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Abstract. The 1D Dirac operator

Ly = i

(
1 0
0 −1

)
dy

dx
+
(

0 2a cos 2πx
2a cos 2πx 0

)
y, y =

(
y1

y2

)
,

considered as a selfadjoint operator in L2(R,C2), has a continuous
spectrum that equals the real line R without countably many open
intervals (spectral gaps). There exists an integer N∗ = N∗(a) > 0
such that for each odd n ∈ Z with |n| > N∗ there is a unique
spectral gap (λ−n , λ

+
n ) with length γn = λ+

n − λ−n that satisfies
(|λ±n − nπ| < π/2, and in this way we obtain all spectral gaps
situated outside [−πN∗, πN∗]. Moreover, γ−n = γn and

γn = 2a
( a

4π

)n−1
[(

n− 1
2

)
!
]−2 [

1 + 0
(

lnn
n

)]
, n > N∗.

1. Introduction

Let

(1) L = L0 + V, L0 = i

(
1 0
0 −1

)
d

dx
, V =

(
0 P (x)

Q(x) 0

)
,

where P and Q are periodic functions of period 1 such that P,Q ∈
L2([0, 1]). If Q(x) = P (x) then the operator L gives a rise to a selfad-
joint operator in L2(R,C2) which spectrum is a real line R with gaps
(λ−n , λ

+
n ), may be empty; for large |n| these spectral gaps are close to

πn.
As in the case of Schrödinger operator [3], [9], [11], [15] these points
{λ−n , λ+

n } are eigenvalues of the operator L considered on the interval
[0, 1] with periodic (for n even) and antiperiodic (for n odd) boundary
conditions (see [3], [12], [13]).

In this note we find a sharp formula for the asymptotics of spectral
gaps of L in the case where P (x) = Q(x) = 2a cos 2πx, a real. Our
interest in this question was inspired by the results of E. Harrell [6]
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and J. Avron and B. Simon [1] on the asymptotics of the spectral gaps
of the Mathieu operator d2/dx2 + 2a cos 2x. It seems there has been no
explicit evaluation of gaps of specific 1D periodic Dirac operators so
far. Our note is trying to fill this gap.

2. Preliminaries

The Dirac operator L0, considered on the interval [0, 1] with periodic
(y(0) = y(1)) or antiperiodic (y(0) = −y(1)) boundary conditions, has
a discrete spectrum, respectively, {2kπ, k ∈ Z} and {(2k+1)π, k ∈ Z}.
Each eigenvalue nπ, both for periodic (if n is even), or antiperiodic (if
n is odd) boundary conditions has multiplicity 2, and

(2) e1
n(x) =

(
1
0

)
e−inπx, e2

n(x) =

(
0
1

)
einπx

are eigenfunctions corresponding to the eigenvalue nπ. Moreover, if the
Hilbert space H = L2[0, 1]×L2[0, 1] is equipped with the scalar product

(3)

〈(
f1

f2

)
,

(
g1

g2

)〉
=

∫ 1

0

(f1(x)g1(x) + f2(x)g2(x))dx,

then each of the systems

(4) {e1
2k, e

2
2k, k ∈ Z}, {e1

2k+1, e
2
2k+1, k ∈ Z}

is an orthonormal basis in H.
The operator

(5) L = L0 + V, V =

(
0 P (x)

Q(x) 0

)
,

where P (x) and Q(x) are 1-periodic functions, may be considered as
a perturbation of L0. Further we always assume that P (x), Q(x) ∈
L2[0, 1]. Then the operator L, considered with periodic or antiperiodic
boundary conditions, has also a discrete spectrum. Moreover, if N0 =
N0(V ) is large enough, then for |n| ≥ N0 there are exactly two (counted
with multiplicity) periodic (if n is even), and antiperiodic (if n is odd)
eigenvalues {λ−n , λ+

n } of L such that

(6) |λ±n − πn| < π/2, |n| > N0

(see, for example [10], [13], [14]). If λ−n 6= λ+
n then the interval (λ−n , λ

+
n )

is a spectral gap of L (considered in L2(R)); moreover every spectral
gap of L appears in that way. For convenience, we consider the interval
(λ−n , λ

+
n ) as spectral gap (empty) even if λ−n = λ+

n .
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3. Basic formulas

We use a pure Fourier method to set up a framework of our analysis
in the same way as it was done in [7], [8], [2] in the case of Hill operators,
or in [4], [5] in the case of Dirac operators.

1. Suppose that λ = nπ+z, |n| > N0, is a periodic (or antiperiodic)
eigenvalue of L with |z| < π/2, and that y 6= 0 is a corresponding
eigenvector. Let E0

n = [e1
n, e

2
n] be the eigenspace of L0 that corresponds

to nπ, and let H(n) be its orthogonal complement. We denote by P 0
n

and Q0
n, respectively, the orthogonal projectors on E0

n and H(n). Then
the equation (nπ + z − L)y = 0 is equivalent to the following system
of two equations:

(7) Q0
n(nπ + z − L0 − V )Q0

ny +Q0
n(nπ + z − L0 − V )P 0

ny = 0

(8) P 0
n(nπ + z − L0 − V )Q0

ny + P 0
n(nπ + z − L0 − V )P 0

ny = 0

Taking into account that P 0
nQ

0
n = Q0

nP
0
n = 0 and P 0

nL
0Q0

n = Q0
nL

0P 0
n =

0 we obtain that (7) and (8) can be written as

(9) Q0
n(nπ + z − L0 − V )Q0

ny −Q0
nV P

0
ny = 0

(10) −P 0
nV Q

0
ny − P 0

nV P
0
ny + zP 0

ny = 0

The operator

(11) A = A(n, z) := Q0
n(nπ + z − L0 − V )Q0

n : H(n)→ H(n)

is invertible for large |n| (see below (24)). So, solving (9) for Q0
ny,

we obtain Q0
ny = A−1Q0

nV P
0
ny, where P 0

ny 6= 0 (otherwise Q0
ny = 0

which implies y = P 0
ny + Q0

ny = 0). Now (10) implies (after plugging
the above expression for Q0

ny in it) that (S − z)P 0
ny = 0, where the

operator S : E0
n → E0

n is defined by

(12) S := P 0
nV A

−1Q0
nV P

0
n + P 0

nV P
0
n .

Hence we obtain (since P 0
ny 6= 0)

(13) det

∣∣∣∣ S11 − z S12

S21 S22 − z

∣∣∣∣ = 0

where

(14) Sij = Sij(n, z) = 〈ein, Sejn〉, i, j ∈ {1, 2}.
Equation (13) and the expressions (14) play a crucial role throughout
the paper.

2. Let H1 and H2 be the subspaces of H generated, respectively, by
{e1

m,m ∈ Z} and {e2
m,m ∈ Z}, and let H1(n) and H2(n) be, respec-

tively, the intersections of these spaces withH(n). ThenH = H1⊕H2, so
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each operator B : H→ Hmay be identified with a 2×2 operator matrix
(Bij), where Bij : Hj → H

i, i, j = 1, 2. If we consider the matrix rep-
resentation of B in the basis {e1

2k, e
2
2k, k ∈ Z} (or {e1

2k+1, e
2
2k+1, k ∈ Z})

then this matrix itself combines the matrix representations of Bij. Of
course, similar remark holds for operators acting in H(n).

Futher we always work with one of the bases (4) (respectively, using
the first basis in the case of periodic boundary conditions, and the
second one in the case of antiperiodic boundary conditions). However,
we don’t specify below which basis is used because the formulas for
the matrix representations in these bases are formally the same (with
running indices being even in the first case, and odd in the second
case).

Let

(15) P (x) =
∑
m∈Z

p(m)eimπx, Q(x) =
∑
m∈Z

q(m)eimπx

be the Fourier expansions of the functions P (x) and Q(x). It is easy to
see that the operator V has the following matrix representation

(16) V =

(
0 V 12

V 21 0

)
, V 12

km = p(−k −m), V 21
km = q(k +m).

The operator Q0
n(nπ+z−L0)Q0

n : H(n)→ H(n) is invertible in H(n)
for any z with |z| < π/2. Let Dn denote its inverse operator; then the
matrix representation of Dn is

(17) Dn =

(
D11
n 0
0 D22

n

)
,

(
D11
n

)
km

=
(
D22
n

)
km

=
δkm

π(n− k) + z
.

The operator A defined in (11) can be written as

(18) A = Q0
n(nπ + z − L0)Q0

n(1− Tn)Q0
n,

where

(19) Tn = DnQ
0
nV Q

0
n.

Thus A = A(n, z) is invertible if and only if 1−Tn is invertible in H(n).
By (16) and (17) one can easily see that the operator (19) has a matrix
representaion

(20) Tn =

(
0 T 12

n

T 21
n 0

)
,

where

(21) (T 12
n )km =

p(−k −m)

π(n− k) + z
, (T 21

n )km =
q(k +m)

π(n− k) + z
.
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We need also the matrix representation of its square T 2
n . From (20) and

(21) it follows that

(22) T 2
n =

(
T 12
n T

21
n 0

0 T 21
n T

12
n

)
,

where

(T 12
n T

21
n )km =

∑
j 6=n

p(−k − j)q(j +m)

[π(n− k) + z][π(n− j) + z]
,

(23)

(T 21
n T

12
n )km =

∑
j 6=n

q(k + j)p(−j −m)

[π(n− k) + z][π(n− j) + z]
.

There exists N∗ = N∗(V ) such that if |n| > N∗ then 1 − Tn is an
invertible operator (for special V we consider this follows from Lemma 4
below). Therefore (1− Tn)−1 =

∑∞
`=0 T

`
n, so, in view of (18), we have

(24) A−1 =
∞∑
`=0

T `nDn.

Now from (12) and (19) it follows that

(25) S =
∞∑
`=0

P 0
nV T

`
nDnQ

0
nV P

0
n + P 0

nV P
0
n =

∞∑
`=0

P 0
nV T

`
nP

0
n ,

so, in view of (14), we have

(26) Sij =
〈
ein, Se

j
n

〉
=
∞∑
`=0

〈
ein, V T

`
ne

j
n

〉
, i, j = 1, 2.

4. Main result

Throughout this section we are dealing with the case where P (x) =
Q(x) = 2a cos 2πx. Thus we have

(27) p(±2) = q(±2) = a, p(m) = q(m) = 0 for m 6= ±2.

Theorem 1. Let γn, n ∈ Z be the length of spectral gaps of Dirac
operator

Ly = i

(
1 0
0 −1

)
dy

dx
+

(
0 2a cos 2πx

2a cos 2πx 0

)
y, y =

(
y1

y2

)
Then γ−n = γn, and there exists N∗ = N∗(a) such that for |n| > N∗
γn = 0 for even n and

(28) γn = 2a
( a

4π

)n−1
[(

n− 1

2

)
!

]−2 [
1 + 0

(
lnn

n

)]
, n ≥ N∗(a),
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for odd n > 0.

The proof of the theorem consists of several steps that are given
below as separate statements.

The next lemma follows easily from (16) and (21 - 26).

Lemma 2.

(29) S11(n, z) = S22(n, z), S21(n, z) = S12(n, z), |n| ≥ N∗.

Moreover, if z is real, then Sij(n, z) are real-valued.

Further we set for convenience

α(n, z) := S11(n, z) = S22(n, z), β(n, z) := S12(n, z) = S21(n, z).

With these notations the quasi-quadratic equation (13) becomes

(30) (α(n, z)− z)2 = (β(n, z))2.

Lemma 3. The periodic and antiperiodic spectra of L are symmetric
with respect to 0, that is if λ is a periodic (or antiperiodic ) eigenvalue
of L, then −λ is respectively, periodic or antiperiodic eigenvalue of L.
Hence

(31) γ−n = γn.

Indeed, if

(
f(x)
g(x)

)
is an eigenvector corresponding to λ then it is

easy to see that

(
f(−x)
−g(−x)

)
is an eigenvector corresponding to −λ

(since cosx is an even function, so P (−x) = P (x) and Q(−x) = Q(x)).

Lemma 4. If |z| < π/2 and |n| > 2 then

(32) (a) ‖T 2
n‖ ≤ 7a2/|n|, (b) ≤ ‖TnDnTn‖ = 7a2/|n|.

Proof. (a) The norm of T 2
n does not exceed its Hilbert-Schmidt

norm which by (22) is less than the sum of the Hilbert-Schmidt norms
of the operators T 12

n T
21
n and T 21

n T
12
n .

A symmetry argument shows that it is enough to estimate the Hilbert-
Schmidt norm of T 12

n T
21
n . By (23), since p(−k − j)q(j +m) 6= 0 if and

only if |−k−j| = |j+m| = 2, we have (T 12
n T

21
n )km = 0 if m 6= k, k±4,

and(
T 12
n T

21
n

)
kk

= tk + sk,
(
T 12
n T

21
n

)
k,k−4

= tk,
(
T 12
n T

21
n

)
k,k+4

= sk,

where

tk =
a2

[π(n− k) + z][π(n+ k − 2) + z]
, k 6= n, −n+ 2, t−n+2 = 0
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sk =
a2

[π(n− k) + z][π(n+ k + 2) + z]
, k 6= n, −n− 2, s−n−2 = 0.

Taking into account that |π(n − j) + z|−1 < (2/π)|n − j|−1 for j 6= n,
|z| < π/2, and∑

k 6=n,−n±2

1

|n− k|2|n+ k ± 2|2
<

π2

|2n± 2|2
<
a2

n2

we obtain that

‖T 12
n T

21
n ‖2

HS =
∑
k 6=n

[|tk + sk|2 + |tk|2 + |sk|2] ≤ 24a4/n2.

The same estimate holds for the Hilbert-Schmidt norm of T 12
n T

21
n which

proves (a).
(b) The norm of the operator TnDnTn can be estimated in an anal-

ogous way. The corresponding matrix representation satisfies

(TDT )11 = (TDT )22 = 0, (TDT )12 = (TDT )21.

Moreover, (TDT )12
mk = 0 if m 6= k, k ± 4, and

(TDT )12
kk = t̃k + s̃k, (TDT )12

k,k−4 = t̃k, (TDT )12
k,k+4 = s̃k,

with t̃k = tk/[π(n+ k − 2) + z], s̃k = sk/[π(n+ k + 2) + z], where tk
and sk are the same as in the proof of (a). Thus we have

‖TDT‖ ≤ ‖TDT‖HS ≤ ‖T 2‖HS.

Lemma 5. The following estimates hold for large |n| :

(a) α(n, z) = O(
1

|n|
), (b)

dα

dz
(n, z) = O(

1

|n|
), (c)

dβ

dz
(n, z) = O(

1

|n|
).

Proof. (a) By (25) we have

(33) S = P 0
nV P

0
n + P 0

nV TnP
0
n +R,

where R =
∑

k≥2 P
0
nV T

k
nP

0
n . Since by Lemma 4 we have ‖T 2

n‖ =
O(1/|n|) we obtain that ‖R‖ = O(1/|n|). Therefore (33) implies that

α(n, z) = 〈e1
n, P

0
nV e

1
n〉+ 〈e1

n, P
0
nV Tne

1
n〉+O(1/|n|).

By (16) we have 〈e1
n, P

0
nV e

1
n〉 = 0. From (16) - (21) it follows that

〈e1
n, P

0
nV Tne

1
n〉 =

∑
k 6=n

p(−n− k)q(k + n)

π(n− k) + z
.

By (27) the latter sum has only two nonzero terms, namely

(34) 〈e1
n, P

0
nV Tne

1
n〉 =

a2

π(2n− 2) + z
+

a2

π(2n+ 2) + z
= O(1/|n|),
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which proves (a).
(b) By (11) we have d

dz
A−1(n, z) = −A−2(n, z), therefore (12) implies

that

(35)
dS

dz
(n, z) = −P 0

nV A
−2Q0

nV P
0
n .

By Lemma 4, ‖T 2
n‖ = O(1/|n|), therefore we obtain by (24) that

A−1 = Dn + TnDn +R1, A−1Q0
nV =

∞∑
k=1

T kn = Tn +R2,

where ‖Ri‖ = O(1/|n|), i = 1, 2. Multiplying the above expressions we
obtain (since by Lemma 4 we have ‖TnDnTn‖ = O(1/|n|))

A−2Q0
nV = DnTn +R3, ‖R3‖ = O(1/|n|).

Now (35) gives us that

dS

dz
(n, z) = −P 0

nV DnTnP
0
n +R4, ‖R4‖ = O(1/|n|).

Hence, in view of (34), we have

dα

dz
(n, z) = −〈e1

n, V DnTne
1
n〉+O(1/|n|) = O(1/|n|).

In an analogous way we obtain

dβ

dz
(n, z) = −〈e1

n, V DnTne
2
n〉+O(1/|n|).

Now (16), (20) and (21) imply that 〈e1
n, V DnTne

2
n〉 = 0, hence

dβ/dz(n, z) = O(1/|n|).

Lemma 6. For large enough |n| we have

(36) λ+
n − λ−n = z+

n − z−n = |β(n, z+
n ) + β(n, z−n )|[1 +O(1/|n|)].

Proof. The equation (30) splits into two equations:

(37) (i) α(n, z)− z = β(n, z), (ii) α(n, z)− z = −β(n, z).

For large enough |n| each of the equations (i) and (ii) has at exactly one
solution z with |z| < π/2 because the mapping z → α(n, z) − β(n, z)
defines a contraction in the disc {z : |z| < π/2}. Indeed, for z1, z2 with
|zi| < π/2 Lemma 5 implies that

|z1−z2| = |[α(n, z1)−β(n, z1)]− [α(n, z2)−β(n, z2)]| ≤ O(
1

|n|
)|z1−z2|.

On the other hand by (6) for large |n| equation (30) has exactly two
solutions (counted with their multiplicities) z−n , z

+
n ∈ (−π/2, π/2).
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In the case where z−n = z+
n formula (36) holds because then

(38) β(n, z−n ) = β(n, z+
n ) = 0.

Indeed, otherwise we get a contradiction: one of the equations (i) and
(ii) would have a double root, the other would have a different root
(at least one), so the equation (30) would have more than two roots
(counted with multiplicities)

Assume now that z−n 6= z+
n . Observe that z−n , z

+
n are real numbers

(because the operator L is selfadjoint). So by Lemma 2 α(n, z±n ) and
β(n, z±n ) are real-valued.

Let z′, z′′ be, respectively, the solutions of (i) and (ii). Then we have
either z′ = z−n , z

′′ = z+
n or z′ = z+

n , z
′′ = z−n , so |z′ − z′′| = z+

n − z−n .
Now by mean value theorem and Lemma 5 we obtain

|(α(n, z′)− z′)− (α(n, z′′)− z′′)| = |z′ − z′′|[1 +O(1/|n|].
Hence by (37)

(z+
n − z−n ) [1 +O(1/|n|] = |β(n, z+

n ) + β(n, z−n )|,
which proves Lemma 6.

In view of (36) our next goal is to find the asymptotics of

β(n, zn) = q(2n) +
∞∑
ν=1

βν(n, zn)

where
βν(n, z) =

∑
j1,...,j2ν 6=n

B(j1, . . . , j2ν ;n, z)

with

B(j1, . . . , j2ν ;n, z) =
q(n+ j1)p(−j1 − j2)q(j2 + j3) . . . q(j2ν + n)

[π(n− j1) + z][π(n− j2) + z] . . . [π(n− j2ν) + z]

Note that q(2n) = 0 for n 6= ±2. Fix a ν ∈ N and consider the terms
in the sum βν(n, z). By (27) a 2ν-tuple of indices j = (j1, . . . , j2ν) with
j1, . . . , j2ν 6= n give a rise to a non-zero term of the sum βν(n, z) if and
only if the numbers

(39) x1 = n+j1, x2 = −j1−j2, . . . , x2ν = −j2ν−1−j2ν , x2ν+1 = j2ν+n

are equal to ±2. On the other hand

(40) x1 + · · ·+ x2ν+1 = 2n,

so we may regard the finite sequence (x1, . . . , x2ν+1) as steps of a walk
from 0 to 2n. Obviously the indices j1, . . . , j2ν are uniquely determined
by (39). Moreover, if

(41) hk = x1 + · · ·+ xk, k = 1, . . . , ν
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then we have

(42) j2k−1 = h2k−1 − n, j2k = n− h2k, k = 1, . . . , ν.

Observe that the condition j1, . . . , j2ν 6= n holds if and only if the
corresponding walk h1, . . . , h2ν is inside the segment [0, 2n], that is if
0 < hk < 2n. In this case we say that the walk is admissible, and that
the corresponding sequence of steps x = (x1, . . . , x2ν+1) is admissible.
Further we denote by Aν the set of all admissible sequences of steps x =
(x1, . . . , x2ν+1). For x ∈ Aν we write B(x;n, z) = B(j1, . . . , j2ν+1;n, z)
if the sequence x corresponds to (j1, . . . , j2ν +1). Then by (42) we have

(43) B(x, n, z) = a2ν+1

(
ν∏
k=1

[π(2n− h2k−1 + z][πh2k + z]

)−1

.

If n is an even number then βν(n, z) = 0 since the set Aν is empty
(because the sum in (40) has 2ν+1 terms that are equal to ±2). Hence

(44) λ+
n − λ−n = 0 if n is even, large enough.

Lemma 7. If n is an odd number with large enough |n| = 2m+ 1 and
πn+ zn is an antiperiodic eigenvalue of L with |zn| < π/2, then

(45) β(n, zn) =
a2m+1

(4π)2m(m!)2
[1 +O(lnm/m)].

Proof. In view of (40), we have βν(n, zn) = 0 for ν < m, and
βm(n, zn) is the first non-zero term in the sum β =

∑
βν . Thus we

have

β(n, zn) =
∞∑
ν=m

〈e1
n, V T

2ν
n e2

n〉 = O(1/|n|m)

because ‖T 2
n‖ = O(1/|n|) by Lemma 4. By (37) we have

α(n, zn)− zn = ±β(n, zn),

so by Lemma 5 we obtain that

(46) zn = O(1/|n|).

The sum βm has only one non-zero term because there is one and
only one walk from 0 to 2n = 2(2m+ 1) with 2m+ 1 steps, each of size
2, namely, its steps are xk = 2, k = 1, . . . , 2m + 1. By (43) we obtain
with hk = 2k and z̃n = zn/4π that

βm(n, zn) =
a2m+1

(4π)2m(m!)2

(
m∏
k=1

(1 + z̃n/k)

)−2

.
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By (46) we obtain that the product in the above formula equals

1 +O[(logm)/m].

Hence

βm(n, zn) =
a2m+1

(4π)2m(m!)2

[
1 +O(

logm

m
)

]
.

Finally we are going to explain that βm(n, zn) gives the main term
in the asymptotics of β(n, z). For that we prove that

(47) βν+1(n, zn) ≤ a2

8

logm

m
βν(n, zn) ∀ν ≥ m.

Fix ν ≥ m. Let τ : Aν+1 → Aν be the map that is defined as
follows: if x = (x1, . . . , x2ν+3) ∈ Aν+1 and xr+2 = −2 is the first
negative step in x (1 ≤ r ≤ 2m− 1 because n = 2m + 1) then τ(x) =
(x1, . . . , xr, xr+3, . . . , x2ν+3). Fix y = (y1, . . . , y2ν+1) ∈ Aν then the set
τ−1({y}) has r elements, namely

τ−1({y}) = {(y1, . . . , yj,−2, 2, yj+1, . . . , y2ν+1), j = 2, . . . , r + 1}.

Therefore, in view of (43), we have that

(48)
∑

x∈τ−1(y)

B(x;n, z) = B(y;n, z)
r+1∑
j=2

D(j, z),

where, for j = 2i and j = 2i+ 1 respectively, we have

D(2i, z) =
a2

[π(2n− 4i+ 2) + z][π4i+ z]
≤ a2

16(m− i+ 1)i

D(2i+ 1, z) =
a2

[π4i+ z][π(2n− 4i− 2) + z]
≤ a2

16i(m− i)

Now it is easy to see by that
∑r+1

j+2 ≤
a2

8
(logm)/m. Hence by (48) we

have

βν+1(n, z) =
∑
y∈Aν

∑
x∈τ−1(y)

B(x;n, z) ≤ βν(n, z) · a
2

8
(logm)/m.

Thus (47) is proven and this completes the proof of Lemma 7.
Lemma 7 together with Lemma 6 imply (28). Theorem 1 is proven.
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5. Comments

The proof of Theorem 1 can be easily modified to see that the fol-
lowing statement holds.

Theorem 8. Let L = L0 + V where the potential V is defined by

(49) P (x) = ae−2πix + be2πix, Q(x) = P (x) a, b ∈ R.
Then there exists N∗ = N∗(a, b) such that for |n| > 2N∗ we have γn = 0
if n is even, and if |n| = 2m+ 1 then

(50) γ2m+1 =
2am+1bm

(4π)2m(m!)2

[
1 +O(

logm

m
)

]
, m > N∗

(51) γ−(2m+1) =
2ambm+1

(4π)2m(m!)2

[
1 +O(

logm

m
)

]
, m > N∗.

Observe that for large enough |n| all even (periodic) gaps are empty,
while all odd (antiperiodic) gaps are nonempty. In fact, the same is
true for all n.

Theorem 9. Consider 1D Dirac operator L = L0 + V, where the po-
tential V is defined by the functions

(52) P (x) = a+ be2πix, Q(x) = P (x), a, b ∈ R.
Then all periodic or antiperiodic eigenvalues of L are of multiplicity
one, thus all spectral gaps of L are nonempty.

If we consider the case where the potential is given by (49), then all
periodic eigenvalues are of multiplicity 2, and all antiperiodic eigenval-
ues are of multiplicity 1.

We’ll present complete proofs of the statements of this section else-
where.
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