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ABSTRACT. In this paper:

(i)

(i)

(iii)

We define and study a new numerical invariant R(X, g, w) as-
sociated with a closed Riemannian manifold (M, g), a closed
one form w and a vector field X with isolated zeros. When
X = —grad, f with f: M — R a Morse function this invari-
ant is implicit in the work of Bismut—Zhang. The definition
of this invariant requires ”geometric regularization”.

We define and study the sets of Euler structures and co-
Euler structures of a based pointed manifold (M, zo). When
X(M) = 0 the concept of Euler structure was introduced by
V. Turaev. The Euler resp. co-Euler structures permit to
remove the geometric anomalies from Reidemeister torsion
resp. Ray-Singer torsion.

We apply these concepts to torsion related issues, cf. Theo-
rems 3 and 4. In particular we show the existence of a mero-
morphic function associated to a pair (M, e*), consisting of
a smooth closed manifold and a co-Euler structure, defined
on the variety of complex representations of the fundamental
group of M whose real part is the Ray—Singer torsion (cor-
rected). This function generalizes the Alexander polynomial
for the complement of a knot.
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1. INTRODUCTION

The invariant R(X,g,w). Let M be a closed manifold and w €
QY (M) a closed one form with real or complex coefficients.

(i) A pair of two Riemannian metrics g;, g2 determines the Chern—
Simons class ¢s(g1,g2) € Q"N M;On)/dQ2(M; Oyy) and

then the numerical invariant

R(g1, g2, w) :=/ w A cs(gi, 92)-
M

(ii) A pair of two vector fields without zeros X, X5 determines a
homology class ¢(X;, Xy) € Hi(M;Z), see section (3) below,
and then a numerical invariant

R(Xy, Xy,w) = ([w], (X, Xz)). (1)

(iii) A pair consisting of a vector field without zeros and a Rie-
mannian metric g determines a degree n — 1 form X*WU(g) €
Q"=Y(M; Oyy) and therefore a numerical invariant

R(X,g,w):/ WA XU(g). @)

M
Here U(g) € Q"1 (TM \ 05; Op) is the Mathai-Quillen form intro-
duced in [8, section 7], cf. section 2 below.

The first purpose of this paper is to extend the invariant (iii) to the
case of vector fields with isolated zeros, not necessary nondegenerate.
Both smooth triangulations and Euler structures provide examples of
such vector fields, cf sections 4, 5. If X has zeros then the integrand
in (2) is defined only on M \ X, X the set of zeros of X, and the
integral (2) might be divergent. Fortunately it can be regularized by
a procedure we will refer to as ”geometric regularization” as described
in section 3 and this leads to the numerical invariant R(X,g,w) from
the title (cf Theorem 1 below). One can also extend the invariant (ii)
to vector fields with isolated zeros, cf section 3.

A first pleasant application of the invariant R and of the extension
of (ii) is the extension of the Chern-Simons class from a pair of two
Riemannian metrics g; and go to a pair of two smooth triangulations
71 and 7, or to a pair of a Riemannian metric g and a smooth triangu-
lation 7 cf section (5). These classes permit to treat on “equal foot” a



A RIEMANNIAN INVARIANT, EULER STRUCTURES ... 3

Riemannian metric and a smooth triangulation when comparing subtle
invariants like "torsion” defined using a Riemannian metric, and using
a triangulation, in analogy with the comparison of such invariants for
two metrics or two triangulations.

An other pleasant application of the invariant R is the derivation of
a result of J. Marcsik [7], see Theorem 3, from a theorem by Bismut—
Zhang, cf. section 7.

Euler structures. The second focus of this paper are Euler struc-
tures. These were introduced by Turaev cf [11] for manifolds M with
trivial Euler—Poincaré characteristic x(M) = 0. It was noticed in [2]
that the Euler structures can be defined for an arbitrary base pointed
manifold (M, z,) and that the definition is independent of the base
point provided x(M) = 0. The set of Euler structures Eul(M, x() is an
affine version of Hy(M;Z) in the sense that Hy(M;Z) acts freely and
transitively on Eul(M, x).

We introduce the set Eul*(M,zg) of co-Euler structures on which
H" Y(M;Oyy) acts freely and transitively.

The set of co-Euler structures is defined as the set of equivalence
classes of pairs (g, ) where v € Q"1 (M \ zo; Oy) satisfies da = E(g).
Two pairs (g1, 1) and (go, o) are equivalent iff ap — ay = ¢s(gy, go)-

Gul* (M, xy) represent a smooth version (deRham version) of a sort
of dual aspect of Eul(M,xj). In the case of a closed manifold M we
show the existence of an affine version of Poincaré duality map P :
Cul* (M, zg) — Cul(M, zy) ® R, where Eul(M, z) ® R is a real version
of ul(M, xy), see below. We also define the coupling

T : Gul(M, xy) x Eul* (M, xy) — Hi(M;R)

based on a regularization very similar to the one for R (cf. section 3).

The interest of Euler and co- Euler structures come from the follow-
ing. An element ¢* € €ul*(M, xy) removes the metric ambiguity of the
Ray—Singer torsion and provides a scalar product (the analytic scalar
product), i.e. a metric, in the complex line

(det V) ™M) @ det H*(M; p), (3)

for every complex representation p € Rep(m (M, z0); V). An element
¢ € Cul(M, z) removes the triangulation ambiguity ' and provides a
scalar product (the combinatorial scalar product), i.e. a metric, in the
line (3) (cf also [5]).

land the additional ambiguity produced by the choice of a lift of each cell of the
triangulation to the universal cover of the manifold
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As a first pleasant application of the Euler and co-Euler structures
is a reformulation of a result of Bismut-Zhang, proven [1], referred
to as the Bismut-Zhang theorem, Theorem 7, section 6. Precisely, the
analytic scalar product associated to ¢* is the same as the combinatorial
scalar product associated to ¢ ? multiplied by the absolute value of
(©,,T(e,e*)) € C*. Here ©, € H'(M;C*) is the cohomology class
corresponding to detop : Hy(M;Z) — C*, cf. Theorem 7.

Let Rep(I'; V') denote the affine algebraic variety of complex rep-
resentations of the finitely presented group I' on the complex vector
space V. Denote by Rep™(I'; V), T' := (M, ), the complex an-
alytic set which is the union of components of Rep(I'; V) for which
the generic representation p has vanishing cohomology H*(M;p) = 0.
Consider a co-Euler structure ¢* = [g,a], i.e. « € Q" H(M \ z¢; Onr)
and da = F(g). Assign to each p the the corrected Ray—Singer torsion

R
Ton(V, g, 1) - €3 ue(Vina g R (4)

where V is a flat connection on the associated bundle F, — M whose
holonomy representation at the base point xg is p, p is a Hermitian
structure on F, and T,,(V, g, 1) denotes the Ray-Singer torsion of the
deRham complex (Q*(M; F,), d%) equipped with the scalar product in-
duced by g and a Hermitian metric p. The closed one form w(V, u) is
the Kamber—Tondeur closed one form associated to (V, u), cf. [1], [3]
and section 2. The above quantity (4) is independent of y and the rep-
resentatives V and (g, ) of p and ¢*. It provides a real valued function
on Rep™(I"; V) \ £(M), where ¥(M) is the subset of representations p
for which dim H*(M; p) is not locally minimal.

The Bismut—Zhang theorem in the reformulation mentioned above
permits to construct a meromorphic complex valued function on the
complex analytic space Rep™ (I'; V). The zeros and poles of this func-
tion are contained in ¥ (M) and the absolute value, when restricted to
Rep™(T; V) \ £(M), is the real valued function described above. This
complex valued meromorphic extension of the ”corrected” Ray—Singer
torsion has a number of interesting applications and implications which
will be discussed in subsequent work. In a forthcoming paper a com-
plex holomorphic line bundle over Rep(I'; V') will be associated to M
which is a homotopy invariant, and a meromorphic section constructed.
When restricted to Rep™ (T'; V) such section is the meromorphic func-
tion stated above.

Main results. Suppose M is a closed manifold of dimension n. Given
a Riemannian metric g denote by E(g) € Q"(M;Oyy) the Euler form

2see section 6for the definitions of these terms
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and by W(g) € Q"1 (T M\0ys; Opr) the Mathai-Quillen form associated
to g. If X7 and X5 are two vector fields with isolated zeros we get an
element
C(Xl, XQ) € 01<M; Z)/@(OQ(M, Z))
whose boundary equals the zeros of X; and X5, weighted with their
indices, see section 2.

Theorem 1. Let M be a closed connected manifold.

(i) Suppose w € QY(M) is a real or complex valued closed one
form, g a Riemannian metric and X a vector field with isolated
zeros. Let f be a smooth real or complex valued function with
w = df in the neighborhood of the zero set X of X. Then the
number

R(X,g,w; f) ::/ (w—df) A X*U(g / fE(g)+) IND(z)
M\X reX
is independent of f and will therefore be denoted by R(X, g,w).
(i) If g1 and gy are two Riemannian metrics, then

R(X, g2, w) — R(X, g1,w) = / w A cs(gi, ga)-
M

(iii) If X1 and Xy are two vector fields with isolated zeros then
R<X27gaw)_R(X1’g’w>:/ w.
(X1,X2)

(iv) If wy and we are two closed one forms so that wy —wy = dh
then

R(X,g,ws) — R(X,g,w;) = —/hE(g) +) IND(z)h(x)

reX

(v) If K is a complex analytic space and w(z) is a holomorphic
family of closed complex valued one forms, z € K, then the
assignment z ~ R(X, g,w(z)) is a holomorphic function in z.

In section 3 we will prove statements (i) through (iv). More pre-
cisely they are the contents of Lemma 1, Proposition 1 and Proposi-
tion 2. The proof of (v) follows from the linearity in w of the invariant
R(X, g,w).

An Euler structure on a base pointed manifold (M, xg) is an equiv-
alence class of pairs (X, c), where X is a vector field with isolated sin-
gularities and c¢ is a singular one chain with integral coefficients whose
boundary equals ) . IND(z)z — x(M)xo, where X denotes the zero
set of X. Two such pairs (X1, ¢1) and (Xs, ¢o) are equivalent if ¢y differs
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from ¢; + (X1, X3) by a boundary. We write Eul(M, xg) for the set
of Euler structures based at xy. This is an affine version of H,(M;Z)
in that Hy(M;Z) acts freely and transitively on it. Considering chains
¢ with real coefficients we get an affine version of H;(M;R) which we
denote by Eul(M, z) @ R.

The set Eul*(M,xg) of co-Euler structures is defined as the set of
equivalence classes of pairs (g, @) where v € Q"1 (M \ zo; Oy) satisfies
da = E(g). Two pairs (g1, a1) and (g2, an) are equivalent iff iy —ay =
cs(g1,92). The cohomology H" ' (M;Oy) acts on Eul(M, zg) freely
and transitively by [g,a] + [5] := [g,a — [].

Theorem 2. Let (M, xy) be a closed connected base pointed manifold.

(i) Let mo(X(M,x0)) denote the set of connected components of
vector fields which just vanish in xy equipped with the C'* topol-
ogy. If dim M > 2 then we have a bijection:

mo(X(M, x0)) — Cul(M, xy), [X] — [X,0]

(i) Let mo(Xo(M)) denote the set of connected components of nowhere
vanishing vector fields equipped with the C* topology. If x(M) =
0 and dim M > 2 we have a surjection:

mo(Xo(M)) — Cul(M, zy), [X] +— [X,0].
(iii) There ezists a bijection
P &ul*(M,xy) — Cul(M, z0) @ R,

which is equivariant in the sense that P(e* + 3) = P(e*) +
PD(B), forall 3 € H"'(M;Oy). Here PD : H* 1 (M; Oyf) —
H,(M;R) denotes Poincaré duality.

(iv) The assignment T(e,e*) := P(e*) — e

T : (Gul(M,z0) ® R) x Eul*(M,z0) — Hi(M;R)
1s a corrected version of the invariant R. More precisely sup-
pose ¢ = [X, ], ¢* = [g,a]. Then for every [w] € H'(M;R) we
have
(T = [ (v -a)- [w
M c

where w € QY (M) is any representative of [w] which vanishes
locally around xqo and locally around the zeros of X.

Statements (i) and (ii) are essentially due to Turaev and is the con-
tents of Propositions 3 and 4 in section 4. The proof of (iii) and (iv)
can be found at the end of section 4, cf. Proposition 5.
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Suppose N be a closed manifold of dimension n — 1 and suppose
¢ : N — N is a diffeomorphism. Let ; : H(N;C) — H*(N;C) denote
the homomorphisms induced in cohomology, let P} (z) = det(z¢; — Id)

and let .
| P {C)
Hz‘ odd b ;(Z)
denote the Lefschetz zeta function of ¢.

The mapping torus M = N,,, obtained from I x N by gluing {1} x N
to {0} x N via ¢, is equipped with a closed one form w defined by

w = p“ds. (6)

(5)

Here ds is the volume form on S' and the map p : M — S' is induced
from the first factor projection p : [0,1] x N — [0, 1].

Choose a Riemannian metric ¢ on M and consider the Laplace-
Beltrami operators A? : Q4(M) — Q(M) as well as the vector field
X = —grad,w. Denote by Lx : QM) — QM) the Lie derivative
and let L?X denote its formal adjoint with respect to g. Denote by
AL(t) : QI(M) — QI(M), the Witten Laplacian defined by

A (t) = A4 t(Lx + L) + t*|jw|]*1d. (7)

The Witten Laplacians, are second order elliptic selfadjoint operators.
They are obviously non-negative definite and zero order perturbations
of the Laplace—Beltrami operators. For sufficiently large ¢, actually
all ¢ with P;(et) # 0 for all 4, they are strictly positive definite hence
invertible.

For t with P/ (e") # 0 for all 7 we introduce the Ray-Singer torsion:

1

1Og Tan(wv g)(t) = 5 Z(_l)“—li log det Ag;<t> (8)

i
The proof of the next theorem is contained in section 7.

Theorem 3 (J. Marsick). Let N be a closed manifold, ¢ : N — N
a diffeomorphism and let g be a Riemannian metric on the mapping
torus M := N,,. With the definitions above

log |¢,(e")] = log Tan(w, g)(t) + tR(X, g, w) 9)
for every t € R which satisfies P:;(et) #0 for all i.

Let (M, zo) be a closed manifold with base point and set I' :=
m (M, xg). Every p € Rep(I'; V) gives rise to a homomorphism det op :
I' — C* which descends to a homomorphism H;(M;Z) — C* and thus
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defines a cohomology class ©, € H(M;C*). This defines a homolo-
morphic function

© : Rep(T; V) — HY(M;C*), ©O(p) :=0,.

Theorem 4. Let (M,xzq) be a closed smooth manifold and let ¢* €
Eul* (M, xo) be a co-Euler structure and oy an orientation of the coho-
mology vector space H*(M;R). Then there exists a complex meromor-
phic function Tg 5, on RepM(F; V') with the following properties:

(i) The poles and zeros of Te o, are contained in X(M).

(ii) For a generic representation p we have

R
‘T*pH (p)’ = Tan(v, g, u)e% M "-’(Vvli)/\a’

where V is a any flat connection on the associated bundle F,,
pis any Hermitian structure on F), and where [g,c] is any
representative of ¢*.3

(iii) For 8 € H" Y(M;Oys) we have
I]g*-i-,@,oH = ,];*70H ) <@7PD(5)>

By changing the orientation one might change Te-
tiplication by +1.

oy Up to mul-

When we do not want to specify the orientation oy we can write Te-
for the resulting meromorphic function up to a sign ambiguity.

This meromorphic function carries relevant topological and geomet-
ric information even in the simplest possible situations. For example let
N be a simply connected closed manifold, ¢ : N — N a diffeomorphism
and let M = N, denote the mapping torus. Then I' := m (M) = Z.
Let \; denote the eigenvalues of

e @ HY(M;R) — @ HY(M;R)
k even k even

and similarly let v; denote the eigenvalues of
" @ HY(M;R) — D HY(M;R)
k odd k odd

Let w denote the closed one form defined in (6) and let g be a Riemann-
ian metric on M. Finally let ¢* denote the co-Euler structure Poincaré
dual to the Euler structure given by — grad, (w). Then

Rep™(T;C) = Rep(I';C) = C* = C\ 0,

3The integral Sy w(V, 1) Ao may be divergent and has to be regularized, cf. sec-
tion 4.
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Y (M) = {\;,v;} and using Theorem 4 we get from Theorem 3

IL(A — 1)
LGy -1

2. CHERN AND MATHAI-QUILLEN FORM

Let 7 : E — M be a rank k real vector bundle, and V := (V, u)
be a pair consisting of a connection V and pu, a parallel Hermitian
structure, i.e. a fiber wise scalar product. Let Og denote the orientation
bundle of E, a flat real line bundle over M. There is a canonic Vol €
QOF(E; 7*OF), which vanishes when contracted with horizontal vectors
and which assigns to a k-tuple of vertical vectors “their volume times
their orientation”. Moreover let ¢ denote the Euler vector field on E
which assigns to a point « € E the vertical vector —x € T, /. Mathai
and Quillen have introduced, cf. [8], the differential form

U(T) = o D
(2m)+/2[¢]

Z*»OH <Z> =

Vol € Q" Y(E\ 0g; 7 OF).

Clearly ¥(V) has the following properties which follow immediately
from the definition.

(i) \If(@)js the pullback of a form on (E'\ 0g)/Ry.
(ii) If E(V) € QF(M; Og) denotes the Euler form of V then:

dU(V) = 7 E(V). (10)

(iii) If cs(Vy, Vo) € Q¥ 1(M; Og)/d(Q*2(M; OF)) denotes the Chern—

Simons class then:
U(Vy) — (V) = 7 es(Vy, Va) (11)
(iv) Suppose E = T'M is equipped with a Riemannian metric g,

Vy = (@g, g) is the Levi-Civita pair and X is a vector field
with isolated zero x. Let B, denote the ball of radius e around

x, with respect to some chart. Then

lim X*U(V,) = IND(z), (12)
0 Jawn\s.)
where IND(z) denotes the Hopf index of X at z.
(v) For M = R", E := TM equipped with ¢;; = 0;;, @g the
Levi—-Civita pair and in the coordinates z1,...,x,,&1,...,&,
one has:

40 = R o n ke
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Let £ : E — M be a complex vector bundle equipped with a flat con-
nection. Given two Hermitian structures p; and ps denote by V' (g, p2)
the positive real valued function given at y € M by the volume with
respect with the scalar product defined by (u2), of a parallelepiped
provided by an orthonormal frame with respect to (u1),.

A trivialization € : M x C" — E of the bundle £ will be called a
frame of £&. Frames in the vector bundle ¢ exists only if the bundle is
trivial.

Similarly for any two framings €; and e, denote by D(ey, €3) the com-
plex valued function which at y € M is given by the determinant of the
matrix representing the frame €;(y) in terms of the frame represented
bu € (y).

Note that each frame e induces unique Hermitian structure (which
make the frame €, an orthonormal base) called j(€) and we have

R(D(er; €2)) = V(puler), plea)). (13)

Suppose that the bundle ¢ is equipped with a flat connection V. To
any Hermitian structure in £ : E — M following Kamber—Tondeur one
associates the real valued closed (i.e. locally exact) differential form
w(V,p) € QY(M) defined as follows: For any z € M choose U a con-
tractible open neighborhood and denote by fi, the Hermitian structure
in E|y — U obtained by parallel transport of pu,. This Hermitian
structure is well defined since U is one connected and the connection
is flat.

Define w(V, ) := dV,/V, as being the logarithmic differential of the
non-zero function V, : U — R defined by V,, = V (u, fi).

If the bundle ¢ : E — M is trivial and € is a frame then by the
same procedure (and by replacing V' by D) one associates the complex
valued closed one form w(V,¢) € Q1(M;C).

The following properties hold:

Rw(V,e)) = w(V,pu(e))
w(V,e1) —w(V,e) = dlog(D(ey,e€2))
w(V,p(er)) —w(V,pu(e2)) = dlog(V(u(er), pu(ez)))

3. THE INVARIANT R(X,g,w). THE GEOMETRIC REGULARIZATION

Suppose M is a closed manifold of dimension n, g a Riemannian
metric and X : M — TM \ 0y, a vector field without zeros. Suppose
w € QYM;R) or QY(M;C) is a closed form. Define

R(X,g,w) ::/Mw/\X*\Il(g), (14)
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which will be a real or complex number. It is not hard to check that
for any function h

R(X, g0+ dh) — R(X,g,w) — — /M hE(g),

and for any two Riemannian metrics g; and ¢

R(X, go,w) — R(X, g1,w) = / w A cs(g1, go).
M

These properties are straightforward consequences of (10) and (11).

Suppose X; and X, are two vector fields without zeros. Let p :
I x M — M denote the projection, where I = [1,2]. Consider a
section X of p*T'M which is transversal to the zero section and which
restricts to X; on {i} x M, i = 1,2. The zero set X (0) is a closed
one dimensional canonically oriented submanifold of I x M. Hence it
defines a homology class in I x M, which turns out to be independent
of the chosen homotopy X. We thus define ¢(X, X5) := p.(X71(0)) €
H,(M;Z). One can show that

R(XQ,Q,W) - R(Xlagaw) = / w

c(X1,X2)

This property will be verified below in a slightly more general case.

The above properties suggest the definition of the invariant R in the
case X has isolated zeros even when the integral in (14) is divergent.
This definition will be referred to as the geometric reqularization of
(14). We do not assume that the zeros of X are non-degenerate. Let
X denote the zero set of X. Choose a function f so that ' :=w — df
vanishes on a neighborhood of X'. Then

RX.gwif)i= [ W nX"0)~ [ 1B+ 3 IND@)f)

MA\X zeEX

makes perfect sense. The next lemma establishes the proof of Theo-
rem 1(i).

Lemma 1. The quantity R(X, g,w; f) does not depend on the choice
of f.

Proof. Suppose f; and f; are two functions such that v} = w — df;,
1 = 1,2 both vanish in a neighborhood U of X, ¢ = 1,2. For every
r € X we choose a chart and let B.(z) denote the disk of radius e
around x. Put B, := |, B(x).

zeX €
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For e small enough B, C U and f, — f; is constant on each B.(x).
Using (10), Stokes’ theorem and (12) we get

R(X,g,w; f2) — R(X, g,w; f1) =
- ‘/M\Xd“ﬁ ~ 1) AX*(¥(9)) + D IND()(f> — fi)(x)

zeX
0 Jo\Be) IGZX
= =Y (fo— fi)(@)lim X*U(g) + > IND(z)(f2 — fi)(2)
z€X 7 JO(M\B(x)) zeX
=0
and thus R(X, g,w; f1) = R(X, g,w; f2). O

Definition 1. In view of the previous lemma we define R(X, g,w) :=
R(X, g,w; f), where f is any function so that w — df vanishes locally
around X.

From the very definition we immediately verify Theorem 1(iv) which
we restate as

Proposition 1. For every function h we have:

R(X,g,w+dh) — R(X,g,w) = / )+ > IND(z)h(z) (15)

zeX

For any vector field with isolated zeros X we set

ex =Y IND(z)x
zeX
a singular zero chain in M.

Suppose we have two vector fields X; and X, with non-degenerate
zeros. Consider the vector bundle p*T'M — I x M, where I := [1,2]
and p : I x M — M denotes the natural projection. Choose a section X
of p*T'M which is transversal to the zero section and which restricts to
X, on {i} x M, i=1,2. The zero set of X is a canonically oriented one
dimensional submanifold with boundary. Hence it defines a singular
one chain which, when pushed forward via p, is a one chain ¢(X) in M,
satisfying

0c(X) =ex, —ex,.
Suppose X; and X, are two non-degenerate homotopies from X; to Xo.
Then certainly 9(c(Xz) — ¢(X;)) = 0, but we actually have

c(Xy) — ¢(Xy) = 0o, (16)
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for a two chain o. Indeed, consider the vector bundle ¢*T'M — I x I x
M, where q : I x I x M — M denotes the natural projection. Choose
a section of ¢*T'M which is transversal to the zero section, restricts to
X;on {i} x I x M, i=1,2 and which restricts to X; on {s} x {i} x M
for all s € I and @ = 1,2. The zero set of such a section then gives rise
to o satisfying (16).

So for two vector fields with non-degenerate zeros this construction
yields a one chain ¢(X;, X5), well defined up to a boundary, satisfying
aC(Xl, XQ) =€x, —€x;.

Let us extend this to vector fields with isolated singularities. Suppose
X is a vector field with isolated singularities. For every zero x € X
we choose an embedded ball B, centered at x, assuming all B, are
disjoint. Set B := |J,cy Bs- Choose a vector field with non-degenerate
zeros X' that coincides with X on M \ B. Let X’ denote its zero set.
For every x € X we have

INDx(z) = > INDy(y).
yeX'NBy

So we can choose a one chain ¢(X, X’) supported in B which satisfies
0¢(X, X') = exr — ex. Since Hy(B;Z) vanishes the one chain ¢(X, X')
is well defined up to a boundary.

Given two vector fields X; and X, with isolated zeros we choose
perturbed vector fields X| and X/ as above and set

C(Xl,Xg) = é(Xl,X{) + C(X{, Xé) — 6(X2, Xé)

Then obviously 0c¢(X71, Xs) = ex, —ex,. Using H;(B;Z) = 0 again, one
checks that different choices for X| and X/ yield the same (X7, X5)
up to a boundary.

Summarizing, for every pair of vector fields X; and X, with isolated
zeros we have constructed a one chain

C(Xl, XQ) S Cl(M; Z)/@(CQ(M, Z)),
which satisfies dc( X1, Xo) = ex, — ex;,.

Definition 2. For two Riemannian metrics g;, go» and a closed one
form w set

Rlg1, ga ) = /M w A es(g, ga). (17)

For two vector fields X7, X5 and a closed one form w set

R(X1, Xo,w) := / w. (18)
C(Xl,Xz)
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Remark 1. Even though cs(g1, g2) is only defined up to an exact form
this ambiguity does not affect the integral (17). Similarly, even though
c(X1,X3) is only defined up to a boundary this ambiguity does not
affect the integral (18).

The next proposition is a reformulation of Theorem 1(ii) and Theo-
rem 1(iii).

Proposition 2. Let M be a closed manifold, w a closed one form,
g, 91, g2 Riemannian metrics and let X, X1, Xo be vector fields with
1solated zeros. Then

R(X7 927W) - R(X7 g17w) = R<gl7g27w) (19)
and
R(XQ,Q,(.U) - R(Xlagaw) - R(X1>X27w)' (20)

Proof. Let’s prove (19). Choose f so that w’ := w — df vanishes on
a neighborhood of X, the zero set of X. Using X*(¥(g2) — V(1)) =
cs(g1, g2) modulo exact forms, Stokes’ theorem and d cs(g1, g2) = E(g2)—
E(g1) we conclude

R(X, gs,w) — R(X, g1,w) =
= /J\/I\le AX*(U(g2) — P(g1)) —/ f(E(g2) — E(q))

M

= /MW/\CS(91792)—/Mdf/\cs(gbgz)—/ (E(92) — E(g1))

M
= / w A cs(g1, g2)
M

- R(91;927W)-

Now let’s turn to (20). Let A; denote the zero set of X, i = 1,2.
Assume first that the vector fields X; and X5 are non-degenerate and
that there exists a non-degenerate homotopy X from X; to X, whose
zero set is contained in a simply connected I x V' C I x M. Choose a
function f such that &’ := w — df vanishes on V. Then

R(X1, Xoyw) = / prdf = 37 INDy, (2) £ () — 3 INDx, () £ (),
X=1(0) TEXs reX]

where p : [ x M — M denotes the natural projection. Let p : p*T'M —
TM be the natural vector bundle homomorphism over p. Using the
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last equation, Stokes’ theorem and d(X*p*W(g)) = p*E(g) we get:
R(X3,9,w) — R(X1,g9,w) =

= / d(p'w ANXp*U(g)) + R(X1, Xz, w)
Ix(M\V)

- / P A E(g)) + R(X), X, 0)
IxM
= R(X1,X2,W)

For the last equality note that w’ A E(g) = 0 for dimensional reasons.

Still assuming that X; and X, have non-degenerate zeros we next
treat the case of a general non-degenerate homotopy X, whose zero set
is not necessarily contained in a simply connected subset. Perturbing
the homotopy slightly we may assume that no component of its zero
set lies in a single {s} x M. Then we certainly find 0 = tg,...,t; =1
so that Y},, the restriction of X to {t } x M, is transversal to the zero
section, and so that X~1(0) N ([t;_1, ] X M) is contained in a simply
connected subset for every 1 < ¢ < k. The previous paragraph tells us

R(Y,, g.w) = R(Y,,_,,9,w) = R(Y,,_,, Vi, w)

for every 1 < i < k. Therefore:
R(X,9,w) — R(X1, 9, ZR Vi Vi, w) = R(Xy, Xs,w)

It remains to deal with vector fields having degenerate but isolated
singularities. Let X be such a vector field and let X’ denote a pertur-
bation as used before. Let X and X’ denote their zero sets, respectively.
Choose a function f such that w’ := w — df vanishes on the set B. Re-
call that B was the union of small balls covering X. Since X and X’
agree on M \ B we have

R(leng) - R(X,Q,UJ) = Z INDxl(l')f(l‘) - ZINDX(JJ)]C(JJ)

zeX’ TEX

(X, X")

= R(X, X' w).
This completes the proof of (20). O

Remark 2. A similar definition of R(X, g,w) works for any vector field
X with arbitrary singularity set X := {& € M | X(x) = 0} provided
w is exact when restricted to a sufficiently small neighborhood of X.
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This situation might lead to interesting invariants for holomorphic vec-
tor fields on a Kahler manifolds or even more general, for symplectic
vector fields on a symplectic manifold equipped with an almost complex
structure which tames the symplectic structure.

4. EULER AND CO-EULER STRUCTURES

Let (M, zo) be a base pointed closed connected manifold of dimension
n. Let X be a vector field and let X' denote its zero set. Suppose the
zeros of X are isolated and define

ex =Y IND(x)x € Co(M;Z),
reX

a singular zero chain. An Euler chain for X is a singular one chain
c € C1(M;Z) so that

Oc =ex — x(M)x.

Since ) . INDx(z) = x(M) every vector field with isolated zeros
admits Euler chains.

Consider pairs (X, c) where X is a vector field with isolated zeros
and ¢ is an Euler chain for X. We call two such pairs (Xi,¢;) and
(X3, ¢o) equivalent if

cy =1+ C(Xl,Xz) S Cl(M,Z)/a(CQ(M,Z))

For the definition of ¢(X;, X») see section 3. We will write Eul(M, x¢)
for the set of equivalence classes as above and [X, ¢] € Gul(M, ) for
the element represented by the pair (X, ¢). Elements of Eul(M, x() are
called Euler structures of M based at xy. There is an obvious Hy(M;Z)
action on €ul(M, x() defined by

(X, ]+ [o] :=[X,c+ 0],

where [o] € Hi(M;Z) and [X, | € €ul(M, ). Obviously this action
is free and transitive. In this sense Eul(M,z) is an affine version of
H(M;7Z).

Considering Euler chains with real coefficients one obtains in exactly
the same way an affine version of H;(M;R) which we will denote by

QEU[(M, 33'0) ® R.

Remark 3. There is another way of understanding the Hy(M;Z) ac-
tion on Eul(M,xy). Suppose n > 2 and represent o] € Hi(M;Z) by
a simple closed curve o. Choose a tubular neighborhood N of S! con-
sidered as vector bundle N — S'. Choose a fiber metric and a linear
connection on N. Choose a representative of [X, c] € Eul(M, () such

that X|y = %, the horizontal lift of the canonic vector field on S?.
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Choose a function A : [0,00) — [—1, 1], which satisfies A\(r) = —1 for
r < % and A(r) = 1 for r > 2. Finally choose a function 4 : [0, 00) — R

satisfying p(r) = r for r < &, p(r) = 0 for r > 2 and p(r) > 0 for all

re (%, %) Now construct a new vector field X on M by setting
~ X on M\ N
X = P P
A(r)zg +pu(r)5: on N,

where 7 : N — [0, 00) denotes the radius function determined by the
fiber metric on N and —r% is the FEuler vector field of N. This con-
struction is known as Reeb surgery, see e.g. [10]. If the zeros of X
are all non-degenerate the homotopy X; := (1 — )X + tX is a non-
degenerate homotopy from Xy = X to X; = X from which one easily
deduces that
(X, = [X,d +[o].

Particularly all the choices that entered the Reeb surgery do not effect
the out-coming Euler structure [ X, ¢].

Let us consider a change of base point. Let zg,xy € M and choose
a path o from xg to x1. Define

Cul(M, xg) — Cul(M, 1), [X,c]— [X,c— x(M)o]. (21)

This is an Hq(M;Z) equivariant bijection but depends on the homology
class of o.

Remark 4. So the identification Eul(M,xy) with Eul(M, z,) does de-
pend on the choice of a homology class of paths from z( to 1. However,
different choices will give identifications which differ by the action of an
element in x(M)H;,(M;Z). So the quotient Cul(M, xq)/x(M)H,(M;Z)
does not depend on the base point. Particularly, if x(M) = 0 then
Eul(M, xy) does not depend on the base point.

Let X(M, xy) denote the space of vector fields which vanish at z, and
are non-zero elsewhere. We equip this space with the C'*° topology.
Let mo(X (M, z0)) denote the space of homotopy classes of such vector
fields. If X € X(M,xo) we will write [X] for the corresponding class
in mo(X(M, z)). The following proposition (due to Turaev in the case
X(M) = 0) establishes the proof of Theorem 2(i).

Proposition 3. Suppose n > 2. Then there exists a natural bijection
mo(X(M, z0)) = Eul(M, xy), [(X] — [X,0]. (22)

Proof. Clearly (22) is well defined. Let us prove that it is onto. So
let [X, ¢] represent an Euler class. Choose an embedded disk D C M
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centered at xy which contains all zeros of X and the Euler chain c.
For this we may have to change ¢, but without changing the Euler
structure [X, ¢]. Choose a vector field X’ which equals X on M \ D
and vanishes just at xo. Since Hi(D;Z) = 0 we clearly have [X’, 0] =
(X, ] € €ul(M, x) and thus (22) is onto.

Let us prove injectivity of (22). Let X, Xs € X(M, () and suppose
c(X1,X5) =0 € Hi(M;Z). Let D C M denote an embedded open
disk centered at xy. Consider the vector bundle p*IT'M — [ x M and
consider the two vector fields as a nowhere vanishing section of p*T'M
defined over the set OI x M, where M := M\ D. We would like
to extend it to a nowhere vanishing section over I x M. The first
obstruction we meet is an element in

H™(I x M,0I x M;{m,_1}) = H,(Ix M,Ix3dD;Z)
= H(M,D;Z)
= H\(M;Z)
which corresponds to ¢(Xi, X3) = 0. Here {m,_1} denotes the system
of local coefficients determined by the sphere bundle of p*T'M with

Tpn_1 = Tp_1(S™1). Since this obstruction vanishes by hypothesis the
next obstruction is defined and is an element in:

H" NI x M,0I x M;{m,}) = Hy(I x M,I x dD;m, (5" 1))

= Hy(M,D;m,(S"1))

=0
Since there is no other obstructions, obstruction theory, see e.g. [12],
tells us that we find a nowhere vanishing section of p*I"M defined over
I x M, which restricts to X; on {i} x M, i =1,2. Such a section can
easily be extended to a globally defined section of p*IT'M — I x M,
which restricts to X; on {i} x M, i = 1,2 and whose zero set is precisely

I x {zo}. Such a section can be considered as homotopy from X; to
Xy showing [X;] = [X3]. Hence (22) is injective. O
Remark 5. If n > 2 Reeb surgery defines an H;(M;Z) action on
mo(X(M,xp)) which via (22) corresponds to the Hy(M;Z) action on
Gul(M, xp), cf. Remark 3.

Let Xo(M) denote the space of nowhere vanishing vector fields on
M equipped with the C'* topology. Let m(Xo(M)) denote the set of

its connected components. The next proposition is a restatement of
Theorem 2(ii).

Proposition 4. If n > 2 then we have a surjection:
mo(Xo(M)) — Cul(M, zy), [X] +— [X,0]. (23)
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Proof. The assignment (23) is certainly well defined. Let us prove
surjectivity. Let [X,¢| be an Euler structure. Choose an embedded
disk D C M which contains all zeros of X and its Euler chain ¢, cf.
proof of Proposition 3. Since x(M) = 0 the degree of X : 0D —
TD\ 0p vanishes. Modifying X only on D we get a nowhere vanishing
X’ which equals X on M \ D. Certainly X’ has an Euler chain ¢

which is also contained in D and satisfies [X,c] = [X’,]. Since X’
has no zeros we get 9¢ = 0 and since Hi(D;Z) = 0 we arrive at
(X, ] = [X',d] = [X',0] which proves that (23) is onto. O

We will now describe another approach to Euler structures which is
in some sense Poincaré dual to the other approach. We still consider
a closed connected n—dimensional manifold with base point (M, zy).
Consider pairs (g, «) where g is a Riemannian metric on M and « €
Q" Y(M \ z9; Opr) with da = E(g). Here E(g) € Q"(M;O)s) denotes
the Euler class of g which is a form with values in the orientation bundle
Oynr. We call two pairs (g1, 1) and (ga, az) equivalent if

cs(g1,92) = ag —aq € Q”_I(M \ xo; OM)/dQ”_Q(M \ zo; Onr).-

We will write Eul*(M, ) for the set of equivalence classes and [g, @]
for the equivalence class represented by the pair (g,«). Elements of
Gul" (M, xy) are called co-Euler structures based at xy. There is a
natural H"}(M; Oy) action on Eul*(M, ) given by

[gaa] + [ﬁ] = [gaa - ﬁ]

with [3] € H" ' (M;Oy). Since H" ' (M;Op) = H (M \ z0; Opr)
this action is obviously free and transitive.

For a pair (g, «) as above and a closed one form w we define a reg-
ularization of | yw A a as follows. Choose a function f such that

w' := w — df vanishes locally around the base point zy and set:

S(g,ct,w: f) = / o Ao /M FE(g) + x(M)f (o)

M

Lemma 2. The quantity S(g, o, w; f) does not depend on the choice
of [ and will thus be denoted by S(g,a,w). If [g1,01] = [go, 0] €
Eul* (M, xg) then

5(92,042701) - 5(917041,00) = / w A 08(91792)- (24)
M

Moreover, for a function h we have

S(g, 0w+ dh) — S(g, 0, w) = — /M BE(g) + X(M)h(zo).  (25)
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Proof. Suppose we have two functions f; and f so that both v} := w—
dfy and wj := w — dfy vanish locally around z,. Let B, denote a ball of
radius € around zy. Then f,— f; will be constant on B, for € sufficiently
small. Using Stokes’ theorem, do = E(g) and [}, E(g) = x(M) we get:

S(g. 0,w; f) — S(g, aw: fr) =
. /M A= ) ) = XD = i)

= —hr% (fg—f1)Oé+X(M)(f2_fl)(x0)
€~V Ja(M\Be)
= —(fo— fi) o) lim a+x(M)(f2 = fi)(z0)
O(M\Be)

= —(fo— f)ao)lim [ B(g) + x(M)(f2 — f)(x0) = 0

e—0 M\B.

The second statement follows immediately from oy — a3 = ¢s(g1, 92),
Stokes’ theorem and dcs(gi, g2) = E(g2) — E(g1). The last property is
obvious. 0

In view of (15), (19), (20), (24) and (25) the quantity

R(X,g,w) — S(g,a,w) — /w (26)

does only depend on [X, ] € Eul(M, z) ® R, [g,a] € Eul* (M, x) and
lw] € H'(M;R). Thus (26) defines an invariant

T : (Cul(M,z0) ® R) x Eul*(M,z0) — Hyi(M;R).

From the very definition we have

(L T(X g al) = [ wn(xuig) =)= [w. ()

where w is any representative of [w] which vanishes locally around the
zeros of X and vanishes locally around the base point zy. Moreover we
have
T(e+ o,¢" + §) = T(e,e*) — o + PD(5) (28)

for all e € Cul(M,z9) ® R, ¢* € Eul*(M, ), 0 € Hi(M;Z) and § €
H" Y(M;Oy). Here PD is the Poincaré duality isomorphism PD :
H"H(M; Op) — Hi(M;R).

We have the following affine version of Poincaré duality, which es-
tablishes the proof of Theorem 2(iii) and (iv).

Proposition 5. There is a natural bijection:
P &ul* (M, xy) — Cul(M,z9) ® R
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Moreover, for every 8 € H" Y(M; Oyr) and every ¢* € Eul* (M, zy) we
have

P(e* + ) = P(¢*) + PD(p) (29)
and T(e,e*) = P(e*) —e.

Proof. Given ¢* = [g,a] € €ul" (M, z) we choose a vector field X with
isolated singularities X. Then X*W¥(g) — « is closed and thus defines
a cohomology class in H" 1(M \ (X U {xo}); Op). We would like to
define P(e*) := [X, ¢] where ¢ be a representative of its Poincaré dual
in Hi(M,X U{xo};R). That is, we ask

/w B /J\/I\ XU{:::O}) AXTG) — o)

to hold for every closed compactly supported one form w on M \ (X U
{z0}). In view of (27) this is equivalent to ask for T(P(e*),e*) = 0.
So we take the latter one as our definition of P. Because of (28) this
has a unique solution. The equivariance property and the last equation
follow at once. O

5. SMOOTH TRIANGULATIONS AND EXTENSION OF CHERN—SIMONS
THEORY

Smooth triangulations. Smooth triangulations provide a remark-
able source of vector fields with isolated singularities.

To any smooth triangulation 7 of the smooth manifold M one can
associate a smooth vector field X, called Euler vector field, with the
following properties:

P1: The zeros of X, are all non-degenerate and are exactly the
barycenters x, of the simplexes o.

P2: The flow of — X is defined for all t € R.4

P3: For each zero z, the unstable set with respect to — X is exactly
the open simplex o, consequently the zeros are hyperbolic. The
Morse index of — X, at =, equals dim(c) and the (Hopf) index
of X, at z, equals (—1)4m(2),

P4: The piecewise differential function f. : M — R defined by
fr(x,) = dim(o) and extended by linearity on M is a Liapunov
function for — X, i.e. strictly decreasing on non-constant tra-
jectories of —X.

Such a vector field X, is unique up to an homotopy of vector fields
which satisfy P1-P4. The convex combination provides the homotopy
between any two such vector fields.

4This is always the case if M is closed.
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To construct such a vector field we begin with a standard simplex
A,, of vectors (tg, ..., t,) € R" satisfying 0 < ¢; <1 and > ¢; = 1.

(i) Let E,, denote the Euler vector field of the corresponding affine
space () t; = 1) centered at the barycenter O (of coordinates
(1/(n+1),...,1/(n+ 1)) and restricted to A,,.

(i) Let e : A, — [0,1] denote the function which is 1 on the
barycenter O and zero on all vertices.

(iii) Let r : A, \ {O} — 0A,, denote the radial retraction to the
boundary.

Set X :=e- E,, which is a vector field on A,,.

By induction we will construct a canonical vector field X,, on A,
which at any point z € A, is tangent to the open face the point belongs
to and vanishes only at the barycenter of each face. We proceed as
follows:

Suppose we have constructed such canonical vector fields on all A(k),
k < n —1. Using the canonical vector fields X, _; we define the vector
field X,, on the boundary 0A,, and extend it to the vector field X/ by
taking at each point z € A,, the vector parallel to X,,(r(z)) multiplied
by the function (1 — e) and at O the vector zero. Clearly such vector
field vanishes on the radii OP (P the barycenter of any face). We
finally put

X, =X, + X/

The vector field X, is continuous and piecewise differential (actually
Lipschitz) and has a well defined continuous flow.

Note that one can replace A, by any convex polyhedron P, and
by a similar construction produce inductively the vector field X,, with
similar properties.

Putting together the vector fields X, on all simplexes (cells) we
provide a piecewise differential (and Lipschitz) vector field X on any
simplicial (cellular) complex or polyhedron and in particular on any
smoothly triangulated manifold. The vector field X has a flow and f;
is a Liapunov function for —X. The vector field X is not necessary
smooth but by a small (Lipschitz) perturbation we can approximate
it by a smooth vector field X, which satisfies P1-P4. Any of the re-
sulting vector fields is referred to as the Euler vector field of a smooth
triangulation 7.

Extension of Chern-Simons theory. Let M be a closed manifold of
dimension n. We equip QF(M;R) with the C* topology. The contin-
uous linear functionals on QF(M;R) are called k currents. We denote
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the space of all k currents by Dy(M). Let ¢ : Dp(M) — Dy_1(M) be
given by (6¢)(a) := ¢(da). Clearly 6% = 0.
We have a morphism of chain complexes

Cio(M;R) - D,(M), o0, d(a) ::/oz.

Her C.(M;R) denotes the space of singular chains with real coefficients.
Moreover we have a morphism of chain complexes

(L On) = DM, BB Ba) = (DI [ ang
M
Here |a| denotes the degree of a. The weird sign is necessary so that
this mappings actually intertwines the two differentials d and §.
Every vector field with isolated singularities X gives rise to a zero
chain ey, cf. section 4. Via the first morphism we get a zero current
E(X). More explicitly (E(X))(h) = 3., IND(z)h(z) for a function
h € Q°(M;R).
A Riemannian metric g has an Euler form E(g) € Q"(M;Oy). Via

~

TeEX

the second morphism we get a zero current E(g). More explicitly
(E(g9))(h) = [,, hE(g) for a function h € Q°(M;R).

Let Z¥(M;R) C QF(M;R) denote the space of closed k forms on M
equipped with the C* topology. The continuous linear functionals on
ZF(M;R) are referred to as k currents rel. boundary and identify to
Dy(M)/0(Dy41(M)). The two chain morphisms provide mappings

C(M;R)/O(Cr1 (M;R)) — Dyp(M) /6(Dpy1(M)) (30)
and
QM Op) d(Q 571 (M; Or)) — Di(M)/6(Dia (M) (31)

For two vector fields with isolated zeros X; and X5 we have con-
structed ¢(Xy, Xo) € C1(M;Z)/0(Co(M;Z)), cf. section 3. This gives
rise to ¢(X1,X2) € Ci(M;R)/0(Cy(M;R)), and via (30) we get a
one current rel. boundary which we will denote by ¢s(X;, X2). More
precisely, (¢s(X1,X3))(w) = fc(X1 xpw for a closed one form w €
ZI(M,R> Recall that C(XQ,Xl) = —C(Xl,XQ), C(Xl,Xg) = C(Xl,X2)+
c(Xa, X3), 0c(X1, Xo) = ex, — ex, and thus

€S(X2,X1) = —6S<X1,X2)
CAS(X1, Xg = CAS(Xl, XQ) + 68(X2,X3)

A A

)
58(X1, Xs) = B(Xy) — E(X)).

5The chain complex (D, (M),5) computes the homology of M with real
coefficients.
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For two Riemannian metrics ¢g; and go we have the Chern—Simons
form cs(g1,g2) € QU HM;On)/d(Q"2(M;Oypy)). Via (31) we get a
one current rel. boundary which we will denote by ¢s(gi, g2). More
precisely (¢s(g1,92))(w) = — [, w Acs(g1, g2) for a closed one form w €
ZY(M;R). Recall that cs(g2,91) = —cs(g1, g2), cs(g1, 93) = cs(g1, g2) +
cs(g2, 93), des(g1, g2) = E(g2) — E(g1) and thus

cs(g2,91) = —¢s(g1,92)
cs(g1,93) = (g1, 92) +s(g2,93)

A A

0¢s(gr1,92) = E(g2) — E(g1)

Suppose X is a vector field with isolated zeros and g is a Riemann-
ian metric. We define one currents rel. boundary by (¢s(g, X))(w) :=
R(X,g,w) and ¢s(X, g) :== —cs(g, X). Proposition 1 and Proposition 2
tell that

0és(g, X) = E(X) - E(g)

(g1, X) = ¢8(g1,92) + ¢5(g2, X)

Gs(g, Xa2) = &s(g, X1) + 68(Xq, Xa)
We summarize these observations in

Proposition 6. Let any of the symbols x,y,z denote either a Rie-
mannian metric g or a vector field with isolated zeros. Then one has:
(1> CAS(y,,T) = _CAS('Tvy>
(i) ¢&s(x,2) = &s(z,y) + &s(y, 2)
(ii) dés(r,y) = B(y) — Elx).
St}ppose T is a smooth triangulation. We define its Euler current
by E(7) := E(X;), where X, is the Euler vector field. Similarly for

two triangulations 7; and 7 we define a one current rel. boundary by
cs(ty, 1) = 8(X,, Xr,).
Corollary 1. Let any of the symbols x,y, z denote either a Riemannian
metric g or a smooth triangulation. Then one has:

(1> (fs(y,x) = _CAS('Tv y)

(i) &s(x,z) = &s(z,y) + &s(y, 2)

(ii) dés(x.y) = E(y) — E(a).

More about putting together Riemannian metrics and smooth trian-

gulations will be addressed in forthcoming work.

6. THEOREM OF BISMUT-ZHANG

Let (M, zg) be a closed connected manifold with base point. Let
K be a field and suppose F' is a flat K vector bundle over M, that
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is F' is equipped with a flat connection V. Let F,, denote the fiber
over the base point x3. Holonomy at the base point provides a right
m (M, zo) action on F,, and when composed with the inversion in
GL(F,,) a representation pg : m(M,zq) — GL(F,,). So we get a
homomorphism det opp : w1 (M, xy) — K* which descends to a homo-
morphism H;(M;Z) — K* and thus determines a cohomology class
Or € H'(M;K*).

Suppose we have a smooth triangulation 7 of M. It gives rise to a cel-
lular complex C*(M; F) which computes the cohomology H*(M; F).°
Let X, denote the set of barycenters of 7. For a cell o of 7 we let z,
denote the barycenter of 0. Let X, denote the Euler vector field of
7, cf. section 5. Then X is the zero set of X,.. Moreover for a cell
o we have INDx_(0,) = (—1)4™°. As a graded vector space we have
C*M;F) = Dy op Fr,- So we get a canonical isomorphism of K
vector spaces:

det CX(M; F) =det H(C:(M; F)) = det H*(M; F) (32)

Recall that the determinant line of a vector space W is by defini-
tion det W := AYmWIY  For a Z graded vector space V* one sets
veven .= @, .. VE Vedd = @, 4 V" and defines its determinant
line by det V* := det V¥ @ (det Vodd)*.

Suppose we also have given an Euler structure e € Eul(M, zq). For
every x € X, choose a path 7w, from zy to x, so that with ¢ =
> wex, INDx, (2,)m, we have ¢ = [X,,¢|.” Let fy be a non-zero ele-
ment in det F,,. Note that a frame (basis) in F,, determines such an
element in det F},. Using parallel transport along 7, we get a non-zero
element in every det F}_. If the barycenters x, where ordered we would
get a well defined non-zero element in det C*(M; F).

Suppose o is a cohomology orientation of M, that is an orientation of
det H*(M;R). We say an ordering of the zeros z, is compatible with o
if the non-zero element in det C*(M;R) provided by this ordered base
is compatible with the orientation o via the canonic isomorphism

det C*(M;R) = det H(C*(M;R)) = det H*(M;R).

So an Euler structure e, a cohomology orientation o and an element f, €
det F}, provide a non-zero element in det C*(M; F') which corresponds
to a non-zero element in det H*(M; F') via (32). We thus get a mapping

det F, \ 0 — det H*(M; F) \ 0. (33)

6p (M; F) can be thought of as singular, deRham or sheaf cohomology, they
are all canonically isomorphic.
"Such a representative for the Euler structure is called spray or Turaev spider.
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This mapping is obviously homogeneous of degree x(M). A straight
forward calculation shows that it does not depend on the choice of 7.
As a matter of fact this mapping does not depend on 7 either, only
on the Euler structure ¢ and the cohomology orientation 0. This is a
non-trivial fact, and its proof is contained in [9], for acyclic case and
implicit in the existing literature cf. [2]. We define the combinatorial
torsion to be the element

Tiom € det H*(M; F) ® (det Fyy ) XM

corresponding to the homogeneous mapping (33). Note that we also
have

comb __ _comb -1
TFet+o,0 = TFeo <@F7 O-> ’

for all o € Hy(M;Z). Here (-,-) denotes the natural pairing of ho-
mology with integer coefficients and cohomology with coefficients in an
arbitrary Abelian group, in our case K*. Moreover

comb __ rank ' _comb
TRe,—0 — (_1) TFreo -

Clearly, if x(M) = 0 then 753> € det H*(M; F).

Consider the case K = R. So F'is a flat real vector bundle over M.
Let 7 be a triangulation as above. Let u be a Hermitian structure, i.e.
a fiber metric, on F. This Hermitian structure induces a metric on
det C;(M; F) and via (32) a metric || - ||3!. , on the line det H*(M; F).
This is exactly what is called Milnor metric in [1]. The Hermitian
structure y also defines a metric on (det F,,)™X™) which we will denote
by || - [|s,- The Hermitian structure gives rise to a closed one form
w(V, ), cf. [1] and section 2, where V is the flat connection of F.
For its cohomology class we have [w(V,u)] = (log| - |72).OF, where
(log|-|72). : H'(M;R*) — H'(M;R). Suppose we also have an Euler
structure e € Eul(M, xy) and choose an Euler chain ¢ so that [ X, ] = e.
We define a metric on det H*(M; F) ® (det Fy,) XM by:

R
_1
1SS = 1] e @ 1] gy €72 Y (34)

As already indicated this is independent of x and does only depend
on the Euler structure ¢ = [X,¢|. This follows from known anomaly
formulas for the Milnor torsion, implicit in [1], or can be seen as a
consequence of (35) below. Note that

1 lIEe, =11 15" - [(Or, 0)],
for all 0 € Hy(M;Z) and

70 Il = 1. (35)
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Now let g be a Riemannian metric on M. Then we also have

the Ray-Singer metric || - [|35 , on det H*(M; F), cf. [1]. Let ¢* €
Cul*(M, zo) and suppose [g,a] = ¢*, i.e. da = E(g). Define a metric

on det H*(M; F) ® (det F,,)~XM) by:

1
1 113 = 1 1R @ 1] iy, - @250t (36)

The known anomaly formulas for the Ray—Singer torsion, see [1], imply

that this is independent of © and only depends on the co-Euler structure
¢*. Note that

I e ss =1 |- - [(OF, PD(8))] (37)

for all B € H* 1(M;Oy;). The main theorem of Bismut-Zhang, see
[1], can now be reformulated as follows:

Theorem 5 (Bismut-Zhang). Suppose (M, xq) is a closed connected
manifold with base point and F a flat real vector bundle over M. Let
e € Cul(M,xg) be an Euler structure and let ¢* € Eul*(M,xzq) be a
co-Euler structure, both based at xoq. Then one has:

|- e =11 176" - [(Or, exp,(T(e,¢)))|
Particularly, if e = P(e*) then || - ||%e = || - [|5%™-

Recall that the homomorphism of groups exp : R — R* induces
exp, : Hi(M;R) — Hy(M;R*), and thus exp,(T(e,e*)) € Hy(M;R*).
The pairing (-,-) in the theorem is the natural pairing of H;(M;R*)
with H'(M;R*).

For an alternative proof of the (original) Bismut—Zhang theorem see
also [3].

7. PROOF OF THEOREM 3

Let N be a closed connected manifold and ¢ : N — N a diffeomor-
phism. Set

P(2) := det (zgp* ~1d: H*(N;R) — H’f(N;R)

and let i}

C (Z) — Hk even PQO(Z>
v Hk odd b 5 (2)
denote its Lefschetz zeta function.

Let M denote the mapping torus. More precisely M is obtained
from I x N by identifying (1,z) with (0,¢(z)) for all z € N. Let
p: M — S =1/{0,1} denote the projection induced by the projection
I x N — Tand w := p*ds € Q'(M;R). Here ds € Q!(S';R) denotes the
volume element on S*.
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Let g be a Riemannian metric on M. Denote by d, (t)a := da+tw A«
the Witten deformed differential on Q*(M;R), by 6,(t) its adjoint, by

AL (1) = dy(t)0,(t) + 0 (t)d, (1)

the Laplacian and by AF(¢) the Laplacian on k—forms. Introduce the
Ray—Singer torsion:
1
Ton(w, g)(t) = exp<§ zk:(—l)k“k:log det'Af;(t))
Here det’ A denotes the regularized determinant of the nonnegative
selfadjoint elliptic operator A obtained by ignoring the zero modes.

Theorem 6 (J. Marcsik). ® Let N be a closed manifold, ¢ : N — N a
diffeomorphism, M the mapping torus of @, p: M — St the projection
and w = p*ds, where ds denotes the volume form on S'. Suppose X
is a vector field on M with w(X) < 0 and suppose g is a Riemannian
metric on M. Then

Co(€")] = Tun(w, g)(t)eHX 02,
or all t € R which satisfy P*(et) # 0, for all k.
f Y ® )

The rest of this section is devoted to the derivation of this theorem
from the Bismut-Zhang theorem cf 7.

We think of N C M via z +— (0,z). Pick a base point zp € N C M.
For every t € R the cohomology class [tw] provides a representation

po s m(M,z0) — Hy(M:Z) " R 2R, CR*

on the vector space R. Let F, denote the assotiated flat line bundle.
Obviously we have O, = exp,[tw] € H'(M;R*).

Let 7 : (M,%,) — (M, x,) denote the universal covering. Let ry :
M — R denote the unique function such that dr, = 7*tw and r(iy) =
0. Then r(oz) = r(Z) + ([tw], o) and thus o*e™ = p;(o)e™, for all
o € m(M,xy). So €™ is a nowhere vanishing p,—equivariant function

on M, hence a section of F},,. We use this section to trivialize F,,. So
we also have the identification

Q*(M;R) = Q" (M;R)” = Q*(M; F,,), a— etra,

where o € Q*(M;R)* if o*av = py(0)a, for all o € 71 (M, ). Via this
identification the deRham differential for forms with values in F}, is
d,(t).

Let 1 denote the Hermitian structure on F),, which corresponds to
the trivial Hermitian structure via our trivialization F,, = M x R.

8this statement is sligtly more precise than the one formulated in [7]
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Then Vi, = —2tw(Y)p, and thus w(F),, ) = —2tw. Moreover we
obviously have

Tan(w, 9)(t) = Tan(Fp,, g, f12)- (38)
Let e denote the Euler structure determined by X, i.e. e = [ X 0].

Proposition 7. Suppose H*(M; F,,) vanishes. Then
117 = Toan(w, g) (£)e X0, (39)
where 1 € R = det H*(M; F,,).

Proof. Choose « so that ¢* := [g, ] is a co-Euler structure. From the
Bismut-Zhang theorem cf we get

11135, e = 11 11808 - [(OF,,, exp,(T(e, ¢9))) | (40)

as metrics on the line det H*(M; F),,). Note that the Euler character-
istics of M always vanishes. Using w(F),, i) = —2tw we get

(O, exp,(T(e, ")) = exp({[tw], T(e,¢")))
= exp(R(X, g,tw) — S(a, g, tw))
= exp(tR(X,g,w) + %S(a,g,w(Fpt, ut)))
Thus (40) combined with (36) and with

Hod
|| ||Fptg,ut_|| ||F§t§em (F/Jug ,ut)
implies
Hod,
11178 = 1 155 - Ton (B g5 ) - €759,

(Recall that for deRham complex Q(M; F') F a flat bundle with scalar
products induced by the Riemannian metric g and Hermitian structure
 the metric ||- ||§$}§e on det H*(M; F) is obtained by the identification
of H*(M;F) with the space of harmonic forms.) Since H*(M;F,,)
vanishes we certainly have H1|\§;’f§fm = 1, which together with (38)
now implies (39). O

Now choose a triangulation 7 of M such that N C M is a sub-
complex. For every simplex o of 7 we choose a path m, from zg
to the baricenter z, of ¢ in such a way that 0 < fm’w < 1. Set
¢, =Y (—=1)%m77,. Then ¢, is an Euler chain for —X,, where X,
denotes the Euler vector field of 7, see section 5. Let ¢ = [— X, ¢;]
denote the corresponding Euler structure.

Proposition 8. We have (@F ,exp, (¢ —e¢)) =1 and thus || - Hcomb
| - Hcomb on the line det H*(M; F,,).

e
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Proof. Consider N, C M, x — (x,1 — €), where € > 0 is sufficiently
small such that w(—X;) < 0 on N, and such that no zeros of — X, are
contained in (1 —€,1) x N. This is possible since N is a subcomplex,
hence the Euler vector field X, is tangential to N and points towards
N in a small neighborhood of N. We thus find a homotopy X, from X
to — X, which has the property that w(X,) < 0on N, forall A € I. We
conclude that ¢(X, — X ) is contained in M\ N.. Since ¢—¢ € H{(M;7Z)
is represented by ¢, — ¢(X,—X,) we conclude (jw],¢ —¢) = 0 and
therefore (O, ,exp,(¢ —¢)) = exp(([tw],e —¢)) = 1. O

Consider the short exact sequence of complexes:
0— Ci(M,N;F,)— C:M;F,)— C:N;F,)—0 (41)
Clearly we have canonic isomorphisms
H(C;(N; F,)) = H(CH(N;R)) = H*(N;R).
Moreover we have isomorphisms of chain complexes
CH(M, N3 F,) = C*(I x N,0I x N; F,,) <= C*(I x N, x N;R),

where s : I Xx N — I C R is the projection. This provides an isomor-
phism

H(C:(M,N; F,))=H*(I x N,0I x N;R) = H'(N;R) (42)

Proposition 9. We have a commutative diagram

H*(C#(N;F,)) —— H*'(C*(M,N;F,))

H H

HYN;R) H*(N;R)

where the upper horizontal mapping is the connecting homomorphism of
(41) and the right vertical isomorphism is (42). Particularly H*(M; F),)
vanishes iff Pk(e') # 0 for all k.

Elementray linear algebra provides the following

Lemma 3. Suppose 0 — C5 — Cf — C5 — 0 s short exact se-
quence of chain compelxes. Then the following diagram of canonical
1somorphisms commutes:

det C5 ® det C3 det CY

det H(C5) ® det H(C3) det H(CY)
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Here the left vertical isomorphism is the tensor product of the two
canonical identifications and the lower horizontal isomorphism comes
from the long exact sequence in cohomology.

Applying Lemma 3 to (41) and using Proposition 9 we get a com-
mutative diagram:

det (M, N; F,,) ® det C2(N; F,) det O3 (M; F,)

det H(CH(M, N; F,,)) @ det H(C2(N; F),)) —— det H(CH(M; F,))

det H*}(N;R) ® det H*(N;R) det H*(M; F),,)

R Go(eh) R
provided H*(M; F),,) vanishes, equivalently Pj(et) # 0, for all k.
Let | - | denote the standard metric on R, i.e. [1] = 1.

Lemma 4. Via the canonic isomorphisms in the diagram above the

metric | - | on the lower left R corresponds to the metric || - ||%™2 on
pt>

det H*(M; F,).

Proof. Let ||]|z denote the metric on det H*(N; R) provided by integral
cohomology. A simple inspection of the isomorphisms shows that the
metric || - ||z ® || - ||z on det H*"1(N;R) ® det H*(N;R) corresponds to
| - ||CF?:‘E on det H*(M; F),). On the other hand || - ||z ® || - ||z clearly
corresponds to | - | on R. O

Using Lemma 4, Proposition 8 and (39) we finally get
G (€] = LIS = IS = Tan(w, ) (1) *R¥ )
which finishes the proof of Marcsik’s theorem.

NOTE: The function (,(e’) can be interpretd as the Laplace trans-
form of the counting function for closed trajectories of the vector field
—grad, w, cf [4]. In [4] one expresses this Laplace transform for vector
fields of the form X = —grad,w on an arbitrary manifold M when w
is a closed one form with Morse zeros. A generic closed ome form is of
this type. This is a considerable extension of Marcsik theorem and the
begining of a link between dynamics and spectral geometry.
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8. COMPLEX REPRESENTATIONS AND THE PROOF OF THEOREM 4

Complex representations. Let I' be a finitely presented group with
generators gy, ..., g, and relations R;(g1,92,...,9,) = €, i =1,...,p
and V be a complex vector space of dimension N. Let Rep(I'; V') be
the set of linear representations of I' on V, i.e. group homomorphisms
p: T — GLc(V). By identifying V to CV this set is in a natural way
an affine algebraic variety inside the space C™¥**! given by pN? + 1
equations. Precisely if A, ..., A,, z represent the coordinates in C™V “+1
with A := ||a¥||, a¥ € Cso A € CV* and z € C, then the equations
defining Rep(I'; V') are

z-det(A;) - det(As) - --det(A,) = 1
Ri(Aly-'-aAr) = Id, Zzl,,p

with each of the equalities R; representing N? polynomial equations.
Define the function d* : Rep(T'; V) — Z by

d"(p) := Z dim H'(M; p)

and call a representation p generic if the function d¥ is constant near
p. The set of non-generic representations is a closed subset and a
complex analytic subspace (M) of Rep(I'; V'). Moreover, for any con-
nected component Rep, (I'; V') of Rep(I'; V'), the set Rep, (I'; V') \ X(M)
is open and dense in Rep,,(I'; V). We denote by Rep™ (I'; V) the union
of connected components Rep, (I'; V') which contain generic represen-
tations p with d™(p) = 0. This is a complex analytic space which can
be empty (for example if x(M) # 0) but in some interesting cases can
be the full space Rep(I'; V).

The following observations are supposed to be well known and tacitly
used.

(i) Suppose (M, xg) is a basepointed manifold and I" := (M, ).
Every representation p € Rep(I'; V) induces a vector bundle F,
equipped with a flat connection V,. The fiber of this vector
bundle above x( is canonically identified to V. They are ob-
tained from the trivial bundle M x V — M and the trivial
connection by passing to the I'" quotient spaces. Here M is the
canonical universal covering provided by the base point x.
The I' action is the diagonal action of deck transformations on
M and the action p on V. The fiber of F » over x, identifies
canonically with V. The holonomy representation determines
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a right I' action on the fiber of F, over zy, i.e. an anti homo-
morphism I' — GL(V). When composed with the inversion in
GL(V') we get back the representation p.

(ii) Two representations in the same connected component of Rep(I'; V')
induce topologically isomorphic bundles, however not isomor-
phic as bundles with connection.

(iii) If po is a representation in the connected component Rep,, (T'; V)
one can identify Rep, (I'; V') to the connected component of V
in the complex analytic space of flat connections of the bundle
F,, modulo the group of bundle isomorphisms of F},, which
restrict to the identity on the fiber above x.

Proof of Theorem 4. Recall that the Ray—Singer torsion is a positive
real number T,,(g, V, 1) associated to a Riemannian manifold (M, g)
and a bundle £ : FF — M equipped with a flat connection V and a
Hermitian structure pu.

The connection V gives rise to the deRham complex (Q*(M; F'), d%)
while the Riemannian metric g and the Hermitian structure p give rise
to a scalar product in Q*(M; F') which, in turn, provides formal adjoints
(dqv)ﬁ for the differential operators d%,. The Laplace-Beltrami operators
A, 0 QUM;F) — QI(M; F) are defined by A, := di' - (d& ") +
(dL)* - di. They are non-negative selfadjoint elliptic operators and
therefore have regularized determinants det’A,.” The analytic torsion
Tan(g, V, 1) is defined by:

1 .
log Ton(V, g, ) := 5 Z(—l)”lilog det’A; (43)
If e* € Gul" (M, x) is a co-Euler structure represented by (g, «) then
the quantity

. 1
IOg Tan<v7 g, a, /’L) = log Tan(v7 g, M) - §S<gv «, CU(V, ,LL)) (44)

depends only on p = py, the holonomy representation in the fiber F,,
and the co-Euler structure ¢*, provided that d™(p) = 0. This was
already explained in section 6.

Indeed, by passing from (F,V, u) to (F', V', ') by a gauge transfor-
mation the right side of (44) does not change. In view of the Hermitian
and metric anomalies for log T,,(V, g, ), cf. [1] or [3], and of the def-
inition of S(g, o, w(V, 1)), the change of u, g and « (with ¢* = [g, a])
also leaves T (V, g, o, i) unchanged. Therefore T (V, g, a, 1) defines

9det’ denotes regularized determinant with zero modes ignored.
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a smooth (actually analytic) real valued positive function
Tan(M,¢*) : Rep™ (0; V) \ B(M) — R

referred to as the corrected Ray—Singer torsion.

We like to show that this function is the absolute value of a holomor-
phic function which admits a meromorphic extension to to Rep™ (T'; V)
and whose zeros and poles are contained in ¥(M). This will prove The-
orem 4.

Recall that a smooth triangulation 7 of M, and an Euler structure
¢ = [X,, ¢], where ¢ is a collection of paths {m,, } from z¢ to x,, provide
a cochain complex of finite dimensional vector spaces with scalar prod-
ucts (C*(7, pv), 6,5 ). The ¢ component of this complex is €D 4, —q Frs
where F,_ is equipped with the scalar product p,  obtained by parallel
transport along 7, from a fixed scalar product p,, on F,,,. For any rep-
resentation p one obtains a real valued number log Teomn (9, X+, €, fia)
by a similar formula as (43). This number depends only on p and e
provided d™(p) = 0, as it has already been indicated in section 6, cf.
also [5]. Therefore one obtains a smooth (actually analytic) real valued
positive function

Toomn(M, ¢) : Rep™ (I, CV) \ £(M) — R.

If in addition P(e*) = e then Bismut-Zhang theorem (cf. Theorem 7
above) implies that the two functions are the same. Therefore it suffices
to produce the holomorphic map and its meromorphic extension for the
real valued function Teomy, (M, e) instead of T, (M, e*).

Remark 6. One can refine the definition of Tiomp (M, ¢)(p) for p with
H*(M; p) = 0 in the following way.

One chooses a frame (basis) €, of F,,. One uses the parallel trans-
port along 7, (and obtain a frame in each F, ) and an ordering oy
of the cells of 7, to provide a base for the acyclic complex of C vec-
tor spaces, (C*(7, pv),d,y). One uses the Milnor construction of the
torsion, cf. [9], and obtains a complex number 7% . (p, —X;. ¢, €., 0x).
The absolute value of this number is the real number Teom,(M, €)(p).
The linear algebra considerations for this conclusion are detailed in the
Appendix. By changing the frame in F), this number does not change
since the Euler characteristic of M vanishes.!® As before one can argue
that this complex numbers depends only on p, ¢ and oy, and therefore
it will be denoted by 7% . (p, ¢, 0x).

10T his follows from the fact that H*(M;p) = 0.
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A change in the ordering oy might change Teomn(p, ¢, 0x), but only
up to multiplication by 41 product of determinants of permutations.
Let as also observe that:

(i) The graded vector space C*(T, py) depends on py only via the
underlying vector space V', hence can be written as C*(7, py).

(ii) An ordering oy and the frames F, define a base for the graded
vector space C*(7; V') and then an element in the determinant
line of this graded vector space. Orderings oy which induce
colinear elements in this determinant line provide the same
complex number T? . (p, ¢, 0x).

(iii) A choice of an orientation oy in det H*(M;R) defines (many)
orderings oy of the cells of 7, and all these orderings provide
colinear elements in that determinant line in view of the canon-
ical identification of this determinant line with det H*(M;R)®
(det V)=x(M),

Let X be a connected component Rep? (I'; V) of Rep™(I'; V) and
X" = RepM(T; V)\X(M). Denote by O(X) and O(X') resp. by M(X)
and M(X’), the C algebra of holomorphic resp. meromorphic functions
on X and X'.

We have the commutative diagram

OX) -5 M(X)

e ol
OX") = M(X)
where iy resp. 1x denote the inclusions of the algebra of holomorphic
functions in the field of meromorphic functions and r® resp. r™ denote
the restriction of the algebras of holomorphic/meromorphic functions
on X to X'.

By choosing a frame in F}, and an ordering oy consistent with the
orientation oy in det H*(M;R), we obtain a base in the finite dimen-
sional vector space C*(7; p) which varies holomorphically in p. Recall
that the graded vector space C*(7; p) depends on p only via its under-
lying space V' which is the same for all p € X. Note also that when
p varies in X one obtains a holomorphic family of based cochain com-
plexes!! of C vector spaces, which can be interpreted as a based cochain
complex of O(X) modules. Unfortunately this cochain complex is not
necessary acyclic. Our hypothesis implies that when tensored by O(X”)

A pased cochain complex of A modules is a cochain complex of free modules
with a specified base for each component
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and therefore also by M(X), our based cochain complex becomes
acyclic therefore, has a well defined Milnor torsion, an element in O(X")
resp. in M(X). The element in M(X) is the solution to our problem
and is a meromorphic function Zeomn(e,05) = Tan(P'(e),05). The
element in O(X’) is a nonzero holomorphic function whose absolute
value is Teomp (M, ¢). The commutativity of the diagram above implies
that this holomorphic function is the restriction to X’ of Zcomp (e, o).

Note that by changing oy one might change the meromorphic func-
tion Z,,(e*, oy ) but only up to sign. q.e.d.

APPENDIX A. COMPLEX VERSUS REAL TORSION

Suppose V' is a finite dimensional complex vector space. Let Vi
denote the vector space V' considered as real vector space. We have a

mapping
Oy :detV — det(WR)
VAUV A~ AU, — VAW Avg Atvg A -+ Av, A1,
It has the property
Oy (za) = |220y (),

forallz€ Cand a € det V. If f: V — W is a complex linear mapping
then the following diagram commutes:

detV -2 det(VR)
o | | g
det W -2 det(WWR)
After identifying det C = C and det(Cr) = A*’R* = R we have
fc: C — R, Oc(z) = |2|°.

Suppose L is a complex line, R a real line and # : L — R a mapping
which satisfies

0(2)\) = |20V, (45)

for all z € C and all A € L. If L’ is another complex line, R' another
real line and 0" : L’ — R’ another mapping which satisfies (45) we can
define

00 : Lol - R R, OR0)ARN) =0\ @60 (N)
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which again satisfies (45) Note that

LeC — L
9®90l l@
ROR —— R

commutes. If 0 - V — W — U — 0 is a short exact sequence of
complex vector spaces we have a commutative diagram:

det V ® det U _— det W
0V®9UJ/ lew
det(VR) X det(UR) _ det(WR)

Note that for a complex vector space V' we have a canonic isomorphism
(VIr= ()", o= Rop

Using this identification we get a commutative diagram:

9‘/®9V*l JVQC

Putting all this together we obtain

Proposition 10. Let C* be a finite dimensional chain complex over C.
Let C% denote the same chain complex viewed as chain complex over
R. Clearly H(C%) = H(C*)r and we have a commuatiove diagram.:

QC*J( J/eH(C*)

Now suppose F' is a flat complex vector bundle over a closed mani-
fold (M, xy) with base point. Let Fr denote the vetor bundle F' consid-
ered as real bundle. Recall the mappings (33) from section 6. Clearly
H*(M; F)g = H*(M; FRr). Let A :=0p-(ar,r) @ (05,,) ) denote the
canonical mapping:

det H*(M; F) ® (det F,, )™M 25 det H*(M; FR) ® (det(FR)q, ) XM

Let ¢ € Eul(M, x) be an Euler structure and o a cohomology orienta-
tion.

43 ; ; ; comb) _ comb
Proposition 11. In this situation we have A(Tiyy) = Tioee-
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Remark 7. Note that O € H'(M;C*) and Op, € H'(M;R*) are
related by (| - |?).Or = O, where (| - [*). : H'(M;C*) — H'(M;R*).
Thus Proposition 11 implies

comb A

comb
TFR e+o,0 )

(TF6+0'0
= A(1%e - (O 0)7)
= A(15%%) - [(OF, o)
= A(T5%0) (O, 0) "
= Thneo (Or.0)™"
as should. Also note that Proposition 11 implies
i = A(TE) = A(ETE) = A(Ti) = i

as should be since Fr has even rank.

Still assuming F' is a flat complex vector bundle over (M, zg). Let

i be a Hermitian structure on F' and let [g,a] = ¢* be a co-Euler
structure. Using p to construct adjoints, Laplacians, etc. we get a
Hermitian scalar product || - ||3,- on the complex line

det H*(M; F) @ (det F,,)~X3),

which satisfies

- [Fers = [ - [[Fe - [(©r, PD(B))],
for all B € H"Y(M;Oy;). The real part of i defines a fiber metric uR
on the flat real bundle Fr. Using this fiber metric to compute || - [|3, .-

and using w(F, u) = w(Fg, tr) we immediatly get
Proposition 12. In this situation || - ||# o 0 A = (|| - ||#e)*.

Remark 8. Note that Proposition 12 implies

Ul NFep)® = |1 frerss©
= (Il 5 © ) [(©r, PD(5))]
= (II'lFer 0 4) - (OF, PD(B))[?
= (I ll7e - K©r, PD(3))])*
and thus || - [[Fe, 5 = || - || - [(OF, PD(8))], as should be.

Together with the Bismut-Zhang theorem we obatain

Corollary 2. In this situation we have:

I7ee |[Fe: = [(©r, exp, (T (e, ¢"))))|
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Remark 9. It is tempting to look for an analytic defintion of an element
7. o in the complex line det H*(M; F) @ (det Fy, ) X™) which satisfies

Thet50 = Tre o (OF, PD(8))™"

and

an _ rank F' _an
TFe*,—0 — (_1) TFe* 0

and the Bismut—Zhang property

7-Izj:‘fle*,o - T;‘?erjz)b : <®F7 eXp*(T(ev 2*))>_1-
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