Lectures on orbifolds and reflection groups

Michael W. Davis*
July 23, 2008

These are the notes for my lectures in the Summer School on Transfor-
mations Groups and Orbifolds held at the CMS of Zhejiang University in
Hangzhou, China from June 30 to July 11, 2008. The notes closely follow
the slides which I used to present my lectures.

Most of the material in the first four lectures comes from parts of Bill
Thurston’s 1976-77 course at Princeton University. Although this material
has not been published, it can be found in [13] at the given electronic address.
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1 Lecture 1: transformation groups and orb-
ifolds

1.1 Transformation groups
1.1.1 Definitions

An action of a topological group G on a space X is a (continuous) map
G x X — X, denoted by (g,x) — gz, so that

e g(hx)=(gh)x,
o Ix=x.

(Write G ~ X to mean that G acts on X.)

Given g € G, define §, : X — X by v — gx. Since 0, 00,1 = 1x =
f,-1 0 8,, the map 6, is a homeomorphism and the map © : G — Homeo(X)
defined by g — 6, is a homomorphism of groups.
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Given x € X, G, := {g € G | gr = x} is the isotropy subgroup. The
action is free if G, = {1}, for all z € X.

Definitions 1.1. G(z) := {gz € X | g € G} is the orbit of x. The action is
transitive if there is only one orbit. Given z € X, the natural map G/G, —
G(z) defined by gG, — gz is a continuous bijection. The orbit space X/G is
the set of orbits in X endowed with the quotient topology (with respect to
the natural map X — X/G). A map f: X — Y of G-spaces is equivariant

(or a G-map) if f(gz) = gf (x)

Definitions 1.2. Suppose H C G is a subgroup and Y is a H-space. Then
H acts on G x Y via h - (g,z) = (gh™!,hz). The orbit space is denoted
G xg Y and called the twisted product. The image of (g,z) in G Xz Y is
denoted [g, z]. Note that G ~ G xg Y via ¢'[g,z] = [¢'g, z].

Definition 1.3. A slice at a point z € X is a G,-stable subset U, so that the
map G X¢g, U, — X is an equivariant homeomorphism onto a neighborhood

of G(x). If U, is homeomorphic to a disk, then G x¢, U, is an equivariant
tubular neighborhood of G(x).

Remark 1.4. A neighborhood of the orbit in X/G is homeomorphic to
U /G, (= (G x¢, Uy)/G).

1.1.2 The Differentiable Slice Theorem

The next result is basic in the study of smooth actions of compact Lie groups
(including finite groups) on manifolds. For details, see [3].

Theorem 1.5. Suppose a compact Lie group acts differentiably (= “smoothly”)
on a manifold M. Then every orbit has a G-invariant tubular neighborhood.
More precisely, there is a linear representation of G, on a vector space S so
that that G X, S is a tubular neighborhood of G(x). (The image of S in M
is a slice at x.)

Proof. By integrating over the compact Lie group G we can find a G-invariant
Riemannian metric. Then apply the usual proof using the exponential map.
O



1.1.3 Proper actions of discrete groups

Suppose I' a discrete group, X a Hausdorff space and I' ~ X. The I'-acton
is proper if given any two points z,y € X, there are open neighborhoods U
of z and V of y so that yU NV # () for only finitely many ~.

Exercise 1.6. Show that a ['-action on X is proper iff
e X/T"is Hausdorff,
e cach isotropy subgroup is finite,

e cach point x € X has a slice, i.e., there is [',-stable open neighborhood
U, so that yU, N U, = 0, for all y € T —T',. (This means that
I' xp, U, maps homeomorphically onto a neighborhood of the orbit of

Actions on manifolds. Suppose a discrete group I' acts properly on an n-
dimensionalt manifold M™. A slice U, at x € M™ is linear if there is a linear
[',-action on R" so that U, is [',-equivariantly homeomorphic to a I',-stable
neighborhood of the origin in R™. The action is locally linear if every point
has a linear slice.

Proposition 1.7. If I' ~ M"™ properly and differentiablly, then action is
locally linear.

Proof. Since I';, is finite, we can find a I',-invariant Riemannian metric on
M. The exponential map, exp : T,M — M, is I',-equivariant and takes a
small open disk about the origin homeomorphically onto a neighborhood U,
of x. If the disk is small enough, U, is a slice. O

1.2 Orbifolds

1.2.1 Definitions and terminology

Definition 1.8. An orbifold chart on a space X is a 4-tuple ((7,G, U,n),
where

e U is open subset of X,

o Uis open in R™ and G is finite group of homeomorphisms of U ,



e 1 : U — U is a map which can be factored as 7 = 7 o p, where
p: U — U/G is the orbit map and 7 : U/G — U is a homeomorphism.

The chart is linear if the G-action on R" is linear.

For i = 1,2, suppose (171, G, U;, ;) is an orbifold chart on X. The charts
are compatible if given points @; € U; with (@) = my(ily), there is a home-
omorphism A from neighborhood of u; in ﬁl onto neighborhood of us in (72
so that m; = m9 o h on this neighborhood.

Definition 1.9. An orbifold atlas on X is a collection {((NJi,Gi,Ui,m)}lel
of compatible orbifold charts which cover X. An orbifold ) consists of an
underlying space |Q| together with an atlas of charts.

An orbifold is smooth if the groups act via diffeomorphisms and the charts
are compatible via diffeomorphisms. A locally linear orbifold means all charts
are equivalent to linear ones. By the Differentiable Slice Theorem a smooth
orbifold is locally linear.

From now on, all orbifolds will be locally linear

Exercise 1.10. Suppose [' acts properly on a manifold M". By choosing
slices we can cover M /I" with compatible orbifold charts. Show this gives the
underlying space M /T the structure of orbifold, which we denote by M /T

Remark 1.11. (Groupoids). As Professors Adem and Xu said in their talks,
the best way to view an orbifold is as a groupoid. This point was first made
by Haefliger [9]. Given an atlas {(U;, G;,U;, m;) her for an orbifold @ one
associates a groupoid G to it as follows. The set of object Gy is the disjoint

union: N
Go = H Us.
iel
The set of morphisms G; is defined as follows. Given u; € 171 and u; € ﬁj,
a morphism @; — u; is the germ of a local homeomorphism U — V from
a neighborhood of #; to a neighborhood of #; which commutes with the

projections, m; and 7;. (Note: in the above we can take ¢ = j and f to be
the germ of translation by a nontrivial element v € G;.)

The local group There is more information in an orbifold than just its
underlying space. For example, if ¢ € |Q] and z € 7 !(q) is a point in



the inverse image of ¢ in some local chart, then the isotropy subgroup G,
is independent of the chart, up to an isomorphism of groups. With this
ambiguity, we call it the local group at ¢ and denote it by G,.

A manifold is an orbifold in which each local group is trivial.

Strata. In transformation groups, if G ~ X and H C G, then
Xy = {z € X | G, is conjugate to H}

is the set of points of orbit type G/H. The image of Xy in X/G is a stratum
of X/G.

This image can be described as follows. First, take the fixed set X%
((={z € X | he = x,Yh € H}). Next, remove the points x with G, 2 H
to get X(I}'{). Then divide by the free action of N(H)/H to get X(y, the
stratum of type (H) in X/G. In an orbifold, @, a stratum of type (H) is the
subspace of |@Q| consisting of all points with local group isomorphic to H.

Proposition 1.12. If Q) is a locally linear orbifold, then each stratum is a
manifold.

Proof. Suppose a finite group G ~ R" linearly and H C G. Then (R™)¥ is
a linear subspace; hence, (R”)g[) is a manifold. Dividing by the free action

of N(H)/H, we see that (R")(p, is a manifold. O

The origin of the word “orbifold”: the true story. Near the beginning
of his graduate course in 1976, Bill Thurston wanted to introduce a word to
replace Satake’s “V-manifold” from [12]. His first choice was “manifolded”.
This turned out not to work for talking - the word could not be distinguished
from “manifold”. His next idea was “foldimani”. People didn’t like this. So
Bill said we would have an election after people made various suggestions
for a new name for this concept. Chuck Giffen suggested “origam”, Dennis
Sullivan “spatial dollop” and Bill Browder “orbifold”. There were many
other suggestions. The election had several rounds with the names having
the lowest number of votes being eliminated. Finally, there were only 4 names
left, origam, orbifold, foldimani and one other (maybe “V-manifold”). After
the next round of voting “orbifold” and the other name were to be eliminated.
At this point, I spoke up and said something like “Wait you can’t eliminate
orbifold because the other two names are ridiculous.” So “orbifold” was left
on the list. After my impassioned speech, it won easily in the next round of
voting.



1.2.2 Covering spaces and 79"

Thurston’s big improvement over Satake’s earlier versionin [12] was to show
that the theory of covering spaces and fundamental groups worked for orb-
ifolds. (When I was a graduate student a few years before, this was “well-
known” not to work.)

The local model for a covering projection between n-dimensional mani-
folds is the identity map, id : U — U, on an open subset U C R". Simi-
larly, the local model for an orbifold covering projection is the natural map
R"/H — R"/G where a finite group G ~ R™ and H C G is a subgroup.

Proposition 1.13. If I" acts properly onM and I C I is a subgroup, then
M /T — M/IT is an orbifold covering projection.

Definition 1.14. An orbifold Q) is developable if it is covered by a manifold.
As we will see, this is equivalent to the condition that ) be the quotient of

a discrete group acting properly on a manifold. (In Thurston’s terminology,
Q is a “good” orbifold.)

Remark 1.15. Not every orbifold is developable (later we will describe the
“tear drop,” the standard counterexample).

Definition 1.16. Q) is simply connected if it is connected and does not admit
a nontrivial orbifold covering, i.e., if p : Q' — @ is a covering with |Q’|
connected, then p is a homeomorphism.

Fact. Any connected orbifold ) admits a simply connected orbifold covering
m : Q — . This has the usual universal property: if we pick a “generic”
base point ¢ € @ and p : Q" — @ is another covering with base points ¢’ € @’
and ¢ € @ lying over ¢, then 7 factors through Q' via a covering projection
Q — Q' taking ¢ to ¢’. In particular, ) — @ is a regular covering in the sense
that its group of deck transformations acts simply transitively on 7= 1(q). (A
simply transitive action is one which is both free and transitive.)

Definitions of the orbifold fundamental group.

Definition 1.17. (cf. [13]). m"*(Q) is the group of deck transformations of
the universal orbifold cover, p: @ — @

There are three other equivalent definitons of 7¢™(Q), which we list below.
Each involves some technical difficulties.



e In Subsection 1.3, I will give a definition in terms of generators and
relations.

e A third definition is in terms of “homotopy classes” of “loops” [0, 1] —
Q. The difficulty with this approach is that we must first define what
is meant by a “map” from a topological space to @) - it should be a
continuous map to |@| together with a choice of a “local lift” (up to
equivalence) for each orbifold chart for Q.

e A fourth definition is in terms of the groupoid. If Gy is the groupoid
associated to @ and B is its classifying space, then m{"*(Q) :=
m(BGg), the ordinary fundamental group of the space BGg. The only
problem with this definition is that one first needs to define the classi-
fying space of a groupoid.

Developability and the local group. For each x € |Q)|, let G, denote the
local group at x. (It is a finte subgroup of GL(n, R), well-defined up to con-
jugation. We can identify G, with the fundamental group of a neighborhood
of the form U, /G, where U, is a ball in some linear representation. So, G,
is the “local fundamental group” at x. The inclusion of the neighborhood
induces a homomorphism G, — 7¢%(Q).

Proposition 1.18. @ is developable <= each local group injects (i.e., for
each © € |Q|, the map G, — m"°(Q) is injective).

1.2.3 1- and 2-dimensional orbifolds

Dimension 1. The only finite group which acts linearly (and effectively) on
R! is the cyclic group of order 2, Cs. It acts via the reflection 2 — —2z. The
orbit space R'/Cy is identified with [0, 0o).

It follows that every 1-dimensional orbifold () is either a 1-manifold or a
1-manifold with boundary. If @) is compact and connected, then it is either
a circle or an interval (say, [0, 1]).

The infinite dihedral group, D, is the group generated by 2 distinct
affine reflections on R! and R!'/D., = [0,1]. (See figure 1.) It follows that
the universal orbifold cover of [0,1] is R'.

2-dimensional linear groups. Suppose a finite group G ~ R" linearly.
Then G is conjugate to subgroup of O(n). (Pf: By averaging we get an
invariant inner product). Hence, G acts on the unit sphere S"~! C R".
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Figure 1: The infinite dihedral group

Suppose G C O(2). Then S*//G = S' or S*)/G = [0,1].

e In the first case, S' — S1/G = S' is an n-fold cover, where n = |G],
and G is the cyclic group C,, acting by rotations.

e In the second case, the composition, R! — S' — S'/G = [0,1], is
the universal orbifold cover with group of deck transformations D...
It follows that G = D,,, (the dihedral group of order 2m) or G = Cy
(= Dy) acting by reflection across a line.

Theorem 1.19. (Theorem of Leonardo da Vinci, cf. [14, pp. 66, 99].) Any
finite subgroup of O(2) is conjugate to either C,, or D,,.

Question. What does R? /G look like?
Here are the possibilities:
e R? (G={1}),
e acone (G=0C,),
e a half-space (G = D),
e a sector (G = Dy,).

In the half-space case, a codimension 1 stratum is a mirror. In the sector
case, a codimension 2 stratum is a corner reflector.

2-dimensional orbifolds. Here is the picture: the underlying space of a
2-dimensional orbifold ) is a 2-manifold, possibly with boundary . Certain
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Figure 2: Not developable

points in the interior of the |@| are “cone points” labeled by an integer n;
specifying that the local group is C,,. The codimension 1 strata are the
mirrors; their closures cover 9|Q|. The closures of two mirrors intersect in
a corner reflectors (where local group is D,,,). The picture in Figure 2 is
possible; however, it is not developable.

1.2.4 General orbifolds
e If G C O(n) and D™ C R" denotes the unit disk, then G ~ D™.

e Since D™ = Cone(S™ '), we have D" /G = Cone(S" ! //G). Therefore,

a point in a general orbifold has a conical neighborhood of this form.

Example 1.20. Suppose G = (5 acting via antipodal map, x — —x. Then
D" //Cy = Cone(RP™ 1)

Suppose @ is an n-dimensional orbifold and )2y denotes the complement
of the strata of codimension > 2. The description of Q) is similar to a 2-
dimensional orbifold. |@Q )| is an n-manifold with boundary ; the boundary
is a union of (closures of) mirrors; the codimension 2 strata in the interior
are codimension 2 submanifolds labeled by cyclic groups; the codimension 2
strata on the boundary are corner reflectors labeled by dihedral groups.

During one of the problem sessions I was asked the following question.

Question. When is the underlying space of an orbifold a manifold?
This question is equivalent to the following.

Question. For which finite subgroups G C O(n) is R" /G homeomorphic to
R".

One example when this holds is when G C U(n) is a finite subgroup
generated by “complex reflections.” (A complex reflection is a linear auto-
morphism of C" with only one eigenvalue # 1 i.e., it is a rotation about
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a complex hyperplane.) For any complex reflection group G, C"/G = C".
(This follows from the famous result that for such a G the ring of invariant
polynomials C[z1, ..., 7,]¢ is a polynomial ring on n variables.) Identifying
C" with R?™ we get R?"/G = R*. Another case where the answer to the
question is affirmative is when G is the orientation-preserving subgroup of a
finite group W generated by (real) reflections on R™. We will see in Corol-
lary 3.4 that R"/W is a simplicial cone (which is homeomorphic to a half
space). The orbifold R"//G is the “double” discussed in Example 1.21 below.
Hence, in this case we also have R"?G = R"

After making these comments, I made the following conjecture. !

Conjecture. R"/G is homeomorphic to R™ if and only if either
(i) n=2m and G is complex reflection group on C™, or

(ii) G is the orientation-preserving subgroup of a real reflection group on

R™.

Examples of orbifold coverings. Suppose X — |@Q)| is an ordinary cover-
ing of topological spaces. Pullback the strata of () to strata in X to obtain
an orbifold @'. (Here is a specific example: @ is RP? with one cone point
labeled n. S? — RP? is the double cover. The single cone point pulls back
to two cone points in S? labeled n.)

Example 1.21. Double |@Q| along its boundary to get a 2-fold orbifold cov-
ering " — @ without codimension 1 strata. For example, if @ is a triangle,
then )" is a 2-sphere with three cone points. As another example, if @ is
the nondevelopable orbifold pictured on the previous page (a 2-disk with one
corner reflector), then @’ is the tear drop (a 2-sphere with one cone point).

Example 1.22. The n-fold branched cover of () along a codimension 2 stra-
tum labeled by the cyclic group of order n.

IThere is an obvious counterexample to this conjecture: let G C SU(2) be the binary
dodecahedral group of order 120. Then G acts freely on S* and S3/G is Poincaré’s homol-
ogy 3-sphere. If we take the product of this representation with the trivial 1-dimensional
representation we obtain a representation on R® such that S*/G is the suspension of S3/G.
It then follows from the Double Suspension Theorem of Cannon that R®/G is homeomor-
phic to R®. The correct conjecture should be that this is the only counterexample.
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1.3 Generators and relations for 7"(Q)

Remark 1.23. 77"°(Q) = m¢"*(Q2)). (Proof: general position.)

Let Q denote the complement in |Q| of the strata of codimension > 2
(retain the mirrors on 9|Q|). Choose a base point z, in interior Q. We
are going to construct 7¢"°(Q, zo) from 7T1(Q, xo) by adding generators and
relations.

New generators.

e For each component T' of a codimension 2 stratum in interior of |Q|,
choose a loop ar starting at xy which makes a small loop around T
Let n(T) be the order of the cyclic group labeling T

e Suppose P is a codimension 2 stratum contained in M N N (so that P
is a corner reflector). Let m(P) be the label on P (so that the dihedral
group at P has order 2m(P)).

e For each mirror M and each homotopy class of paths v, from xy to M
introduce a new generator Bis,y,,)-

Relations.

o [ar]"M) =1

[} [ﬁ(MKYM)P = 1, and
o (BB )™ =1,

Here P is a component of M N N and 7y, and vy are homotopic as paths
from xg to P.

2 Lecture 2: two-dimensional orbifolds

2.1 Orbifold Euler characteristics

We know what is meant by the Euler characteristic of a closed manifold
or finite CW complex (the alternating sum of the number of cells). A key
property is that it is multiplicative under finite covers: if M’ — M is an

m-fold cover, then
X(M') = mx(M).
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The Euler characteristic of an orbifold should be a rational number with
same multiplicative property, i.e., if M — @) is an m-fold cover and M is a
manifold, then we should have y(M) = m x"*(Q), i.e.,

1
Q) = — x(M).
X"(Q) = —x(M)
(“m-fold cover” means Card(p~!(generic point)) = m.)

The Euler characteristic of an orbifold. ? Suppose @Q is an orbifold
which is cellulated as a CW complex so that the local group is constant on
each open cell c. Let G(c) be the local group on ¢ and |G(c)| denote its order.

Define (_1)dime
X7Q) =) NG

Exercise 2.1. Suppose I' ~ M properly, cocompactly, locally linearly and
[ C I is a subgroup of index m. Show

X" (M) = m x""(M/IT).

cells ¢

Alternate formula. Each stratum S of a compact orbifold () is the interior
of a compact manifold with boundary S. Define e(S) := x(S5) — x(95). Then

orb _ G(S)
X (Q) - Stl;s ’G(S)|

Example 2.2. Suppose |Q| = D? and Q has k mirrors and k corner reflectors
labeled mq, ..., m;. Then

Example 2.3. Suppose |Q| = S? and @ has [ cone points labeled ny, ..., n,.

Then ) ) )
=21+ =+ =] =2 —
X"(Q) ot > .

)

(This is twice the previous example, as it should be.)

2In his lectures, Alejandro Adem gave a completely different definition of the “orbifold
Euler number, X,m(®)”. For him, it is a certain integer which is defined using equivari-
ant K-theory. Although this definition has been pushed by string theorists, the rational
number which I am using this terminology for goes back to Thurston’s 1976 course and
before that to Satake.
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Example 2.4. (The general formula). Suppose |Q] is a surface with bound-
ary and that ) has k corner reflectors labeled mq, ..., m; and [ cone points
labeled ny,...,n;. Then

V(Q) = x(1Q]) - %Z (1 - mi) 5 (1 - %) -

i=1 ! i=1
Remark 2.5. This formula shows that x°(Q) < x(|Q|) with equality iff

there are no cone points or corner reflectors.

Notation 2.6. If a 2-dimensional orbifold has k& corner reflectors which are
labeled my,...,m; and [ cone points labeled nq,...,n;, we will denote this
by

(N1, .. ynma, .o, Mg).
If 9|Q| = 0, then there can be no mirrors or corner reflectors and we simply
write (nq,...,n;).

2.2 Classification of 2-dimensional orbifolds

Recall that closed surfaces are classified by orientability and Euler charac-
teristic:

o X\(M?) >0 = M? =52 or RP? (positive curvature).
e \(M?) =0 = M?=T? or the Klein bottle (flat).
e x(M?) <0 = arbitrary genus > 1 (negative curvature).

The idea is to classify orbifolds Q? by their Euler characteristics. Since
x°"%( ') is multiplicative under finite covers, this will tell us which manifolds
can finitely cover a given orbifold. For example, if Q = S?//G, with G finite,
then x°"*(S?//G) > 0. Conversely, if Q is developable and x°"*(Q) > 0, then
its universal cover is S2.

Exercise 2.7. List the 2-dimensional orbifolds @ with x°"*(Q) > 0. (In fact,
[ will do this exercise below.)

Sample calculation. Suppose |Q| = D? with ( ;my,...,my). Recall
L&
Q) =15 S (m) ™)
i=1

14



Since 1 — (m;)~! > 1/2, we see that if k > 4, then x°*(Q) < 0 with equality
iff k =4 and all m; = 2. Hence, if x°"°(Q) > 0, then k < 3.

More calculations. Suppose |Q| = D? and k = 3 (so that Q is a triangle).

Then ]
X"(Q) = (=14 (ma) ™" + (ma) ™! + (ma) ™)

So, as (m/my + 7 /my + 7/m3) is >, = or < 7, x°"*(Q) is, respectively, >, =
or < 0. For x°® > 0, we see the only possibilities are: ( ;2,2,m), ( ;2,3,3),
(;2,3,4), (;2,3,5). The last three correspond to the symmetry groups of
the Platonic solids. For x°"*(Q) = 0, the only possibilities are: ( ;2,3,6),
(;2,4,4) (;3,3,3).

Making use of Remark 2.5, we do Exercise 2.7 below.

X (Q) > 0:

e Nondevelopable orbifolds:

- |Q| = D% (;m), ( ;my, mg) with my # ms.
- Q| = S?: (n), (n1,ng) with ny # n.

e Spherical orbifolds:

QI = D* (5 ), (;mym), (;2,2,m), (:2,3,3), (;2,3,4),
(52,3,5), (2;m), (3;2).
- QI = 5% (), (n,n), (2,2,n), (2,3,3), (2,3,4), (2,3,5).

B |Q| :RP2: ()7 (77,)
Implications for 3-dimensional orbifolds.

e The list of 2-dimensional spherical orbifolds is the list of finite sub-
groups of O(3).

e Every 3-dimensional orbifold is locally isomorphic to the cone on one
of the spherical 2-orbifolds.

e For example, if |Q| = S? with three cone points, (ni,ns,n3), then
Cone(Q) has underlying space an open 3-disk. The three cone points
yield three codimension 2 strata labeled my, my, ms and the origin is
labeled by the corresponding fintie subgroup of O(3).
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Flat orbifolds: x°"°(Q) = 0: the 17 wallpaper groups.

- QI = D* (5;2,3,6), (;2,4,4), (53,3,3), (;2,2,2,2), (2;2,2), (3;3),
(4;2), (2,2 ).

- Q| = S%: (2,3,6), (2,4,4), (3,3,3), (2,2,2,2), (), ), -
- QI =RP? (2,2),

- |QI=T7% ().

- Q| = Klein bottle: ().

|Q| = annulus: ( ;).
- |Q| = Mébius band: (; ).

Remark. In [14, pp. 103-115], Weyl emphasized the fact that there are
exactly 17 discrete, cocompact subgroups of Isom(E?) up to conjugation in
the group of affine automorphisms. These 17 “wallpaper groups” are exactly
the orbifold fundamental groups of the orbifolds listed above.

x°°(Q) < 0: It turns out that all remaining 2-dimensional orbifolds are
developable and can be given a hyperbolic structure.

The triangular orbifolds, i.e., |Q| = D? ( ;my, my, m3), with (m;)~! +
(my)~'+(m3)~! < 1, have a unique hyperbolic structure (because hyperbolic
triangles are determined, up to congruence, by their angles). The others have
a positive-dimensional moduli space.

2.3 Spaces of constant curvature

In each dimension n, there are three simply connected spaces of constant
curvature: S” (the sphere), E* (Euclidean space) and H" (hyperbolic space).

Definition 2.8. (Minkowski space). Let R™! denote R™"! equipped with
the indefinite symmetric bilinear form:

(T, y) == 21y1 + - + ToYn — Tnp1Ynt1-

Definition 2.9. The hypersurface defined by (x,z) = —1 is a hyperboloid
of two sheets. The component with z,; > 0 is H".

16



Figure 3: The quadratic form model of the hyperbolic plane

Definition 2.10. (The Riemannian metric on H™). As in the case of a
sphere, given z € H", T,H" = x*. Since (z,z) < 0, the restriction of ( , )
to T,H" is positive definite. So, this defines a Riemannian metric on H". It
turns out this metric has constant secional curvature —1.

Geometric structures on orbifolds. Suppose G is a group of isometries
acting real analytically on a manifold X. (The only examples we will be
concerned with are X" = S", E" or H" and G the full isometry group.) By
a (G, X)-structure we mean that each of the charts ([7, H,U, ) has U cCX,
that H is a finite subgp of G and the overlap maps (= compatibility maps)
are required to be restrictions of isometries in G.

Convex polytopes in X". A hyperplane or half-space in S™ or H" is the in-
tersection of a linear hyperplane or half-space with the hypersurface. The unit
normal vector u to a hyperplane means that the hyperplane is the orthogonal
complement, u', of u (orthogonal wiith respect to the standard bilinear form,
in the case of S", or the form ( , ), in the case of H"). A half-space in H"
bounded by the hyperplane u is a set of the form {x € H" | (u,z) > 0} and
similarly, for S”. A convex polytope in S” or H" is a compact intersection of
a finite number of half-spaces.

Reflections in S" and H". Suppose v is unit vector in R"*!. Reflection
across the hyperplane ut (either in R"! or S") is given by

r—x—2(x-u)u.
Similarly, suppose u € R™! satisfies (u,u) = 1. Reflection across the hyper-

plane u* in H" is given by z — 2 — 2(z, u)u.
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Figure 4: The dihedral group of order 6

3 Lecture 3: reflection groups

3.1 Geometric reflection groups

Suppose K is a convex polytope in X" (= S™, E" or H") such that if two codi-
mension 1 faces have nonempty intersection, then the dihedral angle between
them has form 7/m for some integer m > 2. (This condition is familiar: it
means that each codimension 2 face has the structure of a codimension 2 cor-
ner reflector.) Let W be the subgroup of Isom(X™) generated by reflections
across the codimension 1 faces of K.

Some basic facts:
e W is discrete and acts properly on X".

e K is a strict fundamental domain in the sense that the restriction to
K of the orbit map, p : X® — X" /W, is a homeomorphism. It follows
that X" /W = K and hence, K can be given the structure of an orbifold
with an X"-structure.

(Neither fact is obvious.)

Example 3.1. A dihedral group is any group which is generated by two
involutions, call them s, ¢. It is determined up to isomorphism by the order
m of st (m is an integer > 2 or the symbol 00). Let D,, denote the dihedral
group corresponding to m.

Example 3.2. For m # oo, D,, can be represented as the subgroup of O(2)
which is generated by reflections across lines L, L', making an angle of w/m.
(See Figure 4.)

History and properties. *

3In this paragraph I have relied on the Historical Note of [2, pp. 249-257].
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e In 1852 Mdbius determined the finite subgroups of O(3) generated by
isometric reflections on the 2-sphere.

e The fundamental domain for such a group on the 2-sphere was a spher-
ical triangle with angles %, %, =, with p, g, r integers > 2.
e Since the sum of the angles is > 7, we have é + % + % > 1.

e For p > ¢ > r, the only possibilities are: (p,2,2), for p > 2, and (p, 3,2)
with p = 3, 4 or 5. (The last three cases are the symmetry groups of
the Platonic solids.)

e Later work by Riemann and Schwarz showed there were discrete groups
of isometries of E? or H? generated by reflections across the edges of
triangles with angles integral submultiples of 7. Poincaré and Klein
proved similar results for polygons with more than three sides in H?2.

In 27¢ half of the 19" century work began on finite reflection groups on
S™, n > 2, generalizing Mobius’ results for n = 2. It developed along two
lines.

e Around 1850, Schlifli classified regular polytopes in R™™!, n > 2. The
symmetry group of such a polytope was a finite group generated by
reflections and as in Md&bius’ case, the projection of a fundamental
domain to S™ was a spherical simplex with dihedral angles integral
submultiples of 7.

e Around 1890, Killing and E. Cartan classified complex semisimple Lie
algebras in terms of their root systems. In 1925, Weyl showed the
symmetry group of such a root system was a finite reflection group.

e These two lines were united by Coxeter [4] in the 1930’s. He classified
discrete groups reflection groups on S™ or E".

Let K be a fundamental polytope for a geometric reflection group. For
S™, K is a simplex. For E", K is a product of simplices. For H" there are
other possibilities, e.g., a right-angled pentagon in H? (see Figure [?]) or a
right-angled dodecahedron in HS3.

e Conversely, given a convex polytope K in S", [E” or H" so that all dihe-
dral angles have form 7 /integer, there is a discrete group W generated
by isometric reflections across the codimension 1 faces of K.
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Figure 5: Tessellation of hyperbolic plane by right-angled pentagons

e Let S be the set of reflections across the codimension 1 faces of K.
For s,t € S, let m(s,t) be the order of st. Then S generates W,
the faces corresponding to s and t intersect in a codimension 2 face
iff m(s,t) # oo, and for s # t, the dihedral angle along that face is
w/m(s,t). Moreover,

o If m(,t) =1 for s =t and is as defined above for s # ¢, then

(S| (st)™=1) where (s,t) € S x S)

is a presentation for W.

Polytopes with nonobtuse dihedral angles.

Lemma 3.3. (Coxeter, [4]). Suppose K C S" is an n-dimenional convex
polytope which is “proper” (meaning that it does not contain any pair of
antipodal points). Further suppose that whenever two codimension 1 faces
intersect along a codimension 2 face, the dihedral angle is < w/2. Then K
18 a simplez.

A similar result holds for a polytope K C E™ which is not a product.

Corollary 3.4. The fundamental polytope for a spherical reflection group is
a stmplex.

Proof. For m an integer > 2, we have 7/m < /2. O
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3.2 Simplicial Coxeter groups

3.2.1 The Gram matrix of a simplex in X"

Suppose ¢" is a simplex in X". Let uy,...u, be its inward pointing unit

normal vectors. (The u; lie in R*™ R™ or R™! as X" = §", E" or H".) The
Gram matriz, G, of o is the symmetric (n+1) x (n+ 1) matrix (g;;) defined
by gi; = u; - uj. G > 0 means the symmetric matrix G is positive definite.

Definition 3.5. A symmetric matrix G with 1’s on the diagonal is type
(1) it G >0,

(0) if G is positive semidefinite with 1-dimensional kernel, each principal
submatrix is > 0, and there is a vector v € Ker G with all its coordinates
> 0,

(-1) if G has signature (n, 1) and each principal submatrix is > 0.

Linear algebra fact. The extra condition in type 0 (that Ker G is spanned
by a vector with positive coordinates) is automatic when G is indecomposable
and has g;; < 0, for all ¢ # j, i.e., when all dihedral angles are nonobtuse.
(See [6, Lemma 6.3.7].)

Theorem 3.6. Suppose G is a symmetric (n+1) x (n+1) matriz with 1’s on
the diagonal. Let € € {+1,0,—1}. Then G is the Gram matriz of a simplex
o" C X! < G is type e.

Let X7 is S", E", H" as ¢ = +1, 0, —1.

Proof. For S™: we can find basis vectors ug, ... u, in R*"™!, well-defined up
to isometry, so that (u; - u;) = G. (This is because G > 0.) Since the u;
form a basis, the half-spaces, u; - x > 0, intersect in a simplicial cone and the
intersection of this with S™ is ¢”.

The proof for H" is similar. The argument for E™ has additional compli-
cations. O

Suppose ¢ C X" is a fundamental simplex for a geometric reflecton
group. Let {ug,...u,} be the set of inward-pointing unit normal vectors.

Then
w; - uj = — cos(m/m;;)
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where (m;;) is a symmetric matrix of posiive integers with 1’s on the diagonal
and all off-diagonal entries > 2. (The matrix (m;;) is called the Cozeter
matriz while the matrix (cos(m/m;;)) is the associated cosine matriz.) The
formula above says:

Gram matrix = cosine matrix.

Suppose M = (m;;) is a Coxeter matrix, i.e., a symmetric (n + 1) x (n + 1)
matrix with 1’s on the diagonal and with off-diagonals > 2 (sometimes we
allow the off-diagonal m;; to = oo, but not here).

Theorem 3.7. Let M be a Cozeter matriz as above and C' its associated
cosine matriz (i.e., ¢;; = — cos(m/m;;)). Then there is a geometric refllection
group with fundamental simplex o™ C X! <= C 1is type €.

So, the problem of determining the geometric reflection groups with fun-
damental polytope a simplex in X becomes the problem of determining the
Coxeter matrices M whose cosine matrix is type €. This was done by Cox-
eter, [4], for e = 1 or 0 and by Lannér, [10], for ¢ = —1. The information in
a Coxeter matrix is best encoded by its “Coxeter diagram.”

3.2.2 Coxeter diagrams

Associated to (W, S), there is a labeled graph I called its “Coxeter diagram.”
Put Vert(I') := S. Connect distinct elements s, ¢ by an edge iff m(s,t) # 2.
Label the edge by m(s,t) if this is > 3 or = oo and leave it unlabeled if it is
= 3.

(W, S) is drreducible if T is connected. (The components of I' give the
irreducible factors of W.)

Figure 6 shows Coxeter’s classification from [4] of the irreducible spher-
ical and cocompact Euclidean reflection groups. Figure 7 shows Lannér’s
classification from [10] of the hyperbolic reflection groups with fundamental
polytope a simplex in H".

Exercise 3.8. Derive Lannér’s list in Figure 7 from Coxeter’s lists in Fig-
ure 6.
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Spherical Diagrams Euclidean Diagrams

A o—0
H, > !
Ez 4 4
H, >
a 6
2
4
4
E ~
6 E
6

Figure 6: Coxeter diagrams
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Hyperbolic Simplicial Diagrams

{Aj with (! + ¢ + ) < 1

oio_o_oios<
55

Figure 7: Hyperboloic simplicial diagrams

3.3 More reflection groups

Recall X" stands for S, E" or H". Let K C X" be a convex polytope with
dihedral angles between codimension 1 faces of the form 7/m, where m is an
integer > 2 or the symbol oo (where m/00 means the faces do not intersect).
W the group generated by reflections across the codimension 1 faces of K.

Goal: Show W is discrete, acts properly on X" and that K is an orbifold
with geometric structure of an X"-orbifold.

3.3.1 Generalities on abstract reflection groups

Suppose W is a group and S a set of involutions which generate it. For each
s, t € S, let m(s,t) denote the order of st. (W,S) is a Cozeter system (and
W is a Cozxeter group) if the group defined by the presentation,

{generators} = S
{relations} = {(st)™*P}, where (s,t) € S x S, m(s,t) # oo,

is isomorphic to W (via the natural map).
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For each T C S, let W denote the subgroup generated by 7.

Definition 3.9. A mirror structure on a space X, indexed by a set S, is
a family of closed subspaces {X,}scs. The X, are called mirrors. For each
rxe X, put S(z):={seS|xe X}

Example 3.10. Suppose K is a convex polytope with its codimension 1
faces indexed by S. For each s € S, let K, denote the face corresponding
to s. This defines a mirror structure on K. S(z) is the set of faces which
contain z. (In particular, if z is in the interior of K, then S(z) =0.)

The basic construction. Starting with a Coxeter system (W, S) and a
mirror structure {X;}ses we are going to define a new space U(W, X) with
W-action. The idea is to paste together copies of X, one for each element
of W. Each copy of X will be a fundamental domain and will be called a
“chamber.”

Define an equivalence relation ~ on W x X by

(w,z) ~ (W', 2") <= = =2 and wWy() = W' Ws).

Here W has the discrete topology. (Recall that S(z) indexes the set of mirrors
which contain z.) Put

UW,X) = (W x X)/ ~ .

To simplify notation, write U for U (W, X). Denote the image of (w,z) in U
by [w, z].
Some properties of the construction.

o W ~ U via u[w,z] = [uw,z]. The isotropy subgroup at [w,z]| is
wWS(x)w’l.

e We can identify X with the image of 1 x X in Y. X is a strict funda-
mental domain for the W-action in the sense that the restriction of the
orbit map Y — U/W to X is a homeomorphism (i.e., U/W = X).

o W ~ U properly <= X is Hausdorff and each Wy, is finite (i.e.,
nsET Xs = @7 Whenever |WT’ — OO)
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Universal property. Suppose W ~ Z and f : X — Z is a map so that for
all s € S, f(X) C Z°. (Z*° denotes the fixed set of s on Z.) Then there is
a unique extension to a W-equivariant map f : U(W, X) — Z. (In fact, f is
defined by f([w,z]) = wf(x).)

Exercise 3.11. Prove the above properties hold.

3.3.2 Geometric reflection groups, again

The set up:

K is a convex polytope in X" (= S", E" or H"). S is the set of reflections
across the codimension 1 faces of K. The face corresponding to s is
denoted by Kj.

If K,N K; # (), then it is a codimension 2 stratum and the dihedral
angle is m/m(s,t), where m(s,t) is some integer > 2. (We know this
implies K is a simple polytope.) If K,N K; = ), then put m(s,t) = co.

Let W C Isom(X") be the subgroup generated by S.

Let W be the group defined by the presentation corresponding to the
(S x S) Coxeter matrix, (m(s,t)). It turns out that (W, S) is a Coxeter
system. (There is something to prove here, namely, that the order of st
is = m(s,t) rather than that it just divides m(s,t).) Let p: W — W
be the natural surjection.

By the universal property, the inclusion ¢ : K — X" induces a W-equivariant
map 7 : U(W, X) — X"

Theorem 3.12. I : U(W, K) — X" is a W-equivariant homeomorphism.

Some consequences:

e p: W — W is an isomorphism

W is discrete and acts properly on X"

K is a strict fundamental domain for the action on X" (i.e., X" /W =
K).

e U(W, K) is a manifold (because X" is a manifold).
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e K is an X"-orbifold (because it is identified with X" /W).

o If W' ~ R™ as a finite linear group, then R" /W is isomorphic to the
fundamental simplicial cone.

Sketch of proof of the theorem. The proof is by induction on the dimension
n. A neighborhood of a point in K looks like the cone over the suspension,
o, of a spherical simplex. By induction, U(Wyz, o) = S*™! (where Wr is the
finite Coxeter group corresponding to o). Since a neighorhood in K is an open
X"-cone over o, it follows that 7 : U(W, K) — X" is a local homeomorphism
and a covering projection and that U (W, K) has the structure of an X"-
manifold. Since X" is simply connected, the covering projection 7 ust be a
homeomorphism. (The case X” = S' is handled separately.) O]

4 Lecture 4: 3-dimensional hyperbolic reflec-
tion groups

4.1 Andreev’s Theorem

A geometric reflection group on S, E™ or H" is determined by its funda-
mental polytope. In the spherical case the fundamental polytope must be
a simplex and in the Euclidean case it must be a a product of simplices.
Furthermore, all the possibilities for these simplices are listed in Figure 6.
So, there is nothing more to said in the spherical and Euclidean cases.

In the hyperbolic case we know what happens in dimension 2: the fun-
damental polygon can be an k-gon for any &£ > 3 and almost any assignment
of angles can be realized by a hyperbolic polygon (there are a few exceptions
when k£ = 3 or 4). What happens in dimension 37

There is a beautiful theorem due to Andreev, which gives a complete
answer. Roughly, it says given a simple polytope K, for it to be the fund
polytope of a hyperbolic reflection group,

e there is no restriction on its combinatorial type

e subject to the condition that the group at each vertex be finite, almost
any assignment of dihedral angles to the edges of K can be realized
(provided a few simple inequalities hold).
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In contrast to dimension 2, the 3-dimensional hyperbolic polytope is uniquely
determined, up to isometry, by its dihedral angles — the moduli space is a
point.

Remark. By a theorem of Vinberg, hyperbolic examples do not exist in
dimensions > 30.

Theorem 4.1 (Thurston’s Conjecture, Perelman’s Theorem). A closed, de-
velopable 3-orbifold Q> with infinite 7™ admits a hyperbolic structure iff it
satisfies the following two conditions:

(i) Bvery embedded 2-dimensional spherical suborbifold bounds a quotient
of a 3-ball in Q3. (This condition implies Q> is aspherical.)

(i) Z x Z ¢ 7(QP).

A 2-dimensional suborbifold of Q2 is incompressible if the inclusion into
Q? induces an injection on 7¢"®( ). The orbifold Q?* is Haken if it does not
contain any nondevelopable 2-dimensional suborbifolds, if every spherical 2-
dimensional suborbifold bounds the quotient of a 3-ball by a finite linear

group and if it contains an incompressible 2-dimensional Euclidean or hyper-
bolic orbififold.

Proposition 4.2. ([13, Prop. 13.5]). An orbifold with underlying space a
3-disk and with no singular points in its interior (called a “reflectofold” in
Subsection 5.1) is Haken iff it is neither a tetrahedron nor the product of a
triangular spherical orbifold with [0,1] (i.e., a triangular prism).

In the late 1970’s Thurston proved his conjecture for Haken manifolds or
orbifolds. This can be stated as follows.

Theorem 4.3. (Thurston ~ 1977). A 3-dimensional Haken orbifold Q3
admits a hyperbolic structure iff it has no incompressible 2-dimensional Fu-
clidean suborbifolds (i.e., Q> is “atoroidal”).

Combining this with Proposition 4.2 we get Corollary 7?7 below as a spe-
cial case. This had been proved several years earlier by Andreev as a corollary
to the following theorem about convex polytopes in H?.

Theorem 4.4. (Andreev ~ 1967, see [1, 11]). Suppose K is (the combina-
torial type of ) a simple 3-dimensional polytope, different from a tetrahedron.
Let E be its edge set and 0 : E — (0,7/2] any function. Then (K,0) can be
realized as a convex polytope in H?® with dihedral angles as prescribed by 0 if
and only if the following conditions hold:
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(i) At each vertex, the angles at the three edges ey, e, e3 which meet there
satisfy O(e1) + 6(e2) + O(es) > 7.

(ii) If three faces intersect pairwise but do not have a common vertex, then
the angles at the three edges of intersection satisfy 0(e1)+0(es)+0(e3) <
.

(iii) Four faces cannot intersect cyclically with all four angles = w/2 unless
two of the opposite faces also intersect.

(iv) If K is a triangular prism the angles along base and top cannot all be
/2.

Moreover, when (K, ) is realizable, it is unique up to an isometry of H?>.

Corollary 4.5. Suppose K is (the combinatorial type of ) a simple 3-polytope,
different from a tetrahedron, that { Fy}scs is its set of codimension 1 faces and
that e is the edge FsNF, (when FsNFy #0). Given an angle assignment 6
E — (0,7/2], with 6(es;) = w/m(s,t) and m(s,t) an integer > 2, then (K, 0)
is a hyperbolic orbifold iff the 0(es) satisfy Andreev’s Conditions. Moreover,
the geometric reflection group W is unique up to conjugation in Isom(H?).

Remark. The condition that K is not a tetrahedron and Andreev’s Condi-
tion (iv) deal with the case when the orbifold K is not Haken.

Examples 4.6. Here are some hyperbolic orbifolds:

e K is a dodecahedron with all dihedral angles equal to 7/2.

e K is a cube with disjoint edges in different directions labeled by integers
> 2 and all other edges labeled 2.

Exercise 4.7. Make up your own examples.

The dual form of Andreev’s Theorem. Let L be the triangulation of S?
dual to 0K.

Vert(L) «— Face(K)
Edge(L) «— Edge(K)
{2-simplices in L} «— Vert(K)
Input data. Suppose we are given 6 : Edge(L) — (0,7/2]. The condition

that K has a spherical link at each vertex is that if eq, es, e3 are the edges of
a triangle, then 0(ey) + 0(es) + 0(e3) > .
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Theorem 4.8. (Dual form of Andreev’s Theorem). Suppose L is a triangu-
lation of S* and L # OA3. Let 0 : Edge(L) — (0,7/2] be any function. Then
the dual polytope K can be realized as convex polytope inH? with prescribed
dihedral angles iff the following conditions hold:

(i) If e1, ea,e3 are the edges of any triangle, then 0(eq) + 0(ez) + 6(e3) > 7.

(ii) Ife, e, e3 are the edges of a 3-circuit # OA?, then 0(e1)+0(es)+6(e3) <
.

(i) If ey, e9,e3,6e4 are the edges of a 4-circuit which is # to boundary of
union of two adjacent triangles, then all four 6(e;) cannot = /2.

(iv) If L is suspension of OA?, then all “vertical” edges cannot have 6(e;) =
/2.

A dimension count. Given a convex 3-dimensional polytope K, Andreev’s
Theorem asserts that a certain map © from the space C(K) of isometry
classes convex polyhedra of the same combinatorial type as K to a certain
subset A(K) C R¥ is a homeomorphism (where £ := Edge(K) and where
A(K) is the convex subset defined by Andreev’s inequalities).

Let’s compute dim C'(K). For each F € Face(K), let ur € S*! be the
inward-pointing unit normal vector to F. (Here S$?*! := {z € R | (z,2) =
1}.) The (ur)perace(k) determine K (since K is the intersection of the half-
spaces determined by the ur). The assumption that K is simple means that
the hyperbolic hyperplanes normal to the up intersect in general position.
So, a slight perturbation of the ur will not change the combinatorial type of
K. That is to say, the subset of Face(K)-tuples (ug) which define a polytope
combinatorially isomorphic to K is an open subset Y of (S*!)Face(K),

e Let f = Card(Face(K)), e = Card(Edge(K), v = Card(Vert(K).
e Isom(H?) = O(3,1), dim(O(3,1) = 6, and dim S*! = 3.
e So, dimC(K) =3f —6.

Since f — e+ v = 2, we have 3f — 6 = 3e — 3v. Since three edges meet
at each vertex, we have 3v = 2e. Hence, 3f — 6 = 3e — 3v = e. So,
O : C(K) — A(K) C R¥ is a map between manifolds with boundary of the
same dimension.
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4.2 3-dimensional orbifolds

Recall the list of 2-dimensional spherical orbifolds from Subsection 2.2:

o |Q* =D (), (;mm), (;2,2,m), (;2,3,3), (;2,3,4), (;2,3,5),
(2;m), (3;2).

o [Q%=5% (), (n,n), (2,2,n), (2,3,3), (2,3,4), (2,3,5).
e Q| =RP? (), (n)

The local models for 3-dimensional orbifolds are cones on any one of the
above.

For example, if |Q? = S? with (n,n), then the 3-dimensional model is
D? with an interval of cone points labeled n. Quotients of n-fold branched
covers of knots or links in S? (or any other 3-manifold) have this form.

Example 4.9. (A flat orbifold). Consider the 3 families of lines in E? of the
form (t,n,m+1), (m+3,t,n) and (n,m+ 1,¢), where t € R and n,m € Z.
Let T’ be the subgroup of Isom(E?) generated by rotation by m about each
of these lines. A fundamental domain is the unit cube. The orbifold E? T
is obtained by “folding up” the cube to get the 3-sphere. The image of the
lines (= the singular set) are 3 circles in S® each labeled by 2 (meaning Cs,
the cyclic group of order 2). These 3 circles form the Borromean rings. (See
[13] for pictures of the folding up process.)

Example 4.10. Suppose @ is an orbifold with underlying space S®, with
singular set the Borromean rings and with the components of the singular
set labeled by cyclic groups of order p, ¢ and r. I showed in my lecture
how to use Andreev’s theorem to show that this orbifold admits a hyperbolic
structure iff all three integers are > 2. The proof uses the second example in
Examples 4.6.
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Figure 8: A nondevelopable reflectofold

5 Lecture 5: aspherical orbifolds

5.1 Reflectofolds

Definition 5.1. An n-dimensional orbifold @ is a reflectofold * if is locally
modeled on finite linear reflection groups acting on R".

If W acts on R™ as a finite reflection group, then R"/W is a simplicial
cone, i.e., up to linear isomorphism it looks like [0, 00)™. It follows that the
underlying space of a reflectofold ) is a manifold with corners. Conversely,
to give a manifold with corners the structure of a reflectofold, essentially all
we need to do is label its codimension 2 strata by integers > 2 in such a way
that the strata of higher codimension correspond to finite Coxeter groups
(which are listed in Figure 6).

It follows from the description of 7¢"*(Q) in Subsection 1.3 that 7¢"%(Q) is
generated by reflections if and only if m(|Q]) = 1. (Here “reflection” means
an involution with codimension 1 fixed set.) Henceforth, let’s assume this
(that |@] is simply connected).

If @ is developable, then any codimension 2 stratum is contained in the
closures of two distinct codimension 1 strata. Otherwise, we would have a
nondevelopable suborbifold pictured in Figure 8. Similarly, developability
implies that if intersection of two codimension 1 strata contains two distinct
codimension 1 strata, then they must be labeled by the same integer.

4When I introduced this term in my lecture I suggested that, as in Thurson’s class, we
should have an election to name the concept. Lizhen Ji was enthusiastic about this idea;
however, in the end I didn’t implement it.
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5.2 Asphericity

Definition 5.2. An orbifold is aspherical if its universal cover is a con-
tractible manifold.

One might ask why, in the above definition, we require the universal
cover to be a contractible manifold rather than just a contractible orbifold.
(A contractible orbifold is a simply connected orbifold all of whose higher
homotopy groups also vanish. This definiton does not automatically imply
that the orbifold is developable.) In fact, in the next questin we ask if it
makes any difference which condition is required.

Question. Is it true that every contractible orbifold is developable?

Remark. I think the question has an affirmative answer, but I have never
seen it written down.

Remark. A 2-dimensional orbifold Q? is aspherical <= x°°(Q?) < 0.

My favorite conjecture.

Conjecture. (Hopf, Chern, Thurston). Suppose Q*" is a closed aspherical
orbifold. Then (—1)"x°"*(Q*") > 0.

Hopf and Chern made this conjecture for nonpositively curve manifolds
(I believe they thought it might follow from the Gauss-Bonnet Theorem) and
Thurston extended it to aspherical manifolds (at least in the 4-dimensional
case). For much more about this conjecture in the case of aspherical reflecto-
folds, see [6].

The set up. Let ) be a reflectofold. Denote the underlying space by K
(instead of |@Q]). Let S index the set of mirrors (= {codimension 1 strata}).
K denotes the closed mirror corresponding to s. Let m(s,t) be the label on
the codimension 2 strata in K, N K;. Put m(s,t) = oo if K,N K; = (). Let
(W, S) be the Coxeter system defined by the presentation (i.e., W = 7¢(Q)).
For each T" C S, let W denote the subgroup generated by T'. The subset
T is spherical if Wy is finite. Let S be the set of spherical subsets of S,
partially ordered by inclusion. (N.B. ) € §.) Put

Kp = ﬂKS.

seT

Since @ is an orbifold, whenever Kt # (), we must have Wr € S.
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Theorem 5.3. The reflectofold Q) is aspherical iff the following conditions
hold:

(i) Kr #0 < T €S (i.e., when Wy is finite).

(ii) For each T € S, K is acyclic (i.e., H.(K7) =0).

(Notes: Ky = K; also, when K is simply connected and acyclic, it is con-
tractible.)

The first condition means that the combinatorics of intersections of mir-
rors is determined by (W, S). It is the analog of Andreev’s Conditions (with-
out the atoroidal condition), cf. Theorem 4.8. The second condition says that
the manifold with corners K “looks like” a convex polytope up to homology.
We elucidate these points below.

Definition 5.4. The nerve of the mirror structure {K }ses on K is an
abstract simplicial complex L’ defined as follows: its vertex set, Vert(L'),
is S and a nonempty subset T of S is the vertex set of a simplex in L' iff

Kr #0.

If L" is any simplicial complex with Vert(L"”) = S, write S(L") for the
poset of vertex sets of simplices in L”. If ¢ is a simplex of L” with vertex set
T, let Lk(o, L") denote the abstract simplicial complex corresponding to the
poset S(L")sr. (Lk(o, L") is called the link of o in L”.) Given two topological
spaces X and Y, write X ~ Y to mean that H.(X;Z) = H.(Y;Z). If
dim K = n, then, by standard arguments in algebraic topology, condition
(ii) of Theorem 5.3 means that

L'~ S" ' and Lk(o,L') ~ §n-i7dime, (5.1)

for all simplices o in L’ (cf., [5] or [6, §8.2]). In the case where K is a convex
polytope, L’ is the boundary of the dual polytope, i.e., L' is dual to 0K (cf.
the last part of Subsection 4.1).

Definition 5.5. Suppose (I, 5) is a Coxeter system. The elements of S
which are # () are the simplices of an abstract simplicial complex, denoted
by L(W,S) (or more simply, by L) and called the nerve of (W,S). More
precisely, Vert(L) = S and a nonempty subset T" of S is the vertex set of a
simplex in L iff T is spherical.
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The fact that K is the underlying space of an orbifold means that L' C L
(i.e., all local groups are finite). Condition (i) of Theorem 5.3 is that L' = L.
By Condition (ii), L satisfies (5.1).

Before sketching the proof of Theorem 5.3 we discuss the following two
questions:

(A) How do you produce a large number of examples of Coxeter systems
(W, S) with L(W, S) satisfying (5.1)7

(B) How do you recover K from L?

More generally, how do we find Coxeter system (W, S) with nerve a given
finite simplicial complex J? We should start as follows. Put S = Vert(.J).
Label each edge {s,t} by an integer m(s,t) > 2. This defines the Coxeter
system (W, S). The condition that we need to get an orbifold is that whenever
T is the vertex set of a simplex of J, then 7' € S. Condition (i) of Theorem 5.3
(an analog of Andreev’s Theorem) is the converse: whenever T' € S, then
T is the vertex set of a simplex in J. We will see below that when all the
m(s,t)’s are 2 or oo these conditions are easy to decide.

Definition 5.6. A simplicial complex J is a flag complex if T' is any finite,
nonempty collection of vertices which are pairwise connected by edges, then
T spans a simplex of J

Remark 5.7. In [8] Gromov uses the terminology that J satisfies the “no
A condition” for this concept. I once used the terminology that J is “deter-
mined by its 1-skeleton” for the same notion. Combinatorialists call such a
J a “clique complex”.

Examples 5.8.

e If Jis a k-gon (i.e., a triangulation of S* into k edges), then J is a flag
complex iff £ > 3.

e The barycentric subdivision of any simplicial complex (or, in fact, of
any cell complex) is a flag complex.

The second of Examples 5.8 shows that the condition of being a flag
complex does not restrict the topological type of J — it can be any polyhedron.

Definition 5.9. A Coxeter system (W, S) is right-angled if for each s # t,
m(s,t) is either 2 or oo.
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Since the nerve of any right-angled (W, S) is obviously a flag complex,
the second of Examples 5.8 yields the following answer to Question (A).

Proposition 5.10. The barycentric subdivision of any finite cell complex
occurs as the nerve of a right-angled Coxeter system.

Reconstructing K. Now suppose that L (= L') is a PL triangulation
of 8”71 Let K = D" (= Cone(S™!) and identify 0K with L. We want
to find a mirror structure on K dual to L. The construction is the usual
one for defining the dual cell structure on a manifold. For each vertex s of
L, let K, be the closed star of s in the barycentric subdivision, bL. Thus,
K, = Cone(bLk(s, L)). For each T' € S, we then have Ky = (,o.p K5 =
Coneb(Lk(or, L)), where or is the simplex in L corresponding to 7. The
assumption that the triangulation is PL means that each Lk(or,L) is a
sphere (= Sn~17dimor). oo each Ky is a cell.

Exactly the same construction works when L is a PL triangulation of
a homology sphere (that is, a closed PL manifold with the same homology
as S"1), except that instead of being a disk, K is a compact contractible
manifold with boundary L. (This uses the fact that any homology sphere L
is topolgically the boundary of a contractible 4-manifold. This fact follows
from surgery theory when dim L > 3 and and is due to Freedman when
dim L = 3.) In general, when L is only required to satisfy (5.1), one must
repeatedly apply this step of replacing Cone(bLk(o, L)) by a contractible
manifold bounded by a contractible manifold (see [5]).

5.3 Proof of the asphericity theorem
For each w € W, define the following subset of S:
In(w) :={s € 5| l(ws) < l(w)}.

(I(w) is the word length of w with respect to the generating set S.)
The following lemma in the theory of Coxeter groups is key to the proof
of Theorem 5.3.

Lemma 5.11. (See [6, Lemma 4.7.2]). For eachw € W, In(W) is a spherical
subset of S.

Sketch of proof of Theorem 5.3. The universal cover of the reflectofold @) is
the manifold U (W, K), which we denote simply by &. The manifold U is
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contractible if and only if it is simply connected and acyclic. We will derive
necessary and sufficient conditions for this to hold.

Order the elemnts of W: wy, ws, ... wg ..., in any fashion so that [(wy) <
[(wgs1). Let Py denote the union of the first k£ “chambers” in U, i.e.,

We propose to study the exact sequence of the pair (Pgi1, Px) in homology.
To simplify notation, put w = wy1. By excision,

H*(PkJrl,Pk) — H*(’LUK, wKIn(w)) — H*(K7 KIn(w))’
where for any subset T' C .S,
KT .= U K.
seT

So, the long exact sequence of the pair becomes
- — H,(Py) = H.(Ppy1) — H (K, K@)y —

It is not hard to see that there is a splitting, H, (K, K™") — H,(P,,), of
the right hand map defined by multiplication by whe)yw™"' € ZW, where
for any T' € S, hr is the element in the group ring ZWr defined by hp =

ZueWT(—l)l(“)u. Hence,

H,(Ppy1) = H,(Py) ® H. (K, K™®)) and therefore,
H,(U) = @D H.(K, K™)
k=1

If AT denotes the free abelian group on {w € W | In(w) = T}, then the
above formula can be rewritten as

HU) =@ H(E K)o A" (5.2)
TeS

From (5.2) we see that H,(U) = 0iff H,(K,K") =0forall T € S. Standard
arguments using Mayer-Vietoris sequences (or the Mayer-Vietoris spectral
sequence) show that these terms all vanish iff for all 7" € S, the intersection
Kr is acyclic (this includes the statement that K is acyclic. (See [6, §8.2].)
A similar argument using van Kampen’s Theorem applied to Py =
P, U K shows that U is simply connected iff K is simply connected, each K
is connected and for each {s,t} € S, K34y # 0. O
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5.4 Aspherical orbifolds not covered by Euclidean space

A noncompact space X is simply connected at infinity if given any compact
subset C' there is a larger compact subset D so that any loop in X — D is
null homotopic in X — C. In favorable circumstances the inverse system of
fundamental groups {m (X — C)}, where C ranges over all compact subsets,
has a well-defined inverse limit, 7{°(X), called the fundamental group at
infinity. If X is simply connected at infinity, then 77°(X) is trivial. (See [7]
for the basic facts about the concepts in this paragraph.)

Theorem 5.12. (Stallings, Freedman, Perelman). A contractible n-manifold
is homeomorphic to R™ iff it is simply connected at infinity.

(Stallings proved this in dimensions > 5, Freedman in dimension 4 and in
dimension 3, I believe it follows from Perelman’s proof of the Poincaré Con-
jecture.)

For some time it was an open problem if the universal cover of a closed,
aspherical manifold had to be homeomorphic to Euclidean space. Of course,
the issue was not the existence of exotic (i.e., not simply connected at infinity)
contractible manifolds but whether such an exotic contractible manifold could
admit a cocompact transformation group. This was resolved in [5] by using
the techniques of this section.

Let L be a triangulation of a homology (n — 1)-sphere as a flag complex.
Label its edges by 2 and let (W, S) be the associated right-angled Coxeter
group with nerve L. Let K be a contractible manifold with 0K = L. As
explained above, we can put the dual cell structure on K to give K the
structure of a manifold with corners and hence, the structure of a reflectofold
Q. The claim is that if n > 2 and L™! is not simply connected, then the
contractible manifold U (W, K) is not simply connected at infinity. As before,

let P, be the union of the first £ chambers and let P, be its interior. The
argument goes as follows.

e Since Py is obtained by gluing on a copy of K to Py_; along an (n—1)-
disk in its boundary, it follows that Py is a contractible manifold with

boundary and that its boundary is the connected sum of k copies of
m(0K). Hence, m1(0(Fy)) is the free product of k copies of 7 (0k).

e For a similar reason one U — P}, is homotopy equivalent to 0F.
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e Hence, m{°(U) is the inverse limit, lim(m (L) * - xm(L)). In other
words, it is the “projective free product” of copies of m;(L). In partic-
ular, it is nontrivial whenever (L) # 1.

The above is a sketch of the proof of the following result.

Theorem 5.13. ([5]) For eachn > 4 there are closed, aspherical n-dimensional
orbifolds with universal cover not homeomorphic to R™.

Since Coxeter groups have faithful linear representations (cf. [2]), Sel-
berg’s Lemma implies that they are virtually torsion-free. So, there is a
torsion-free subgroup I' C W which then necessarily acts freely on /. Hence,
M = U/T is a closed, aspherical manifold. Thus, the previous theorem has
the following corollary.

Corollary 5.14. ([5]) For eachn > 4, there are closed, aspherical n-dimensional
manifolds with universal cover not homeomorphic to R™.

References

[1] E.M. Andreev, Convex polyhedra in Lobacévskii spaces (English trans-
lation), Math. USSR Sbornik. 10 (1970), 413-440.

[2] N. Bourbaki, Lie Groups and Lie Algebras, Chapters 4—6, Springer, New
York, 2002.

[3] G. Bredon, Introduction to Compact Transformation Groups, Academic
Press, New York and London, 1972.

[4] H.S.M. Coxeter, Discrete groups generated by reflections, Ann. of Math.
35 (1934), 588-621.

[5] M.W. Davis, Groups generated by reflections and aspherical manifolds
not covered by Fuclidean space, Ann. of Math. 117 (1983), 293-325.

, The Geometry and Topology of Coxeter Groups, London Math.
Soc. Monograph Series, vol. 32, Princeton Univ. Press, 2007.

[7] R. Geoghegan, Topological Methods in Group Theory, Springer, New
York, 2008.

39



[8] M. Gromov, Hyperbolic groups in Essays in Group Theory, edited by S.
M. Gersten, M.S.R.I. Publ. 8, Springer, New York, 1987, pp. 75-264.

[9] A. Haefliger, Groupoides d’holonomie et classifiants in Structure Trans-
verse des Feullatages, Toulouse 1982, Astérisque 116 (1984), 70-97.

[10] F. Lannér, On complexes with transitive groups of automorphisms,
Comm. Sem. Math. Univ. Lund 11 (1950), 1-71.

[11] R. Roeder, J. Hubbard and W. Dunbar, Andreev’s Theorem on hyper-
bolic polyhedra, Ann. Inst. Fourier, Grenoble 57, 3 (2007), 825-882.

[12] 1. Satake, On a generalization of the notion of manifold, Proc. Nat.
Acad. Sci. USA 42 (1956), 359-363.

[13] W. Thurston, Chapter 13: Orbifolds, part of the Geometry and Topol-
ogy of Three Manifolds, unpublished manuscript, 2002, available at
http://www/msri.org/publications/books/gt3m/.

[14] H. Weyl, Symmetry, Princeton Univ. Press, 1952.

40



