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Abstract

We consider a system of n-th order nonlinear quasilinear partial differential equations of
the form

w4+ P )u+g (x, t, {(‘},’cu}) =0

with u(x,0) = ur(x), u € C7, for ¢ > 0 and large |x| in a poly-sector S in ¢, where
& = 6;11 8%22 ...0%% and j1 + ... + ja < n. The principal part of the constant coefficient n-th
order differential operator P is subject to a cone condition. The nonlinearity g satisfies
analyticity and decay assumptions in S.

The paper shows existence and uniqueness of the solution of this problem and finds its
asymptotic behavior for large |x|.

Under further regularity conditions there exists a (generically divergent) asymptotic
series solution for large |x|. We prove that this series is Borel summable to the actual
solution.

The structure of the nonlinearity and the complex plane setting preclude standard meth-
ods. We use a new approach, based on Borel-Laplace regularization and Ecalle acceleration
techniques to control the equation.

In special cases motivated by applications we show how the method can be adapted to
obtain short-time existence, uniqueness and asymptotic behavior for small ¢, of sectorially
analytic solutions, without size restriction on the space variable.
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1 Introduction

1.1 General considerations
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There are relatively few general results on existence, uniqueness and regularity of solutions of
partial differential equations when one or more of the independent variables are in the complex
plane, in settings in which the classical Cauchy-Kowalevski (C-K) theory does not apply. The C-
K theorem holds for first-order analytic systems (or those equivalent to them) with analytic non-
characteristic data, for which it guarantees local existence and uniqueness of analytic solutions.
As is well known, its proof requires the convergence of local power series expansions. A number



of evolution equations do not satisfy these assumptions and if formal power series solutions exist
their radius of convergence is zero. One of the goals of the paper is to provide a C-K type
theory in such cases, providing existence, uniqueness and regularity of the solutions. Roughly,
convergence is replaced by Borel summability, although the theory is more general.

We extend regularization techniques introduced by Ecalle to the initial value problem in
analytic systems for which the spatial part verifies a cone condition. For convenience, the special
point of analysis is x = co.

The present paper generalizes [9] to d dimensions and arbitrary order in the spatial variable,
to m dimensional dependent variable, proves additional results about short term existence and
addresses the issue of Borel summability of formal solutions. A fortiori we obtain results on the
asymptotic character of these solutions.

Under assumptions to allow for formal expansions for large x, we show that series solutions
are Borel summable to actual solutions of the PDE. For this purpose we make use of Ecalle
acceleration techniques. In special cases we obtain existence and uniqueness results for ¢ in a
compact set and large enough x, and separately for small ¢ and fewer restrictions on x.

Properties of solutions of PDEs in the complex plane, apart from their intrinsic interest, are
relevant for properties in the real domain, as initial singularities in C may give rise to blow-up
at later times in the physical domain. The representation of solutions as Borel sums allows
for extension of techniques originally developed for ODEs [8] to find the location and type of
singularities of the solutions.

It is certainly difficult to give justice to the existing theory of nonlinear PDEs, and we
briefly mention a number of results in the literature in relatively similar settings. For certain
classes of PDEs in the complex domain Sammartino and Caflisch [25], [26] proved the existence
of nonlinear Prandtl boundary layer solutions for analytic initial data in a half-plane. This
work involves inversion of the heat operator 0; — Oyy and uses the abstract Cauchy-Kowalewski
theorem for the resulting integral equation. While their method is likely to be generalizable
to certain higher-order partial differential equations, it appears unsuitable for problems where
the highest derivative terms appear in a nonlinear manner. Such terms cannot be controlled by
inversion of a linear operator and estimates of the kernel, as used in ([25], [26]).

Real domain techniques with nonlinearity include the methods introduced by Klainerman
[16], [17], Shatah [27], Klainerman and Ponce [18], Ponce [23], Ponce and Lim [24], Kenig and
Staffilani [15], Klainerman and Selberg [19], Shatah and Struwe [28] and others.

The complex plane setting, as well as the type of nonlinearity allowed in our paper, do not
allow for an adaptation of those techniques. This can be also seen in simple examples which
show that existence fails outside the domain of validity of the results we obtain.

The equations H; = H*H,,, and H; + H, = H*H,,, — H?®/2, both arising in Hele-Shaw
dynamics, the equation H; = H'/3H,,, relevant to dendritic crystal growth, the KdV equation,
can be brought through rather straightforward transformations to the setting [9] and thus to the
present more general one. Some properties of the first three were treated in [9]. The Kuramato-
Sivisinski equation u; + Uty + Ugg + Uggas = 0 or the thin-film equation hy + V - (R*VAR) =0
for d = 2 with initial conditions such as h(x,0) = 1+ (1 + ax? + bz3)~! , are brought, the latter
through h(x,t) = 1 + u(x,t), to problems of the form studied in the present paper. Certainly
many more equations are amenable to this setting.

A vast literature has emerged recently in the field of generalized Borel summation starting
with the fundamental contributions of Eca,lle, see e.g. [12], whose consequences are far from
being fully explored and it is impossible to give a quick account of the breadth of this field. See



for example [8] for more references. Yet, in the context of relatively general PDEs, very little
is known. Borel summability has been recently shown for heat equation by Lutz, Miyake and
Schifke [20] and generalized to linear PDEs with constant coefficients by Balser [1] and by the
authors in special classes of higher order PDEs in [9]. The methods in the present paper are
different and apply to a much wider class of equations.

1.2 Notation

We use the following conventions. For vectors in C? or multiindices we write

d
la] = fuil
=1

and for multiindices we define
k > m if k; > m; for all 4

If a is a scalar we write x* = (z{,z3,...,2%). With p, x and j vectors of same dimension d, we
define

d
v = 1T+
=1

and

& = o1 §iz ‘81‘11

x1 7T

We write 1 = (1,1, ..,1) and more generally, if « is a scalar, we write & = a1; thus x! = H:.i:l Zi-
For d-dimensional vectors a and b we write
b b1 bo ba
/ . dp:/ / / ~dprdps - - - dpqg
a al a2 aq
The directional Laplace transform along the ray arg p; = ;,¢ = 1...d of F is given by
coel®
(L,F @)= [ Fp)e ™dp 1)
0

2 Problem statement and main results

2.1 Setting and assumptions

We show existence and uniqueness of solutions u(x,t) to the initial value problem for a general
class of quasilinear system of partial differential equations of the form

uy + P(aslc)u +8 (Xa t, {85](“}\1|§n) =0; ll(X, 0) = uI(X)

Emphasizing quasi-linearity, we rewrite the equation as

Oh+P@h+ > g3 (x,t,{0h}j<n) 07h = g1 (x,1,{0h}j<n) ; h(x,0) =hs(x) (2)
|J|=n



The restrictions on g1, g2, and hy are simpler in a normalized form, more suitable for our
anlysis. By applying 63 to (2) for all j with 1 < |j| < n — 1, we get an extended system of
equations for f € C™, consisting in h and its spatial derivatives of order less than n, of the type
(see Appendix for further details):

Of + P(0x)f = Zlbq(x,t, O] T[ @)™ +r(x,t) with £(x,0)=fi1(x)  (3)

a-0 1=10<|j|<n

where 3" means the sum over the multiindices q with

Y > lilag<n (4)

1=11<j|<n

The matrix P is assumed to be diagonalizable, and modulo simple changes of variables we assume
it is presented in diagonal form, P = diagP;,j =1,...,m. In (3),q=(q;), 1 < |j| <n,1 <1<
m is a vector of integers and P; is an n-th order polynomial. We let Py;; be the principal part
of P;, i.e. the part that contains all monomials of (total) degree n. The inequality (4) implies in
particular that none of the g; ; can exceed n and that the summation in (3) involves only finitely
many terms. The fact that (4) can always be ensured leads to important simplifications in the
proofs. Let p > po >0, ¢ < 5, € >0 and

™ .
D¢,p;x={x:|arg:c,~| < §+¢; || > p; zgd} (5)
Dg,p = Dg,px x [0,T] (6)
Assumptions 1 1. There is a ¢ € (0, %) such that for all p # 0 with max; |argp;| < ¢ we
have
§Rlpn;j(_p) >0 (7)

2. The functions bg(-,t,-) are analytic in D ,, x {f: |f| <e}. We write

pid
2n

ba(x,t;£) = b (x,t)f* (8)

k=0

3. For some constants a, > 1 independent of T (see also §7.1), A,(T) >0, aqg >0, 8> 0!

sup  [x*r(x,1)| = A(T) < o0 (9)
XE'D%’F,O x
sup  [x*fr(x,t)| = Ap(T) < 00 (10)
XED x o=
sup x@atklPp | = A4y(T) < 00 (11)
k,q;xE’Dﬁjpo;x

4. The analysis is interesting for n > 1, which we assume is the case.

! A restriction of the form |x|%|r(x,t)| < A,(T)(*) may appear more natural. However, since every component
of x is bounded below in Dy ,, x, it is clear that (*) implies (9) with a, = &/d. The same comment applies for
condition (11). This form is more convenient in the present analysis.



2.2 Existence and uniqueness for large |x|

Theorem 2 Under the Assumptions 1, there is a unique solution £ of the (8) with the following
properties in Dy 0.5 (a) £ analytic and (b) |x*||f| bounded . Furthermore, this solution satisfies
f=0(x"%) as x = 00 in Dy -

Notes. 1. As shown in [9] for special examples, f, in a larger sector is expected to have
singularities with an accumulation point at infinity.

2. In section 6, we also show that in some special cases, there is a duality between small time
and large x.

2.3 Borel summability of power series solutions and their asymptotic
character

Determining asymptotic properties of solutions of PDEs is substantially more difficult than the
correspnding question for ODEs. Borel-Laplace techniques however provide a well suited modal-
ity to overcome this difficulty. The paper shows that formal series solutions are Borel summable
to actual solutions (a fortiori are asymptotic to them). A few notes on Borel summability are
found in §7.2.

We need, first of all, to impose restrictions to ensure that there exist series solutions, to
which end the coefficients of the equation should be expandable for large x. In many practical
applications these coeflicients turn out to be finite combinations of ramified inverse powers of z;.

_1 _1
Condition 1 The functions bqx(x,t) and r(x,t) are analytic in (z; ™*,...,z, "*)

and some N € N.

for large |x|

Theorem 3 If Condition 1 and the assumptions of Theorem 2 are satisfied, then the unique
solution £ found there can be written as

f,t) = [ e 0dp (12)

1 1
niNg

where Fy is (a) analytic at zero in (p;"",...,p;"*); (b) analytic in p # 0 in the poly-sector
|argp;| < 7o+ 2(71”—71), i < d; and (c) exponentially bounded in the latter poly-sector.

Remark 1 (i) It follows from the same proof that x7-1 can be replaced with xP for any B €
[1,-25]. The canonical variable in Borel summation is that in which the generic Gevrey class
of the formal series solution is one (i.e., the series diverge factorially, with factorial power one;
[1]). This variable, in our case, is x7-1.

(ii) At least in simple examples, the sector of summability is optimal. See also Note 35.

(#ii) Asymptoticity of formal solutions for large x to actual ones follows straightforwardly,
applying Watson’s lemma [2] to (12).

() In many problems of interest the conditions of Theorem 8 are met by the equation in more
than one sector. Then the functions F1 obtained in (3) are analytic continuations of each-other,

as it follows from their construction.

The proof of Theorem 3 is given in §5.
See also §7.1.



3 Inverse Laplace transform and equivalent integral equa-
tions

The inverse Laplace transform (ILT) G(p,t) of a function g(x,t) analytic in x in Dy ,.x and
vanishing algebraically as x — oo (cf. Lemma 4 below and Note following it) is given by:

G(p.t) = [£ e} (p.1) = Gy |, "Bl dx (13)

d
D

with a contour Cp as in Fig. 1 (modulo homotopies), C§ C Dy, ,.x, and p restricted to the dual
(polar) domain S, defined by

S ={p:|pil >0; argp; € (—9,¢),i=1,...,d} (14)

to ensure convergence of the integral.
The following lemma connects the p behavior of the ILT of functions of the type considered
in this paper to their assumed behavior in x.

Lemma 4 If g(x,t) is analytic for x in Dy px, and satisfies
x| |g(x,1)| < A(T) (15)

for a > a9 > 0, then for any 6 € (0,9), the ILT G = L 'g exists in Sy_s and satisfies

Gp,1)| < 0 AD)

< Cpae ™ 1o

for some C = C(d, ).

PRrOOF. The proof is a higher dimensional version of that of Lemma 3.1 in [9]. We first consider
the case when 2 > a > ag. Let C),, be a contour so that the integration path in each x component
is as shown in Fig. 1: it passes through point p; +|p;| ™!, and s = p1 +|p;|~! +ir exp(i¢ signum(r))
with r € (—00,00). Choosing 2p > p1 > (2/Vv/3)p, we have |s| > p along the contour and
therefore, with arg(p;) =0 € (—¢ + 8,4 — 9),

lg(s,t)| < A(T)|s~| and [e5P| < eP1Ipl+d—r|psin [¢+0]
Thus

/ e*Pg(s,t)ds
c

P1

4 oo
SZA(T)ef’lIPHdH/ 1 + [pil ™+ irei®| % e lpslrsinagy
=170

d 0o
< KAT)e P ] {Im + Ipilfll"’/ e'p"'”i“"dr} < K& 4|p e P! (17)
i=1 0

where K and K are constants independent of any parameter. Thus, the Lemma follows for
2 > a > ay, if we note that I'(a) is bounded in this range of «, the bound only depending on
ag-



For a > 2, there exists an integer k£ > 0 so that & — k € (1,2]. Taking

r

[(k — 1)]%h(x, ) = / g(z,1)(x — 2)<dz

oo

(clearly h is analytic in x, in Dy , and O¥h(x,t) = g(x,t)), we get

e ) = U [T ey 00 - 1)k-1dy

(k=D Jy
ka)l
=( _1,]d / A(x-y, )y (y — 1) 'dy

with |A(x - p,t)| < A(T), whence

T(a — k)¢

From the arguments above with a — k playing the role of a, we get

AT) | o

L~ 1h <C(s pla k 162|p\p

I£7 {h}(p,?)| < C( )[F( )]d| |
Since G(p,t) = (—=1)*pr*L~1{h}(p,t), by multiplying the above equation by |p!|¥, the Lemma
follows for o > 2 as well. O

Remark 2 The constant 2p in the exponential bound can be lowered to p + 0, but (16) suffices
for our purposes. Note also that the statement also holds for p = 0, a fact that will be used in
§6.

Remark 3 Corollary 5 below implies that for any p € Sy, the ILT exists for the functions
r(x,t), bqx(x,t), as well as for the solution £(x,t), whose existence is shown in the sequel.

Remark 4 Conversely, if G(p,t) is any integrable function satisfying the exponential bound in
(16), it is clear that the Laplace Transform along a ray (1) ezists and defines an analytic function
of X in the half-plane for each component defined by R[e®z;] > 2p for 6; € (=, ¢). Due to the
width of the sector it is easy to see, by Fubini, that LG = g.

Remark 5 The next corollary finds bounds for Bqx = L7 {bqx} and R = L' {r} independent
of arg p; for p € Sy, following from the properties of bqx andr in Dz ,; D Dy .

Corollary 5 The ILT of the coefficients bgqx (cf. (8)) and of the inhomogeneous term r(x,t)
satisfy the following upper bounds for any p € Sy

Ba(p,1)] < mij;{f—’g;(@Ab<T>|pmkl+aq—lwm (18)
e N (19)



PROOF. The proof is similar to that of Corollary 3.2 in[9]. From the conditions assumed we see
that bqk is analytic in x € Dy, p;x for any ¢; satisfying (2n)'7 > ¢; > ¢ > 0. So Lemma 4
can be applied, with g(x,t) = bqk, with ¢; = ¢ + ((2n)~'7 — ¢)/2 replacing ¢, and with &
replaced by ¢1 — ¢ = ((2n)~'m — ¢)/2. The same applies to R(p,t), leading to (18) and (19).
In the latter case, since a, > 1, ap in Lemma 4 can be chosen to be 1. Thus, one can choose
C5 to be independent of a.. O

Lemma 6 For some R € Rt and all p with |p| > R and max;<q|argp;| < ¢ we have
RP;(—p) > Clp|" (20)
For the proof we take B = {p : |p| = 1,max;<q | argp;| < ¢} and note that

Co= inf RPuj(—p) >0 (21)

1<J<m

Indeed, if Cy = 0, then by continuity RP,,;;(—p) would have a root in B which is ruled out by (7).
The conclusion now follows, since on a sphere of large radius R, P; is given by R"P,,,;(—p/R) +

o(R™).

The formal inverse Laplace transform (Borel transform) of (3) with respect to x (see also (8))
for p € Sy is

AF+P(-pF =3 > Bau+F*s [ T[ (-pVE)™ +R(p,t)  (22)

a0 k=0 =1 1<|j|l<n

where the symbol * stands for convolution

(f *9)(p / £(s (23)

*H denotes convolution product (see also [7]) and F = £L~!f. After inverting the differential
operator on the left side of (22) with respect to ¢, we obtain the integral equation

F(p,t) = N(F) = Fo(p,t)

s [P S Baspr) s P ) TI T (-BPR(p A w5dr (1)
0

q>0 k>0 =1 1<j|<n

where

t
Fo(p,t) = e_P(_p)tFl(p) +/ e_P(_p)(t_T)R(p, 7)dr and F; = L~1{fr} (25)
0

Our strategy is to reduce the problem of existence and uniqueness of a solution of (3) to the
problem of existence and uniqueness of a solution of (24), under appropriate conditions.



4 Solution to the integral equation (24)

To establish the existence and uniqueness in (24) we first introduce suitable function spaces.

Definition 7 Denoting by S, the closure of Sy defined in (14), 0Sy = Sy \ Sp and K = Sy x
[0,T), we define for v > 0 (later to be taken appropriately large) the norm || - ||, as

d

IGll, = Mg sup (H(l + |pz'|2> ™" P|G(p, 1) (26)
p,t)EX \; 1

where the constant My (about 3.76) is defined as

2(1+ s2) (In(1 + s2) + s arctans)
s(s?2 +4)

My = sup
s>0

Note: For fized F, ||F||, is nonincreasing in v.

Definition 8 Consider the following Banach space.
Ay = {F : F(-,t) analytic in S, and continuous in S, for t € [0,T] s.t.||F||, < oo}

Remark 6 If G € Ay, then g(x,t) =: Lo{G} exists for suitable 6 if pcos(f; + argz;) > v.
Furthermore, g(x,t) is analytic in x, and |x'g(x,t)| is bounded in Dy, px.

Lemma 9 For v > 4pg + o, Fy in (25) satisfies
IF1ll, < C(9)As, (v/2)~ 01

while R satisfies the inequality
IRl < C(¢)Ar(T)(v/2) o+

and therefore
[ Foll, < C(9)Ao(T)(v/2) P2 *1 (28)

PRrROOF. This proof is similar to that of Lemma 4.4 in [9]. We use (19), note that a, > 1 and
also that for v > 4py + a, we have

|a,c|:1 (ar + l)arzl:l

—(v=2p0)|p1| «
‘ =" T(a)

sup |p1 e—ar:FI (V _ 2p0)*ar:|:1 S Ka,}‘/Q:I:I (V/Q)—Oér:Fl (29)

[p1]>0 [(ar)
where K is independent of v and «,. The latter inequality follows from Stirling’s formula for
() for large a,.

Using the definition of the v—norm and the two equations above, the inequality for ||R||.
follows. Since fy(x) is required to satisfy the same bounds as r(z,t), a similar inequality holds
for ||Fy||,. Now, from the relation (25) and the fact that ®P;(—p) is, by Lemma 6, bounded
below for p € Sy, we get the following inequality, implying (28)

[Fo(p,t)| < [F1(p)| + TAo(T) sup |R(p,t)|
0<t<T

10



Remark 7 Not all Laplace-transformable analytic functions in Dy ,,y belong to Ay since they
may be unbounded at p = 0.

Definition 10 Let

H = {H : H(p, t) analytic in Sy, |H(p,t)| < C |p°‘—1| ep\p\}

(C, o and p may depend on H).
Lemma 11 IfH e H and F € Ay, then for v> p+4, for any j, Hx F; € Ay, and®:

IH + Byl < [1H] B[, < CIT(@)]“2% (v — p)= %[ F], (30)
where C' is independent of a.

PrOOF. The proof is a vector adaptation of that of Lemma 4.6 in [9]. From the elementary
properties of convolution, it is clear that H % Fj is analytic in Sy and continuous in Sy. Let
0; = arg p;. We have

[HL+ Fj(p)| < [[H] * |Fj|(p)] < / [H(se™)||F; (p — se™)|ds
IT24[0, il
Now '
[H(se®)| < C[s*| elsle (31)
and

sqilef(yfp)lpilsi

d 1
s® LelslP| B (p — set®)|ds < ||F;||,e”Pl|p™ [/ L - ds;| (32
/;Ll[o,m-n 1#3(p ids < I lp lg o Mo(1+|pil*(1—5:)?) (32)

Since v — p > 4, we can readily use (120) in the Appendix with u = |p;|, v replaced by v — p,
o =1 and m =1 to conclude

b gele=(w=n)lpils: KT(a)2%(v — p)~*

o s; e a v—op

lpil/ S 9 9% < ()2 ,2) (33)
0 MO(l + |pz| (1 Sz) ) M0(1+ |pz| )

Therefore, from (32), we obtain

allFjllver P2y — p|

d .
Mg ITiey (1 + Ipil®)

From this relation, (30) follows by applying the definition of || - ||,. O

/ s>~ LelslP| B (p — set?)|ds < K[[(a)]
TT{=100,|ps]

Remark 8 Lemma 11 holds for p =0 as well, when v > 4.

2In the following equation, || - ||, is extended naturally to functions which are only continuous in K.

11



Corollary 12 For F € Ay, and v > 4pg + 4 we have Bqx *x F; € Ay and
[Ba * Fill < [[IBal * [F|||, < KCi(4,aq) (v/4)~ 4P~ ay(T) ||F|,
ProoF. The proof follows simply by using Lemma 11, with H replaced by Bq k and using the

relations in Corollary 5. O

Lemma 13 For F € Ay, with v > 4po + 4, for any j, [,

KC’1|pj|e"|p|Ab( )”F”V (z)fdﬁlldfdaq
M TTi= (1 + [pil?)

PRrROOF. From the definition (23), it readily follows that

[Bax * (P F1)| < [pY][Ba| * | Fl

The rest follows from Corollary (12), and the definition of || - [|,. O

IBg,k * (P’]F)|

Lemma 14 For F, G € Aj and j >0
(PF) * Gi| < [P'] | [F| % |G| (35)
PROOF. Let p = (p1eit, prei®2, .., pgei??). Then the result follows from the inequality

< Pl [F(e?s)||G(p — e?s)|ds  (36)

. p -
DIF, * Giy| = ‘ JAETACIER T
0 TT& . [0,]pl:]

O

Corollary 15 IfF € Ay, then
T I ™ < H|p o | T] T e (37)
=1 1<|j|<n =1 1<|j|<n

where Y, jiqij extends over all (1,]j]) X (m,n).

PRrROOF. This follows simply from repeated application of Lemma 14. O

Lemma 16 For F, G € Ay,

v|p|
e
7|+ G| < IFILIG],

d
Mg Tz (1 + Ipil?)

12



PROOF.

w6 = | [ FlcE -9

</ F(e®s)|Glp — cs)lds  (39)
1521 [0,1p):]
Using the definition of || - ||, the above expression is bounded by

v|pl a  rlpil ds: |pi|e”IP!

e S e
el Il [ armr = < 2
0 i=170 i DPi ? Mg [Tizy (1 + |psl?)

The last inequality follows from the definition (27) of My since

I Gl

/"”" ds; _ oln(pil* +1) + [pi| tan" |pi]
o (L+s)[L+ (pil —s:)?] [pil (Ipi|* + 4)

Corollary 17 For F, G € Ay, then
[IF] =[G, < FI.IGI.

PrOOF. This is an application of Lemma 16 and the definition of || - ||,. DO

Lemma 18 For v > 4py + 4,

" vlp| TT¢ D diqn;
K * F*k pJF q1,j S € Hz:l |pz| ||F|||q|+|k|—1H|B k| % |F||| (39
q ME d 2 v s v
I=1 1<Jj|<n ¢ [lizi (1 + [pif?)

if (a,k) # (0,0) and is zero if (q,k) = (0,0).

ProOF. For (q,k) = (0,0) we have B x = 0 (see remarks after eq. (8)). If k # 0, Corollary 15
shows that the left hand side of (39) is bounded by

Hlp N T P | B 1 R

=1 1<|j|<n

Using Corollaries 15 and 17 and Lemma 16, the proof follows for k # 0. Similar steps work for
the case k = 0 and q # 0, except that Bq x is convolved with p? Fj, for some (§',11), for which
the corresponding q;, j # 0, and we now use Lemma 14 and the definition of || - ||,. O

Corollary 19 For v > 4pg + 4,

* vip| TT¢ (|2 dian; —dk|B—daq
qk*F*k H H pr]F | < KCIAb(f)ed [Tiz1 Ipil ] (g) @ ”F”\Vq|+|k|
=1 1<|jl<n Mg TTiza (1 + |psf?)
(40)

13



The proof follows immediately from Corollary 12 and Lemma 18 0.

Lemma 20 For v > 4py + 4, we have

t w * . *qq
/ C_P(_p)(t_T)Bq,k*F*k* H H (pjﬂ) qu.; dr

0 I=1 1<j|<n

< DT () e
METIL, (L+ i) VA

for some Ay(T) > Ay(T) (evaluated in the proof) and where the constant C is independent of T,
but depends on ¢ and aq.

PrOOF. This is a consequence of Lemmas 13 and 18 and the fact that for 0 < |I'| < n we have,
for |p| < R (with R as in Lemma 6),

i
J = ‘pll / e~ fe PEPIE=T)gr < Cy(T) (42)
0

For |p| > R we have, by Lemma 6 P(—p) > C|p|™, and J is majorized by

r T1=V|/n|5H|IV] 1—e
mmax ] [1 - e_m)f(_p)t] < max [p| sup ¢

< ort-Min (43
o ®P;(—p) S WX s (=) [T Sob ST S (43)

where 1! = Ej,qulzj' O

Definition 21 For F and h in Ay, and Bqx € H, as above, define hg = 0 and for k > 1,

hy = By * [(F + h)** — F*¥]. (44)

Lemma 22 Forv > 4py + 4, and for k #0,

k| —1
Il < kI (IF[L, + [BIL) ][B! * B[, (45)
and is zero for k = 0.

PrOOF. The cases |k| = 0,1 follow from the definition of hg and (44) respectively. Assume
formula (45) holds for all |k| < I. Then all multiindices of length [+ 1 can be expressed as k+&;,
where &; € R™ is the m dimensional unit vector in the i-th direction, and |k| = I.

v = |IBa * (Fi 4+ hi) % (F + h)** — By i+ F; « F*X||, = || Bqx * hi % (F + h)** + F; s hy ||,

Dy e

Using (45) for |k| =1, we get

! -1
< 1Bk * Wl (11 + 10"+ UF( (1L + ) [ Ba * b,

14



i
<@+ D(IF + 11l ) |Baxl * b,
Thus (45) holds for k| =1+1. O

Definition 23 For F € A; and h € Ay, and Bqx as above define go = 0, and for |q| > 1,

gq = Bou * H H (P[F + h])™ = B * H H OR)™ (46)

I=1 1<j|<n I=1 1<lj|<n

Lemma 24 For v > 4py +4, go =0 and for |q| > 1

ePliq|
d
M T, (1 + |pif?)

: lal-1
gl < [P (Il + L) ™l Baad = hl], (47)

and is zero for q = 0.

PrOOF. The cases |q| = 0,1 follow from the definition of go and (46) respectively (since only
terms linear in F are involved in (46)). Assuming (47) holds if |q| <! we show that it holds for
q + &, where & is a unit vector, say in the (I1, 1, j3, ---, jj;) direction. We have

|8q-+al
_ Bq,k " I:pjl(Fll +hl1)] . *H * [pj(Fl —}—hl]*ql’j —Bq,k * I:p],EI:I * *H ij *qu
=1 1<|jl<n I=1 1<Jj|<n

T T W+ )™+ 167 R vl @9

=1 1<jj<n

< [ ()

Using Lemma 18 and equation (47), we get the following upper bound implying the induction
step
i+ da;

METTE (1 + [pil2)
‘pj'+zj¢n,j
+ d
M Hz 1(1+| Z| )

_ [pZi0ta) (g + 8ferlp
_Hz lMde—( |l|)

eV Pl

lgqrel < (IF[ls + [Iall,)> % ||[Bg| * ]|,

|q|ev\p\

(IF N, + [h][,)' A ], || Bayx| = [h]]|

v

qwm+wmm“Wm%uumm

15



Lemma 25 For F and h in Ay, v > 4po + 4,

m
Bgk * (F + h) * H Fl +h ))*QI,j — Bqu Frk o H H p‘]F *q15
I=1 1<|j \Sn =1 1<]jl<n
<|p2mdum++mna
T OMSTIL (L ()
if (q,k) # (0,0) and is zero otherwise.

p|
(IF[ls + [Ihl) 9= B * ], (49)

PrOOF. It is clear from (44) that the left side of (49) is simply
hy * H H P(F A+ h) "+ PR s gy
=1 1<[|<n

However, from Corollary 15, Lemmas 16 and 22,

dans| klev P -
PEIIKI™ (), 4 )<+ 9 | Bod<lhl

14

hk* H H Fl—}—h )*Ql,; <

=1 1<|j|<n M TTE, (1 + |pil?)

and from Corollary 15, Lemmas 16 and 24,

>odqn; v|p|
[Pt gy < L2 Ll
METTE, (1L + [pil?)
Combining these two inequalities, the proof of the lemma follows. O

(IF Il + [IB[) ™ 9= | Bg| * B,

Lemma 26 For v > 4pg + 4 we have

t *xk * m * . *Qp 3
/ e~ P(-p)(t—7) By * (F + h) * H (p] (F1 + hl)) o
0

=1 1<Jj|<n

—Bgk * F*& 4 *H i (piFl)*m’j dr
=1 1<[jl<n .

- dB k|-
< A(T)C(@)fal + kD) (IFl + i1) 19 (5, (50)

PRrROOF. This follows from Corollary 12 and Lemma 25 and the definition of || - ||, together with
the bounds (42) and (43). O
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Lemma 27 For F € Ay, and v > 4py + a, + 3 large enough so that (%)_dﬁ (IFll, + ||hll,) <1
(see Note after Definition (7)), N(F) defined in (24) satisfies the following bounds

~ ' 8 Il )\ —dag
NI < [Foll + @A@Y Y (25 (5) e e

q>~0 k>0

IN(F + 1) = N ()]l < C(6) (D)1, x
Z’Z (Z)—dﬁ\k\—daq (lal + |k]) (|F]» + ||h||y)\cﬂ+|k|—1 (52)

q>0 k>0

PROOF. The proofs are immediate from the expression (24) of A(F) and Lemmas 20, 22 and

26. The condition (%)_dﬁ (IIF|l» + ||h|l») < 1 guarantees the convergence of the infinite series
involving summation in k. Note also that the sum with respect to q only involves fintely many
terms, see (4).

|

Remark 9 Lemma 27 is the key to showing the existence and uniqueness of a solution in Ag
to (24), since it provides the conditions for the nonlinear operator N to map a ball into itself as
well the necessary contractivity condition.

Lemma 28 If there exists some b > 1 so that

(v/4)~%b||Foll, < 1 (53)
and k(5 .
C@OAHMDY Y (3) *BFo I <1 - 5 (54)
q>0 k>0

then the nonlinear mapping N, as defined in (24), maps a ball of radius b||Fy||, into itself.
Furthermore, if

CHAT Y Y (al + kD (5

q>0 k>0

—dlk|B—daq
) B g e <1 (s5)

then N is a contraction there.

PROOF. This is a simple application of Lemma 27, if we note that ||F||% < b¥||Fo||% and using
in (52) the fact that [[F||, + |[h]l, < 3b[Foll, if max{|[F|l, |F + hll,} < bl[Fo|l. ©

Lemma 29 Consider T > 0 and ¢ € (0,(2n)~"'7) so that (7) is satisfied. Then, for all suffi-
ciently large v, there exists a unique F € Ay that satisfies the integral equation (24).

PROOF. We choose b = 2 for definiteness. It is clear from the bounds on ||Fyl|, in Lemma 9
that for given T, since a,. > 1, we have b(v/4)~%||Fy||, < 1 for all v large. Further, it is clear

by inspection that all conditions (53), (54) and (55) are satisfied for all sufficiently large v. The
lemma now follows from the contractive mapping theorem. O
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4.1 Behavior of °F near p =10

Proposition 30 For some K; > 0 and small p we have |'F| < Ki|p*|*~! and thus |*f]| <
Ks|x*| = for some Ky > 0 in Dy, as |x| — oco.

PRroOF. The idea of the proof is to note that, once we have found °F, this function also satisfies
in a neighborhood of the origin S, = SN {p : |p;| < a;} a linear equation of the form

F=G(F)+Fy or F=(1-G) 'Fy (56)

where, of course, G depends on the previously found °F; there are many choices of G that work.
Every term in the sum in (24) is a convolution product; in each of them we replace all but one
component of F by the corresponding component of F; GF is defined as the sum of the terms
thus constructed. Estimates of the form used for Lemma 27 show uniform convergence of the
sum for large enough v (or small a). The result is a G as below, where the sum over p contains
only finitely many terms and which has manifestly small norm if a is small (or v is large)

¢ m

GF = / e P(=p)(-T) [Z G, +F + ZG” % ((—p)”Fz,,) dr (57)
0 =1 7

By (9), (10), (25) and Lemma 4, we see that ||Fo|lec < K3 |a°‘T*1| in S, for some K3 > 0

independent of a. Then, from (56) for small enough |a|, we have

max|F(p, )] = | < (1~ [6])~" max [Fo]| < 2Ksfa® |

and thus for small |p|, we have |F(p,t)| < 2Kj3 |p"’f‘1 and the proposition follows. Indeed,
the arguments also show that that the same estimates hold when any component p; — 0, if the
others are bounded. O

4.2 End of proof of Theorem 2.

Lemma 4 shows that if f is a solution of (3) satisfying |x'||f| < A(T) for x € Dy px, then
L7Hf} € Ayp_s for 0 < § < ¢ for v sufficiently large. For large enough p, the series (8)
converges uniformly for x € Dy, , x and thus F = £~ {f} satisfies (24), which by Lemma 29 has
a unique solution in Ay for any ¢ € (0, (2n)~'m) for which (7) holds. Conversely, if °F € Ajg is
the solution of (24) for v > vy, then, for sufficiently large p, *f = L£°F is analytic in x in Dy,
for 0 < ¢ < ¢ < (2n) ‘7 (cf. Remark 6). Proposition 30 shows that f = O(x ) and entails
uniform convergence of the series in (3). By the properties of Laplace transforms, * solves the
problem (3).

5 Borel summability
We now assume Condition 1 in addition to Assumption 1. In our approach it was technically
convenient to use oversummation, in that the inverse Laplace transform was performed with re-

spect to x. Showing Borel summability in the appropriate variable (x7-7, as explained) requires
further arguments.
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5.1 Behavior of F for large |p| outside S,

For the purpose of showing Borel summability of formal series solutions we need to control F
for large |p| uniformly in C¢. For this purpose we introduce two other Banach spaces, relevant
to the properties we are aiming to show. Firstly, let B(v,n,S) be the Banach space of functions
analytic in the sector S = {p : |p;| > 0,arg(p;) € (ai, b;)} and continuous in its closure, where
b; — a; will be chosen larger than 27 N; (cf. Condition 1) The Banach space is equipped with the
norm

1®|lvn = sup \Il(p,t)e_"(t“) > (pil+Ipi ™) (58)

pES;te[0,T]

Lemma 31 For any intervals (a;, b;), i = 1,...,d the solution ¥ of (24) given in Lemma 29 is
in B(v,n,S).

PRrOOF. Because of the obvious imbeddings, it suffices to show that for any S, (24) has a unique
solution in B(v,n,S). The proof of this property is very close to that of Lemma 29, after
adaptations of the inequalites to the new norms, which are explained in the Appendix, §7.4. O

5.2 Ramification of F at p = 0 and global properties

We define B(v,n,€;) to be the Banach space of functions defined on Sgl = {p: max; |p;| < e1}
in the norm (58) with & replaced by S¢ .

Lemma 32 Let

GP)= > Pt it Aj,.5.(P) (59)
0=j=<N

where Aj . . are analytic at p = 0. Then the functions Aj, ... ;, are unique and for some
constants C1 and Cy and large p we have

|451.ia(P)] < Clpl? max |G(pre®™, ..., pae® ™) (60)
In particular, in S{ we have, for some constants C3 and Cy,

Cs; max sup |G(preX™/N1, | pye?dami/Na)
. ) )
020=N p|esy

< sup |4j,,. ;.(p)| < Cy max sup |G(pe™/MN | pge?iami/Nay| - (61)

Iplesg 0=i<N p|es¢

Remark 10 We note that in (60) the order of analytic continuations is immaterial.

PRrROOF. The proof is by induction on d. We take d > 1, assume (32) with A; analytic and write
p = (p1,pt). We have

g1 d2. Jd g1
Gp)= > p" > Py pgt Ajda®) | = D Py Ghi(p1,pY)

0<j1<N1 {jm <Nm;m=2,...,d} 0<j1<N1
(62)
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(with the convention that G, = A;, if d = 1). We write the system

G(pleﬂwrz’pJ_) — Z er]17rz/N1p1Nl Gj1 (p1,pJ'); k=0,1,..,N; — 1 (63)

0<j1 <N

which has nonzero Vandermonde determinant, from which G, (p1, p) are uniquely determined,
which in turn, by the induction hypothesis determine A;, .. ;,, with the required estimates. O

Lemma 33 Under the assumption 1 and condition 1, the solution in Lemma 29 can be decom-
posed as follows:

= Y A 2 Ay(p.) (64)

where Aj(p,t) € B(v,n,S) are analytic at p = 0. Furthermore, in analyzing the continuations
in restricted sectors pe*™ € Sy we have for some v, in the norm defined in (26 ) (cf. also
Remark 10) )

max {[[F(-¢>™, )|, {[|A;(, )], };0 2 j <N} = K < 00 (65)

ProOOF. We consider the equation (24) on %(V,n,S)N where N counts the Aj(-,t) via the
decomposition (64). Noting that

p* *pﬂ a Z i)ﬂ(f "2+') ) a+pB+1 (66)

it is straightforward to show that the space of functions of the form (59) is stable under convolu-
tion. Since R(p,t) and therefore Fo(p,t) are of the form (64) it follows that A leaves the space
of F of the form (64) invariant. Using the estimates (61) we see that A is well defined in a small
ball of radius e in in B(v,n,S) and that it is a contraction there. Therefore the solution to
(24) is of the form (64). For pe?™ € S;, ||F(pe?™¥)||, are well defined. Using again Lemma 32
the first statement follows. To show finiteness of ||A;(-,t)||, it suffices to prove finiteness of
IF(pe?™4)||,. To this end, we note that all these continuations satisfy equations of the type (23)
with coefficients satisfying the requirements in §3 and thus the result follows from Lemma 29.
O

Lemma 34 Assume G is an entire function of exponential order n, more precisely satisfying
the inequality |G(p)| < Ce’/Pl" for some constants C,v and that in a sector Sy = {p : |p| >
0, max; | arg(pi)| < ¢}, it grows at most exponentially, |G(p)| < Ce**/P|. Then there exists a
function G increasing at most exponentially |G1(p)| < Ce”2Pl in any proper subsector of Sy,
where ¢1 = sy + 5 1 and such that G(z™) is analytic at z =0, such that

g(x) := /0 h e P*G(p)dp = /0 e G1(p)dp (67)

PROOF. We start with the case when G, x and p are scalar, the general case following in a quite
straightforward way as outlined at the end.

The assumptions on G ensure that the first integral in (67) exists and g(x) has an asymptotic
power series in powers of z~! in a sector of opening 7+ 2¢ centered on RT. The function g; (z) =
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g(z("~1)/") has a (noninteger) power series asymptotics in a sector of opening Lo (m +2¢) and
by the general theory of Laplace transforms, G; := £ 'g; is analytic in a sector of opening
(7 + 2¢) — 7 centered on R, Laplace transformable, with Laplace transform g;. It follows

that

1 c+1i00 [e’s} 1)/ oo
G = [ e [ e T G = [ Kea oG (69)
0 0

2mi c—1i00

1/n

We show that G; has a convergent expansion in powers of p'/™ at zero. The function

K = (2) Consta o) (69)

is Ecalle’s acceleration kernel [1, 13]. For a € (0,1), with 8 =1 —a, ¢ = Ba®/#, the function C,
is an entire function and has the following asymptotic behavior [1, 13]:

a? 1/2 —cz, f
Co(2) —\/ma: e T x| = o0, |argz| < 5 (70)
Using (69) we see that
/ KnT—l(p,q)q'“dq=p(”’“"“’l)/"/ ¥ Cuza (s7)ds (71)
0 0

We expand the entire function G in series about the origin, G(q) = Ek . 9xq* + Rn(g) and
note that

Ry (@) < 3 IGO0l /4 < 3 IED O /4 < 0™ = Bl (72)
k=N k=0

uniformly in C. By (70) and (72) E(q)Cy(g¢"/p"™ 1) is, for small enough p, in L;[0, 00] in ¢. By
dominated convergence, we have

/ Knlp, VG(q)dg = hm/ Knlp, ngqdq

and, using (71) it follows that for small p, G is the sum of a convergent series in powers of p
as stated.

The argument for d variables and vectorial G is nearly the same: a vectorial G is treated
componentwise, while the assumptions ensure that the multidimensional integrals involved can
be taken iteratively, the estimates being preserved in the process.

O

Collecting the results of Lemma 33 and Lemma 34 applied to each of the A;, the proof of
Theorem 3 follows.

Note 35 In the example Oyu + (—0,)"u = 0 we have ¢ = -,
have the behavior, to leading order, exp (cn(—m)ﬁt*%) with ¢, = (n —1)/4/n>=1 (for all

determinations of (—x)7=1 ). This also points to x7-1 as natural variable and indicates that the
sector of summability cannot be improved since it is bordered by (anti)stokes lines.

1/n
’

formal exponential solutions

3To estimate the radius of convergence of this series it is convenient to start from the duality (67) and apply
Watson’s lemma, using a Cauchy’s formula on a circle of radius k'/" /(nv)/™ to bound |G*)(0)| .
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6 Short time existence and asymptotics, special cases

In some cases, the Borel summation approach can be adapted to study short time existence
of sectorial solutions and study small time asymptotics. One important application is in the
analysis of singularity formation in PDEs [11]. For simplicity, and since some assumptions are
less general than in the rest of the paper, we restrict to d = 1 (scalar case) in this section.

We motivate the assumptions made by looking at a particular example arising in Hele-Shaw
flow with surface tension

H3
Hy =~ + HHeesy H(z,0)= 2702 (73)

the modified Harry-Dym equation (see [29], where it arises with y = 2z + ¢, as as a local approx-
imation near an initial zero of the derivative of a conformal mapping).

6.0.1 Formal series, preparation of normal form

Note: To simplify notation, in the following we let p stand for generic polynomials, pT for poly-
nomials with nonnegative coefficients, and p(,,) for polynomials of degree n. Similar conventions
are followed for ) which represents homogenous polynomials. Substituting in (73) a power-series
of the form 3°°  #"H,(z) where Hy = 2~/2 yields the recurrence

1
(n+ )H, = —3 3 H, H,,H,, + > Hy Hp, Hy HY  (74)
nj 20:2_?:1 n;=n ) 2072?=1 nj=n
which inductively shows that H,, = z271/2h,,)(279/2,271). We let

N

N
2
gn(z,t) = I;t"Hn(z) =g7'/3 T;b(n) (tz~3,t22/3); where z = §z3/2 (75)

In terms of z, (73) becomes,

1 3z 3 1
N(H) := H; + 5H?’ - 7H3me - §H3Hm + 6—$H3Hw =0 (76)
It is straightforwardly shown that
Non(@,t) = t 7 e~ Spun (e, ta=2/3) (77)

where for small z1, x> we have moreover
Pan+1) (21, 72) = bty (@1, 22) [L + O(z1, 72)] (78)
It is then natural to substitute :
H(2(z),t) = gn(@,t) + 272 f(z,1) (79)

into (73); we choose without loss of generality N > 3.
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It will follow from the analysis that |f(z,t)| = o (2*/2h(ny (tz =3, tz=%/3)) for small ¢/3z~1
with argz € (-2 — ¢, 2+ ¢) and ¢ € (0,%), thus H ~ Y22 [ ¢"H,(2) for small /3271 (see
Corollary 37).

Substitution shows that f(z,t) satisfies an equation of the form (3), with n = 3 (third order,
m =1 (scalar case), with (cf. also (8), and (112) below)

Jq
r(@,t) =t 2 pangy (tz 2 tw 2P bgp = PR kg (bt ta R (80)
j=1

Note: By (78), r(x,t) is small for small ¢ or large x, in spite of the prefactor ¢~z%/3.

6.0.2 More general settings

Setting 1. We take pg = 0, suitable for algebraic initial conditions in the domain, and consider
the domain Dy o 5, With ¢ < 5 small enough to ensure (7). Taking f(x,t)—fr(z) as the unknown
function we may assume

f](.Z') =0

(see Note 3 after Theorem 36) and require that
Jr
le(z,t)] < t7* Z ||« h?;b}) (tm |lz| 7P, ..., 1 |m|_5K) (81)
j=1

where the degrees n’; satisfy
n'if—wj>1, for 1 <IKK, 1<j<J, (82)

(As before, (82) implies that r(z,t) is small for large z or small ¢). The positive constants w,
W, e, B1, B2, ..,BKk and 1, Y2, ...,YK, are restricted by the condition

B

n:i=—2>n 83
L2 (53)
The labeling is chosen so that
P > P > br (84)
" V2 TK
Also, if for some 1 < j < K — 1, '% = %, we arrange ; > fj+1. The w; are arranged
increasingly:
w <wy < ... <Wy, (85)
Furthermore, for any x € Dy ., We require
Jq
[ba (@, )] < |2| 7MY o]~ @i pd (87771, .. 7 2] 7PF) (86)
=1
B8>0, Qq,1 > Qq2 > ... > Qq Jg bg x #0=> Qq,j+ ,8|k| >0 (87)
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If only finitely many bg k are nonzero we allow
p=>0 (88)

We also require that for all q, k for which bgx # 0 we have

A~

N n .
magc =i+ wi(lal = 1) = agq + (@i = Bk = = jar; >0 (89)
j’l

Note: Assumption (89) is satisfied by modified Harry-Dym and by certain classes of nonlinear
PDEs and initial conditions— for instance, the thin-film equation h;+(h*hzzz ). = 0, with singular
initial condition h(z,0) = £~ for a > 0, but is generally quite restrictive. Weakening it requires
more substantial modifications of the framework and will not be discussed here.

Setting 2. Better properties are obtained under the assumptions described below.

n=mn
P(—s) =s"
, (90)
r(z,t) = % Ej;l % a; (t'Yl.Z'_Bl, ____7t’YK'Z-—ﬂK)
bq,k(ma t) = ;L-_Blkl E;’IZI % aq,k,j (t’}'l $7B1, ceey YK m*BK)

where a;, aq x,; are analytic near the origin and for small |z| we require, with the same restriction
(82) on nj,
a5 (2)] < b, (1], - 2al) (1)

The restrictions on the numbers Bi, B2, ...0k, Y1, VY2, VK, Qq,j, €tc. are as in Setting 1.
Furthermore, we assume that there is an w € Rt so that the nonnegative numbers

Mqk, W2 — W1, ...,WJ, — W1, Oq,1 — 0q,2,---;0q,1 — Qq,Jq, N2 — B2, -, YK — BK (92)

are integer multiples of nw. This condition, satisfied for the problem (73), comes out naturally
in a number of examples and ensures the existence of a ramified variable in which the solutions
are analytic. We choose w > 0 to be the largest with the property above. Define

=yt £(¢t) = £/ 0) (93)

and )
Dy ={C:1¢l > p; arg (] < ¢} (94)

Theorem 36 (i) In Setting 1, under Assumgztion 1, there exists for large enough p a unique
solution £(zt=1/" 1) to (8), for ¢ = xt /" € Dy, and, with n’; as in (82),

Jy
G, <Y 16178 My gy (] 7P, 00270/ (| =P, e =Bnc /2 g~ (95)

=1
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(i) In Setting 2, under Assumption 1, for any T > 0 there is a p = p(T) > 0 so that the mapping
_wi
(¢,6) — 6~ £(¢,6')
is analytic in Dy, x {6 : |0] < T}.
Notes: 1. The function p will, generally, increase with 7'

2. The restriction d = 1 is not essential, but made for the sake of simplicity.

3. In these settings, there is a duality between large x and small ¢ in the asymptotics: ¢ can
be large either due to largeness of z being large or smallness of ¢. For ¢ in a fixed interval, there
exists some p so that the asymptotic bounds are satisfied for { € Dy ,.

4. The following example shows that the requirement 7 > n is natural. In the equation
gt + (—0z)"g = 0 with g(x,0) = 2, substituting the expansion g(z,t) = 7%+ 3 nt"gn(z),
we get gn(z) = O(z~* ™). Thus one of the scales that emerge in the formal expansion is t/x".
On the other hand, in view of (81) and (86) the most singular term as # — 0 is of the order ¢/z™
since 7, = f—i Combining with the above discussion we see that 7 > n.

5. The leading order Taylor expansion term fo for 9w f satisfies an easily identified ODE.
The convergence of the series in part (i) implies that singularities of fg can be related to actual
singularities of the PDE for small time and this is the subject of another paper ([11]).

Corollary 37 For the initial value problem (73), for any T > 0 there is a p = p(T') such that

Tk

H(z,t) = i 70 G (2t™2/9) (96)
k=0

where the series converges in the region {(z,t) : |t| < T,|z| > p,|argz| < gn} and Gx(() are
analytic in the sector {¢ : || > p,|arg(| < 57}

6.1 Proof of Theorem 36 (i)

It is convenient to make rescalings of variables in Borel space as well. We note that

f(¢,t) =t~/ / e *F(s,1;t)ds (97)
0
where L A
s=ptt/? | F(s, A\ t) = F(t~7s,t)) (98)

We use similar rescaling to define R(s, A;t), Bq.x(s, A;) and Fo(s, \; ) where now
1 7 ~
Fo(s,\;t) = t)\/ e~ WPt DA-TR (5, Arst)dr (99)
0

We let pgx =1 —n"t (|q| + [k + 30 > qu,j). Using (24), straightforward calculations
show that
B(s, \it) = N()(5,058) = Fo(s, 5 ) + 3 3 Attar
a0 k>0

1 m n
—1/4 ~ ~ * * LA\ ¥4,
x/ e AP B Bk 1I ((—s)JFl) s tdr (100)
0

=1 j=1
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With slight abuse of notation we drop the hats from the newly defined functions. Let now
S¢E{s:args€(—¢,¢), 0<|s|<o0, 0<gp< %} (101)
and consider the Banach space Ay of analytic functions in Sy, continuous in Sy in the norm

IFC,5t)ll, = sup  (1+]s)e "*I|F(s, ;1)) (102)
0<A<1,5€8,

Lemma 38 With r(x,t) satisfying (81) we have

Jr
(IFo(., ;)]s < eat Z V‘*’H‘lt(“’j'ﬁ‘l)/ﬁh:,j (1/761 7 t’Y2752/ﬁV*B27 - t’YK*BK/ﬁV*ﬁK)
i=1

for v large (independent of t for small t), where —a is the lower bound of RP(p).
PROOF. From (81), (82) and applying Lemma 4 (with p = 0; see Remark 2) we have

JIr
IR(s, \;t)| < %Z |5|—°J1‘—1t(“’j+1)/ﬁb:’l ()\’Yl|s|517)\’72t72—52/71|8|ﬁ27 ___7/\’YKt7K—ﬁK/ﬁ|s|ﬁK)
i
—

For A € (0,1) we have ‘ef”’(fst‘“ﬁ)mfr)

< e and thus (cf. (99))

Jr
[Fo(s, ;t)| < e > |s|""f’1t(‘”"+1)/ﬁh:9 (/\71|s|51,A”2t72*52/ﬁ|s|ﬁ2, ...,thrﬁff/ﬂswff)
j=1
(103)
Bounding each term of the polynomial h:; in || - ||, we obtain
J'r
”1;"‘0(.7 38y < e Z peit1(te)/hpt (V—B1,t'yz—52/ﬁy—ﬁz7 ___,t’YK—BK/ﬁV—BK)
=1 ’
The proof now follows, choosing v sufficiently large and using (82) and (84), (85). O
Lemma 39 For large v, we have
[Bajic * Fll, < cqic(v,)[|F][,, where
Ja
c00 = 0; cqu(v,t) = v PR A=BMD/A S [y masmoai/? (q,k) £0)  (104)
j=1

with K; constants independent of q, k, v and ¢.

PROOF. Note first that bg,g = 0 hence co,0 = 0. From (86) and Lemma 4 (with p = 0),

J.

q
Ba(p, 1) < [pl"™M=1 3" |pl*eipk, (7 [p)*, 72 [p]*, .., 7 |p]K)
q,K,7
=1
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Switching from (p,t) to (s, A;t),

IBa,(s; A t)] <
Ja

t(1=BlkD/7 |5 Bl -1 Z |S|aq,jt—aq,j/ﬁp;k,j ()\71 |s|P1, Av2 g2 B2/ 5| B2 '.',/\WKtVK—ﬂK/ﬁ|S|ﬁK)
i=1

For large v, using Lemma 11 (with p = 0) to bound in norm the terms of pq K,j
[Bayic * F| < [|F|, 02D 7y =Bl

Ja
§ :|V|*aq,jt*aq,j/ﬁp+k . ()\”“Vfﬂl A\ V2472 —B2/7 ), B2 )\’YKt’YK*ﬂK/TALV*BK) (105)
Q,K,J] ’ 7

Clearly, for large v, p:{,k can be replaced in (105) by a constant K;. Using (84) and (87) the
conclusion follows. O

Let now
C(¢,T)
U'/n _
— max sup ( lp|™ ) 1- e, ’Y, sup tl'/n|p|l'eft5R'P(*P)
pESy,|p|>R,0<1'<n,y>0 RP(—p) y1-t /m pES4,|p|<R,0<LI'<n

where R is the same as in the proof of Lemma 6.

Lemma 40 For v large enough, N is contractive, and thus there exists unique solution F of

(100).

PROOF. For v large enough, (89), Lemma 38 and Lemma 39 imply

C3, )Y S thaxcqu (v, t)[|2Fo|| <1l < [|Fo, (106)
q>0 k>0
and ,
CH.D)S S thaxequlw, t)(la] + [K|)[[6Fo| " < 1 (107)
q>0 k>0

Now, Lemma 18 (with pg = 0, d =1 and s replacing p), and Lemma 39 imply

e”‘sl S Ej‘Il,j
ol F

m n
F T T (57R) ™ ) (s, am )| < S 1022
ak * * H H s (s, A1;1)| < Mo(L+ 5

=1 j=1

Also, note that if I > 0, s € S, with |st='/?| > R

<) { 1 — e~ tARP(—st™!/*)

1
Iy — _gt— /R —r ' TN
/0 s AetP(= A=) gr | < DRP (—si=177) }sl < C(g, Tyt /=1/m (108
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The definition of C(¢,T) implies that for I’ > 0, s € S, with |st~/?| < R we have

1 7t [P 1
/ Sl')\eft'l?(fst_l/")/\(lf'r)d,r < C(¢, T)tl /a=l"/n (109)
0

Setting I’ = " jq;.;, using (108) and (109), we find after time integration
g J g

m n

/ )\eitfp( st— 1/")/\(1 -,—)B *F*k* *H *H S‘]F *4n.3 (S AT t)dTHu

=1 j=1

lal+k|

< /IO, T equ (v, 1) (110)

Using (89), (100), (106) and (110) , it follows that A" maps a ball of radius 2||F0||0 into itself.
Using Lemma 25, (108) and (109), we obtain

//\qu* (F +h)* H H(sj[ﬂ+hl])*Qz,j_F*k**H H sJF g (s, A1)
=1 j=1 =1 j=1

e tP(=st/M)A1-7) 4

| <t/Ae(e,T)(lal + K])equ(v, t) (Il + [F],) < ),

v

where I' = 3" jg; ; from which the conclusion using (104) and (89). O

Behavior of °F near s =0

Proposition 41 For small s we have
Iy
TB| < S [s| LA gt (|s|f, 1202/ w|g|fa v —Brc/ | 5] )
i=1 ’
PROOF. The proof is similar to that of Proposition 30, using (103), (81) and (82). °F to (100)
solves a linear equation

F=G(F)+Fy or F=(1-G) 'Fy (111)
with G very similar to that given in §4. O

End of proof of Theorem 36 (i) The proof is a direct application of Lemma 40 and Proposition
41. Using (97) and properties of Laplace transform, (95) follows for large |(|, in the sector

arg( € (=5 - 6,5 +9).

6.2 Proof of Theorem 36 (ii)

An important difference is that infinite sums appear in some estimates. Analyticity of the
functions a and the estimate

a—1

p

-1, —« —
”‘C Yy ”V— F(a)

< C(L+ )yt

v

28



for » > 1 with C' is independent of a and v, show convergence of the corresponding series. Also,
the proof of Lemma 40 holds if the following norm was used instead:

IFI = sup 1+ [sP)e*l|F (g, 7 1)
0<A<,|E|<T,s€S,

since for 7 = n, §Rt7?(—st_1/") = Rs", is independent of ¢ in the exponent in (100). To show
analyticity, we let G(s,\;0) = 9~ (+w)/(n) B(5 X;01/%); then G satisfies an equation of the
form

G =Ni(G)

where the conditions in Setting 2 and the choice of w are such that N1, as it is seen after straight-
forard algebra, manifestly preserves analyticity in . Using (97), analyticity of t~“1/"f((,t) in
t* follows provided || is large enough (depending on T').

6.3 Proof of Corollary 37

Substitution gives for f(z,t), defined by (79), an equation of the form (3), with m =1, d = 1.
Then in (8) k is scalar. The vector q is 3 dimensional, indexed by (I,5),l =1, = 1,2,3. The
nonlinearity is quartic and the equation is linear in the derivatives of f, thus the only nonzero
values of by ) are when q is 0 (and k£ = 1,...,4) or a unit vector & € R® (and k = 0,...,3).
Further, it is found that

5 .
JT:15K:25‘-‘)1:§:ﬂ771:72:1551:37182: an:?’
and in (80) we have

001 =5, 002=—1, ag; 1 =2, ag1 =1, 0gy,1 =0 (112)
This is sufficient to check that Theorem 36 applies.

Since |z[¢=%/° large corresponds to |¢| = |z[t™'/3 large, and argz € (—am, 47) corresponds
to arg( € (—%77, %77), Theorem 36 implies that for any ¢ € (0, &) for large € Dy and large
¢ = z/t'/? we have

1£@, 0] = O (1ol by (o] 2, tl]2/7) = O (o /*4V iy (Jof 2, Jo] /%)
Changing variables, this implies

(2(2) 2 (@(2,8),8) = O (8|21~ Fi vy (12175, 12171) = o (V12 F ooy (12175, 2172

as needed for asymptoticity. The convergence in the series representation in ¢7/? follows from
Theorem 36 (ii). It is seen from (92) that all the exponents of ¢ are integer multiples of %. O

Note 42 Large ¢ includes part of the region where Theorems 2 and 3 imply Borel summability

of the expansion in inverse powers of z. Together, the results provide uniform control of the
solution.
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7 Appendix

7.1 Asymptotic behavior of solutions

In the assumptions of Theorem 3, by the remark following it, formal series solutions to the initial
value problem are asymptotic to the actual unique solution. The discussion below addresses the
issue of deriving this series, or, when less regularity is provided and only the first few terms of
the expansion exist, how to show their asymptoticity.

Heuristic calculation. Assuming algebraic behavior of f in our assumptions on the nonlinearity,
it is seen that the most important terms for large x (giving the “dominant balance”) are f;,
Pof, coming from the constant part of P, and r(x,t). This suggests that, to leading order,
f(x,t) ~ fr(x) + f(f e~ Polt=T)p(x, 7)dr. If we substitute

f(x,t) = Ay ()x >t +f (113)

into (3), f will generally satisfy an equation of the form (3), for an increased value of ay; if the
process can be iterated, as is the case in the examples in [9], it generates a formal series solution.

To obtain rigorous estimates, one writes the equation for f defined in (113) and applies
Theorem 2 to show f = o(x~@"1). If the coefficients of the equation allow it, this procedure
can be repeated to obtain more asymptotic terms for f. This is the case for instance in the
assumptions of Theorem 3, where a complete series is obtained, which is furthermore Borel
summable to f.

The discussion also shows that the assumption «, > 1 can be often be circumvented by
subtracting the higher powers of x from f.

7.2 Borel summation and regularization: simple examples

In this section we discuss informally and using rather trivial examples, the regularizing features
of Borel summation. An excellent account of Ecalle’s modern theory of generalized summability
is found in [12]; many interesting results, using more classical tools can be found in [1].

Singular perturbations give rise to nonanalytic behavior and divergent series. Infinity is
an irregular singular point of the ODE f' — f = 1/z, and the formal power series solution
f= 32 (=1)*Kklz=*=1 diverges. In the context of PDEs, the solution h of the heat equation
ht — hye = 0 with h(0,z) real-analytic but not entire, has a factorially divergent expansion in
small t, the recurrence relation for the terms of which is kHy = H;/_,.

The Borel transform of a series, is by definition its termwise inverse Laplace transform, which
improves convergence since L'z~ *~! = pk/k!. Tf the Borel transformed of a series converges
to a function which can be continued analytically along RT and is exponentially bounded, then
its Laplace transform is the Borel sum of the series. Since on a formal level Borel summation is
LL~1, the identity, it can be shown to be an extended isomorphism between series and functions;
in particular, the Borel sum of f above, L(1+p)~! is an actual solution of the equation. Another
way to view this situation is that Borel transform maps singular problems into more regular ones.
The Borel transform of the ODE discussed is (p+1)£~! f+1 = 0. The inverse Laplace transform
of hy = hgy in 1/t is By — piz,,,, - %ﬁp = 0 which becomes regular, uz, — u,, = 0 by taking
h(p,z) = p~ Y/ 2u(2p"/?, z), z = 2p/2.

It is in its latter role, of a regularizing tool, that we use Borel summation in PDEs.
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7.3 Derivation of equation (3) from (2)

We define an m-dimensional vector f by ordering the set {84h : 0 < |j| < n}. It is convenient to
introduce g»(x,t,f) so that

d
> g2 (x,t,{8h} <o 1) h = = Bai(x,t,£)0,,f
|J|=n i=1

So, for showing that (2) implies (3) it is enough to show that for 1 < n' <n, for |J'|=n' -1,

d
oY |g1(x,t.6) + ) 82,(x,t,£)0s, f

i=1
is of the form on the right hand side of (3). We do so in three steps.

Lemma 43 Consider for k> 1,
B(x 1) = Y ba(x,t,0) [] (@1)™ (114)
q>0 {m;k}
where {m; k} denotes the set {(1,j) : 1 <1 <m;1 < |j| <k}, and I means summation over q
with the restriction
> lilas <k (115)

{m;k}

Then, for i =1,2..,d, 0;,E(x,t) has the same form as (114) with restriction (115), provided k
is replaced by k + 1.

PROOF. The proof is straightforward, keeping track of the number of derivatives and the powers
involved: note that

6$1.E(X,t, f) = Z (Z ibq()gtaf)amifl + 6Zibq(x7t7f)) H (6ifl)ql,j

a0 \i=1 ofi {m;k}

m k i i . q1,j
+D ba(xt) Y D ary (@:fl')ql ? lazi(aifl') lTr (@2 f1)™

q>0 I'=t|j|=1 {m;k}

where HJr indicates that the term [ = I',j = j' is missing from the product. Manifestly, this
is of the form (114) with a suitable redefinition of by and with the product of the number of
derivatives times the power totalling at most

. . . .
W+ 1+ 0@y — D+ D lilag =1+ ) il <k+1
{m;k} {m;k}

Hence restriction (115) holds, now with k + 1 instead of k. O

31



Lemma 44 For anyn’ > 1, and any J' with |J'| =n' — 1,
o gy, t,55,0) =Y ba(x,t,0) [ (0LH)™ (116)

q>0 {m;n'—1}

for some bg, depending on n', g1, and its first n' — 1 derivatives, and where Zi means the sum
over q with the further restriction
Y lileg<n'—1

{m;n’—1}
PROOF. The proof is by induction. We have, with obvious notation,
Oz:81(x,t,f(x, 1)) = 8l,z; T 81" o §
which is of the form (116). Assume (116) holds for n’ = k > 1, i.e. for all J' satistfying |J'| = k—1,
8 g1(x,t,f) = Z bo(x,t,f) [ (@f)"
q>0 {m;k—1}

Taking a x; derivative, and applying Lemma 43, 8]gi(y,t,f) for |J| = k will have the form
above, with £ — 1 replaced by k and with restriction

> lilag <k
{m;k}
Thus, (116) holds for n' = k + 1, with a different b. The induction step is proved. O

Lemma 45 Forn' =1,2,...,n, and any J with |[J| =n' — 1 we have

82 [B2.4 (x,1, )05, f] = Z bo(x,t,f) [ (8f)" (117)
a0 {m;n'}
for some by, depending onn', g2 and its firstn' —1 derivatives, where ZEVO denotes summation
with the restriction B
> lilag <n' (118)
{m;n'}

ProOF. Clearly (117) with restriction (118) holds for n' = 1. Suppose it holds for n’ = k. Then
we note that if |J| = k + 1, then there exists some index 1 <4 < d and some J', with |J'| = k so
that 8 = 9,,[07 ]; hence applying Lemma 43, we obtain (117) and (118) for n’ = (k+1). O

7.4 Proof of Lemma 31
7.4.1 Inequalities used in estimates

1. We start with a simple inequality for « > 1 and p > 0:

1
(1+ ;ﬂ)/ 5@ ek ds < 2T(a) (119)
0
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This is clear for p < 1, while for g > 1 we write (1 + pu%) < 2up* and note that
IS 52 e Hods = pmoT(a).
.Fora>0,u>0,0=0,1,v>2and m € N,
R (S I . .
uv TR 8)2]08 ds < 8(2% + )I'(a)[1 + p”] (120)

where C(m) is independent of u, @ and v. Indeed, the integral is bounded by

e Hsga—lgg 1 !
d du) < —Hrsga=lg
/ “+/ )+ 21927 <1+u2/4>v/oe oo

e Vo, (@) el
I+ 2= 97 /05 9 < T1 2/ T o+ @2 a)e
20()(uv) = | 20T () (ur)~® (uv)oenv/?
S TWH2A) T A2/ aert et 2°Tal(@)
20() (uv) =@ | 20T () (ur) ™
e (Y7 R C Ty VG

. For n > 1 the function )
1 +,u)e_”/ eklu"+(1-u)"] .,
0

is bounded in Rt as it can be checked applying Watson’s lemma, for large u and noting
its continuity on [0, 00). Thus, for some constant C' and v > 1 we have

|p]
/ erlsm =" gg < ClPL_opprm (121)
0 1+ [p|"

. We have [p¥| < max;<q[p|l* < 3, Ipe|™! and thus for some constant C and all j < m
we have B

d
IPi(-p) < C Y (1+|m|") (122)
=1

Also, for some Cy > 0, |Pj(—p)| < C2>>,(1 + |ps| + [p}|) =: C2(d + ¢) and thus, for
v > Cy + 1 we have, for 0 <I' < n,

t t
NG / ePi=PIU=T)gr(r+Dagy < |pl cav+Catd / (v=C2)ar g
0 0

< 1V /ngra(t+1)+Catd |P|l 1-—e™ Cs(T) eva(t+1)+Catd (123)
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7.4.2 Modified estimates
From (121) it follows that for a constant C' independent of ¥, ® we have

W« ®| < Cev (D) Zima (pHo™) |||, 1B (124)

In particular B(v, n,S) is a Banach algebra. For the equivalent of Lemma 11, we use the following
bounds.

‘P1| n n |IJ1‘ v
I = / @ Le=v(+D)Ip1|" —(Ip1]=5)"] g =¥ (t+1)s5 44 < / g@ Le—v(t+1)s g4 < (t+1)~°
0 0 «

1
- m[1—(1—s)" 2°T(a)|p1 |
and  T<[pt [ s len GOm0y < o TR (10
=i, =t e
where we used (120) for o = 0. From (125) it is clear that
[H * Ejllon < [[H] |, < CIL(@)]%e* (@t + 1)) *[|Fln (126)

In Lemma 16, we get instead
]G] < "4 T 18 |G

Very similar changes are made in in Lemma 18, Corollary 19, and in Lemma 20 where in the
proof we use (123) instead of (43). Definition 21, Lemma 22 and Definition 23 do not change.
Lemma 24, Lemma 25 change in the same way as above. In Lemma 26 we use again (123) instead
of (43) to make corresponding changes. Finally, in Lemma 27, v/4 changes to v/4/c.
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Figure 1: Contour Cp in the p—plane.



