Improved estimates for the approximation

 numbers of Hardy-type operatorsJ. Lang

February 18, 2002

Abstract

We consider a Hardy-type integral operator $T: L^{p}(a, b) \rightarrow L^{p}(a, b)$, $-\infty \leq a<b \leq \infty$, which is defined by $$
(T f)(x)=v(x) \int_{a}^{x} u(t) f(t) d t
$$

In papers [EEH1],[EEH2] and [EHL2], upper and lower estimates and asymptotic results were obtained for the approximation numbers $a_{n}(T)$ of T. In case $p=2$ for "nice" u and v these results were improved in [EKL]. In this paper we extend these results for $1<p<\infty$ by using a new technique from [EHL2]. We will show that under suitable conditions on u and v, $$
\begin{aligned} & \limsup _{n \rightarrow \infty} n^{1 / 2}\left|\alpha_{p} \int_{a}^{b}\right| u(t) v(t)\left|d t-n a_{n}(T)\right| \\ & \quad \leq c\left(\left\|u^{\prime}\right\|_{p^{\prime} /\left(p^{\prime}+1\right)}+\left\|v^{\prime}\right\|_{p /(p+1)}\right)\left(\|u\|_{p^{\prime}}+\|v\|_{p}\right)+3 \alpha_{p}\|u v\|_{1} \end{aligned}
$$ where $\|w\|_{p}=\left(\int_{a}^{b}|w(t)|^{p} d t\right)^{1 / p}$ and $\alpha_{p}=A((0,1), 1,1)$.

2000 Mathematics Subject Classification : 47G10, 47B10

1 Introduction.

In [EEH1] and [EEH2] the approximation numbers $a_{n}(T)$ of

$$
\begin{equation*}
(T f)(x)=v(x) \int_{0}^{x} u(t) f(t) d t \tag{1.1}
\end{equation*}
$$

as an operator from $L^{p}\left(\mathbf{R}^{+}\right)$to itself were studied. Here $\mathbf{R}^{+}=(0, \infty), 1<p<$ ∞, and u, v are real-valued functions with $u \in L_{l o c}^{p^{\prime}}\left(\mathbf{R}^{+}\right)$, and $v \in L^{p}\left(\mathbf{R}^{+}\right)$; as usual, $p^{\prime}=p /(p-1)$.

In [EEH1] it was shown that if T is bounded from $L^{2}\left(\mathbf{R}^{+}\right)$to itself, then to each $\varepsilon>0$ there corresponds $N(\varepsilon) \in \mathbf{N}$ such that

$$
\begin{equation*}
a_{N(\varepsilon)+2}(T) \leq \frac{\varepsilon}{\sqrt{2}} \leq a_{N(\varepsilon)}(T) \tag{1.2}
\end{equation*}
$$

The estimate (1.2) was improved in [EEH2], in which it was shown that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n a_{n}(T)=\frac{1}{\pi} \int_{0}^{\infty}|u(t) v(t)| d t \tag{1.3}
\end{equation*}
$$

given certain restrictions on u and v. (For related results see also [NS].)
In [EHL2] it was showed that (1.3) is true also for the Hardy-type operator on trees and for $1<p<\infty$. For cases $p=1$ and $p=\infty$ was found a similar formula like (1. 3), see [EHL1] and [EHL2].

Further extensions were given in [LL] and [LMN] to deal with the cases in which T is viewed as a map from L^{p} to L^{q}, for any $p, q \in[1, \infty]$.

In paper [EKL] an estimate (1.3) was improved in the case $p=2\left(L^{2}\right.$ is the Hilbert space and then it is simple to find the closes element from any closed subspace). It was shown that under some conditions on u and v we have

$$
\begin{aligned}
& \limsup _{n \rightarrow \infty} n^{1 / 2}\left|n a_{n}(T)-\frac{1}{\pi} \int_{a}^{b}\right| u v| | \\
& \quad \leq 3 \sqrt{2}\left(\left\|u^{\prime}\right\|_{2 / 3, I}+\left\|v^{\prime}\right\|_{2 / 3, I}\right)\left(\|u\|_{2, I}+\|v\|_{2, I}\right)+\frac{3}{\pi}\|u v\|_{1, I}
\end{aligned}
$$

I being an arbitrary interval in \mathbf{R}.

In the present paper we will extend this result to $1<p<\infty$. Under further conditions on u and v we get for the approximation numbers of the map $T: L^{p}(I) \rightarrow L^{p}(I)$ the following estimates:

$$
\begin{gathered}
\limsup _{n \rightarrow \infty} n^{1 / 2}\left|n a_{n}(T)-\alpha_{p} \int_{a}^{b}\right| u v| | \\
\leq 3 c\left(p, p^{\prime}\right)\left(\left\|u^{\prime}\right\|_{p^{\prime} /\left(p^{\prime}+1\right), I}+\left\|v^{\prime}\right\|_{p /(p+1), I}\right)\left(\|u\|_{p^{\prime}, I}+\|v\|_{p, I}\right) \\
+3 \alpha_{p}\|u v\|_{1, I}
\end{gathered}
$$

Thus,

$$
a_{n}(T)=\frac{1}{\pi n} \int_{I}|u(t) v(t)| d t+O\left(n^{-3 / 2}\right)
$$

and under the conditions which we impose, the exponent $-3 / 2$ cannot be much improved. This is the first theorem of this kind which is covering the case $p \neq 2$ and it is surprising that there is the same power $n^{1 / 2}$ for any $1<p<\infty$. We do not know at the moment whether or not it is possible to show the existence of a genuine second term in the expansion of $a_{n}(T)$. Our results follow from the systematic use of the function A introduced in [EHL1] together with techniques based on those in [EEH2] and [EKL].

2 Preliminaries.

Throughout the paper we shall assume that $-\infty \leq a<b \leq \infty$ and that

$$
\begin{equation*}
u \in L^{p^{\prime}}(a, b), \quad v \in L^{p}(a, b) \quad \text { and } u, v>0 \text { on }(a, b) \tag{2.1}
\end{equation*}
$$

Under these restrictions on u and v it is well known (see, for example, [EEH1], Theorem 1) that the norm $\|T\|$ of the operator $T: L^{p}(a, b) \rightarrow L^{p}(a, b)$ in (1. 1) satisfies

$$
\begin{equation*}
\|T\| \sim \sup _{x \in(a, b)}\left\|u \chi_{(a, x)}\right\|_{p^{\prime},(a, b)}\left\|v \chi_{(x, b)}\right\|_{p,(a, b)} \tag{2.2}
\end{equation*}
$$

Here χ_{S} denotes the characteristic function of the set S and

$$
\|f\|_{p, I}=\left(\int_{I}|f(t)|^{p} d t\right)^{1 / p}, \quad 1<p<\infty, \quad I \subset(a, b)
$$

Moreover, by $F_{1} \sim F_{2}$ we mean that $C^{-1} F_{1} \leq F_{2} \leq C F_{1}$ for some positive constant $C \geq 1$ independent of any variables in $F_{1}, F_{2} \geq 0$.

Given any interval $I=(c, d) \subset(a, b)$, define

$$
J(I)=\sup _{x \in I}\left\|u \chi_{(c, x)}\right\|_{p^{\prime}, I}\left\|v \chi_{(x, d)}\right\|_{p, I}
$$

A straightforward modification of Lemma 2.1 of [EHL1] shows that for any $d \in(a, b)$, the function $J((., d))$ is continuous and non-increasing on (a, d). Now, for any $x \in I=(c, d) \subset(a, b)$, set

$$
\left(T_{I} f\right)(x)=v(x) \chi_{I}(x) \int_{a}^{x} u(t) \chi_{I}(t) f(t) d t
$$

Then the norm of the operator $T_{I}: L^{p}(I) \rightarrow L^{p}(I)$ satisfies

$$
\left\|T_{I}\right\| \sim J(I)
$$

We next introduce a function A which will play a key role in the paper. Given $I=(c, d) \subset(a, b)$, set

$$
A(I):=\sup _{\|f\|_{p, I}=1} \inf _{\alpha \in \mathbf{R}}\|T f-\alpha v\|_{p, I} .
$$

From (2. 1) it follows that T is a compact operator from L^{p} into L^{p} (see [EGP] or [OK]) and then from [EHL2, Theorem 3.8] we have that

$$
A(I)=\inf _{x \in I}\left\|T_{x, I} \mid L^{p}(I) \rightarrow L^{p}(I)\right\|
$$

where

$$
T_{x, I} f(.):=v(.) \chi_{I}(.) \int_{x} v(t) \chi_{I}(t) d t
$$

Lemma 2.1 Let $I=(c, d) \subset(a, b)$ and $1 \leq p \leq \infty$, then $\left\|T_{x, I} \mid L^{p}(I) \rightarrow L^{p}(I)\right\|$ is continuous in x.

Proof. See Lemma 3.4 in [EHL2] and put $\Gamma=(a, b)$ and $K=I$.
Lemma 2.2 Suppose that u and v satisfy (2. 1) and $a \leq c<d \leq b$. Then:

1. The function $A(., d)$ is non-increasing and continuous on (a, d).
2. The function $A(c,$.$) is non-decreasing and continuous on (c, b)$.
3. $\lim _{y \rightarrow a_{+}} A(a, y)=\lim _{y \rightarrow b_{-}} A(y, b)=0$.

Proof. The proof of 1 illustrates the techniques necessary to prove 2 and 3 also.
That $A(., d)$ is non-increasing is easy to see. To get the continuity, fix $y \in(a, d)$.
Then, there exists $h_{0}>0$ such that for $0<h<h_{0}$

$$
\begin{aligned}
& A^{p}(y, d) \leq A^{p}(y-h, d) \\
= & \sup _{\|f\|_{p,(y-h, d)}=1} \inf _{|\alpha| \leq\|u\|_{p^{\prime},\left(y-h_{0}, d\right)}}\left\|v \chi_{(y-h, d)}\left[\int_{a}^{\cdot} u(t) f(t) \chi_{(y-h, d)}(t) d t-\alpha\right]\right\|_{p,(y-h, d)}^{p} \\
= & \sup _{\|f\|_{p,(y-h, d)}=1}|\alpha| \leq\|u\|_{p^{\prime},\left(y-h_{0}, d\right)} \\
& +\left\|v\left[\int_{y-h}^{\cdot} u f \chi_{(y-h, y)} d t-\alpha\right]\right\|_{p,(y-h, y)}^{p} \\
& \left.\left.\| \int_{y}^{\cdot} u f \chi_{(y, d)} d t-\alpha+\int_{y-h}^{y} u f d t\right] \|_{p,(y, d)}^{p}\right] \\
\leq & \sup _{\|f\|_{p,(y-h, d)}=1}|\alpha| \leq\|u\|_{p^{\prime},\left(y-h_{0}, d\right)}\left[2^{p}\left\|v \int_{y-h}^{\cdot} u f \chi_{(y-h, y)} d t\right\|_{p,(y-h, y)}^{p}\right. \\
& \left.+2^{p} \alpha^{p}\|v\|_{p,(y-h, y)}^{p}+\left\|v\left[\int_{y}^{\cdot} u f \chi_{(y, d)} d t-\alpha+\int_{y-h}^{y} u f d t\right]\right\|_{p,(y, d)}^{p}\right] \\
\leq & 2^{p}\|v\|_{p,(y-h, y)}^{p}\|u\|_{p^{\prime},(y-h, y)}^{p}+2^{p}\|u\|_{p^{\prime},\left(y-h_{0}, d\right)}^{p}\|v\|_{p,(y-h, y)}^{p}+A^{p}(y, d) .
\end{aligned}
$$

It follows that

$$
\lim _{h \rightarrow 0_{+}} A(y-h, d)=A(y, d)
$$

In the same way we see that

$$
\lim _{h \rightarrow 0_{+}} A(y+h, d)=A(y, d)
$$

and now the proof is complete.

Lemma 2.3 Suppose that $T: L^{p}(a, b) \rightarrow L^{p}(a, b)$ is compact. Let $I=(c, d)$ and $J=\left(c^{\prime}, d^{\prime}\right)$ be subintervals of (a, b), with $J \subset I,|J|>0,|I-J|>0$, $\int_{a}^{b} v^{p}(x) d x<\infty$ and $u, v>0$ on I. Then

$$
\begin{equation*}
A(I)>A(J)>0 \tag{2.3}
\end{equation*}
$$

Proof. Let $0 \leq f \in L^{p}(J), 0<\|f\|_{p, J} \leq\|f\|_{p, I} \leq 1$ with $\operatorname{supp} f \subset J$. Let $y \in J$ then

$$
\left\|T_{\left(c^{\prime}, y\right)}\right\|_{p, J}>0 \quad \text { and } \quad\left\|T_{\left(y, d^{\prime}\right)}\right\|_{p, J}>0
$$

and then from [EHL2, Lemma 3.5] we have

$$
\min \left\{\left\|T_{\left(c^{\prime}, y\right)}\right\|_{p, J},\left\|T_{\left(y, d^{\prime}\right)}\right\|_{p, J}\right\} \leq \min _{x \in J}\left\|T_{x, J}\right\|_{p, J}
$$

which means $A(J)>0$.
Next, let us suppose that $c=c^{\prime}<d^{\prime}<d$. By [EHL2, Theorem 3.8], there exist $x_{0} \in J$ and $x_{1} \in I$ such that $A(J)=\left\|T_{x_{0}, J}\right\|_{p, J}$ and $A(I)=\left\|T_{x_{1}, I}\right\|_{p, I}$. Since $u, v>0$ on I, it is then quite easy to see that $x_{0} \in J^{o}$ and $x_{1} \in I^{o}$.

If $x_{0}=x_{1}$, then, since $u, v>0$ on I, we get

$$
A(I)=\left\|T_{x_{1}, I}\right\|_{p, I}>\left\|T_{x_{1}, I}\right\|_{p, J}=\left\|T_{x_{1}, J}\right\|_{p, J}=A(J)
$$

If $x_{0} \neq x_{1}$, then

$$
A(I)=\left\|T_{x_{1}, I}\right\|_{p, I} \geq\left\|T_{x_{1}, I}\right\|_{p, J} \geq\left\|T_{x_{1}, J}\right\|_{p, J}>\left\|T_{x_{0}, J}\right\|_{p, J}=A(J)
$$

The case $c<c^{\prime}<d^{\prime}=d$ could be proved similarly and the case $c<c^{\prime}<$ $d^{\prime}<d$ follows from previous cases and the monotonicity of $A(I)$.

Remark 2.4 It follows from the continuity of A that for sufficiently small $\varepsilon>0$ there is an $a_{1}, a<a_{1}<b$, for which $A\left(a_{1}, b\right)=\varepsilon$. Indeed, since T is compact, there exists a positive integer $N(\varepsilon)$ and points $b=a_{0}>a_{1}>\ldots>a_{N(\varepsilon)}=a$ with $A\left(a_{i}, a_{i-1}\right)=\varepsilon, i=1,2, \ldots, N(\varepsilon)-1$ and $A\left(a, a_{N(\varepsilon)-1}\right) \leq \varepsilon$.

Lemma 2.5 The number $N(\varepsilon)$ is a non-increasing function of ε which takes on every sufficiently large an integer value.

Proof. Fix $c, a<c<b$. Then, (2. 3) ensures $A(c, b)=\varepsilon_{0}>0$. Moreover, as observed in Remark 2.4, there is a positive integer $N\left(\varepsilon_{0}\right)$ and a partition $b=$ $a_{0}>a_{1}>\ldots>a_{N\left(\varepsilon_{0}\right)}=a$ such that $A\left(a_{i}, a_{i-1}\right)=\varepsilon_{0}, i=1,2, \ldots, N\left(\varepsilon_{0}\right)-1$ and $A\left(a, a_{N\left(\varepsilon_{0}\right)-1}\right) \leq \varepsilon_{0}$. Let $d \in\left(a_{1}, b\right)$. According to Lemma 2.3, $A(d, b)=$ $\varepsilon_{0}^{\prime}<\varepsilon_{0}$ and the procedure outlined above applied to ε_{0}^{\prime} gives $\infty>N\left(\varepsilon_{0}^{\prime}\right) \geq$ $N\left(\varepsilon_{0}\right)+1$. If $N\left(\varepsilon_{0}^{\prime}\right)=N\left(\varepsilon_{0}\right)+1$, we stop.

Otherwise, define

$$
\varepsilon_{1}=\sup \left\{\varepsilon: 0<\varepsilon<\varepsilon_{0} \text { and } N(\varepsilon) \geq N\left(\varepsilon_{0}\right)+1\right\}
$$

We claim $N\left(\varepsilon_{1}\right)=N\left(\varepsilon_{0}\right)+1$. Indeed, suppose $N\left(\varepsilon_{1}\right) \geq N\left(\varepsilon_{0}\right)+2$ and the partition $b=a_{0}>a_{1}>\ldots>a_{N\left(\varepsilon_{1}\right)}=a$ satisfies $A\left(a_{i}, a_{i-1}\right)=\varepsilon_{1}, i=$ $1,2, \ldots, N\left(\varepsilon_{1}\right)-1$ and $A\left(a, a_{N\left(\varepsilon_{1}\right)-1}\right) \leq \varepsilon_{1}$. Decrease $a_{N\left(\varepsilon_{1}\right)-1}$ slightly to $a_{N\left(\varepsilon_{1}\right)}^{\prime}$ so that both $A\left(a, a_{N\left(\varepsilon_{1}\right)}^{\prime}\right)<\varepsilon_{1}$ and $A\left(a_{N\left(\varepsilon_{1}\right)}^{\prime}, a_{N\left(\varepsilon_{1}\right)-1}\right)>\varepsilon_{1}$, continuing the process to get a partition of (a, b) having $N\left(\varepsilon_{1}\right)$ intervals such that $A\left(a, a_{N\left(\varepsilon_{1}\right)}^{\prime}\right)<\varepsilon_{1}$ and $A\left(a_{i}^{\prime}, a_{i-1}^{\prime}\right)>\varepsilon_{1}, i=1,2, \ldots, N\left(\varepsilon_{1}\right)-1, a_{0}^{\prime}=b$. Taking $\varepsilon_{2} \leq \min _{2 \leq i \leq N\left(\varepsilon_{1}\right)-1} A\left(a_{i}^{\prime}, a_{i-1}^{\prime}\right)$ we obtain $\varepsilon_{2}>\varepsilon_{1}$ and $N\left(\varepsilon_{2}\right) \geq N\left(\varepsilon_{0}\right)+2$, a contradiction. This establishes the claim.

An inductive argument completes the proof.
The quantity $N(\varepsilon)$ is useful in the derivation of upper and lower estimates for the approximation numbers of T.

Lemma 2.6 For all $\varepsilon \in(0,\|T\|)$,

$$
a_{N(\varepsilon)+2}(T) \leq \varepsilon \leq a_{N(\varepsilon)+1}(T)
$$

Proof. This follows from [EHL2], Lemma 3.19 (put $K=(a, b)$). \square
A version of this result, with a slightly different $N(\varepsilon)$, was first proved in [EEH1] and was then extended in [EHL1]. For general u and v it is impossible to find a simple relation between ε and $N(\varepsilon)$, but by using the properties of A the behavior of $\varepsilon N(\varepsilon)$ when $\varepsilon \rightarrow 0_{+}$can be determined.

Lemma 2.7 Given $v \in L^{p}(a, b), u \in L^{p^{\prime}}(a, b)$ we have

$$
\lim _{\varepsilon \rightarrow 0_{+}} \varepsilon N(\varepsilon)=\alpha_{p} \int_{a}^{b}|u(t) v(t)| d t
$$

This result follows from an adaptation of the argument of [EHL2]; see, in particular, Theorem 6.4 of that paper. Together with Lemma 2.6 this shows, again using the techniques of [EHL2], that the following theorem holds.

Theorem 2.8 Given $v \in L^{p}(a, b), u \in L^{p^{\prime}}(a, b)$ the operator T defined in (1. 1) satisfies

$$
\lim _{n \rightarrow \infty} n a_{n}(T)=\alpha_{p} \int_{a}^{b}|u(t) v(t)| d t
$$

where $\alpha_{p}=A((0,1), 1,1)$.
A result of this type was established under weaker conditions on u and v in [EHL2].

3 Technical results.

Here we give some results of a technical nature which will prove very useful in the sequel. We begin with some information about the function A.

Lemma 3.1 Let $I=(c, d) \subseteq(a, b)$ and suppose that u and v are constant functions over I. Then

$$
A(I, u, v)=|I||u||v| A((0,1), 1,1)
$$

Proof. By definition,

$$
\begin{aligned}
A(I, u, v) & =\sup _{f \in L^{p}(I)} \inf _{\alpha \in \mathbf{R}}\|T f-\alpha v\|_{p, I} /\|f\|_{p, I} \\
& =\sup _{\|f\|_{p, I} \leq 1} \inf _{\alpha \in \mathbf{R}}\left\|v\left(\int_{c}^{\cdot} u f d t-\alpha\right)\right\|_{p, I} \\
& =\left|v\left\|u \mid \sup _{\|f\|_{p, I} \leq 1} \inf _{\alpha \in \mathbf{R}}\right\| \int_{c}^{\cdot} f d t-\alpha \|_{p, I}\right. \\
& =|v\|u\| I|_{\|f\|_{p,(0,1)} \leq 1} \sup _{\alpha \in \mathbf{R}} \inf _{\alpha}\left\|\int_{0}^{\cdot} f d t-\alpha\right\|_{p,(0,1)}
\end{aligned}
$$

Next, we investigate the dependence of $A(I, u, v)$ on u and v.
Lemma 3.2 Let $I=(c, d) \subset(a, b)$ and suppose that $v \in L^{p}(I)$ and $u_{1}, u_{2} \in$ $L^{p^{\prime}}(I)$. Then

$$
\left|A\left(I, u_{1}, v\right)-A\left(I, u_{2}, v\right)\right| \leq\left\|u_{1}-u_{2}\right\|_{p^{\prime}, I}\|v\|_{p, I}
$$

Proof. Without loss of generality we may suppose that $A\left(I, u_{1}, v\right) \geq A\left(I, u_{2}, v\right)$.
Then

$$
\begin{aligned}
A\left(I, u_{1}, v\right)= & \sup _{\|f\|_{p, I} \leq 1} \inf _{\alpha \in \mathbf{R}}\left\|v\left[\int_{c}^{\cdot}\left(u_{1}-u_{2}+u_{2}\right) f d t-\alpha\right]\right\|_{p, I} \\
\leq & \sup _{\|f\|_{p, I} \leq 1} \inf _{\alpha \in \mathbf{R}}\left[\left\|v \int_{c}^{\cdot}\left(u_{1}-u_{2}\right) f d t\right\|_{p, I}\right. \\
& \left.\quad+\left\|v\left(\int_{c}^{\cdot} u_{2} f d t-\alpha\right)\right\|_{p, I}\right] \\
\leq & \sup _{\| \|_{p, I} \leq 1} \inf _{\alpha \in \mathbf{R}}\left[\|v\|_{p, I}\left\|u_{1}-u_{2}\right\|_{p^{\prime}, I}\right. \\
& \left.\quad+\left\|v\left(\int_{c}^{\cdot} u_{2} f-\alpha\right)\right\|_{p, I}\right] \\
\leq & \|v\|_{p, I}\left\|u_{1}-u_{2}\right\|_{p^{\prime}, I}+A\left(I, u_{2}, v\right)
\end{aligned}
$$

The result follows.

Lemma 3.3 Let $I=(c, d) \subset(a, b)$ and suppose that $u \in L^{p^{\prime}}(I)$ and $v_{1}, v_{2} \in$ $L^{p}(I)$. Then

$$
\left|A\left(I, u, v_{1}\right)-A\left(I, u, v_{2}\right)\right| \leq\|u\|_{p^{\prime}, I}\left\|v_{1}-v_{2}\right\|_{p, I}
$$

Proof. We may suppose that $A\left(I, u, v_{1}\right) \geq A\left(I, u, v_{2}\right)$. Then

$$
\begin{aligned}
A\left(I, u, v_{1}\right)= & \sup _{\|f\|_{p, I} \leq 1} \inf _{\alpha \in \mathbf{R}}\left\|v_{1}\left[\int_{c}^{\cdot} u f d t-\alpha\right]\right\|_{p, I} \\
= & \sup _{\|f\|_{p, I} \leq 1} \inf _{|\alpha| \leq\|u\|_{p^{\prime}, I}\|f\|_{p, I}}\left\|v_{1}\left[\int_{c}^{\cdot} u f d t-\alpha\right]\right\|_{p, I} \\
\leq & \sup _{\|f\|_{p, I} \leq 1} \inf _{|\alpha| \leq\|u\|_{p^{\prime}, I}}\left[\left\|\left(v_{1}-v_{2}\right)\left[\int_{c}^{\cdot} u f d t-\alpha\right]\right\|_{p, I}\right. \\
& \left.\quad+\left\|v_{2}\left[\int_{c}^{\cdot} u f d t-\alpha\right]\right\|_{p, I}\right] \\
\leq & \left\|v_{1}-v_{2}\right\|_{p, I}\|u\|_{p^{\prime}, I}+A\left(I, u, v_{2}\right) .
\end{aligned}
$$

The proof is complete.
We now turn to the approximation of functions from L^{p} and $L^{p^{\prime}}$ by stepfunctions.

Suppose $u \in L^{p^{\prime}}(a, b)$ and $v \in L^{p}(a, b)$ and let $\alpha>0$. We define $m_{\alpha} \in \mathbf{N}$ by the following requirements:

There exist two step-functions, u_{α} and v_{α}, each with m_{α} steps, say,

$$
\begin{equation*}
u_{\alpha}(x):=\sum_{j=1}^{m_{\alpha}} \xi_{j} \chi_{w_{\alpha}(j)}(x), \quad v_{\alpha}(x):=\sum_{j=1}^{m_{\alpha}} \psi_{j} \chi_{w_{\alpha}(j)}(x) \tag{3.1}
\end{equation*}
$$

where $\left\{w_{\alpha}(j)\right\}_{j=1}^{m_{\alpha}}$ is a family of non-overlapping intervals covering (a, b), such that for

$$
\alpha_{u}:=\left\|u-u_{\alpha}\right\|_{p^{\prime},(a, b)} \quad \text { and } \quad \alpha_{v}:=\left\|v-v_{\alpha}\right\|_{p,(a, b)}
$$

we have
(i)

$$
\begin{equation*}
\max \left(\alpha_{u}, \alpha_{v}\right) \leq \alpha \tag{3.2}
\end{equation*}
$$

and
(ii) for any step-functions $u_{\alpha}^{\prime}, v_{\alpha}^{\prime}$ with less than m_{α} steps, say n_{α} steps, $n_{\alpha}<m_{\alpha}$,

$$
\max \left(\left\|u-u_{\alpha}^{\prime}\right\|_{p^{\prime},(a, b)},\left\|v-v_{\alpha}^{\prime}\right\|_{p,(a, b)}\right)>\alpha
$$

Thus, m_{α} is the minimum number of steps needed to approximate u in $L^{p^{\prime}}$ and v in L^{p} with the required accuracy. Note that, plainly,

$$
\left\|u-u_{\alpha}\right\|_{p^{\prime},(a, b)} \leq \alpha, \quad\left\|v-v_{\alpha}\right\|_{p,(a, b)} \leq \alpha
$$

The best way to choose ξ_{i} and ψ_{i} for given $\left\{w_{\alpha}\right\}_{j=1}^{m_{\alpha}}$ is by finding ξ_{i} and ψ_{i} such that:

$$
\int_{w_{\alpha}(i)}\left|u(t)-\xi_{i}\right|^{p^{\prime}-1} \operatorname{sgn}\left(u(t)-\xi_{i}\right) d t=0
$$

and

$$
\int_{w_{\alpha}(i)}\left|v(t)-\psi_{i}\right|^{p-1} \operatorname{sgn}\left(v(t)-\psi_{i}\right) d t=0
$$

(see [S], Theorem 1.11).
It turns out that the relationship between α and m_{α} is crucial for us; we next address this matter.

Lemma 3.4 Suppose $u \in C(a, b) \cap L^{p^{\prime}}(a, b)$ and $v \in C(a, b) \cap L^{p}(a, b)$, at least one of them, say u, being non-constant. Then, when α decreases to $0, m_{\alpha}$ increases to ∞.

Proof. We show that given $m \in N$ there exists $\alpha>0$ having $m_{\alpha}>m$. The fact that u is continuous and non-constant on (a, b) guarantees the existence of pairwise disjoint subintervals $I_{1}, I_{2}, \ldots, I_{2 m}$ of (a, b) on each of which u is non-constant.

Fix $\alpha>0$ satisfying $\sum_{j=1}^{m}\left\|u-u_{I_{k_{j}}}\right\|_{p^{\prime}, I_{k_{j}}}^{p^{\prime}}>\alpha^{p^{\prime}}$ for every set of m intervals from among $I_{1}, I_{2}, \ldots, I_{2 m}$. Now, to any partition, $\left\{w_{\alpha}(j)\right\}_{j=1}^{m}$, of (a, b) into m non-overlapping subintervals there correspond $I_{k_{1}}, I_{k_{2}}, \ldots, I_{k_{m}}$ such that each $I_{k_{j}}$ is subset of some $w_{\alpha}(i)$ and hence

$$
\sum_{j=1}^{m}\left\|u-u_{w_{\alpha}(j)}\right\|_{p^{\prime}, w_{\alpha}(j)}^{p^{\prime^{\prime}}} \geq \sum_{j=1}^{m}\left\|u-u_{w_{\alpha}(j)}\right\|_{p^{\prime}, I_{k_{j}}}^{p^{\prime}}>\alpha^{p^{\prime}} .
$$

Therefore $m_{\alpha}>m$.

Lemma 3.5 Suppose $u \in C(a, b) \cap L^{p^{\prime}}(a, b)$ and $v \in C(a, b) \cap L^{p}(a, b)$, at least one of them, say u, being non-constant. Fix $\alpha>0$ and set $\Lambda_{\alpha}=\{\beta ; 0<\beta \leq$ α and $\left.m_{\beta}=m_{\alpha}\right\}$. Then, Λ_{α} is an interval with $\gamma=\inf \Lambda_{\alpha}$ and $\gamma \in \Lambda_{\alpha}$.

Proof. Clearly, Λ_{α} is nonempty, since $\alpha \in \Lambda_{\alpha}$. Again, $m_{\lambda_{1}} \geq m_{\lambda_{2}}$ whenever $\lambda_{1}<\lambda_{2}$, so Λ_{α} is convex and hence an interval, possibly equal to $\{\alpha\}$.

It follows from Lemma 3.4 that $\gamma>0$. Now, if $\Lambda_{\lambda}=\{\alpha\}$, so that $\gamma=\alpha$, we are done. Otherwise, there exists a sequence $\left\{\alpha_{n}\right\}$ in Λ_{α} with $\alpha_{n} \searrow \gamma$. Let $u_{\alpha_{n}}=\sum_{j=1}^{m_{\alpha}} u_{w_{\alpha_{n}}(j)} \chi_{w_{\alpha_{n}}(j)}$ and $v_{\alpha_{n}}=\sum_{j=1}^{m_{\alpha}} v_{w_{\alpha_{n}}(j)} \chi_{w_{\alpha_{n}}(j)}$, as in (3. 1), so that

$$
\max \left(\left\|u-u_{\alpha_{n}}\right\|_{p^{\prime},(a, b)},\left\|v-v_{\alpha_{n}}\right\|_{p,(a, b)}\right) \leq \alpha_{n}
$$

Assume the notation has been chosen to ensure the end points of $w_{\alpha_{n}}(j)=$ $\left(c_{n}^{j}, d_{n}^{j}\right)$ satisfy $a=c_{n}^{1}<d_{n}^{j} \leq c_{n}^{j+1}<d_{n}^{m_{\alpha}}=b, j=1,2, \ldots, m_{\alpha}-1$.

There exists a sequence $n(k), k=1,2, \ldots$ of positive integers and numbers $c^{1}, c^{2}, \ldots, c^{m_{\alpha}}, d^{1}, d^{2}, \ldots, d^{m_{\alpha}}$ such that

$$
\lim _{k} c_{n(k)}^{j}=c^{j}, \quad \lim _{k} d_{n(k)}^{j}=d^{j}, \quad j=1,2, \ldots, m_{\alpha},
$$

and

$$
a=c^{1} \leq d^{j} \leq c^{j+1} \leq d^{m_{\alpha}}=b, \quad j=1,2, \ldots, m_{\alpha}
$$

Observe that, setting

$$
u_{\gamma}=\sum_{j=1}^{m_{\alpha}} u_{\left(c^{j}, d^{j}\right)} \chi_{\left(c^{j}, d^{j}\right)} \quad \text { and } \quad v_{\gamma}=\sum_{j=1}^{m_{\alpha}} v_{\left(c^{j}, d^{j}\right)} \chi_{\left(c^{j}, d^{j}\right)},
$$

we have

$$
\max \left(\left\|u-u_{\gamma}\right\|_{p^{\prime},(a, b)},\left\|v-v_{\gamma}\right\|_{p,(a, b)}\right)=\gamma
$$

which forces $m_{\gamma}=m_{\alpha}$.

Lemma 3.6 Suppose that $u \in L^{p^{\prime}}(a, b) \cap C(a, b)$ and $v \in L^{p}(a, b) \cap C(a, b)$ are not equal to zero on (a, b), indeed, assume at least one of u and v be non-constant on (a, b). Then, there exists $\alpha_{0}>0$ such that given any $\alpha, 0<\alpha<\alpha_{0}$, there exists a $\beta, 0<\beta<\alpha$, with $m_{\beta}=m_{\alpha}+1$ or $m_{\beta}=m_{\alpha}+2$.

Proof. Say u is non-constant on (a, b). We take α_{0} to be the positive distance of u from the closed set $\left\{k \chi_{I} ; k \in \mathbf{R}, 0<|I|<\infty\right\}$ in $L^{p^{\prime}}(a, b)$. Observe that $m_{\alpha} \geq 2$ whenever $0<\alpha<\alpha_{0}$.

Fix $\alpha, 0<\alpha<\alpha_{0}$. By Lemma 3.5, $m_{\gamma}=m_{\alpha}$, where $\gamma=\inf \Lambda_{\alpha}$. Hence, there exists a partition $\left\{w_{\gamma}(j)\right\}_{j=1}^{m_{\gamma}}$ of (a, b) whose corresponding step functions, $u_{\gamma}=\sum_{j=1}^{m_{\alpha}} u_{w_{\gamma}(j)} \chi_{w_{\gamma}(j)}$ and $v_{\gamma}=\sum_{j=1}^{m_{\alpha}} v_{w_{\gamma}(j)} \chi_{w_{\gamma}(j)}$, satisfy

$$
\max \left(\left\|u-u_{\gamma}\right\|_{p^{\prime},(a, b)},\left\|v-v_{\gamma}\right\|_{p,(a, b)}\right)=\gamma
$$

If $\left\|u-u_{\gamma}\right\|_{p^{\prime},(a, b)}>\left\|v-v_{\gamma}\right\|_{p,(a, b)}$ then for some some $j_{0}, 1 \leq j_{0} \leq m_{\alpha}$,

$$
\left\|u-u_{w_{\gamma}\left(j_{0}\right)}\right\|_{p^{\prime}, w_{\gamma}\left(j_{0}\right)}^{p^{\prime}}>0
$$

It is possible to find a point c in the interval $w_{\gamma}\left(j_{0}\right)=(d, e)$ such that

$$
\left\|u-u_{w_{\gamma}\left(j_{0}\right)}\right\|_{p^{\prime}, w_{\gamma}\left(j_{0}\right)}^{p^{\prime}}>\left\|u-u_{(d, c)}\right\|_{p^{\prime},(d, c)}^{p^{\prime}}+\left\|u-u_{(c, e)}\right\|_{p^{\prime},(c, e)}^{p^{\prime}} .
$$

Let $w_{\gamma}^{\prime}(j)=w_{\gamma}(j), j=1,2, \ldots, j_{0}-1, j_{0}+1, \ldots, m_{\alpha}, w_{\gamma}^{\prime}\left(j_{0}\right)=(d, c)$ and $w_{\gamma}^{\prime}\left(m_{\alpha}+1\right)=(c, e)$. Then, $\left\{w_{\gamma}^{\prime}(j)\right\}_{j=1}^{m_{\alpha}+1}$ is a partition of (a, b) with associated step functions $u_{\gamma}^{\prime}=\sum_{j=1}^{m_{\alpha}+1} u_{w_{\gamma}^{\prime}(j)} \chi_{w_{\gamma}^{\prime}(j)}$ and $v_{\gamma}^{\prime}=\sum_{j=1}^{m_{\alpha}+1} v_{w_{\gamma}^{\prime}(j)} \chi_{w_{\gamma}^{\prime}(j)}$ such that

$$
\max \left(\left\|u-u_{\gamma}^{\prime}\right\|_{p^{\prime},(a, b)},\left\|v-v_{\gamma}^{\prime}\right\|_{p,(a, b)}\right)=\beta<\gamma
$$

and so $m_{\beta}=m_{\alpha}+1$.
Similarly, when $\left\|v-v_{\gamma}\right\|_{p,(a, b)}>\left\|u-u_{\gamma}\right\|_{p,(a, b)}$, there is a $\beta \in(0, \alpha)$ with $m_{\beta}=m_{\alpha}+1$.

Suppose, then, $\left\|v-v_{\gamma}\right\|_{p,(a, b)}=\left\|u-u_{\gamma}\right\|_{p^{\prime},(a, b)}=\gamma>0$. As before, we can find an interval $w_{\gamma}\left(j_{0}\right)=\left(d_{0}, e_{0}\right)$ and a point c_{0} such that

$$
\left\|u-u_{w_{\gamma}\left(j_{0}\right)}\right\|_{p^{\prime}, w_{\gamma}\left(j_{0}\right)}^{p^{\prime}}>\left\|u-u_{\left(d_{0}, c_{0}\right)}\right\|_{p^{\prime},\left(d_{0}, c_{0}\right)}^{p^{\prime}}+\left\|u-u_{\left(c_{0}, e_{0}\right)}\right\|_{p^{\prime},\left(c_{0}, e_{0}\right)}^{p^{\prime}}
$$

and an interval $w_{\gamma}\left(j_{1}\right)=\left(d_{1}, c_{1}\right)$ and a point c_{1} such that

$$
\left\|v-v_{w_{\gamma}\left(j_{1}\right)}\right\|_{p, w_{\gamma}\left(j_{1}\right)}^{p}>\left\|v-v_{\left(d_{1}, c_{1}\right)}\right\|_{p,\left(d_{1}, c_{1}\right)}^{p}+\left\|v-v_{\left(c_{1}, e_{1}\right)}\right\|_{p,\left(c_{1}, e_{1}\right)}^{p} .
$$

Now, if it is possible to have $j_{0}=j_{1}$ and $c_{0}=c_{1}$ we can get $\beta \in(0, \alpha)$ with $m_{\beta}=m_{\alpha}+1$. Otherwise, we can only conclude there is a $\beta \in(0, \alpha)$ for which m_{β} is one of $m_{\alpha}+1$ and $m_{\alpha}+2$.

Lemma 3.7 Let $-\infty \leq a<b \leq \infty$ and suppose that $u^{\prime} \in L^{p^{\prime} /\left(p^{\prime}+1\right)}(a, b) \cap$ $C(a, b)$. For each small $h>0$ define

$$
x_{1}=-\frac{1}{h}, x_{i+1}:=x_{i}+h \text { for } i \in 1, \ldots,\left[2 / h^{2}\right]
$$

put $J_{i}=(a, b) \cap\left(x_{i}, x_{i+1}\right), i \in 1, \ldots,\left[2 / h^{2}\right]$.
Then

$$
\int_{a}^{b}\left|u^{\prime}(t)\right|^{p^{\prime} /\left(p^{\prime}+1\right)} d t=\lim _{h \rightarrow 0} \sum_{i=1}^{\left[2 / h^{2}\right]}\left|J_{i}\right| \max _{x \in J_{i}}\left|u^{\prime}(x)\right|^{p^{\prime} /\left(p^{\prime}+1\right)}
$$

$$
=\lim _{h \rightarrow 0} \sum_{j=1}^{\left[2 / h^{2}\right]}\left|J_{i}\right| \min _{x \in J_{i}}\left|u^{\prime}(x)\right|^{p^{\prime} /\left(p^{\prime}+1\right)} .
$$

Proof. Simply use the definition of the integral.
We are now prepared to establish an important estimate for $\lim \sup _{\alpha \rightarrow 0_{+}} \alpha m_{\alpha}$.
Theorem 3.8 Suppose $u \in L^{p^{\prime}}(a, b), v \in L^{p}(a, b)$ and $u^{\prime} \in L^{p^{\prime} /\left(p^{\prime}+1\right)}(a, b) \cap$ $C(a, b), v^{\prime} \in L^{p /(p+1)}(a, b) \cap C(a, b)$. Then,

$$
\limsup _{\alpha \rightarrow 0_{+}} \alpha m_{\alpha} \leq c\left(p, p^{\prime}\right)\left(\left\|u^{\prime}\right\|_{p^{\prime} /\left(p^{\prime}+1\right),(a, b)}+\left\|v^{\prime}\right\|_{p /(p+1),(a, b)}\right)
$$

Proof. The result is trivial if both u and v are constant so we assume that at least one of them, say u, is not.

Given $\beta, 0<\beta<\inf _{c \in \mathbf{R}}\|u-c\|_{p^{\prime},(a, b)}$, let $w_{\beta}(i)=\left(a_{i}, a_{i+1}\right), i=1,2, \ldots, n_{\beta}^{u}$, be a partition of (a, b) satisfying

$$
\left\|u-u_{w_{\beta}(i)}\right\|_{p^{\prime}, w_{\beta}(i)}=\beta, \quad i=1,2, \ldots, n_{\beta}^{u}-1
$$

and $\left\|u-u_{w_{\beta}(i)}\right\|_{p^{\prime}, w_{\beta}(i)} \leq \beta, i=n_{\beta}^{u}$. Fix $\lambda, 0<\lambda<1$, and define the $\left[\lambda n_{\beta}^{u}\right]$ points x_{k} by the rule that if (a, b) is bounded, then

$$
x_{k}:=a+\frac{b-a}{\lambda n_{\beta}^{u}} k, \quad k=1,2, \ldots,\left[\lambda n_{\beta}^{u}\right]
$$

if $(a, b)=(-\infty, \infty)$, then, with $h=\left(\frac{2}{\lambda n_{\beta}^{u}}\right)^{1 / 2}$,

$$
x_{1}=-\frac{1}{h}, \quad x_{k+1}=x_{k}+h, \quad k=1,2, \ldots,\left[\lambda n_{\beta}^{u}\right]
$$

for other types of intervals we proceed in the same sort of way.
From the union of the points $a_{1}, a_{2}, \ldots, a_{n_{\beta}^{u}}+1$ and $x_{1}, x_{2}, \ldots, x_{\left[\lambda n_{\beta}^{u}\right]}$, arrange them in the ascending order and denote the resulting points by $b_{j}, j=$ $1,2, \ldots, J(\beta)+1$, so that $n_{\beta}^{u} \leq J(\beta) \leq n_{\beta}^{u}+\left[\lambda n_{\beta}^{u}\right]$. Put $I_{j}^{\beta}=\left(b_{j}, b_{j+1}\right), j=$ $1,2, \ldots, J(\beta)$. We observe there are at least $n_{\beta}^{u}-\left[\lambda n_{\beta}^{u}\right]$ intervals I_{j}^{β} with

$$
I_{j}^{\beta}=w_{\beta}(i)
$$

for some i.
Now,

$$
\sum_{j=1}^{J(\beta)}\left\|u-u_{I_{j}^{\beta}}\right\|_{p^{\prime}, I_{j}^{\beta}}^{p^{\prime} /\left(p^{\prime}+1\right)} \leq \sum_{j=1}^{J(\beta)}\left|I_{j}^{\beta}\right| \max _{x \in I_{j}^{\beta}}\left|u^{\prime}(x)\right|^{p^{\prime} /\left(p^{\prime}+1\right)}
$$

Again, setting $N=\#\left(\left\{j: I_{j}^{\beta}=w_{\beta}(i)\right.\right.$ for some $\left.\left.i<n_{\beta}^{u}\right\}\right)$, we have $N \geq$ $n_{\beta}^{u}-\left[\lambda n_{\beta}^{u}\right]-1$ and

$$
\begin{gathered}
\beta^{p^{\prime} /\left(p^{\prime}+1\right)}\left(n_{\beta}^{u}-\left[\lambda n_{\beta}^{u}\right]-1\right) \leq \beta^{p^{\prime} /\left(p^{\prime}+1\right)} N \leq \sum_{j=1}^{J(\beta)}\left\|u-u_{I_{j}^{\beta}}\right\|_{p^{\prime}, I_{j}^{\beta}}^{p^{\prime} /\left(p^{\prime}+1\right)} \\
\leq \sum_{j=1}^{J(\beta)}\left|I_{j}^{\beta}\right| \max _{x \in I_{j}^{\beta}}\left|u^{\prime}(x)\right|^{p^{\prime} /\left(p^{\prime}+1\right)}
\end{gathered}
$$

Thus, by Lemma 3.7,

$$
\begin{equation*}
\limsup _{\beta \rightarrow 0_{+}} \beta^{p^{\prime} /\left(p^{\prime}+1\right)}\left(n_{\beta}^{u}-\left[\lambda n_{\beta}^{u}\right]\right) \leq \int_{a}^{b}\left|u^{\prime}(x)\right|^{p^{\prime} /\left(p^{\prime}+1\right)} d x . \tag{3.3}
\end{equation*}
$$

Similarly, if neither v is constant, there exists, for $0<\beta<\inf _{c \in \mathbf{R}} \| v-$ $c \|_{p,(a, b)}$, a partition $\left\{w_{\beta}^{\prime}(i)\right\}_{i=1}^{n_{\beta}^{v}}$ such that

$$
\begin{array}{cc}
\left\|v-v_{w_{\beta}^{\prime}(i)}\right\|_{p, w_{\beta}^{\prime}(i)}=\beta, & i=1,2, \ldots, n_{\beta}^{v}-1, \\
\left\|v-v_{w_{\beta}^{\prime}(i)}\right\|_{p, w_{\beta}^{\prime}(i)} \leq \beta, & i=n_{\beta}^{v},
\end{array}
$$

and

$$
\begin{equation*}
\limsup _{\beta \rightarrow 0_{+}} \beta^{p /(p+1)}\left(n_{\beta}^{v}-\left[\lambda n_{\beta}^{v}\right]\right) \leq \int_{a}^{b}\left|v^{\prime}(x)\right|^{p /(p+1)} d x \tag{3,4}
\end{equation*}
$$

Put $\alpha=\max \left[\left(\beta^{p^{\prime}}\left(n_{\beta}+\left[\lambda n_{\beta}\right]\right)\right)^{1 / p^{\prime}},\left(\beta^{p}\left(n_{\beta}+\left[\lambda n_{\beta}\right]\right)\right)^{1 / p}\right], 0<\beta<\min \left[\inf _{c \in \mathbf{R}} \| u-\right.$ $\left.c\left\|_{p^{\prime},(a, b)}, \inf _{c \in \mathbf{R}}\right\| v-c \|_{p,(a, b)}\right]$, where $n_{\beta}=n_{\beta}^{u}+n_{\beta}^{v}$ if v is not constant and $n_{\beta}=n_{\beta}^{u}$ if it is. Note that (3. 3) and (3.4) imply $\alpha \rightarrow 0_{+}$as $\beta \rightarrow 0_{+}$.

Taking the refinement of the partition $\left\{I_{j}^{\beta}\right\}_{j=1}^{J(\beta)}$ and the analogous one for v (if necessary) we get a partition of (a, b), of at most $n_{\beta}+\left[\lambda n_{\beta}\right]$ subintervals, whose corresponding step-functions u_{α} and v_{α} satisfy

$$
\max \left[\left\|u-u_{\alpha}\right\|_{p^{\prime},(a, b)},\left\|v-v_{\alpha}\right\|_{p,(a, b)}\right] \leq \beta \max \left[\left(n_{\beta}^{u}\right)^{1 / p^{\prime}},\left(n_{\beta}^{v}\right)^{1 / p}\right] \leq \alpha
$$

This means

$$
m_{\alpha} \leq n_{\beta}+\left[\lambda n_{\beta}\right]
$$

hence

$$
\begin{aligned}
\limsup _{\alpha \rightarrow 0_{+}}\left(\alpha m_{\alpha}\right) \leq & \limsup _{\alpha \rightarrow 0_{+}}\left(\alpha m_{\alpha}\right) \\
& +\limsup _{\alpha \rightarrow 0_{+}}\left(\alpha m_{\alpha}\right) \\
\leq & \limsup _{\beta \rightarrow 0_{+}}\left[\beta^{p^{\prime}}\left(n_{\beta}-\left[\lambda n_{\beta}\right]\right)^{1 / p^{\prime}}\left(\frac{n_{\beta}+\left[\lambda n_{\beta}\right]}{n_{\beta}-\left[\lambda n_{\beta}\right]}\right)^{1 / p^{\prime}}\right] \\
& +\limsup _{\beta \rightarrow 0_{+}}\left[\beta^{p}\left(n_{\beta}-\left[\lambda n_{\beta}\right]\right)^{1 / p}\left(\frac{n_{\beta}+\left[\lambda n_{\beta}\right]}{n_{\beta}-\left[\lambda n_{\beta}\right]}\right)^{1 / p}\right] \\
\leq & \left(\limsup _{\beta \rightarrow 0_{+}}\left[\beta^{p^{\prime}}\left(n_{\beta}-\left[\lambda n_{\beta}\right]\right)^{1 / p^{\prime}}\right]\right. \\
& \left.+\limsup _{\beta \rightarrow 0_{+}}\left[\beta^{p}\left(n_{\beta}-\left[\lambda n_{\beta}\right]\right)^{1 / p}\right]\right)\left(\frac{n_{\beta}+\left[\lambda n_{\beta}\right]}{n_{\beta}-\left[\lambda n_{\beta}\right]}\right) \\
\leq & c\left(p, p^{\prime}\right)\left(\left\|u^{\prime}\right\|_{p^{\prime} /\left(p^{\prime}+1\right),(a, b)}^{\left(p^{\prime}+1\right) / p^{\prime}}+\left\|v^{\prime}\right\|_{p /(p+1),(a, b)}^{(p+1) / p} \frac{(1+\lambda)}{(1-\lambda)} .\right.
\end{aligned}
$$

Since λ may be chosen arbitrarily small, we obtain

$$
\limsup _{\alpha \rightarrow 0_{+}} \alpha m_{\alpha} \leq c\left(p, p^{\prime}\right)\left(\left\|u^{\prime}\right\|_{p^{\prime} /\left(p^{\prime}+1\right),(a, b)}+\left\|v^{\prime}\right\|_{p /(p+1),(a, b)}\right)
$$

as asserted.

4 The Main theorem.

In this section we give the remainder estimate promised in the Introduction. To begin, we prove

Theorem 4.1 Let $-\infty \leq a<b \leq \infty$, let $u \in L^{p^{\prime}}(a, b)$, $v \in L^{p}(a, b)$ and suppose that $u^{\prime} \in L^{p^{\prime} /\left(p^{\prime}+1\right)}(a, b) \cap C([a, b]), v^{\prime} \in L^{p /(p+1)}(a, b) \cap C([a, b])$. Then

$$
\limsup _{\varepsilon \rightarrow 0_{+}}\left|\alpha_{p} \int_{a}^{b}\right| u(t) v(t)|d t-\varepsilon N(\varepsilon)| N^{1 / 2}(\varepsilon)
$$

$$
\begin{aligned}
& \leq c\left(p, p^{\prime}\right)\left(\left\|u^{\prime}\right\|_{p^{\prime} /\left(p^{\prime}+1\right),(a, b)}\right.\left.+\left\|v^{\prime}\right\|_{p /(p+1),(a, b)}\right)\left(\|u\|_{p^{\prime},(a, b)}+\|v\|_{p,(a, b)}\right) \\
&+3 \alpha_{p}\|u v\|_{1,(a, b)}
\end{aligned}
$$

where $\alpha_{p}=A((0,1), 1,1)$ and $c\left(p, p^{\prime}\right)$ is a constant depending only on p and p^{\prime}.
Proof. Let $\alpha>0$. Then (see (3. 1) and (3. 2)) there are $m_{\alpha} \in \mathbf{N}$ and step-functions u_{α}, v_{α} such that

$$
\left\|u_{\alpha}-u\right\|_{p^{\prime},(a, b)}<\alpha, \quad\left\|v_{\alpha}-v\right\|_{p,(a, b)}<\alpha
$$

and $\left\{w_{\alpha}(j)\right\}_{j=1}^{m_{\alpha}}$ is a corresponding family of non-overlapping intervals which cover (a, b). Plainly,

$$
\begin{equation*}
\left|\int_{a}^{b}\left(u v-u_{\alpha} v_{\alpha}\right) d t\right| \leq \alpha\left(\|u\|_{p^{\prime},(a, b)}+\|v\|_{p,(a, b)}+\alpha\right) \tag{4.1}
\end{equation*}
$$

Let $\varepsilon>0$ be small and let $\left\{I_{i}\right\}_{i=1}^{N(\varepsilon)}$ be the non-overlapping intervals which occur in the definition of $N(\varepsilon)$.

Put $J_{1}=\left\{j ; I_{i} \subset w_{\alpha}(j)\right.$ for some $\left.i\right\}, J_{2}=\left\{j ; w_{\alpha}(j) \subset I_{i}\right.$ for some $\left.i\right\}, J_{3}=$ $\left\{j ; w_{\alpha}(j) \not \subset I_{i} \not \subset w_{\alpha}(j)\right.$, for all $\left.i\right\}, L_{1}=\left\{i ; I_{i} \subset w_{\alpha}(j)\right.$ for some $\left.j\right\}$ and $L_{2}=$ $\left\{i\right.$; for all $\left.j, I_{i} \not \subset w_{\alpha}(j)\right\}$. Then we see from Lemma 3.1 that

$$
\begin{align*}
\alpha_{p} \int_{a}^{b} u_{\alpha} v_{\alpha} d t= & \alpha_{p}\left(\sum_{j \in J_{1}}+\sum_{j \in J_{2}}+\sum_{j \in J_{3}}\right) \xi_{j} \psi_{j}\left|w_{\alpha}(j)\right| \\
\leq & \sum_{i \in L_{1}} A\left(I_{i}, u_{\alpha}, v_{\alpha}\right) \\
& +2 \sum_{i \in L_{2}} A\left(I_{i}, u_{\alpha}, v_{\alpha}\right) \\
& +\sum_{j \in J_{2}} \alpha_{p} \xi_{j} \psi_{j}\left|w_{\alpha}(j)\right| \tag{4.2}
\end{align*}
$$

Lemmas 3.2, 3.3 as well as the estimates

$$
\begin{aligned}
\alpha_{p} \xi_{j} \psi_{j}\left|w_{\alpha}(j)\right| \leq & A\left(w_{\alpha}(j), u_{\alpha}, v_{\alpha}\right) \\
\leq & A\left(w_{\alpha}(j), u, v\right)+\left\|u-u_{\alpha}\right\|_{p^{\prime}, w_{\alpha}(j)}\left\|v-v_{\alpha}\right\|_{p, w_{\alpha}(j)} \\
& +\|u\|_{p^{\prime}, w_{\alpha}(j)}\left\|v-v_{\alpha}\right\|_{p, w_{\alpha}(j)} \\
& +\left\|u-u_{\alpha}\right\|_{p^{\prime}, w_{\alpha}(j)}\|v\|_{p, w_{\alpha}(j)}
\end{aligned}
$$

and $A\left(w_{\alpha}(j), u, v\right) \leq A\left(I_{i}, u, v\right) \leq \varepsilon$ for $w_{\alpha}(j) \subset I_{i}$ now show that the right-hand side of (4.2) may be estimated from above by

$$
\begin{align*}
& \quad \sum_{I_{i} \subset w_{\alpha}(j)} A\left(I_{i}, u, v\right)+2 \sum_{I_{i} \not \subset w_{\alpha}(j)} A\left(I_{i}, u, v\right)+\varepsilon m_{\alpha} \\
& +3 \sum_{i=1}^{N(\varepsilon)}\left(\left\|u-u_{\alpha}\right\|_{p^{\prime}, I_{i}}\left\|v-v_{\alpha}\right\|_{p, I_{i}}+\|u\|_{p^{\prime}, I_{i}}\left\|v-v_{\alpha}\right\|_{p, I_{i}}\right. \tag{4.3}\\
& \left.\quad+\left\|u-u_{\alpha}\right\|_{p^{\prime}, I_{i}}\|v\|_{p, I_{i}}\right)
\end{align*}
$$

To proceed further, note that $A\left(I_{i}, u, v\right) \leq \varepsilon$,

$$
\#\left\{i ; I_{i} \subset w_{\alpha}(j) \text { for some } j\right\} \leq N(\varepsilon)
$$

and

$$
\#\left\{i, \text { for all } j, I_{i} \not \subset w_{\alpha}(j)\right\} \leq m_{\alpha}
$$

It follows that

$$
\begin{align*}
\alpha_{p} \int_{a}^{b} u_{\alpha} v_{\alpha} \leq & N(\varepsilon) \varepsilon+3 m_{\alpha} \varepsilon \\
& +3 \sum_{i=1}^{N(\varepsilon)}\left(\left\|u-u_{\alpha}\right\|_{p^{\prime}, I_{i}}\left\|v-v_{\alpha}\right\|_{p, I_{i}}+\|u\|_{p^{\prime}, I_{i}}\left\|v-v_{\alpha}\right\|_{p, I_{i}}\right. \\
& \left.+\left\|u-u_{\alpha}\right\|_{p^{\prime}, I_{i}}\|v\|_{p, I_{i}}\right) \\
\leq & N(\varepsilon) \varepsilon+3 m_{\alpha} \varepsilon+2 \alpha^{2}+2 \alpha\left(\|u\|_{p^{\prime},(a, b)}+\|v\|_{p,(a, b)}\right) \tag{4.4}
\end{align*}
$$

On the other hand, since $A\left(I_{i}, u, v\right)=\varepsilon$ for $1 \leq i \leq N(\varepsilon)-1$ and $N(\varepsilon)-$ $2 m_{\alpha} \leq \#\left\{i ; I_{i} \subset w_{\alpha}(j)\right.$ for some $\left.j\right\}$, we see that

$$
\begin{aligned}
\left(N(\varepsilon)-2 m_{\alpha}-1\right) \varepsilon \leq & \sum_{I_{i} \subset w_{\alpha}(j)} A\left(I_{i}, u, v\right) \\
= & \sum_{I_{i} \subset w_{\alpha}(j)} A\left(I_{i}, u_{\alpha}, v_{\alpha}\right) \\
& +\sum_{I_{i} \subset w_{\alpha}(j)}\left[A\left(I_{i}, u, v\right)-A\left(I_{i}, u_{\alpha}, v_{\alpha}\right)\right]
\end{aligned}
$$

$$
\begin{align*}
\leq & \sum_{I_{i} \subset w_{\alpha}(j)} \alpha_{p}\left|I_{i}\right|\left|\xi_{j} \| \psi_{j}\right| \\
& +\sum_{I_{i} \subset w_{\alpha}(j)}\left(\left\|u-u_{\alpha}\right\|_{p^{\prime}, I_{i}}\left\|v-v_{\alpha}\right\|_{p, I_{i}}\right. \\
& \left.\quad+\|u\|_{p^{\prime}, I_{i}}\left\|v-v_{\alpha}\right\|_{p, I_{i}}+\left\|u-u_{\alpha}\right\|_{p^{\prime}, I_{i}}\|v\|_{p, I_{i}}\right) \\
\leq & \alpha_{p} \int_{a}^{b}\left|u_{\alpha} v_{\alpha}\right| d t+\alpha^{2}+\alpha\left(\|u\|_{p^{\prime},(a, b)}+\|v\|_{p,(a, b)}\right) \\
\leq & \alpha_{p} \int_{a}^{b}|u v| d t+2 \alpha^{2} \\
& +2 \alpha\left(\|u\|_{p^{\prime},(a, b)}+\|v\|_{p,(a, b)}\right) \tag{4.5}
\end{align*}
$$

the final inequality following from (4. 1). Together with (4. 4) and (4. 1) this shows that

$$
\begin{align*}
\varepsilon(N(\varepsilon) & \left.-2 m_{\alpha}-1\right)-2 \alpha^{2}-2 \alpha\left(\|u\|_{p^{\prime},(a, b)}+\|v\|_{p,(a, b)}\right) \\
& \leq \alpha_{p} \int_{a}^{b}|u v| d t \tag{4.6}\\
& \leq \varepsilon\left(N(\varepsilon)+3 m_{\alpha}\right)+3 \alpha^{2}+3 \alpha\left(\|u\|_{p^{\prime},(a, b)}+\|v\|_{p,(a, b)}\right)
\end{align*}
$$

From Lemma 3.4 we can see that for any small $\varepsilon>0$, we can find $\alpha>0$ such that $m_{\alpha} \geq\left[N^{1 / 2}(\varepsilon)\right] \geq m_{\alpha}-2$. Then (4. 6) gives

$$
\begin{aligned}
N^{1 / 2}(\varepsilon)\left|\alpha_{p} \int_{a}^{b}\right| u v|d t-N(\varepsilon) \varepsilon| \leq & 3 N(\varepsilon) \varepsilon+3 \alpha^{2}\left(N^{1 / 2}(\varepsilon)-1\right) \\
& +3 \alpha\left(\|u\|_{p^{\prime},(a, b)}+\|v\|_{p,(a, b)}\right) N^{1 / 2}(\varepsilon)
\end{aligned}
$$

Let $\varepsilon \rightarrow 0_{+}$; then $m_{\alpha} \leq N^{1 / 2}(\varepsilon)+2 \rightarrow \infty$ and so $\alpha \rightarrow 0_{+}$. Hence

$$
\begin{aligned}
& \limsup _{\varepsilon \rightarrow 0_{+}} N^{1 / 2}(\varepsilon)\left|\alpha_{p} \int_{a}^{b}\right| u v|d t-N(\varepsilon) \varepsilon| \\
& \quad \leq \quad 3 \limsup _{\varepsilon \rightarrow 0_{+}} N(\varepsilon) \varepsilon+3 \limsup _{\varepsilon \rightarrow 0_{+}} \alpha^{2} N^{1 / 2}(\varepsilon) \\
& \quad+3 \limsup _{\varepsilon \rightarrow 0_{+}} \alpha N^{1 / 2}(\varepsilon)\left(\|u\|_{p^{\prime},(a, b)}+\|v\|_{p,(a, b)}\right) .
\end{aligned}
$$

Since $\lim _{\varepsilon \rightarrow 0} \varepsilon N(\varepsilon)=\alpha_{p} \int_{a}^{b}|u v| d t$, by Lemma 2.8, we finally see, with the help of Lemma 3.8, that

$$
\begin{aligned}
\limsup _{\varepsilon \rightarrow 0_{+}} & N^{1 / 2}(\varepsilon)\left|\alpha_{p} \int_{a}^{b}\right| u v|-N(\varepsilon) \varepsilon| \\
\leq & 3 \alpha_{p} \int_{a}^{b}|u v| d t \\
& +3 c\left(p, p^{\prime}\right)\left(\left\|u^{\prime}\right\|_{p^{\prime} /\left(p^{\prime}+1\right),(a, b)}+\left\|v^{\prime}\right\|_{p /(p+1),(a, b)}\right)\left(\|u\|_{p^{\prime},(a, b)}+\|v\|_{p,(a, b)}\right)
\end{aligned}
$$

as required.
Armed with this result it is now easy to give the promised remainder estimate for the approximation numbers of $T: L^{2}(a, b) \rightarrow L^{2}(a, b)$ given by (1. 1).

Theorem 4.2 Let $-\infty \leq a<b \leq \infty$, suppose that $u \in L^{p^{\prime}}(a, b)$, $v \in L^{p}(a, b)$ and let $u^{\prime} \in L^{p^{\prime} /\left(p^{\prime}+1\right)}(a, b) \cap C((a, b)), v^{\prime} \in L^{p /(p+1)}(a, b) \cap C((a, b))$. Then

$$
\begin{aligned}
& \limsup _{n \rightarrow \infty} n^{1 / 2}\left|\alpha_{p} \int_{a}^{b}\right| u v\left|d t-n a_{n}\right| \leq 3 \alpha_{p} \int_{a}^{b}|u v| d t \\
& \left.\quad+3 c\left(p, p^{\prime}\right)\left(\left\|u^{\prime}\right\|_{p^{\prime} /\left(p^{\prime}+1\right),(a, b)}+\| v^{\prime} \mid\right) \|_{p /(p+1),(a, b)}\right)\left(\|u\|_{p^{\prime},(a, b)}+\|v\|_{p,(a, b)}\right)
\end{aligned}
$$

Proof. Simply use Theorem 4.1, Lemma 2.7, Lemma 2.6 and the fact that

$$
\lim _{n \rightarrow \infty} n^{1 / 2} a_{n}(T)=0
$$

If the interval (a, b) is bounded, it follows immediately from Hölder's inequality that Theorem 4.2 gives rise to

Theorem 4.3 Let $-\infty<a<b<\infty$ and suppose that $u^{\prime}, v^{\prime} \in C([a, b])$. Then

$$
\begin{gathered}
\limsup _{n \rightarrow \infty} n^{1 / 2}\left|\alpha_{p} \int_{a}^{b}\right| u v\left|d t-n a_{n}\right| \\
\leq 3 \alpha_{p} \int_{a}^{b}|u v| d t+3 c\left(p, p^{\prime}\right)(b-a)\left(\left\|u^{\prime}\right\|_{p^{\prime},(a, b)}+\left\|v^{\prime}\right\|_{p,(a, b)}\right)\left(\|u\|_{p^{\prime},(a, b)}+\|v\|_{p,(a, b)}\right) .
\end{gathered}
$$

From the following observation we can see that any optimal exponent from Theorem 4.2 has to belong to $[1 / 2,1]$.

Observation 4.4 Let $-\infty \leq a<b \leq \infty$.
(i) Let $\alpha<1 / 2$. Then for every $u \in L^{p^{\prime}}(a, b), v \in L^{p}(a, b)$ with $u^{\prime} \in$ $L^{p^{\prime} /\left(p^{\prime}+1\right)}(a, b) \cap C([a, b]), v^{\prime} \in L^{p /(p+1)}(a, b) \cap C([a, b])$ we have

$$
\limsup _{n \rightarrow \infty} n^{\alpha}\left|\alpha_{p} \int_{a}^{b}\right| u v\left|d t-n a_{n}(T)\right|=0
$$

(ii) Let $\alpha>1$. Then there exist a and b, and functions u and v satisfying the conditions of Theorem 4.2 on the interval defined by a and b, such that

$$
\limsup _{n \rightarrow \infty} n^{\alpha}\left|\alpha_{p} \int_{a}^{b}\right| u v\left|d t-n a_{n}(T)\right|=\infty .
$$

Proof. (i) follows from (4. 6) on putting $m_{\alpha}=\left[N^{\alpha}(\varepsilon)\right]$ or $\left[N^{\alpha}(\varepsilon)\right]+1$.
(ii) Take $(a, b)=(0,1)$ and $u=1, v=1+x$. Then from (4. 6), with $m_{\alpha}=\left[N^{\alpha}(\varepsilon)\right]$ a lower bound results which is unbounded as $\varepsilon \rightarrow 0$ and the result follows.

Acknowledgment. J. Lang wishes to record his gratitude to the Grant Agency of the Czech Republic for support under grant 201/98/P017.

REFERENCES

[EE] D.E.Edmunds and W.D.Evans, Spectral Theory and Differential Operators, Oxford Univ. Press, Oxford, 1987.
[EEH1] D.E.Edmunds, W.D.Evans and D.J.Harris. Approximation numbers of certain Volterra integral operators. J. London Math. Soc. (2) 37 (1988), 471-489.
[EEH2] D.E.Edmunds, W.D.Evans and D.J.Harris. Two-sided estimates of the approximation numbers of certain Volterra integral operators. Studia Math. 124 (1) (1997), 59-80.
[EGP] D.E.Edmunds, P.Gurka and L.Pick. Compactness of Hardy-type integral operators in weighted Banach function spaces. Studia Math. 109 (1) (1994), 73-90.
[EHL1] W.D.Evans, D.J.Harris and J.Lang. Two-sided estimates for the approximation numbers of Hardy-type operators in L^{∞} and L^{1}. Studia Math. 130 (2) (1998), 171-192.
[EHL2] W.D.Evans, D.J.Harris and J.Lang. The approximation numbers of Hardy-type operators on trees J. London Math. Soc (to appear).
[EKL] W.D.Evans, R.Kerman and J.Lang. Remainder estimates for the approximation numbers of weighted Hardy operators acting on L^{2}. Journal D'Anal. (to appear)
[LL] M.A.Lifshits and W.Linde. Approximation and entropy numbers of Volterra operators with applications to Brownian motion, preprint Math/Inf/99/27, Universität Jena, Germany, 1999.
[LMN] J.Lang, O. Mendez and A.Nekvinda. Asymptotic behavior of the approximation numbers of the Hardy-type operator from L^{p} into L^{q} (case $1<p \leq q \leq 2$ or $2 \leq p \leq q<\infty)$. preprint
[NS] J.Newman and M.Solomyak, Two-sided estimates of singular values for a class of integral operators on the semi-axis, Integral Equation Operator Theory 20 (1994), 335-349
[OK] B.Opic and A.Kufner, Hardy-type Inequalities, Pitman Res. Notes Math. Ser. 219, Longman Sci. \& Tech., Harlow, 1990.
[S] I. Singer, Best Approximation in Normed Linear Spaces by Elements of Linear Subspace, Springer-Verlag, Band 171, New York, 1970.

J. Lang
Department of Mathematics,
The Ohio State University,
100 Math Tower,
231 West 18th Avenue,
Columbus, OH 43210-1174, USA
e-mail: lang@math.ohio-state.edu

