Improved estimates for the approximation numbers of Hardy-type operators

J. Lang

February 18, 2002

Abstract

We consider a Hardy-type integral operator $T:L^p(a,b)\to L^p(a,b),$ $-\infty\leq a< b\leq \infty,$ which is defined by

$$(Tf)(x) = v(x) \int_a^x u(t)f(t)dt.$$

In papers [EEH1], [EEH2] and [EHL2], upper and lower estimates and asymptotic results were obtained for the approximation numbers $a_n(T)$ of T. In case p=2 for "nice" u and v these results were improved in [EKL]. In this paper we extend these results for 1 by using a new technique from [EHL2]. We will show that under suitable conditions on <math>u and v,

$$\begin{split} \limsup_{n \to \infty} n^{1/2} \left| \alpha_p \int_a^b |u(t)v(t)| dt - n a_n(T) \right| \\ & \leq c (\|u'\|_{p'/(p'+1)} + \|v'\|_{p/(p+1)}) (\|u\|_{p'} + \|v\|_p) + 3\alpha_p \|uv\|_1, \\ \text{where } \|w\|_p = (\int_a^b |w(t)|^p dt)^{1/p} \text{ and } \alpha_p = A((0,1),1,1). \end{split}$$

2000 Mathematics Subject Classification: 47G10, 47B10

1 Introduction.

In [EEH1] and [EEH2] the approximation numbers $a_n(T)$ of

$$(Tf)(x) = v(x) \int_0^x u(t)f(t)dt,$$
 (1. 1)

as an operator from $L^p(\mathbf{R}^+)$ to itself were studied. Here $\mathbf{R}^+ = (0, \infty)$, 1 , and <math>u, v are real-valued functions with $u \in L^{p'}_{loc}(\mathbf{R}^+)$, and $v \in L^p(\mathbf{R}^+)$; as usual, p' = p/(p-1).

In [EEH1] it was shown that if T is bounded from $L^2(\mathbf{R}^+)$ to itself, then to each $\varepsilon > 0$ there corresponds $N(\varepsilon) \in \mathbf{N}$ such that

$$a_{N(\varepsilon)+2}(T) \le \frac{\varepsilon}{\sqrt{2}} \le a_{N(\varepsilon)}(T).$$
 (1. 2)

The estimate (1. 2) was improved in [EEH2], in which it was shown that

$$\lim_{n \to \infty} n a_n(T) = \frac{1}{\pi} \int_0^\infty |u(t)v(t)| dt, \tag{1. 3}$$

given certain restrictions on u and v. (For related results see also [NS].)

In [EHL2] it was showed that (1. 3) is true also for the Hardy-type operator on trees and for 1 . For cases <math>p = 1 and $p = \infty$ was found a similar formula like (1. 3), see [EHL1] and [EHL2].

Further extensions were given in [LL] and [LMN] to deal with the cases in which T is viewed as a map from L^p to L^q , for any $p, q \in [1, \infty]$.

In paper [EKL] an estimate (1. 3) was improved in the case p=2 (L^2 is the Hilbert space and then it is simple to find the closes element from any closed subspace). It was shown that under some conditions on u and v we have

$$\limsup_{n \to \infty} n^{1/2} \left| na_n(T) - \frac{1}{\pi} \int_a^b |uv| \right|$$

$$\leq 3\sqrt{2}(\|u'\|_{2/3,I} + \|v'\|_{2/3,I})(\|u\|_{2,I} + \|v\|_{2,I}) + \frac{3}{\pi}\|uv\|_{1,I},$$

I being an arbitrary interval in \mathbf{R} .

In the present paper we will extend this result to 1 . Under further conditions on <math>u and v we get for the approximation numbers of the map $T: L^p(I) \to L^p(I)$ the following estimates:

$$\lim_{n \to \infty} \sup n^{1/2} \left| na_n(T) - \alpha_p \int_a^b |uv| \right|$$

$$\leq 3c(p, p') (\|u'\|_{p'/(p'+1), I} + \|v'\|_{p/(p+1), I}) (\|u\|_{p', I} + \|v\|_{p, I})$$

$$+3\alpha_p \|uv\|_{1, I}.$$

Thus.

$$a_n(T) = \frac{1}{\pi n} \int_I |u(t)v(t)| dt + O(n^{-3/2});$$

and under the conditions which we impose, the exponent -3/2 cannot be much improved. This is the first theorem of this kind which is covering the case $p \neq 2$ and it is surprising that there is the same power $n^{1/2}$ for any $1 . We do not know at the moment whether or not it is possible to show the existence of a genuine second term in the expansion of <math>a_n(T)$. Our results follow from the systematic use of the function A introduced in [EHL1] together with techniques based on those in [EEH2] and [EKL].

2 Preliminaries.

Throughout the paper we shall assume that $-\infty \le a < b \le \infty$ and that

$$u \in L^{p'}(a,b), v \in L^p(a,b)$$
 and $u,v > 0$ on (a,b) . (2. 1)

Under these restrictions on u and v it is well known (see, for example, [EEH1], Theorem 1) that the norm ||T|| of the operator $T: L^p(a,b) \to L^p(a,b)$ in (1. 1) satisfies

$$||T|| \sim \sup_{x \in (a,b)} ||u\chi_{(a,x)}||_{p',(a,b)} ||v\chi_{(x,b)}||_{p,(a,b)}.$$
 (2. 2)

Here χ_S denotes the characteristic function of the set S and

$$||f||_{p,I} = \left(\int_{I} |f(t)|^{p} dt \right)^{1/p}, \quad 1$$

Moreover, by $F_1 \sim F_2$ we mean that $C^{-1}F_1 \leq F_2 \leq CF_1$ for some positive constant $C \geq 1$ independent of any variables in $F_1, F_2 \geq 0$.

Given any interval $I = (c, d) \subset (a, b)$, define

$$J(I) = \sup_{x \in I} \|u\chi_{(c,x)}\|_{p',I} \|v\chi_{(x,d)}\|_{p,I}.$$

A straightforward modification of Lemma 2.1 of [EHL1] shows that for any $d \in (a, b)$, the function J((., d)) is continuous and non-increasing on (a, d). Now, for any $x \in I = (c, d) \subset (a, b)$, set

$$(T_I f)(x) = v(x)\chi_I(x) \int_a^x u(t)\chi_I(t)f(t)dt.$$

Then the norm of the operator $T_I:L^p(I)\to L^p(I)$ satisfies

$$||T_I|| \sim J(I)$$
.

We next introduce a function A which will play a key role in the paper. Given $I = (c, d) \subset (a, b)$, set

$$A(I) := \sup_{\|f\|_{v,I}=1} \inf_{\alpha \in \mathbf{R}} \|Tf - \alpha v\|_{p,I}.$$

From (2. 1) it follows that T is a compact operator from L^p into L^p (see [EGP] or [OK]) and then from [EHL2, Theorem 3.8] we have that

$$A(I) = \inf_{x \in I} ||T_{x,I}| L^p(I) \to L^p(I)||,$$

where

$$T_{x,I}f(.) := v(.)\chi_I(.)\int_x^. v(t)\chi_I(t)dt.$$

Lemma 2.1 Let $I = (c, d) \subset (a, b)$ and $1 \le p \le \infty$, then $||T_{x,I}|L^p(I) \to L^p(I)||$ is continuous in x.

Proof. See Lemma 3.4 in [EHL2] and put $\Gamma = (a, b)$ and K = I. \square

Lemma 2.2 Suppose that u and v satisfy (2. 1) and $a \le c < d \le b$. Then:

- 1. The function A(.,d) is non-increasing and continuous on (a,d).
- 2. The function A(c, .) is non-decreasing and continuous on (c, b).
- 3. $\lim_{y\to a_+} A(a,y) = \lim_{y\to b_-} A(y,b) = 0$.

Proof. The proof of 1 illustrates the techniques necessary to prove 2 and 3 also. That A(.,d) is non-increasing is easy to see. To get the continuity, fix $y \in (a,d)$. Then, there exists $h_0 > 0$ such that for $0 < h < h_0$

$$\begin{split} &A^{p}(y,d) \leq A^{p}(y-h,d) \\ &= \sup_{\|f\|_{p,(y-h,d)} = 1} \inf_{|\alpha| \leq \|u\|_{p',(y-h_{0},d)}} \|v\chi_{(y-h,d)} \left[\int_{a}^{\cdot} u(t)f(t)\chi_{(y-h,d)}(t)dt - \alpha \right] \|_{p,(y-h,d)}^{p} \\ &= \sup_{\|f\|_{p,(y-h,d)} = 1} \inf_{|\alpha| \leq \|u\|_{p',(y-h_{0},d)}} \left[\|v\left[\int_{y-h}^{\cdot} uf\chi_{(y-h,y)}dt - \alpha \right] \|_{p,(y-h,y)}^{p} \\ &+ \|v\left[\int_{y}^{\cdot} uf\chi_{(y,d)}dt - \alpha + \int_{y-h}^{y} ufdt \right] \|_{p,(y,d)}^{p} \right] \\ &\leq \sup_{\|f\|_{p,(y-h,d)} = 1} \inf_{|\alpha| \leq \|u\|_{p',(y-h_{0},d)}} \left[2^{p} \|v\int_{y-h}^{\cdot} uf\chi_{(y-h,y)}dt \|_{p,(y-h,y)}^{p} \\ &+ 2^{p}\alpha^{p} \|v\|_{p,(y-h,y)}^{p} + \|v\left[\int_{y}^{\cdot} uf\chi_{(y,d)}dt - \alpha + \int_{y-h}^{y} ufdt \right] \|_{p,(y,d)}^{p} \right] \\ &\leq 2^{p} \|v\|_{p,(y-h,y)}^{p} \|u\|_{p',(y-h,y)}^{p} + 2^{p} \|u\|_{p',(y-h_{0},d)}^{p} \|v\|_{p,(y-h,y)}^{p} + A^{p}(y,d). \end{split}$$

It follows that

$$\lim_{h \to 0_{+}} A(y - h, d) = A(y, d).$$

In the same way we see that

$$\lim_{h \to 0_{\perp}} A(y+h,d) = A(y,d),$$

and now the proof is complete. \Box

Lemma 2.3 Suppose that $T: L^p(a,b) \to L^p(a,b)$ is compact. Let I = (c,d) and J = (c',d') be subintervals of (a,b), with $J \subset I$, |J| > 0, |I - J| > 0, $\int_a^b v^p(x)dx < \infty$ and u,v > 0 on I. Then

$$A(I) > A(J) > 0.$$
 (2. 3)

Proof. Let $0 \le f \in L^p(J)$, $0 < ||f||_{p,J} \le ||f||_{p,I} \le 1$ with supp $f \subset J$. Let $y \in J$ then

$$||T_{(c',y)}||_{p,J} > 0$$
 and $||T_{(y,d')}||_{p,J} > 0$

and then from [EHL2, Lemma 3.5] we have

$$\min\{\|T_{(c',y)}\|_{p,J}, \|T_{(y,d')}\|_{p,J}\} \leq \min_{x \in J} \|T_{x,J}\|_{p,J}$$

which means A(J) > 0.

Next, let us suppose that c = c' < d' < d. By [EHL2, Theorem 3.8], there exist $x_0 \in J$ and $x_1 \in I$ such that $A(J) = ||T_{x_0,J}||_{p,J}$ and $A(I) = ||T_{x_1,I}||_{p,I}$. Since u, v > 0 on I, it is then quite easy to see that $x_0 \in J^o$ and $x_1 \in I^o$.

If $x_0 = x_1$, then, since u, v > 0 on I, we get

$$A(I) = ||T_{x_1,I}||_{p,I} > ||T_{x_1,I}||_{p,J} = ||T_{x_1,J}||_{p,J} = A(J).$$

If $x_0 \neq x_1$, then

$$A(I) = ||T_{x_1,I}||_{p,I} \ge ||T_{x_1,I}||_{p,J} \ge ||T_{x_1,J}||_{p,J} > ||T_{x_0,J}||_{p,J} = A(J).$$

The case c < c' < d' = d could be proved similarly and the case c < c' < d' < d follows from previous cases and the monotonicity of A(I). \square

Remark 2.4 It follows from the continuity of A that for sufficiently small $\varepsilon > 0$ there is an a_1 , $a < a_1 < b$, for which $A(a_1,b) = \varepsilon$. Indeed, since T is compact, there exists a positive integer $N(\varepsilon)$ and points $b = a_0 > a_1 > \ldots > a_{N(\varepsilon)} = a$ with $A(a_i, a_{i-1}) = \varepsilon$, $i = 1, 2, \ldots, N(\varepsilon) - 1$ and $A(a, a_{N(\varepsilon)-1}) \leq \varepsilon$.

Lemma 2.5 The number $N(\varepsilon)$ is a non-increasing function of ε which takes on every sufficiently large an integer value.

Proof. Fix c, a < c < b. Then, (2. 3) ensures $A(c, b) = \varepsilon_0 > 0$. Moreover, as observed in Remark 2.4, there is a positive integer $N(\varepsilon_0)$ and a partition $b = a_0 > a_1 > \ldots > a_{N(\varepsilon_0)} = a$ such that $A(a_i, a_{i-1}) = \varepsilon_0$, $i = 1, 2, \ldots, N(\varepsilon_0) - 1$ and $A(a, a_{N(\varepsilon_0)-1}) \le \varepsilon_0$. Let $d \in (a_1, b)$. According to Lemma 2.3, $A(d, b) = \varepsilon'_0 < \varepsilon_0$ and the procedure outlined above applied to ε'_0 gives $\infty > N(\varepsilon'_0) \ge N(\varepsilon_0) + 1$. If $N(\varepsilon'_0) = N(\varepsilon_0) + 1$, we stop.

Otherwise, define

$$\varepsilon_1 = \sup \{ \varepsilon : 0 < \varepsilon < \varepsilon_0 \text{ and } N(\varepsilon) \ge N(\varepsilon_0) + 1 \}.$$

We claim $N(\varepsilon_1)=N(\varepsilon_0)+1$. Indeed, suppose $N(\varepsilon_1)\geq N(\varepsilon_0)+2$ and the partition $b=a_0>a_1>\ldots>a_{N(\varepsilon_1)}=a$ satisfies $A(a_i,a_{i-1})=\varepsilon_1,i=1,2,\ldots,N(\varepsilon_1)-1$ and $A(a,a_{N(\varepsilon_1)-1})\leq \varepsilon_1$. Decrease $a_{N(\varepsilon_1)-1}$ slightly to $a'_{N(\varepsilon_1)}$ so that both $A(a,a'_{N(\varepsilon_1)})<\varepsilon_1$ and $A(a'_{N(\varepsilon_1)},a_{N(\varepsilon_1)-1})>\varepsilon_1$, continuing the process to get a partition of (a,b) having $N(\varepsilon_1)$ intervals such that $A(a,a'_{N(\varepsilon_1)})<\varepsilon_1$ and $A(a'_i,a'_{i-1})>\varepsilon_1,i=1,2,\ldots,N(\varepsilon_1)-1,a'_0=b$. Taking $\varepsilon_2\leq \min_{2\leq i\leq N(\varepsilon_1)-1}A(a'_i,a'_{i-1})$ we obtain $\varepsilon_2>\varepsilon_1$ and $N(\varepsilon_2)\geq N(\varepsilon_0)+2$, a contradiction. This establishes the claim.

An inductive argument completes the proof. \Box

The quantity $N(\varepsilon)$ is useful in the derivation of upper and lower estimates for the approximation numbers of T.

Lemma 2.6 For all $\varepsilon \in (0, ||T||)$,

$$a_{N(\varepsilon)+2}(T) \le \varepsilon \le a_{N(\varepsilon)+1}(T).$$

Proof. This follows from [EHL2], Lemma 3.19 (put K = (a, b)).

A version of this result, with a slightly different $N(\varepsilon)$, was first proved in [EEH1] and was then extended in [EHL1]. For general u and v it is impossible to find a simple relation between ε and $N(\varepsilon)$, but by using the properties of A the behavior of $\varepsilon N(\varepsilon)$ when $\varepsilon \to 0_+$ can be determined.

Lemma 2.7 Given $v \in L^p(a,b)$, $u \in L^{p'}(a,b)$ we have

$$\lim_{\varepsilon \to 0_+} \varepsilon N(\varepsilon) = \alpha_p \int_a^b |u(t)v(t)| dt.$$

This result follows from an adaptation of the argument of [EHL2]; see, in particular, Theorem 6.4 of that paper. Together with Lemma 2.6 this shows, again using the techniques of [EHL2], that the following theorem holds.

Theorem 2.8 Given $v \in L^p(a,b)$, $u \in L^{p'}(a,b)$ the operator T defined in (1. 1) satisfies

$$\lim_{n\to\infty} na_n(T) = \alpha_p \int_a^b |u(t)v(t)| dt,$$

where $\alpha_p = A((0,1), 1, 1)$.

A result of this type was established under weaker conditions on u and v in [EHL2].

3 Technical results.

Here we give some results of a technical nature which will prove very useful in the sequel. We begin with some information about the function A.

Lemma 3.1 Let $I = (c, d) \subseteq (a, b)$ and suppose that u and v are constant functions over I. Then

$$A(I, u, v) = |I||u||v|A((0, 1), 1, 1)$$

Proof. By definition,

$$\begin{split} A(I,u,v) &= \sup_{f \in L^p(I)} \inf_{\alpha \in \mathbf{R}} \|Tf - \alpha v\|_{p,I} / \|f\|_{p,I} \\ &= \sup_{\|f\|_{p,I} \le 1} \inf_{\alpha \in \mathbf{R}} \|v\left(\int_c^{\cdot} ufdt - \alpha\right)\|_{p,I} \\ &= \|v\|u\| \sup_{\|f\|_{p,I} \le 1} \inf_{\alpha \in \mathbf{R}} \|\int_c^{\cdot} fdt - \alpha\|_{p,I} \\ &= \|v\|u\|I\| \sup_{\|f\|_{p,(0,1)} \le 1} \inf_{\alpha \in \mathbf{R}} \|\int_0^{\cdot} fdt - \alpha\|_{p,(0,1)} \end{split}$$

Next, we investigate the dependence of A(I, u, v) on u and v.

Lemma 3.2 Let $I = (c, d) \subset (a, b)$ and suppose that $v \in L^p(I)$ and $u_1, u_2 \in L^{p'}(I)$. Then

$$|A(I, u_1, v) - A(I, u_2, v)| \le ||u_1 - u_2||_{p', I} ||v||_{p, I}$$

Proof. Without loss of generality we may suppose that $A(I, u_1, v) \ge A(I, u_2, v)$. Then

$$A(I, u_{1}, v) = \sup_{\|f\|_{p,I} \leq 1} \inf_{\alpha \in \mathbf{R}} \|v \left[\int_{c}^{\cdot} (u_{1} - u_{2} + u_{2}) f dt - \alpha \right] \|_{p,I}$$

$$\leq \sup_{\|f\|_{p,I} \leq 1} \inf_{\alpha \in \mathbf{R}} \left[\|v \int_{c}^{\cdot} (u_{1} - u_{2}) f dt \|_{p,I} + \|v \left(\int_{c}^{\cdot} u_{2} f dt - \alpha \right) \|_{p,I} \right]$$

$$\leq \sup_{\|f\|_{p,I} \leq 1} \inf_{\alpha \in \mathbf{R}} \left[\|v\|_{p,I} \|u_{1} - u_{2}\|_{p',I} + \|v \left(\int_{c}^{\cdot} u_{2} f - \alpha \right) \|_{p,I} \right]$$

$$\leq \|v\|_{p,I} \|u_{1} - u_{2}\|_{p',I} + A(I, u_{2}, v).$$

The result follows. \Box

Lemma 3.3 Let $I = (c, d) \subset (a, b)$ and suppose that $u \in L^{p'}(I)$ and $v_1, v_2 \in L^p(I)$. Then

$$|A(I, u, v_1) - A(I, u, v_2)| \le ||u||_{p', I} ||v_1 - v_2||_{p, I}.$$

Proof. We may suppose that $A(I, u, v_1) \geq A(I, u, v_2)$. Then

$$\begin{split} A(I,u,v_1) &= \sup_{\|f\|_{p,I} \le 1} \inf_{\alpha \in \mathbf{R}} \|v_1 \left[\int_c^{\cdot} u f dt - \alpha \right] \|_{p,I} \\ &= \sup_{\|f\|_{p,I} \le 1} \inf_{\|\alpha\| \le \|u\|_{p',I}} \|v_1 \left[\int_c^{\cdot} u f dt - \alpha \right] \|_{p,I} \\ &\le \sup_{\|f\|_{p,I} \le 1} \inf_{\|\alpha\| \le \|u\|_{p',I}} \left[\|(v_1 - v_2)[\int_c^{\cdot} u f dt - \alpha]\|_{p,I} \right. \\ &+ \|v_2[\int_c^{\cdot} u f dt - \alpha]\|_{p,I} \right] \\ &\le \|v_1 - v_2\|_{p,I} \|u\|_{p',I} + A(I,u,v_2). \end{split}$$

The proof is complete. \Box

We now turn to the approximation of functions from L^p and $L^{p'}$ by step-functions.

Suppose $u \in L^{p'}(a, b)$ and $v \in L^p(a, b)$ and let $\alpha > 0$. We define $m_{\alpha} \in \mathbb{N}$ by the following requirements:

There exist two step-functions, u_{α} and v_{α} , each with m_{α} steps, say,

$$u_{\alpha}(x) := \sum_{j=1}^{m_{\alpha}} \xi_{j} \chi_{w_{\alpha}(j)}(x), \qquad v_{\alpha}(x) := \sum_{j=1}^{m_{\alpha}} \psi_{j} \chi_{w_{\alpha}(j)}(x), \tag{3. 1}$$

where $\{w_{\alpha}(j)\}_{j=1}^{m_{\alpha}}$ is a family of non-overlapping intervals covering (a,b), such that for

$$\alpha_u := \|u - u_\alpha\|_{p',(a,b)}$$
 and $\alpha_v := \|v - v_\alpha\|_{p,(a,b)}$

we have

(i)
$$\max(\alpha_u, \alpha_v) \le \alpha; \tag{3. 2}$$

and

(ii) for any step-functions u'_{α}, v'_{α} with less than m_{α} steps, say n_{α} steps, $n_{\alpha} < m_{\alpha}$,

$$\max(\|u-u_{\alpha}'\|_{p',(a,b)},\|v-v_{\alpha}'\|_{p,(a,b)})>\alpha.$$

Thus, m_{α} is the minimum number of steps needed to approximate u in $L^{p'}$ and v in L^{p} with the required accuracy. Note that, plainly,

$$||u - u_{\alpha}||_{p',(a,b)} \le \alpha, \qquad ||v - v_{\alpha}||_{p,(a,b)} \le \alpha.$$

The best way to choose ξ_i and ψ_i for given $\{w_\alpha\}_{j=1}^{m_\alpha}$ is by finding ξ_i and ψ_i such that:

$$\int_{w_{\alpha}(i)} |u(t) - \xi_i|^{p'-1} \operatorname{sgn}(u(t) - \xi_i) dt = 0$$

and

$$\int_{w_{\alpha}(i)} |v(t) - \psi_i|^{p-1} \operatorname{sgn}(v(t) - \psi_i) dt = 0$$

(see [S], Theorem 1.11).

It turns out that the relationship between α and m_{α} is crucial for us; we next address this matter.

Lemma 3.4 Suppose $u \in C(a,b) \cap L^{p'}(a,b)$ and $v \in C(a,b) \cap L^{p}(a,b)$, at least one of them, say u, being non-constant. Then, when α decreases to 0, m_{α} increases to ∞ .

Proof. We show that given $m \in N$ there exists $\alpha > 0$ having $m_{\alpha} > m$. The fact that u is continuous and non-constant on (a, b) guarantees the existence of pairwise disjoint subintervals I_1, I_2, \ldots, I_{2m} of (a, b) on each of which u is non-constant.

Fix $\alpha > 0$ satisfying $\sum_{j=1}^{m} \|u - u_{I_{k_j}}\|_{p',I_{k_j}}^{p'} > \alpha^{p'}$ for every set of m intervals from among I_1, I_2, \ldots, I_{2m} . Now, to any partition, $\{w_{\alpha}(j)\}_{j=1}^{m}$, of (a,b) into m non-overlapping subintervals there correspond $I_{k_1}, I_{k_2}, \ldots, I_{k_m}$ such that each I_{k_j} is subset of some $w_{\alpha}(i)$ and hence

$$\sum_{j=1}^{m} \|u - u_{w_{\alpha}(j)}\|_{p',w_{\alpha}(j)}^{p'} \ge \sum_{j=1}^{m} \|u - u_{w_{\alpha}(j)}\|_{p',I_{k_{j}}}^{p'} > \alpha^{p'}.$$

Therefore $m_{\alpha} > m$. \square

Lemma 3.5 Suppose $u \in C(a,b) \cap L^{p'}(a,b)$ and $v \in C(a,b) \cap L^{p}(a,b)$, at least one of them, say u, being non-constant. Fix $\alpha > 0$ and set $\Lambda_{\alpha} = \{\beta; 0 < \beta \leq \alpha \text{ and } m_{\beta} = m_{\alpha}\}$. Then, Λ_{α} is an interval with $\gamma = \inf \Lambda_{\alpha}$ and $\gamma \in \Lambda_{\alpha}$.

Proof. Clearly, Λ_{α} is nonempty, since $\alpha \in \Lambda_{\alpha}$. Again, $m_{\lambda_1} \geq m_{\lambda_2}$ whenever $\lambda_1 < \lambda_2$, so Λ_{α} is convex and hence an interval, possibly equal to $\{\alpha\}$.

It follows from Lemma 3.4 that $\gamma > 0$. Now, if $\Lambda_{\lambda} = \{\alpha\}$, so that $\gamma = \alpha$, we are done. Otherwise, there exists a sequence $\{\alpha_n\}$ in Λ_{α} with $\alpha_n \searrow \gamma$. Let $u_{\alpha_n} = \sum_{j=1}^{m_{\alpha}} u_{w_{\alpha_n}(j)} \chi_{w_{\alpha_n}(j)}$ and $v_{\alpha_n} = \sum_{j=1}^{m_{\alpha}} v_{w_{\alpha_n}(j)} \chi_{w_{\alpha_n}(j)}$, as in (3. 1), so that

$$\max(\|u - u_{\alpha_n}\|_{p',(a,b)}, \|v - v_{\alpha_n}\|_{p,(a,b)}) \le \alpha_n.$$

Assume the notation has been chosen to ensure the end points of $w_{\alpha_n}(j) = (c_n^j, d_n^j)$ satisfy $a = c_n^1 < d_n^j \le c_n^{j+1} < d_n^{m_\alpha} = b, j = 1, 2, \dots, m_\alpha - 1.$

There exists a sequence $n(k), k = 1, 2, \ldots$ of positive integers and numbers $c^1, c^2, \ldots, c^{m_\alpha}, d^1, d^2, \ldots, d^{m_\alpha}$ such that

$$\lim_{k} c_{n(k)}^{j} = c^{j}, \qquad \lim_{k} d_{n(k)}^{j} = d^{j}, \qquad j = 1, 2, \dots, m_{\alpha},$$

and

$$a = c^1 \le d^j \le c^{j+1} \le d^{m_\alpha} = b, \qquad j = 1, 2, \dots, m_\alpha.$$

Observe that, setting

$$u_{\gamma} = \sum_{j=1}^{m_{\alpha}} u_{(c^{j}, d^{j})} \chi_{(c^{j}, d^{j})}$$
 and $v_{\gamma} = \sum_{j=1}^{m_{\alpha}} v_{(c^{j}, d^{j})} \chi_{(c^{j}, d^{j})},$

we have

$$\max(\|u - u_{\gamma}\|_{p',(a,b)}, \|v - v_{\gamma}\|_{p,(a,b)}) = \gamma,$$

which forces $m_{\gamma} = m_{\alpha}$. \square

Lemma 3.6 Suppose that $u \in L^{p'}(a,b) \cap C(a,b)$ and $v \in L^p(a,b) \cap C(a,b)$ are not equal to zero on (a,b), indeed, assume at least one of u and v be non-constant on (a,b). Then, there exists $\alpha_0 > 0$ such that given any α , $0 < \alpha < \alpha_0$, there exists a β , $0 < \beta < \alpha$, with $m_\beta = m_\alpha + 1$ or $m_\beta = m_\alpha + 2$.

Proof. Say u is non-constant on (a, b). We take α_0 to be the positive distance of u from the closed set $\{k\chi_I; k \in \mathbf{R}, 0 < |I| < \infty\}$ in $L^{p'}(a, b)$. Observe that $m_{\alpha} \geq 2$ whenever $0 < \alpha < \alpha_0$.

Fix $\alpha, 0 < \alpha < \alpha_0$. By Lemma 3.5, $m_{\gamma} = m_{\alpha}$, where $\gamma = \inf \Lambda_{\alpha}$. Hence, there exists a partition $\{w_{\gamma}(j)\}_{j=1}^{m_{\gamma}}$ of (a,b) whose corresponding step functions, $u_{\gamma} = \sum_{j=1}^{m_{\alpha}} u_{w_{\gamma}(j)} \chi_{w_{\gamma}(j)}$ and $v_{\gamma} = \sum_{j=1}^{m_{\alpha}} v_{w_{\gamma}(j)} \chi_{w_{\gamma}(j)}$, satisfy

$$\max(\|u - u_{\gamma}\|_{p',(a,b)}, \|v - v_{\gamma}\|_{p,(a,b)}) = \gamma.$$

If $||u - u_{\gamma}||_{p',(a,b)} > ||v - v_{\gamma}||_{p,(a,b)}$ then for some some $j_0, 1 \le j_0 \le m_{\alpha}$,

$$||u - u_{w_{\gamma}(j_0)}||_{p',w_{\gamma}(j_0)}^{p'} > 0.$$

It is possible to find a point c in the interval $w_{\gamma}(j_0) = (d, e)$ such that

$$||u - u_{w_{\gamma}(j_0)}||_{p',w_{\gamma}(j_0)}^{p'} > ||u - u_{(d,c)}||_{p',(d,c)}^{p'} + ||u - u_{(c,e)}||_{p',(c,e)}^{p'}.$$

Let $w'_{\gamma}(j) = w_{\gamma}(j)$, $j = 1, 2, ..., j_0 - 1, j_0 + 1, ..., m_{\alpha}$, $w'_{\gamma}(j_0) = (d, c)$ and $w'_{\gamma}(m_{\alpha} + 1) = (c, e)$. Then, $\{w'_{\gamma}(j)\}_{j=1}^{m_{\alpha}+1}$ is a partition of (a, b) with associated step functions $u'_{\gamma} = \sum_{j=1}^{m_{\alpha}+1} u_{w'_{\gamma}(j)} \chi_{w'_{\gamma}(j)}$ and $v'_{\gamma} = \sum_{j=1}^{m_{\alpha}+1} v_{w'_{\gamma}(j)} \chi_{w'_{\gamma}(j)}$ such that

$$\max(\|u - u_{\gamma}'\|_{p',(a,b)}, \|v - v_{\gamma}'\|_{p,(a,b)}) = \beta < \gamma,$$

and so $m_{\beta} = m_{\alpha} + 1$.

Similarly, when $||v-v_{\gamma}||_{p,(a,b)} > ||u-u_{\gamma}||_{p,(a,b)}$, there is a $\beta \in (0,\alpha)$ with $m_{\beta} = m_{\alpha} + 1$.

Suppose, then, $||v-v_\gamma||_{p,(a,b)}=||u-u_\gamma||_{p',(a,b)}=\gamma>0$. As before, we can find an interval $w_\gamma(j_0)=(d_0,e_0)$ and a point c_0 such that

$$||u - u_{w_{\gamma}(j_0)}||_{p',w_{\gamma}(j_0)}^{p'} > ||u - u_{(d_0,c_0)}||_{p',(d_0,c_0)}^{p'} + ||u - u_{(c_0,e_0)}||_{p',(c_0,e_0)}^{p'},$$

and an interval $w_{\gamma}(j_1) = (d_1, c_1)$ and a point c_1 such that

$$\|v-v_{w_{\gamma}(j_1)}\|_{p,w_{\gamma}(j_1)}^p>\|v-v_{(d_1,c_1)}\|_{p,(d_1,c_1)}^p+\|v-v_{(c_1,e_1)}\|_{p,(c_1,e_1)}^p.$$

Now, if it is possible to have $j_0 = j_1$ and $c_0 = c_1$ we can get $\beta \in (0, \alpha)$ with $m_{\beta} = m_{\alpha} + 1$. Otherwise, we can only conclude there is a $\beta \in (0, \alpha)$ for which m_{β} is one of $m_{\alpha} + 1$ and $m_{\alpha} + 2$. \square

Lemma 3.7 Let $-\infty \le a < b \le \infty$ and suppose that $u' \in L^{p'/(p'+1)}(a,b) \cap C(a,b)$. For each small h > 0 define

$$x_1 = -\frac{1}{h}, x_{i+1} := x_i + h \text{ for } i \in 1, \dots, [2/h^2];$$

put $J_i = (a, b) \cap (x_i, x_{i+1}), i \in 1, \dots, [2/h^2].$

Then

$$\int_{a}^{b} |u'(t)|^{p'/(p'+1)} dt = \lim_{h \to 0} \sum_{i=1}^{[2/h^{2}]} |J_{i}| \max_{x \in J_{i}} |u'(x)|^{p'/(p'+1)}$$

$$= \lim_{h \to 0} \sum_{j=1}^{[2/h^2]} |J_i| \min_{x \in J_i} |u'(x)|^{p'/(p'+1)}.$$

Proof. Simply use the definition of the integral. \Box

We are now prepared to establish an important estimate for $\limsup_{\alpha \to 0_{+}} \alpha m_{\alpha}$.

Theorem 3.8 Suppose $u \in L^{p'}(a,b)$, $v \in L^p(a,b)$ and $u' \in L^{p'/(p'+1)}(a,b) \cap C(a,b)$, $v' \in L^{p/(p+1)}(a,b) \cap C(a,b)$. Then,

$$\limsup_{\alpha \to 0_+} \alpha m_{\alpha} \le c(p, p') (\|u'\|_{p'/(p'+1), (a,b)} + \|v'\|_{p/(p+1), (a,b)}).$$

Proof. The result is trivial if both u and v are constant so we assume that at least one of them, say u, is not.

Given β , $0 < \beta < \inf_{c \in \mathbf{R}} ||u-c||_{p',(a,b)}$, let $w_{\beta}(i) = (a_i, a_{i+1}), i = 1, 2, \ldots, n_{\beta}^u$, be a partition of (a, b) satisfying

$$||u - u_{w_{\beta}(i)}||_{p',w_{\beta}(i)} = \beta, \qquad i = 1, 2, \dots, n_{\beta}^{u} - 1,$$

and $||u - u_{w_{\beta}(i)}||_{p',w_{\beta}(i)} \leq \beta$, $i = n_{\beta}^{u}$. Fix λ , $0 < \lambda < 1$, and define the $[\lambda n_{\beta}^{u}]$ points x_{k} by the rule that if (a,b) is bounded, then

$$x_k := a + \frac{b-a}{\lambda n_{\beta}^u} k, \qquad k = 1, 2, \dots, [\lambda n_{\beta}^u];$$

if $(a,b)=(-\infty,\infty)$, then, with $h=(\frac{2}{\lambda n_g^u})^{1/2}$,

$$x_1 = -\frac{1}{h}, \quad x_{k+1} = x_k + h, \qquad k = 1, 2, \dots, [\lambda n_{\beta}^u];$$

for other types of intervals we proceed in the same sort of way.

From the union of the points $a_1, a_2, \ldots, a_{n^u_\beta} + 1$ and $x_1, x_2, \ldots, x_{\lfloor \lambda n^u_\beta \rfloor}$, arrange them in the ascending order and denote the resulting points by $b_j, j = 1, 2, \ldots, J(\beta) + 1$, so that $n^u_\beta \leq J(\beta) \leq n^u_\beta + \lfloor \lambda n^u_\beta \rfloor$. Put $I^\beta_j = (b_j, b_{j+1}), j = 1, 2, \ldots, J(\beta)$. We observe there are at least $n^u_\beta - \lfloor \lambda n^u_\beta \rfloor$ intervals I^β_j with

$$I_j^{\beta} = w_{\beta}(i)$$

for some i.

Now,

$$\sum_{j=1}^{J(\beta)} \|u-u_{I_j^\beta}\|_{p',I_j^\beta}^{p'/(p'+1)} \leq \sum_{j=1}^{J(\beta)} |I_j^\beta| \max_{x \in I_j^\beta} |u'(x)|^{p'/(p'+1)}.$$

Again, setting $N = \#(\{j: I_j^\beta = w_\beta(i) \text{ for some } i < n_\beta^u\})$, we have $N \ge n_\beta^u - [\lambda n_\beta^u] - 1$ and

$$\beta^{p'/(p'+1)}(n^u_\beta - [\lambda n^u_\beta] - 1) \leq \beta^{p'/(p'+1)} N \leq \sum_{i=1}^{J(\beta)} \|u - u_{I^\beta_i}\|_{p',I^\beta_i}^{p'/(p'+1)}$$

$$\leq \sum_{j=1}^{J(\beta)} |I_j^{\beta}| \max_{x \in I_j^{\beta}} |u'(x)|^{p'/(p'+1)}.$$

Thus, by Lemma 3.7,

$$\limsup_{\beta \to 0_+} \beta^{p'/(p'+1)} (n_{\beta}^u - [\lambda n_{\beta}^u]) \le \int_a^b |u'(x)|^{p'/(p'+1)} dx. \tag{3. 3}$$

Similarly, if neither v is constant, there exists, for $0 < \beta < \inf_{c \in \mathbf{R}} \|v - c\|_{p,(a,b)}$, a partition $\{w'_{\beta}(i)\}_{i=1}^{n^v_{\beta}}$ such that

$$\|v - v_{w'_{\beta}(i)}\|_{p,w'_{\beta}(i)} = \beta,$$
 $i = 1, 2, \dots, n^{v}_{\beta} - 1,$ $\|v - v_{w'_{\beta}(i)}\|_{p,w'_{\beta}(i)} \le \beta,$ $i = n^{v}_{\beta},$

and

$$\limsup_{\beta \to 0_+} \beta^{p/(p+1)} (n^v_{\beta} - [\lambda n^v_{\beta}]) \le \int_a^b |v'(x)|^{p/(p+1)} dx. \tag{3.4}$$

Put $\alpha = \max[(\beta^{p'}(n_{\beta} + [\lambda n_{\beta}]))^{1/p'}, (\beta^{p}(n_{\beta} + [\lambda n_{\beta}]))^{1/p}], 0 < \beta < \min[\inf_{c \in \mathbf{R}} ||u - c||_{p',(a,b)}, \inf_{c \in \mathbf{R}} ||v - c||_{p,(a,b)}], \text{ where } n_{\beta} = n_{\beta}^{u} + n_{\beta}^{v} \text{ if } v \text{ is not constant and } n_{\beta} = n_{\beta}^{u} \text{ if it is. Note that (3. 3) and (3. 4) imply } \alpha \to 0_{+} \text{ as } \beta \to 0_{+}.$

Taking the refinement of the partition $\{I_j^{\beta}\}_{j=1}^{J(\beta)}$ and the analogous one for v (if necessary) we get a partition of (a,b), of at most $n_{\beta} + [\lambda n_{\beta}]$ subintervals, whose corresponding step-functions u_{α} and v_{α} satisfy

$$\max[\|u - u_{\alpha}\|_{p',(a,b)}, \|v - v_{\alpha}\|_{p,(a,b)}] \le \beta \max[(n_{\beta}^{u})^{1/p'}, (n_{\beta}^{v})^{1/p}] \le \alpha.$$

This means

$$m_{\alpha} \leq n_{\beta} + [\lambda n_{\beta}];$$

hence

$$\begin{split} & \limsup_{\alpha \to 0_{+}} (\alpha m_{\alpha}) & \leq & \limsup_{\alpha \to 0_{+}} (\alpha m_{\alpha}) \\ & + \limsup_{\alpha \to 0_{+}} (\alpha m_{\alpha}) \\ & \leq & \limsup_{\beta \to 0_{+}} \left[\beta^{p'} (n_{\beta} - [\lambda n_{\beta}])^{1/p'} \left(\frac{n_{\beta} + [\lambda n_{\beta}]}{n_{\beta} - [\lambda n_{\beta}]} \right)^{1/p'} \right] \\ & + \lim\sup_{\beta \to 0_{+}} \left[\beta^{p} (n_{\beta} - [\lambda n_{\beta}])^{1/p} \left(\frac{n_{\beta} + [\lambda n_{\beta}]}{n_{\beta} - [\lambda n_{\beta}]} \right)^{1/p} \right] \\ & \leq & \left(\limsup_{\beta \to 0_{+}} \left[\beta^{p'} (n_{\beta} - [\lambda n_{\beta}])^{1/p'} \right] \\ & + \limsup_{\beta \to 0_{+}} \left[\beta^{p} (n_{\beta} - [\lambda n_{\beta}])^{1/p'} \right] \right) \left(\frac{n_{\beta} + [\lambda n_{\beta}]}{n_{\beta} - [\lambda n_{\beta}]} \right) \\ & \leq & c(p, p') (\|u'\|_{p'/(p'+1)/(a,b)}^{(p'+1)/p'} + \|v'\|_{p/(p+1),(a,b)}^{(p+1)/p}) \frac{(1+\lambda)}{(1-\lambda)}. \end{split}$$

Since λ may be chosen arbitrarily small, we obtain

$$\lim_{\alpha \to 0_{+}} \sup \alpha m_{\alpha} \le c(p, p') (\|u'\|_{p'/(p'+1), (a,b)} + \|v'\|_{p/(p+1), (a,b)}),$$

as asserted. \square

4 The Main theorem.

In this section we give the remainder estimate promised in the Introduction. To begin, we prove

Theorem 4.1 Let $-\infty \le a < b \le \infty$, let $u \in L^{p'}(a,b)$, $v \in L^{p}(a,b)$ and suppose that $u' \in L^{p'/(p'+1)}(a,b) \cap C([a,b])$, $v' \in L^{p/(p+1)}(a,b) \cap C([a,b])$. Then

$$\limsup_{\varepsilon \to 0_+} \left| \alpha_p \int_a^b |u(t)v(t)| dt - \varepsilon N(\varepsilon) \right| N^{1/2}(\varepsilon)$$

$$\leq c(p,p')(\|u'\|_{p'/(p'+1),(a,b)} + \|v'\|_{p/(p+1),(a,b)}) (\|u\|_{p',(a,b)} + \|v\|_{p,(a,b)})$$
$$+3\alpha_p \|uv\|_{1,(a,b)},$$

where $\alpha_p = A((0,1),1,1)$ and c(p,p') is a constant depending only on p and p'.

Proof. Let $\alpha > 0$. Then (see (3. 1) and (3. 2)) there are $m_{\alpha} \in \mathbb{N}$ and step-functions u_{α}, v_{α} such that

$$||u_{\alpha} - u||_{p',(a,b)} < \alpha, \qquad ||v_{\alpha} - v||_{p,(a,b)} < \alpha;$$

and $\{w_{\alpha}(j)\}_{j=1}^{m_{\alpha}}$ is a corresponding family of non-overlapping intervals which cover (a,b). Plainly,

$$\left| \int_{a}^{b} (uv - u_{\alpha}v_{\alpha})dt \right| \le \alpha (\|u\|_{p',(a,b)} + \|v\|_{p,(a,b)} + \alpha). \tag{4. 1}$$

Let $\varepsilon > 0$ be small and let $\{I_i\}_{i=1}^{N(\varepsilon)}$ be the non-overlapping intervals which occur in the definition of $N(\varepsilon)$.

Put $J_1 = \{j; I_i \subset w_{\alpha}(j) \text{ for some } i\}$, $J_2 = \{j; w_{\alpha}(j) \subset I_i \text{ for some } i\}$, $J_3 = \{j; w_{\alpha}(j) \not\subset I_i \not\subset w_{\alpha}(j), \text{ for all } i\}$, $L_1 = \{i; I_i \subset w_{\alpha}(j) \text{ for some } j\}$ and $L_2 = \{i; \text{ for all } j, I_i \not\subset w_{\alpha}(j)\}$. Then we see from Lemma 3.1 that

$$\alpha_{p} \int_{a}^{b} u_{\alpha} v_{\alpha} dt = \alpha_{p} \left(\sum_{j \in J_{1}} + \sum_{j \in J_{2}} + \sum_{j \in J_{3}} \right) \xi_{j} \psi_{j} |w_{\alpha}(j)|$$

$$\leq \sum_{i \in L_{1}} A(I_{i}, u_{\alpha}, v_{\alpha})$$

$$+ 2 \sum_{i \in L_{2}} A(I_{i}, u_{\alpha}, v_{\alpha})$$

$$+ \sum_{j \in J_{2}} \alpha_{p} \xi_{j} \psi_{j} |w_{\alpha}(j)|. \tag{4.2}$$

Lemmas 3.2, 3.3 as well as the estimates

$$\begin{array}{lcl} \alpha_{p}\xi_{j}\psi_{j}|w_{\alpha}(j)| & \leq & A(w_{\alpha}(j),u_{\alpha},v_{\alpha}) \\ \\ & \leq & A(w_{\alpha}(j),u,v) + \|u-u_{\alpha}\|_{p',w_{\alpha}(j)}\|v-v_{\alpha}\|_{p,w_{\alpha}(j)} \\ \\ & + \|u\|_{p',w_{\alpha}(j)}\|v-v_{\alpha}\|_{p,w_{\alpha}(j)} \\ \\ & + \|u-u_{\alpha}\|_{p',w_{\alpha}(j)}\|v\|_{p,w_{\alpha}(j)} \end{array}$$

and $A(w_{\alpha}(j), u, v) \leq A(I_i, u, v) \leq \varepsilon$ for $w_{\alpha}(j) \subset I_i$ now show that the right-hand side of (4. 2) may be estimated from above by

$$\sum_{I_{i} \subset w_{\alpha}(j)} A(I_{i}, u, v) + 2 \sum_{I_{i} \not\subset w_{\alpha}(j)} A(I_{i}, u, v) + \varepsilon m_{\alpha}
+ 3 \sum_{i=1}^{N(\varepsilon)} (\|u - u_{\alpha}\|_{p', I_{i}} \|v - v_{\alpha}\|_{p, I_{i}} + \|u\|_{p', I_{i}} \|v - v_{\alpha}\|_{p, I_{i}}
+ \|u - u_{\alpha}\|_{p', I_{i}} \|v\|_{p, I_{i}})$$
(4. 3)

To proceed further, note that $A(I_i, u, v) \leq \varepsilon$,

$$\#\{i; I_i \subset w_{\alpha}(j) \text{ for some } j\} \leq N(\varepsilon)$$

and

$$\#\{i, \text{ for all } j, I_i \not\subset w_\alpha(j)\} \leq m_\alpha.$$

It follows that

$$\alpha_{p} \int_{a}^{b} u_{\alpha} v_{\alpha} \leq N(\varepsilon)\varepsilon + 3m_{\alpha}\varepsilon + 3\sum_{i=1}^{N(\varepsilon)} (\|u - u_{\alpha}\|_{p',I_{i}} \|v - v_{\alpha}\|_{p,I_{i}} + \|u\|_{p',I_{i}} \|v - v_{\alpha}\|_{p,I_{i}} + \|u - u_{\alpha}\|_{p',I_{i}} \|v\|_{p,I_{i}})$$

$$\leq N(\varepsilon)\varepsilon + 3m_{\alpha}\varepsilon + 2\alpha^{2} + 2\alpha(\|u\|_{p',(a,b)} + \|v\|_{p,(a,b)}). \quad (4.4)$$

On the other hand, since $A(I_i, u, v) = \varepsilon$ for $1 \le i \le N(\varepsilon) - 1$ and $N(\varepsilon) - 2m_{\alpha} \le \#\{i; I_i \subset w_{\alpha}(j) \text{ for some } j\}$, we see that

$$(N(\varepsilon) - 2m_{\alpha} - 1)\varepsilon \leq \sum_{I_{i} \subset w_{\alpha}(j)} A(I_{i}, u, v)$$

$$= \sum_{I_{i} \subset w_{\alpha}(j)} A(I_{i}, u_{\alpha}, v_{\alpha})$$

$$+ \sum_{I_{i} \subset w_{\alpha}(j)} [A(I_{i}, u, v) - A(I_{i}, u_{\alpha}, v_{\alpha})]$$

$$\leq \sum_{I_{i}\subset w_{\alpha}(j)} \alpha_{p} |I_{i}||\xi_{j}||\psi_{j}|$$

$$+ \sum_{I_{i}\subset w_{\alpha}(j)} (\|u - u_{\alpha}\|_{p',I_{i}} \|v - v_{\alpha}\|_{p,I_{i}}$$

$$+ \|u\|_{p',I_{i}} \|v - v_{\alpha}\|_{p,I_{i}} + \|u - u_{\alpha}\|_{p',I_{i}} \|v\|_{p,I_{i}})$$

$$\leq \alpha_{p} \int_{a}^{b} |u_{\alpha}v_{\alpha}| dt + \alpha^{2} + \alpha(\|u\|_{p',(a,b)} + \|v\|_{p,(a,b)})$$

$$\leq \alpha_{p} \int_{a}^{b} |uv| dt + 2\alpha^{2}$$

$$+ 2\alpha(\|u\|_{p',(a,b)} + \|v\|_{p,(a,b)}),$$

$$(4.5)$$

the final inequality following from (4. 1). Together with (4. 4) and (4. 1) this shows that

$$\varepsilon(N(\varepsilon) - 2m_{\alpha} - 1) - 2\alpha^{2} - 2\alpha(\|u\|_{p',(a,b)} + \|v\|_{p,(a,b)}) \\
\leq \alpha_{p} \int_{a}^{b} |uv| dt \\
\leq \varepsilon(N(\varepsilon) + 3m_{\alpha}) + 3\alpha^{2} + 3\alpha(\|u\|_{p',(a,b)} + \|v\|_{p,(a,b)}). \tag{4.6}$$

From Lemma 3.4 we can see that for any small $\varepsilon > 0$, we can find $\alpha > 0$ such that $m_{\alpha} \geq [N^{1/2}(\varepsilon)] \geq m_{\alpha} - 2$. Then (4. 6) gives

$$N^{1/2}(\varepsilon)|\alpha_p \int_a^b |uv|dt - N(\varepsilon)\varepsilon| \leq 3N(\varepsilon)\varepsilon + 3\alpha^2(N^{1/2}(\varepsilon) - 1) + 3\alpha(||u||_{p',(a,b)} + ||v||_{p,(a,b)})N^{1/2}(\varepsilon).$$

Let $\varepsilon \to 0_+$; then $m_\alpha \le N^{1/2}(\varepsilon) + 2 \to \infty$ and so $\alpha \to 0_+$. Hence

$$\begin{split} \limsup_{\varepsilon \to 0_+} N^{1/2}(\varepsilon) |\alpha_p \int_a^b |uv| dt - N(\varepsilon) \varepsilon| \\ & \leq 3 \limsup_{\varepsilon \to 0_+} N(\varepsilon) \varepsilon + 3 \limsup_{\varepsilon \to 0_+} \alpha^2 N^{1/2}(\varepsilon) \\ & + 3 \limsup_{\varepsilon \to 0_+} \alpha N^{1/2}(\varepsilon) (\|u\|_{p',(a,b)} + \|v\|_{p,(a,b)}). \end{split}$$

Since $\lim_{\varepsilon\to 0} \varepsilon N(\varepsilon) = \alpha_p \int_a^b |uv| dt$, by Lemma 2.8, we finally see, with the help of Lemma 3.8, that

$$\begin{split} \limsup_{\varepsilon \to 0_{+}} & \qquad N^{1/2}(\varepsilon) |\alpha_{p} \int_{a}^{b} |uv| - N(\varepsilon) \varepsilon| \\ & \leq & 3\alpha_{p} \int_{a}^{b} |uv| dt \\ & \qquad + 3c(p,p') \big(\|u'\|_{p'/(p'+1),(a,b)} + \|v'\|_{p/(p+1),(a,b)} \big) \big(\|u\|_{p',(a,b)} + \|v\|_{p,(a,b)} \big), \end{split}$$

as required.

Armed with this result it is now easy to give the promised remainder estimate for the approximation numbers of $T: L^2(a,b) \to L^2(a,b)$ given by (1. 1).

Theorem 4.2 Let $-\infty \le a < b \le \infty$, suppose that $u \in L^{p'}(a,b)$, $v \in L^p(a,b)$ and let $u' \in L^{p'/(p'+1)}(a,b) \cap C((a,b))$, $v' \in L^{p/(p+1)}(a,b) \cap C((a,b))$. Then

$$\begin{split} & \limsup_{n \to \infty} n^{1/2} \left| \alpha_p \int_a^b |uv| dt - n a_n \right| \le 3 \alpha_p \int_a^b |uv| dt \\ & + 3 c(p, p') (\|u'\|_{p'/(p'+1), (a,b)} + \|v'|) \|_{p/(p+1), (a,b)}) (\|u\|_{p', (a,b)} + \|v\|_{p, (a,b)}). \end{split}$$

Proof. Simply use Theorem 4.1, Lemma 2.7, Lemma 2.6 and the fact that

$$\lim_{n \to \infty} n^{1/2} a_n(T) = 0.$$

If the interval (a,b) is bounded, it follows immediately from Hölder's inequality that Theorem 4.2 gives rise to

Theorem 4.3 Let $-\infty < a < b < \infty$ and suppose that $u', v' \in C([a, b])$. Then

$$\limsup_{n \to \infty} n^{1/2} |\alpha_p \int_a^b |uv| dt - na_n|$$

$$\leq 3\alpha_p \int_a^b |uv| dt + 3c(p,p')(b-a)(\|u'\|_{p',(a,b)} + \|v'\|_{p,(a,b)})(\|u\|_{p',(a,b)} + \|v\|_{p,(a,b)}).$$

From the following observation we can see that any optimal exponent from Theorem 4.2 has to belong to [1/2, 1].

Observation 4.4 Let $-\infty \le a < b \le \infty$.

(i) Let $\alpha < 1/2$. Then for every $u \in L^{p'}(a,b)$, $v \in L^p(a,b)$ with $u' \in L^{p'/(p'+1)}(a,b) \cap C([a,b])$, $v' \in L^{p/(p+1)}(a,b) \cap C([a,b])$ we have

$$\lim \sup_{n \to \infty} n^{\alpha} \left| \alpha_p \int_a^b |uv| dt - na_n(T) \right| = 0.$$

(ii) Let $\alpha > 1$. Then there exist a and b, and functions u and v satisfying the conditions of Theorem 4.2 on the interval defined by a and b, such that

$$\lim \sup_{n \to \infty} n^{\alpha} \left| \alpha_p \int_a^b |uv| dt - na_n(T) \right| = \infty.$$

Proof. (i) follows from (4. 6) on putting $m_{\alpha} = [N^{\alpha}(\varepsilon)]$ or $[N^{\alpha}(\varepsilon)] + 1$.

(ii) Take (a,b)=(0,1) and $u=1,\ v=1+x$. Then from (4. 6), with $m_{\alpha}=[N^{\alpha}(\varepsilon)]$ a lower bound results which is unbounded as $\varepsilon\to 0$ and the result follows. \square

Acknowledgment. J. Lang wishes to record his gratitude to the Grant Agency of the Czech Republic for support under grant 201/98/P017.

REFERENCES

- [EE] D.E.Edmunds and W.D.Evans, Spectral Theory and Differential Operators, Oxford Univ. Press, Oxford, 1987.
- [EEH1] D.E.Edmunds, W.D.Evans and D.J.Harris. Approximation numbers of certain Volterra integral operators. J. London Math. Soc. (2) 37 (1988), 471–489.
- [EEH2] D.E.Edmunds, W.D.Evans and D.J.Harris. Two-sided estimates of the approximation numbers of certain Volterra integral operators. Studia Math. 124 (1) (1997), 59–80.
- [EGP] D.E.Edmunds, P.Gurka and L.Pick. Compactness of Hardy-type integral operators in weighted Banach function spaces. Studia Math. 109 (1) (1994), 73–90.
- [EHL1] W.D.Evans, D.J.Harris and J.Lang. Two-sided estimates for the approximation numbers of Hardy-type operators in L^{∞} and L^{1} . Studia Math. 130 (2) (1998), 171–192.
- [EHL2] W.D.Evans, D.J.Harris and J.Lang. The approximation numbers of Hardy-type operators on trees J. London Math. Soc (to appear).
- [EKL] W.D.Evans, R.Kerman and J.Lang. Remainder estimates for the approximation numbers of weighted Hardy operators acting on L^2 . Journal D'Anal. (to appear)
- [LL] M.A.Lifshits and W.Linde. Approximation and entropy numbers of Volterra operators with applications to Brownian motion, preprint Math/Inf/99/27, Universität Jena, Germany, 1999.
- [LMN] J.Lang, O. Mendez and A.Nekvinda. Asymptotic behavior of the approximation numbers of the Hardy-type operator from L^p into L^q (case $1 or <math>2 \le p \le q < \infty$). preprint

- [NS] J.Newman and M.Solomyak, Two-sided estimates of singular values for a class of integral operators on the semi-axis, *Integral Equation Operator Theory* 20 (1994), 335–349
- [OK] B.Opic and A.Kufner, Hardy-type Inequalities, Pitman Res. Notes Math. Ser. 219, Longman Sci. & Tech., Harlow, 1990.
- [S] I. Singer, Best Approximation in Normed Linear Spaces by Elements of Linear Subspace, Springer-Verlag, Band 171, New York, 1970.

J. Lang

Department of Mathematics,
The Ohio State University,
100 Math Tower,
231 West 18th Avenue,
Columbus, OH 43210-1174, USA
e-mail: lang@math.ohio-state.edu