}, we see that

(N(e) —2my — 1)e

IN

Z A(L;,u,v)

I; Cwa (5)

Z AL, un, vy)

I; Cwa (5)

+ Z [A(T;,u,v) — A(L;, uq, vo)]

I; Cwa (j)

18



< D olhliglvl
I; Cwa (5)
+ Z (lv = wallp 1 1o = vallp,s;
I; Cwa (j)
FHlullp v = vallp,r; + [lu = wallp 1, )
b
< ap [ fuavaldt + a2+ allully o + 0l o)
a
b
< ap/ |uv|dt + 2a*
a

+2a(llully ap) + I0llp,(a,p)), (4. 5)

the final inequality following from (4. 1). Together with (4. 4) and (4. 1) this

shows that
e(N(e) - — 1) —20” = 2a(llully (a,p) + 1V]lp,(a0))
< ap/ |uv|dt (4. 6)
< e) + 3ma) + 30” + 3a(lullp a6y + V]lp,(ap))-

From Lemma 3.4 we can see that for any small € > 0, we can find o > 0

such that mq > [N'/?(¢)] > mq — 2. Then (4. 6) gives
b
N1/2(5)|ap/ luvldt — N(e)e] < 3N(e)e + 3> (NY2(e) — 1)
+3a(llully (a) + [0llp.(ap) N/ (E).-

Let £ — 04 ; then mq < N'/2(e) + 2 — 0o and so a — 0. Hence

b
lim sup N1/2(5)|ap/ |uv|dt — N (€)e]

54)0+

< 3limsup N (e)e + 3limsup > N/2(¢)

e—04 e—04
+3lim sup aN2 (&) (lully a.) + [1V]lp.(a.0)-
e—=04

Since lim._,oeN(g) = ayp f; |uv|dt, by Lemma 2.8, we finally see, with the help
of Lemma 3.8, that
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b
lim sup N1/2(5)|ap/ |uv| — N(e)e|
a

E—>0+

b
< 3ap/ |uv|dt

+3c(p, P (14l /(5 1), (as) + 101/ o1),a,0)) (1l a0y + 1011, carp))

as required. O
Armed with this result it is now easy to give the promised remainder estimate

for the approximation numbers of T : L?(a,b) — L*(a,b) given by (1. 1).

Theorem 4.2 Let —oo < a < b < 0o, suppose that u € LV’ (a,b), v € LP(a,b)
and let u' € LP/®'*+ (a,b) N C((a,b)), v' € L/ Pt1) (a,b) N C((a,b)). Then

lim sup n'/?
n—oo

b b
ap/ |uv|dt — na,| < 3ap/ |uv|dt
a a

+3c(p, ) (1t 1 /(5 1), (as0) F 1O Do/ (041 s (a,8)) (el () F VL, a,)) -

Proof. Simply use Theorem 4.1, Lemma 2.7, Lemma 2.6 and the fact that

lim n'/2a,(T) = 0.

n—o0

If the interval (a,b) is bounded, it follows immediately from Hoélder’s in-

equality that Theorem 4.2 gives rise to

Theorem 4.3 Let —0o < a < b < 0o and suppose that v',v" € C([a,b]). Then

b
limsupn1/2|ap/ |uv|dt — nay,|
a

n—o0

b
< 3%/ luv|dt+3c(p, p') (b—a) (|t || (a,0) F 1V 1, (a,0)) (N2l 7 a5y F 0, (a0))-

From the following observation we can see that any optimal exponent from

Theorem 4.2 has to belong to [1/2,1].

20



Observation 4.4 Let —00 < a < b < o0.
(i) Let o < 1/2. Then for every v € LP(a,b), v € LP(a,b) with u' €
LP'/@' ) (a,b) N C([a, b)), v' € LP/ PtV (a,b) N C([a,b]) we have

=0.

b
lim sup n® ap/ |luv|dt — na,(T)
a

n—o0

(ii) Let a > 1. Then there exist a and b, and functions u and v satisfying

the conditions of Theorem 4.2 on the interval defined by a and b, such that

lim sup n®
n—oo

= 0.

b
ap/ |uv|dt — na,(T)

Proof. (i) follows from (4. 6) on putting m, = [N*(¢)] or [N*(¢)] + 1.

(ii) Take (a,b) = (0,1) and w = 1, v = 1 + 2. Then from (4. 6), with
mq = [N%(e)] a lower bound results which is unbounded as ¢ — 0 and the
result follows. O
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