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Abstract. In this expository paper, we survey results on the concept of a hull
of a ring or a module with respect to a specific class of rings or modules. A hull
is a ring or a module which is minimal among essential overrings or essential
overmodules from a specific class of rings or modules, respectively. We begin
with a brief history highlighting various types of hulls of rings and modules.
The general theory of hulls is developed through the investigation of four
problems with respect to various classes of rings including the (quasi-) Baer
and (FI-) extending classes. In the final section, application to C∗-algebras
are provided.
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1. INTRODUCTION

Throughout this paper all rings are associative with unity unless indicated
otherwise and R denotes such a ring. Subrings and overrings preserve the unity of
the base ring. Ideals without the adjective “right” or “left” mean two-sided ideals.
All modules are unital and we use MR (resp., RM) to denote a right (resp., left)
R-module.

If NR is a submodule of MR, then NR is called essential (resp., dense also
called rational) in MR if for all 0 6= x ∈ M , there exists r ∈ R such that 0 6= xr ∈ N
(resp., for x, y ∈ M with y 6= 0, there exists r ∈ R such that xr ∈ N and yr 6= 0).
We use NR ≤ess MR and NR ≤den MR to denote that NR is an essential submodule
of MR and NR is a dense submodule of MR, respectively.

Recall that a right ring of quotients T of R is an overring of R such that RR

is dense in TR. The maximal right (resp., left) ring of quotients of R is denoted
by Q(R) (resp., Q`(R)). We say that T is a right essential overring of R if T is
an overring of R such that RR is essential in TR. The right injective hull of R is
denoted by E(RR) and we use ER to denote End(E(RR)). Unless noted otherwise,
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we work with right sided concepts. However most of the results and concepts have
left sided analogues.

One of the major efforts in Ring Theory has been, for a given ring R, to
find a “well behaved” overring Q in the sense that it has better properties than
R and such that a rich information transfer between R and Q can take place.
Alternatively, given a “well behaved” ring, to find conditions which describe those
subrings for which there is some fruitful transfer of information.

The search for such overrings motivates the notion of a hull (i.e., an overring
that is “close to” the base ring, in some sense, so as to facilitate the transfer of
information). Since we want the overring to have some “desirable properties” the
hull should come from a class of rings possessing these properties.

In 1999, the authors embarked on a research program to develop methods
that enable one to select a specific class K of rings and then to describe all right
essential overrings or all right rings of quotients of a given ring R which lie in K.
Moreover, the transfer of information between the base ring R and the essential
overring in the class K is also investigated.

We have tried to make our definitions flexible enough to encompass the exist-
ing theory, apply to many classes of rings, and shed new light on the relationship
between a base ring and its essential overrings.

Much of the current theory of rings of quotients emphasizes investigating
when a relatively small number of right rings of quotients of R (e.g., its classical
right ring of quotients Qr

c`(R), the symmetric ring of quotients Qs(R), the Martin-
dale right ring of quotients Qm(R), and Q(R)) are in a few standard classes of rings
(e.g., semisimple Artinian, right Artinian, right Noetherian, right self-injective, or
regular).

Some of the deficiencies of this approach are illustrated in the following ex-

amples. First take R =
(
Z Q
0 Z

)
, where Z and Q denote the ring of integers and

the ring of rational numbers, respectively. The ring R is neither right nor left Noe-
therian and its prime radical is nonzero. However, Q(R) is simple Artinian. Next
take R to be a domain which does not satisfy the right Ore condition. Then Q(R)
is a simple right self-injective regular ring which has an infinite set of orthogonal
idempotents and an unbounded nilpotent index. The sharp disparity between R
and Q(R) in the aforementioned examples limits the transfer of information be-
tween R and Q(R). These examples illustrate a need to find overrings of a given
ring that have some weaker versions of the properties traditionally associated with
right rings of quotients such as mentioned above. Furthermore, this need is rein-
forced when one studies classes of rings for which R = Q(R) (e.g., right Kasch
rings). For these classes the theory of right rings of quotients is virtually useless.

Our theory makes no particular restriction on the classes that we consider
for our essential overrings. Further, the properties of the classes determine the exis-
tence and characterizations of the hulls which may not coincide with Qr

c`(R), Qs(R),
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Qm(R), or Q(R). However those classes which are generalizations of the class of
right self-injective rings, regular rings, or classes which are closed under dense or
essential extensions work especially well with our methods.

We recall the definitions of some of the classes that generalize the class of
right self-injective rings or the class of regular right self-injective rings. A ring
R is: right (FI -) extending if every (ideal) right ideal of R is essential in a right
ideal generated by an idempotent; right (quasi-) continuous if R is right extending
and (if AR and BR are direct summands of RR with A ∩ B = 0, then AR ⊕ BR

is a direct summand of RR) R satisfies the (C2) condition, that is, if X and Y
are right ideals of R with XR

∼= YR and XR is a direct summand of RR, then
YR is a direct summand of RR; (quasi-) Baer if the right annihilator of every
(ideal) nonempty subset of R is an idempotent generated right ideal. The classes
of Baer rings, quasi-Baer rings, right extending rings, right FI-extending rings,
right continuous rings, and right quasi-continuous rings are denoted by B, qB, E,
FI, Con, and qCon, respectively (See [11, 58, 63, 76] for B, [13, 15, 16, 17, 20, 23,
39, 73, 76] for qB, [37, 38, 43] for E, [18, 22, 23, 29] for FI, and [49, 64, 65, 84, 85]
for Con and qCon.)

Recall from [14] that a ring R is called right principally quasi-Baer (simply,
right p.q.-Baer) if the right annihilator of a principal right ideal is generated, as a
right ideal, by an idempotent (equivalently, R modulo the right annihilator of each
principal right ideal is projective). Left principally quasi-Baer (simply, left p.q.-
Baer) rings are defined similarly. Rings which are both right and left principally
quasi-Baer are called principally quasi-Baer (simply, p.q.-Baer) rings. We use pqB
to denote the class of right p.q.-Baer rings (see [14] and [30] for more details on
right p.q.-Baer rings). A ring R is called right PP (also called right Rickart) if the
right annihilator of each element is generated, as a right ideal, by an idempotent.
Left PP (also called left Rickart) rings are defined in a similar way. Rings which
are both right and left PP are called PP ring (also called Rickart rings).

The right essential overings, which are in some sense “minimal” with respect
to belonging to a specific class of rings, are important tools in our investigations.
Hence we define several types of ring hulls to accommodate the various notions of
“minimality” among the class of right essential overrings of a given ring. Our search
for such minimal overrings for a given ring R includes the seemingly unexplored
region that lies between Q(R) and E(RR) (e.g., when R = Q(R)). We consider two
basic types (the others are their derivatives). Let S be a right essential overring
of R and K be a specific class of rings. We say that S is a K right ring hull of R
if S is minimal among the right essential overrings of R belonging to the class K
(i.e., whenever T is a subring of S where T is a right essential overring of R in
the class K, then T = S). For the other basic type, we generate S with R and
certain subsets of E(RR) so that S is in K in some “minimal” fashion. This leads
to our concepts of a C pseudo and C ρ pseudo right ring hull of R, where ρ is
an equivalence relation on a certain set of idempotents from ER. These ring hull
concepts are “tool” concepts in that they appear in the proofs of various results
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but do not appear in the statements of the results. Let M be a class of right R-
modules and let MR be a right R-module. The smallest essential extension of MR

(if it exists) in a fixed injective hull of MR, that belongs to M is called the absolute
M hull of MR (see Definition 8.1 for details).

The following four problems provide the driving force for our program.
Problem I. Assume that a ring R and a class K of rings are given.

(i) Determine conditions to ensure the existence of right rings of quotients
and that of right essential overrings of R which are, in some sense, “minimal” with
respect to belonging to the class K.

(ii) Characterize the right rings of quotients and the right essential overrings
of R which are in the class K, possibly by using the “minimal” ones obtained in
part (i).
Problem II. Given a ring R and a class K of rings, determine what information
transfers between R and its right essential overrings in K (especially the right
essential overrings which are, in some sense, “minimal” with respect to belonging
to K).
Problem III. Given classes of rings K and S, determine those T ∈ K such that
Q(T ) ∈ S.
Problem IV. Given a ring R and a class of rings K, let X(R) denote some standard
type of extension of R (e.g., X(R) = R[x], or X(R) = Matn(R), the n-by-n matrix
ring over R, etc.) and let H(R) denote a right essential overring of R which is
“minimal” with respect to belonging to the class K (i.e., a hull). Determine when
H(X(R)) is comparable to X(H(R)).

We recall from [13] that an idempotent e of a ring R is called left (resp., right)
semicentral if xe = exe (resp., ex = exe) for all x ∈ R. Observe that e = e2 ∈ R is
left (resp., right) semicentral if and only if eR (resp., Re) is an ideal of R. We let
S`(R) (resp., Sr(R)) denote the set of all left (resp., right) semicentral idempotents
of R. Note that S`(R) = {0, 1} if and only if Sr(R) = {0, 1}. A ring R is said to
be semicentral reduced if S`(R) = {0, 1} or equivalently Sr(R) = {0, 1}. We use
B(R) to denote the set of all central idempotents of a ring R. It can be shown that
B(R) = S`(R) ∩ Sr(R). If R is a semiprime ring, then B(R) = S`(R) = Sr(R).

For a ring R, we use I(R), U(R), Z(RR), Cen(R), P (R), and J(R) to denote
the idempotents, units, right singular ideal, center, prime radical, and Jacobson
radical of R, respectively. For ring extensions of R, we use RB(Q(R)) and Tn(R)
to denote the idempotent closure (i.e., the subring of Q(R) generated by R and
B(Q(R)) [9]) and the n-by-n upper triangular matrix ring over R, respectively. For
a nonempty subset X of a ring R, the symbols rR(X), `R(X), and 〈X〉R denote
the right annihilator of X in R, the left annihilator of X in R, and the subring
of R generated by X, respectively. Also Q, Z, and Zn denote the field of rational
numbers, the ring of integers, and the ring of integers modulo n, respectively. We
use I E R to denote that I is an ideal of a ring R. Finally recall that a ring R is
called reduced if R has no nonzero nilpotent elements and Abelian if I(R) = B(R).
Throughout the paper, a regular ring means a von Neumann regular ring.
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We let QR = End(ER
E(RR)) (recall that ER = End(E(RR))). Note that

Q(R) = 1 · QR (i.e., the canonical image of QR in E(RR)) and that B(QR) =
B(ER) [61, pp.94-96]. Also, B(Q(R)) = {b(1) | b ∈ B(QR)} [60, p.366]. Thus
RB(ER) = RB(Q(R)). Recall that the extended centroid of R is Cen(Q(R)). If
R is semiprime, then Cen(Q(R)) = Cen(Qm(R)) = Cen(Qs(R)) [60, pp.389-390],
where Qm(R) and Qs(R) denote the Martindale right ring of quotients of R and
the symmetric ring of quotients of R, respectively. (See [2] for more details on
Qm(R).)

2. BRIEF HISTORY OF HULLS

In this section, we summarize the definitions and results that provide the
background for our definitions of various ring hulls. The story begins in 1940
with the famous paper of R. Baer [8]. In that paper, Baer introduced the concept
of an injective module by calling a module MR complete (injective in current
terminology) if to every right ideal I of R and to every R-homomorphism h of
I into MR there is some m ∈ M with h(x) = mx for all x ∈ I. This definition
incorporates the celebrated “Baer Criterion”. Moreover he proved the following
result.

Theorem 2.1. ([8, Baer]) (i) A module MR is injective if and only if whenever
MR ≤ NR then MR is a direct summand of NR.

(ii) Every module is a submodule of an injective module.

Further, Baer indicated that each module can be embedded in some “essen-
tially smallest” injective module. In 1952, Shoda [79] and independently in 1953
Eckmann and Schopf [44] explicitly established the existence of a minimal (up to
isomorphism) injective extension (hull) of a module. Eckmann and Schopf charac-
terized the injective hull of a module as its maximal essential extension.

Johnson and Wong [56], in 1961, defined a module KR to be quasi-injective
if for every R-homomorphism h : S → K, of a submodule S of K, there is an
f ∈ End(KR) such that f(s) = h(s) for all s ∈ S. They proved that every module
MR has a unique (up to isomorphism) quasi-injective hull in the following result.

Theorem 2.2 ([56, Johnson and Wong]) Let E(MR) be an injective hull of a module
MR. Take EM = End(E(MR)), and let EMMR denote the R-submodule of E(MR)
generated by all the h(M) where h ∈ EM . Then the following hold.

(i) EMMR is quasi-injective.
(ii) EMMR is the intersection of all quasi-injective submodules of E(MR)

containing MR.
(iii) MR is quasi-injective if and only if MR = EMMR.

In 1963, J. Kist [59] defined a commutative PP ring R to be a Baer extension
of a commutative PP ring R if the following conditions hold.

(i) R is (isomorphic to) a subring of R;
(ii) C(R) is (isomorphic to) a dense semilattice of C(R), and the Boolean

subalgebra of C(R) is generated by this dense subsemilattice is all of R, where
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C(−) consists of the open-and-closed sets in the hull-kernel topology on the set of
minimal prime ideals of a ring; and

(iii) If x ∈ R, then there exist finitely many idempotents e1, . . . , en in R
which are mutually orthogonal, and whose sum is 1; and elements x1 . . . , xn in R
such that x = e1x1 + · · ·+ enxn.

We note that in [59], Kist uses the terminology “Baer ring” for what are more
commonly called PP rings. Thus a Baer extension may not be a Baer ring in the
sense of Kaplansky [58]. Kist proved the following result.

Theorem 2.3. ([59, Kist]) If R is a commutative semiprime ring, then it has a Baer
extension. Moreover, isomorphic rings have isomorphic Baer extensions.

For a commutative semiprime ring R, in 1968 H. Storrer [82], called the
intersection of all regular subrings of Q(R) containing R the epimorphic hull of
R. By showing this intersection was regular, he showed that every commutative
semiprime ring has a smallest regular ring of quotients.

The Baer hull, namely the ring B(R) in the next theorem, for a commutative
semiprime ring R, was defined by Mewborn [63] in 1971.

Theorem 2.4. ([63, Mewborn]) Let R be a commutative semiprime ring. Let B(R)
be the intersection of all Baer subrings of Q(R) containing R. Then B(R) is a Baer
ring and it is the subring of Q(R) generated by R and I(Q(R)).

In [66], Oshiro used sheaf theoretic methods to construct the Baer hull of a
commutative regular ring.

The absolute π-injective (equivalently, quasi-continuous) hull of a module
was defined by Goel and Jain in 1978 [49]. The following theorem is an immediate
consequence of their results.

Theorem 2.5. ([49, Goel and Jain]) Let V be the subring of EM = End(E(MR))
generated by I(EM ). Then V MR is the unique (up to isomorphism) absolute quasi-
continuous hull of MR.

For any submodule A of a quasi-continuous module M , there exists a direct
summand P = M ∩E(A) of M which contains A as an essential submodule. This
P is called internal quasi-continuous hull of A in M and was shown to be unique
up to isomorphism by Müller and Rizvi [65].

Theorem 2.6. ([65, Müller and Rizvi]) Let M be a quasi-continuous module, A1, A2

submodules of M , and P1, P2 internal hulls of A1 and A2, respectively. If A1
∼= A2,

then P1
∼= P2.

In 1982, Müller and Rizvi [64] defined three types of continuous hulls for
modules as follows.

Definitions 2.7. ([64, Müller and Rizvi]) Let M be a module with an injective hull
E, and let H be a continuous overmodule of M .

(I) H is called a type I continuous hull of M , if M ⊆ X ⊆ H for a continuous
module X implies X = H.



A Theory of Hulls for Rings and Modules 7

(II) H is called a type II continuous hull of M , if for every continuous over-
module X of M , there exists a monomorphism µ : H → X over M .

(III) H is called a type III continuous hull of M (in E), if M ⊆ H ⊆ E, and
if H ⊆ X for every continuous module M ⊆ X ⊆ E.

Observe that a type III continuous hull is uniquely determined as a submodule
of a fixed injective hull. They gave an example of a module which has neither a
type II nor a type III continuous hull. However they proved the following result.

Theorem 2.8. ([64, Müller and Rizvi]) Every cyclic module over a commutative
ring whose singular submodule is uniform, has a type III continuous hull.

Also, in 1982, Hirano, Hongan, and Ohori [54] defined the Baer hull and the
strongly regular hull for a reduced right Utumi ring. Recall that a right nonsingular
ring R is called a right Utumi ring if every non-essential right ideal of R has a
nonzero left annihilator. They defined the strongly regular hull of a reduced right
Utumi ring to be the intersection of all regular subrings of Q(R). Note that their
definition of a strongly regular hull generalizes the epimorphic hull of Storrer [82].

Threorem 2.9. ([54, Hirano, Hongan, and Ohori]) Let R be a reduced right Utumi
ring and let B(R) be the intersection of all the Baer subrings of Q(R) containing
R. Then B(R) is a Baer ring and coincides with the subring of Q(R) generated by
R and B(Q(R)).

This result generalizes Theorem 2.4 to noncommutative rings.

Corollary 2.10. ([54, Hirano, Hongan, and Ohori]) Every reduced PI ring has a
Baer hull and a strongly regular hull.

The idempotent closure of a module was introduced by Beidar and Wisbauer
[9] in 1993. Recall that EMMR is the quasi-injective hull of MR by Theorem 2.2.
The idempotent closure of MR is the submodule of EMMR generated by {e(M) |
e ∈ B(EM )}. For a ring R, we identify the idempotent closure of RR with the
subring of Q(R) generated by R and B(Q(R)) and denote it by RB(Q(R)). Thus
if R is a commutative semiprime ring, then the idempotent closure of R is the
Baer hull of R as already shown by Mewborn in 1971 (Theorem 2.4). Beidar and
Wisbauer indicated that if End(EMMR) is Abelian then the idempotent closure
of MR is π-injective (equivalently, quasi-continuous) hull of MR. In [9] and [10],
they showed that information about prime ideals and various types of regularity
conditions transfer between R and RB(Q(R)).

Theorem 2.11. ([9, Beidar and Wisbaer]) Let R be a semiprime ring. Then the
following hold.

(i) For every prime ideal K of RB(Q(R)), P = K ∩ R is a prime ideal of R
and RB(Q(R))/K = (R + K)/K ∼= R/P .

(ii) For any prime ideal P of R, there exists a prime ideal K of RB(Q(R))
with K ∩R = P (i.e., LO (lying over) holds between R and RB(Q(R))).

Theorem 2.12. ([9, Beidar and Wisbauer]) Let R be a ring. Then R is biregular if
and only if R is semiprime and RB(Q(R)) is biregular.



8 Gary F. Birkenmeier, Jae Keol Park and S. Tariq Rizvi

Theorem 2.13. ([10, Beidar and Wisbauer]) Let R be a ring. Then R is regular
and biregular if and only if RB(Q(R)) is regular and biregular.

Burgess and Raphael call a regular ring with bounded index an almost biregu-
lar ring if and only if for each x ∈ R there is an e ∈ B(R) such that RxRR ≤ess eRR

[34]. Recall that if R is a right nonsingular ring, then Q(R) is a Baer ring. From
[58, p.9] each element of a Baer ring R has a central cover (recall that e ∈ R is
a central cover for r ∈ R if e is the smallest central idempotent in the Boolean
algebra of the central idempotents of R such that er = r). In the following result,
Burgess and Raphael show that every regular ring with bounded index is contained
in a smallest almost biregular right ring of quotients.

Theorem 2.14. ([34, Burgess and Raphael]) Let R be a regular ring of bounded
index. Define R# to be the ring generated by R and the central covers from Q(R)
of all elements of R. Then R# is the unique smallest almost biregular ring among
the regular rings S such that R ⊆ S ⊆ Q(R). Moreover:

(i) If R# ⊆ T ⊆ Q(R) and T is generated as a subring of Q(R) by R and
B(T ), then T is almost biregular; and

(ii) Let A be the sub-Boolean algebra of B(Q(R)) generated by the central
covers of elements of R. Then B(R#) = A.

In 1980, Picavet defined a commutative ring R to be a weak Baer ring if and
only if R is a PP ring (in our terminology), that is, for each a ∈ R there exists
e = e2 ∈ R such that rR(a) = eR [71]. He defined the weak Baer envelope for
a commutative reduced ring to be the subring of Q(R) generated by R ∩ {aq |
a ∈ R and q ∈ Q(R) such that aqa = a}. He showed that the weak Baer envelope
of a commutative reduced ring R is the smallest weak Baer subring of Q(R) that
contains R. Various applications of the weak Baer envelope appear in [72] and [42].

3. DEFINITIONS OF A RING HULL

In this section, we provide several definitions of the concept of a ring hull
to abstract, unify, and encompass the various definitions of particular ring hulls
(e.g., Baer extension, Baer hull, epimorphic hull, strongly regular hull, etc.) given
in Section 2. These definitions are established in the context of intermediate rings
between a base ring R and its injective hull E(RR) to insure some flow of infor-
mation between the base ring R and the overrings under consideration. Moreover,
our definitions are in terms of abstract classes of rings so as to guarantee their
flexibility and versatility.

Henceforth we assume that all right essential overrings of a ring R are con-
tained as right R-modules in a fixed injective hull E(RR) of RR and that all right
rings of quotients of R are subrings of a fixed maximal right ring of quotients Q(R)
of R.

In our next definition we exploit the notion of a right essential overring which
is minimal with respect to belonging to a class K of rings.
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Definition 3.1. ([24, Definition 2.1]) Let K denote a class of rings. For a ring R, let
S be a right essential overring of R and T an overring of R. Consider the following
conditions.

(i) S ∈ K.
(ii) If T ∈ K and T is a subring of S, then T = S.
(iii) If S and T are subrings of a ring V and T ∈ K, then S is a subring of T .
(iv) If T ∈ K and T is a right essential overring of R, then S is a subring of

T .

If S satisfies (i) and (ii), then we say that S is a K right ring hull of R, denoted
by Q̃K(R). If S satisfies (i) and (iii), then we say that S is the K absolute to V
right ring hull of R, denoted by QV

K (R); for the K absolute to Q(R) right ring hull,
we use the notation Q̂K(R). If S satisfies (i) and (iv), then we say that S is the K
absolute right ring hull of R, denoted by QK(R). Observe that if Q(R) = E(RR),
then Q̂K(R) = QK(R). The concept of a K absolute right ring hull was already
implicit in [64] from their definition of a type III continuous (module) hull (see
Definition 2.7).

Moreover, the notions of K absolute to Q(R) right ring hull and K absolute
right ring hull incorporate many of the hull definitions in Section 2 that utilized the
intersection of all right rings of quotients from a certain class of rings (e.g., Baer
hull, epimorphic hull, etc. ) which contain the base ring. This will be illustrated
in the next section.

Now we consider generating a right essential overring in a class K from a base
ring R and some subset of ER. By using equivalence relations, we can effectively
reduce the size of the subsets of ER needed to generate a right essential overring
of R in K.

Definition 3.2. ([24, Definition 2.2]) Let R denote a class of rings and X a class of
subsets of rings such that for each R ∈ R all subsets of ER are contained in X. Let
K be a subclass of R such that there exists an assignment δK : R → X such that
δK(R) ⊆ ER and δK(R)(1) ⊆ R implies R ∈ K, where δK(R)(1) = {h(1) ∈ E(RR) |
h ∈ δK(R)}. Let S be a right essential overring of R and ρ an equivalence relation
on δK(R). Note that there may be distinct assignments for the same R, X, and
K say δ1K and δ2K such that for a given R, δ1K(R) 6= δ2K(R); but δ1K(R)(1) ⊆ R
implies R ∈ K and δ2K(R)(1) ⊆ R implies R ∈ K.

(i) If δK(R)(1) ⊆ S and 〈R ∪ δK(R)(1)〉S ∈ K, then we call 〈R ∪ δK(R)(1)〉S
the δK pseudo right ring hull of R with respect to S and denote it by R(K, δK, S).
If S = R(K, δK, S), then we say that S is a δK pseudo right ring hull of R.

(ii) If δρ
K(R)(1) ⊆ S and 〈R∪ δρ

K(R)(1)〉S ∈ K, then we call 〈R∪ δρ
K(R)(1)〉S a

δK ρ pseudo right ring hull of R with respect to S and denote it by R(K, δK, ρ, S),
where δρ

K(R) is a set of representatives of all equivalence classes of ρ and δρ
K(R)(1) =

{h(1) ∈ E(RR) | h ∈ δρ
K(R)}. If S = R(K, δK, ρ, S), then we say that S is a δK ρ

pseudo right ring hull of R.
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If a δK has been fixed for a class K, then in the above nomenclature we
replace δK (resp., δK ρ) with K (resp., K ρ) (e.g., δK pseudo right ring hull becomes
K pseudo right ring hull) and δK from the notation (e.g., R(K, δK, S) becomes
R(K, S)). Observe that if δK(R)(1) ⊆ Q(R) and S is a right essential overring of
R such that R(K, δK, S) exists, then R(K, δK, S) = R(K, δK, Q(R)).

Throughout the remainder of this paper take R to be the class of all rings
unless indicated otherwise. Some examples illustrating Definition 3.2 are:

(1) K = SI = {right self-injective rings}, δSI(R) = ER.
(2) K = qCon, δqCon(R) = I(ER).
(3) K = {right P-injective rings}, δK(R) = {h ∈ ER | there exist a ∈ R and an

R-homomorphism f : aR → R such that h|aR = f}.
(4) Let R = {right nonsingular rings}, K = B, δB(R) = {e ∈ I(ER) |

there exists ∅ 6= X ⊆ R such that rQ(R)(X) = eQ(R)}.
Also note that Definition 3.2 allows us the flexibility to consider any right

essential overring S of a ring R, such that S ∈ K and S = 〈R ∪ δ(1)〉S , to be a
R(K, δK, ρ, S) where ∅ 6= δ ⊆ δK(R) and δ(1) = {e(1) | e ∈ δ}. To see this, choose
f ∈ δ. Let X = δK(R)\{e | e ∈ δ and e 6= f}. Then {X}∪{{e} | e ∈ δ and e 6= f}
is a partition of δK(R). Let ρ be the equivalence relation induced on δK(R) by this
partition and take δρ

K(R)(1) = δ(1). Then S = R(K, δK, ρ, S).

Observe that the concept of a δK pseudo right ring hull incorporates that
of Goel and Jain [49] for quasi-continuous ring hull (when it exists) by taking
δqCon(R) = I(ER), and that of Mewborn [63] for the Baer hull when R is the class
of commutative semiprime rings by taking δB(R) = I(ER). Also note that several
of the hulls considered in Section 2, are types of hulls indicated in both Definitions
3.1 and 3.2.

Definition 3.3. ([24, Definition 1.6]) Let R be a class of rings, K a subclass of R,
and Y a class containing all sets of subsets of every ring. We say that K is a class
determined by a property on right ideals if there exist an assignment DK : R → Y
such that DK(R) ⊆ {right ideals of R} and a property P such that DK(R) has P
if and only if R ∈ K.

If K is such a class where P is the property that a right ideal is essential in
an idempotent generated right ideal, then we say that K is a D-E class and use C
to designate a D-E class.

Some examples illustrating Definition 3.3 are:
(1) K is the class of right Noetherian rings, DK(R) = {right ideals of R}, and

P is the property that a right ideal is finitely generated;
(2) K is the class of regular rings, DK(R) = {principal right ideals of R},

and P is the property that a right ideal is generated by an idempotent as a right
ideal;

(3) K = B, DB(R) = {rR(X) | ∅ 6= X ⊆ R}, and P is the property that a
right ideal is generated by an idempotent as a right ideal;
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(4) C = E (resp., C = FI, C = eB), DE(R) = {I | IR ≤ RR} (resp.,
DFI(R) = {I | I E R}, DeB(R) = {rR(X) | ∅ 6= X ⊆ R}).

Our primary focus in this paper is on classes of rings which are either D-E
classes or subclasses of D-E. Note that any D-E class always contains the class of
right extending (and hence all right self-injective) rings. Moreover, many known
classes of rings are subclasses of a D-E class

Theorem 3.4 illustrates the generality achieved by working in the context
of a D-E class, while Corollary 3.5 demonstrates its application to concrete D-E
classes.

Theorem 3.4. ([24, Theorem 1.7]) Assume that C is a D-E class of rings.
(i) Let T be a right essential overring of R. Suppose that for each Y ∈ DC(T )

there exist XR ≤ RR and e ∈ I(T ) such that XR ≤ess eRR, XR ≤ess YR, and
eY ⊆ Y . Then T ∈ C.

(ii) Let T be a right ring of quotients of R and R ∈ C. If Y ∈ DC(T ) implies
Y ∩R ∈ DC(R), then T ∈ C.

Classes of rings which are closed with respect to right rings of quotients (resp.,
right essential overrings) work especially well with a hull concept in that once one
finds a hull from such a class then one has that all right rings of quotients (resp.,
right essential overrings) of that hull are also in the class. Among our final results
of this section, we give several examples of classes of rings that are closed with
respect to right rings of quotients or right essential overrings.

Recall the following definitions:
1. A ring R is called right finitely Σ-extending if any finitely generated right

free R-module is extending [43].
2. A ring R is said to be right uniform extending if each uniform right ideal

of R is essential as a right R-module in a direct summand of RR [43].
3. A ring R is said to be right C11 if every right ideal of R has a complement

which is a direct summand [80].
4. A ring R is called right G-extending if for each right ideal Y of R there is

a direct summand D of RR with (Y ∩D)R ≤ess YR and (Y ∩D)R ≤ess DR [1].
5. A ring R is called ideal intrinsic over its center, IIC, if every nonzero ideal

of R has nonzero intersection with the center of R [6].

As a consequence of Theorem 3.4, the next corollary exhibits the transfer of
the right (FI-) extending property from R to its (right essential overrings) right
rings of quotients. Also note that whenever a property is carried from R to its
(right essential overrings) right rings of quotients, then a Zorn’s lemma argument
can be used to show that R has a (right essential overring) right ring of quotients
which is maximal with respect to having that property.

Corollary 3.5. ([24, Corollary 1.8]) (i) Any right essential overring of a right FI-
extending ring is right FI-extending.

(ii) Any right ring of quotients of a right extending ring is right extending.
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(iii) Any right ring of quotients of a right finitely Σ-extending ring is right
finitely Σ-extending.

(iv) Any right ring of quotients of a right uniform extending ring is right
uniform extending.

Theorem 3.6. (i) ([31, Theorem 3.5]) If R is a right C11-ring and T is a right
essential overring of R, then T is a right C11-ring.

(ii) ([1]) If R is a right G-extending ring and T is a right essential overring
of R, then T is a right G-extending ring.

(iii) If R is an IIC-ring and T is a right essential overring with Cen(R) ⊆
Cen(T ) (e.g., T = Q(R)), then T is an IIC-ring.

We say that a ring R is right essentially Baer (resp., right essentially quasi-
Baer ) if the right annihilator of any nonempty subset (resp., ideal) of R is essential
in a right ideal generated by an idempotent ([24, Definition 1.1]). We use eB
(resp., eqB) to denote the class of right essentially Baer (resp., right essentially
quasi-Baer) rings.

Note that the classes B and qB are not C classes, but they are contained in the
C classes eB and eqB, respectively. It can be seen that eB (resp., eqB) properly
contains E (resp., FI) and B (resp., qB): If S = A⊕B, where A is a domain which
is not right Ore and B is a prime ring with Z(BB) 6= 0 [33, Example 4.4], then S
is neither right extending nor Baer. But S ∈ eB. Next take

R =
(
Z4 2Z4

0 Z4

)
.

Then the ring R is neither right FI-extending nor quasi-Baer. However R ∈ eqB.

The following two results provide connections between the classes FI, B, qB,

eB, and eqB.

Proposition 3.7. ([24, Proposition 1.2]) Assume that R is a right nonsingular ring.
(i) If R ∈ eB (resp., R ∈ eqB), then R ∈ B (resp., R ∈ qB).
(ii) If R ∈ FI, then R ∈ qB.

Proposition 3.8. ([12, Lemma 2.2] and [18, Theorem 4.7]) Assume that R is a
semiprime ring. Then the following are equivalent.

(i) R ∈ FI.
(ii) For any I E R, there is e ∈ B(R) such that IR ≤ess eRR.
(iii) R ∈ qB.
(iv) R ∈ eqB.

Theorem 3.9. ([24, Theorem 1.9]) (i) Let T be a right and left essential overring
of R. If R ∈ qB, then T ∈ qB.

(ii) Let T be a right essential overring of R which is also a left ring of quotients
of R. If R ∈ B (resp., R ∈ eqB), then T ∈ B (resp., T ∈ eqB).

(iii) Let T be a right and left ring of quotients of R. If R ∈ eB, then T ∈ eB.
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The following corollary generalizes the well known result that a right ring of
quotients of a Prüfer domain is a Prüfer domain [48, pp.321-323].

Corollary 3.10. ([24, Corollary 1.10]) Let T be a right and left ring of quotients of
R. If R is right semihereditary and every finitely generated free right R-module
satisfies the ACC on direct summands, then T is right and left semihereditary.

4. EXISTENCE AND UNIQUENESS OF RING HULLS

In this section, we not only explicitly show how our theory encompasses the
particular hulls indicated in Section 2 but how it can be used in a much wider
context by applying the theory to many classes of rings not considered in Section
2. Also our results will often show an interplay between the ring hull concept
(Definition 3.1) and the pseudo ring hull concept (Definition 3.2). These results
also provide answers to Problem I of Section 1.

Our first result illustrates Definitions 3.1 and 3.2 by taking advantage of
several well known facts to provide ring hulls for the classes of semisimple Artinian
rings, right self-injective rings, and right duo rings.

Proposition 4.1. ([24, Proposition 2.3]) (i) Let A be the class of semisimple Artinian
rings and R a right nonsingular ring with finite right uniform dimension. Then
QA(R) = Q(R).

(ii) If Q(R) = E(RR), then QSI(R) = Q(R) = R(SI, δSI, Q(R)), where SI is
the class of right self-injective rings.

(iii) If Q(R) = E(RR), then QqCon(R) = 〈R∪ I(Q(R))〉Q(R) = R(qCon, δqCon,

Q(R)).
(iv) If R is a commutative semiprime ring, then QB(R) = 〈R∪I(Q(R))〉Q(R) =

QqCon(R).
(v) Assume that R has finite right uniform dimension and S is a right ring

of quotients of R. Then Matn(S) = Q̃B(Matn(R)) for all positive integers n if and
only if S is a right and left semihereditary right ring hull of R.

(vi) If R is a right Ore domain, then R has a right duo absolute right ring
hull.

For Proposition 4.1(vi), the next example is that of a right Ore domain R
which is not right duo, but it has a right duo absolute right ring hull properly
between R and Q(R).

Example 4.2. ([24, Example 2.4]) Take A = Z+ Zi + Zj + Zk, the integer quater-
nions. Let P = 5Z and ẐP the P -adic completion of Z. Also let

R = ẐP + ẐP i + ẐP j + ẐP k.

Then R is a right Ore domain. Note that R is not right duo because (3 + i)R is
not a left ideal. Take

λ = (1/2)(1 + i + j + k) ∈ Q(A) = Q+Qi +Qj +Qk.
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Let S = A + λA. Then by [74, p.131, Exercise 2] S is a maximal Z-order in
Q(A). Thus the P -adic completion ŜP = ẐP ⊗Z S of S is a maximal ẐP -order in
Q(R) = Q(ẐP ) ⊗Q Q(A) by [74, p.134, Corollary 11.6]. Since ẐP is a complete
discrete valuation ring and Q(R) is a division ring, ŜP is the unique maximal
ẐP -order in Q(R), thus ŜP is right duo by [74, p.139, Theorem 13.2]. So ŜP is
a proper intermediate right duo ring between R and Q(R). Thus, by Proposition
4.1(vi), there exists a right duo absolute right ring hull properly between R and
Q(R).

Let U denote the class {R | R ∩ U(Q(R)) = U(R)} of rings, where U(−) is
the set of units of a ring. Recall from [84] and [85] that R is called directly finite
if every one-sided inverse of an element of R is two-sided. Note that if R has finite
right uniform dimension, or if R satisfies the condition that rR(x) = 0 implies
`R(x) = 0, or if R is Abelian, then R is directly finite.

For our next result, let i < j be ordinal numbers. We define R1 = 〈R ∪ {q ∈
U(Q(R)) | q−1 ∈ R}〉Q(R), Rj = 〈Ri∪{q ∈ U(Q(R)) | q−1 ∈ Ri}〉Q(R) for j = i+1,
and Rj =

⋃
i<j Ri for j a limit ordinal. The following theorem characterizes Qr

c`(R)
as a U absolute to Q(R) right ring hull.

Theorem 4.3. ([24, Theorem 2.7]) (i) Q̂U(R) exists and Q̂U(R) = Rj for any j with
|j| > |Q(R)|.

(ii) Assume that T is a directly finite right essential overring of R and TT

satisfies (C2). Then Q̂U(R) is a subring of T .
(iii) If R is a right Ore ring, then Q̂U(R) = Qr

c`(R).

Note that from Theorem 4.3, Q̂U(R) may be thought of as a generalization
of Qr

c`(R) since Q̂U(R) = Qr
c`(R) whenever Qr

c`(R) exists. But Q̂U(R) has the
advantage in that it always exists which is not the case, in general, for Qr

c`(R).
The next results are inspired by the work on continuous module hulls in [64]

or [75].

Proposition 4.4. ([24, Proposition 2.9]) Assume that R is a right Ore ring such that
rR(x) = 0 implies `R(x) = 0 for x ∈ R. If Qr

c`(R) is Abelian and right extending,
then Q̂Con(R) = Qr

c`(R).

Corollary 4.5. ([24, Corollary 2.10]) Let R be a right Ore ring. If any one of the
following conditions is satisfied, then Q̂Con(R) = Qr

c`(R).
(i) R is Abelian, right extending, and rR(x) = 0 implies `R(x) = 0.
(ii) R is right uniform and rR(x) = 0 implies `R(x) = 0.
(iii) R is Abelian, right extending, and Z(RR) = 0.

The following theorem is an adaptation of [75, Theorem 4.25].

Theorem 4.6. ([24, Theorem 2.11]) Let R be a right nonsingular ring and S the
intersection of all right continuous right rings of quotients of R. Then QCon(R) = S.

Theorem 4.7. ([24, Theorem 2.12]) Let R be a ring such that Q(R) is Abelian.
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(i) Q(R) is a right extending ring if and only if Q̂E(R) = Q̂qCon(R) =
RB(Q(R)), where qCon is the class of right quasi-continuous rings.

(ii) Assume that R is a right Ore ring such that rR(x) = 0 implies `R(x) = 0
for x ∈ R and Z(RR) has finite right uniform dimension. Then Q(R) ∈ E if and
only if Q̂Con(R) exists and Q̂Con(R) = H1 ⊕H2 (ring direct sum), where H1 is a
right continuous strongly regular ring and H2 is a direct sum of right continuous
local rings.

For commutative rings, the preceding results yield the following corollary
which is related to [64, Corollaries 3 and 7], in particular Corollary 4.8 is related
to Theorem 2.6.

Corollary 4.8. ([24, Corollary 2.13]) Let R be a commutative ring.
(i) If R or Qr

c`(R) is extending, then Q̂Con(R) = Qr
c`(R).

(ii) If R is uniform, then QCon(R) = Qr
c`(R) and is also a local ring.

(iii) If Z(RR) = 0, then QCon(R) =
⋂ {T | B(Q(R)) ⊆ T and T is a regular

right ring of quotients of R}.
(iv) Assume that Z(RR) has finite uniform dimension. Then Q(R) is right

extending if and only if Q̂Con(R) exists and Q̂Con(R) = H1⊕H2 (ring direct sum),
where H1 is a continuous regular ring and H2 is a direct sum of continuous local
rings.

We note that in Corollary 4.8(i), the hypothesis “R or Qr
c`(R) is extending” is

not superfluous. Let T be a countably infinite direct product of copies of a field F .
Take R = 〈⊕∞

i=1 Fi ∪ {1}〉T . Then Qr
c`(R) is the subring of T whose elements are

eventaully constant. It can be seen that neither R nor Qr
c`(R) is extending. Hence

Qr
c`(R) is not continuous. Also, in general, R may not satisfy the (C2) property

(e.g., take F = Q); but Qr
c`(R) does satisfy the (C2) property since it is regular.

To develop the theory of pseudo hulls for D-E classes C, we define (and fix)

δC(R) = {e ∈ I(End (E(RR)) | XR ≤ess eE(RR) for some X ∈ DC(R)}.
To find a right essential overring S of R such that S ∈ C, one might naturally

look for a right essential overring T of R with δC(R)(1) ⊆ T . Then take S =
〈R ∪ δC(R)(1)〉T . In order to obtain a right essential overring with some hull-like
behavior, we need to determine subsets Ω of δC(R)(1) for which 〈R ∪ Ω〉T ∈ C in
some minimal sense. Moreover, to facilitate the transfer of information between R
and 〈R∪Ω〉T , one would want to include in Ω enough of δC(R)(1) so that for all (or
almost all) X ∈ DC(R) there is e ∈ δC(R) with XR ≤ess e(1) ·〈R∪Ω〉T and e(1) ∈
Ω. To accomplish this, we use equivalence relations on δC(R).

Since we have fixed the δC assignment for all D-E classes C, we will use the
terminology C (resp., C ρ) pseudo right ring hull for δC pseudo right ring hull and
use R(C, S) for R(C, δC, S) and R(C, ρ, S) for R(C, δC, ρ, S).

In the next few results, we show that for the concept of idempotent closure
[9], we can find a D-E class of rings IC such that RB(Q(R)) becomes an IC absolute
to Q(R) right ring hull and a δIC pseudo right ring hull, where δIC(R) = B(ER).
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Definition 4.9. ([26, Definition 2.1]) (i) For a ring R, let DIC(R) = {I E R |
I ∩ `R(I) = 0 and `R(I) ∩ `R(`R(I)) = 0}.

(ii) Let IC denote the class of rings R such that for each I ∈ DIC(R) there
exists some e ∈ I(R) such that IR ≤ess eRR. We call the class IC the idempotent
closure class.

The set DIC(R) of ideals of R was studied by Johnson and denoted by F
′
(R),

who showed that if Z(RR) = 0, then DIC(R) = {I E R | I∩`R(I) = 0} [55, p.538].
Remark 4.10. ([26, Remark 2.2]) (i) R is semiprime if and only if DIC(R) is the set
of all ideals of R.

(ii) Let e ∈ I(R) with eR E R. Then eR ∈ DIC(R) if and only if e ∈ B(R).
(iii) For a prime ideal P of R, P ∈ DIC(R) if and only if P ∩ `R(P ) = 0.
(iv) Let P be a prime ideal of R and P ∈ DIC(R). If I E R such that P ⊆ I,

then I ∈ DIC(R).
(v) If I E R such that `R(I) ∩ P (R) = 0, then I ∈ DIC(R).
(vi) If Z(RR) = 0 and I E R such that I ∩ P (R) = 0, then I ∈ DIC(R).

Proposition 4.11. ([26, Proposition 2.4]) Let R be a ring. Then DIC(R) = {I E R |
there exists J E R with I ∩ J = 0 and (I ⊕ J)R ≤den RR}.
Theorem 4.12. ([26, Theorem 2.11]) (i) DIC(R) is a sublattice of the lattice of ideals
of R.

(ii) If DIC(R) is a complete sublattice of the lattice of ideals of R, then
B(Q(R)) is a complete Boolean algebra.

(iii) If R is a ring with unity which is right and left FI-extending, then DIC(R)
is a complete sublattice of the lattice of ideals of R.

The following result answers the question: Which ideals of a ring R are dense
in ring direct summands of Q(R)?
Theorem 4.13. ([26, Theorem 2.10]) Let I E R. Then IR ≤den eQ(R)R for some
unique e ∈ B(Q(R)) if and only if I ∈ DIC(R).

The next result indicates that RB(Q(R)) is a ring hull according to Defini-
tions 3.1 and 3.2 for the IC class of rings. Thus these hulls exist for every ring R.
We observe that δIC(R) = B(ER) and δIC(R)(1) = B(Q(R)).
Theorem 4.14. ([26, Theorem 2.7]) (i) Let T be a right ring of quotients of R. Then
T ∈ IC if and only if B(Q(R)) ⊆ T .

(ii) R ∈ IC if and only if B(Q(R)) ⊆ R.
(iii) RB(Q(R)) = Q̂IC(R) = R(IC, δIC, Q(R)).

Our next result is a structure theorem for the idempotent closure RB(Q(R))
when R is a semiprime ring with only finitely many minimal prime ideals. It is
used for a characterization of C∗-algebras with only finitely many minimal prime
ideals in Section 9. Many well known finiteness conditions on a ring imply that it
has only finitely many minimal prime ideals (see [60, p.336, Theorem 11.43]).
Theorem 4.15. ([26, Theorem 3.15]) The following are equivalent for a ring R.

(i) R is semiprime and has exactly n minimal prime ideals.



A Theory of Hulls for Rings and Modules 17

(ii) Q̂IC(R) = RB(Q(R)) is a direct sum of n prime rings.
(iii) Q̂IC(R) = RB(Q(R)) ∼= R/P1 ⊕ · · · ⊕R/Pn, where each Pi is a minimal

prime ideal of R.

The following example illustrates Definitions 3.1 and 3.2. In [24] we develop,
in detail, the general consequences of Definitions 3.1 and 3.2. The independence
of these definitions is beneficial in the sense that they provide distinct tools for
analyzing interconnections between a ring and its right essential overrings relative
to a class K. Also the following example shows that there is a quasi-Baer ring R
(hence R itself is a quasi-Baer right ring hull of R), but R does not have a unique
right FI-extending right ring hull.

Example 4.16. ([28, Example 1.7]) Let F be a field. Consider the following subrings
of Mat3(F ):

R =








a 0 x
0 a y
0 0 b


∣∣ a, b, x, y ∈ F



 , H1 =




F 0 F
0 F F
0 0 F


 ,

H2 =








a + b a x
0 b y
0 0 c


 ∣∣ a, b, c, x, y ∈ F



 ,

and

H3 =








a + b a x
a b y
0 0 c


 ∣∣ a, b, c, x, y ∈ F



 .

Then the following facts are illustrated in [24, Example 3.19].
(i) Z(RR) = 0 and R is quasi-Baer, but R is not right FI-extending.
(ii) H1,H2, and H3 are right FI-extending right ring hulls of R with H1

∼= H2,
but H1 6∼= H3 for appropriate choices of F .

(iii) H1 is not a right FI-extending pseudo right ring hull of R.

(v) R(FI, Q(R)) =




F F F
F F F
0 0 F


.

The following example also illustrates Definition 3.1. In fact, there is a ring
R which has mutually isomorphic right FI-extending right ring hulls, but R has
no quasi-Baer right essential overring.

Recall from [25, p.30] that a ring R is right Osofsky compatible if E(RR) has
a ring multiplication that extends its R-module scalar multiplication (i.e., E(RR)
has a ring structure that is compatible with its R-module scalar multiplication).

Example 4.17. ([28, Example 1.8]) Assume that n = pm, where p is a prime integer
and m ≥ 2. Let A = Zn, the ring of integers modulo n and let

R =
(

A A/J(A)
0 A/J(A)

)
.
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Then Q(R) = R by [19]. Further, from [19, Theorem 1]

E =
(

A⊕A/J(A) A/J(A)
A/J(A) A/J(A)

)

is an injective hull of RR, where the addition is componentwise and the R-module
scalar multiplication is given by

(
s + a b

c d

) (
t x
0 y

)
=

(
st + at sx + ax + by

ct cx + dy

)
,

where a, x ∈ A/J(A), etc. denote canonical images of a, x ∈ A.
It is shown in [19, Theorem 1] that the ring R is right Osofsky compatible.

Let Soc(A) denote the socle of A. By a direct computation using the associativity
of multiplication and the distributivity of multiplication over addition, we get
that {(E, +, ◦(α,β)) | α, β ∈ Soc(A)} is the set of all compatible ring structures
on E(RR), where the addition is componentwise and the multiplication ◦(α,β) is
defined by (

s1 + a1 b1

c1 d1

)
◦(α,β)

(
s2 + a2 b2

c2 d2

)
=

(
x y
z w

)
,

where

x = s1s2 + αa1a2 + βc1a2 + (−β)s1c2 + αb1c2 + βd1c2 + a1a2 + a1s2 + s1a2 + b1c2,

y = a1b2 + s1b2 + b1d2, z = c1a2 + c1s2 + d1c2, and w = c1b2 + d1d2.

Thus E has exactly |Soc(A)|2 = p2 ring structures extending the R-module scalar
multiplication (i.e., compatible ring structures). Define θ(α,β) : (E, +, ◦(α,β)) →
(E, +, ◦(0,0)) by

θ(α,β)

[(
s + a b

c d

)]
=

(
s + a + (−α)a + (−β)c b

c d

)
.

Then θ(α,β) is a ring isomorphism. Hence (E, +, ◦(α,β)) are all isomorphic. Let

e =
(

1− 1 0
0 0

)
∈ (E, +, ◦(0,0)) and f =

(
1 0
0 1

)
∈ (E, +, ◦(0,0)). Then e and

f are central idempotents in (E, +, ◦(0,0)) and e + f = 1. Thus (E, +, ◦(0,0)) ∼=
e(E, +, ◦(0,0))⊕ f(E, +, ◦(0,0)) ∼= A⊕Mat2(A/J(A)). Hence (E, +, ◦(0,0)) is a QF-
ring, and so all (E, +, ◦(α,β)) are QF-rings for α, β ∈ Soc(A). Let

T =
(

A⊕A/J(A) A/J(A)
0 A/J(A)

)
.

Then T is the only proper R-submodule of E with R ⊆ T ⊆ E (and R 6= T 6=
E) which can have a ring structure that is compatible with its R-module scalar
multiplication. Also, {(T, +, ◦(α,0)) | α ∈ Soc(A)} is the set of all compatible ring
structures on T , where the multiplication ◦(α,0) is the restriction of ◦(α,β) on E
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to T for β ∈ Soc(A). Hence (T, +, ◦(α,0)) is a subring of (E, +, ◦(α,β)) for each
β ∈ Soc(A). Define λ(α,0) : (T, +, ◦(α,0)) → (T, +, ◦(0,0)) by

λ(α,0)

[(
s + a b

0 d

)]
=

(
s + (−α)a + a b

0 d

)
.

Then we see that λ(α,0) is a ring isomorphism.
We note that all right essential overrings of R are {(E, +, ◦(α,β)) | α, β ∈

Soc(A)}, {(T,+, ◦(α,0)) | α ∈ Soc(A)}, and R itself.

Take g =
(

1 0
0 0

)
∈ R. Then g = g2 ∈ R and gRg ∼= A. Note that A is not

quasi-Baer. Thus R is not quasi-Baer by [39, Lemma 2] or [23, Theorem 3.2]. Next

observe that e =
(

1− 1 0
0 0

)
∈ T . Then e(T,+, ◦(0,0))e ∼= A, which is not quasi-

Baer. Thus (T, +, ◦(0,0)) is not quasi-Baer by [39, Lemma 2] or [23, Theorem 3.2].
So all (T, +, ◦(α,0)) with α ∈ Soc(A) cannot be quasi-Baer since (T,+, ◦(α,0)) ∼=
(T, +, ◦(0,0)). Further, e(E, +, ◦(0,0))e ∼= A is not quasi-Baer, so (E, +, ◦(0,0)) is
not quasi-Baer again from [39, Lemma 2] or [23, Theorem 3.2]. Thus (E, +, ◦(α,β))
cannot be quasi-Baer for α, β ∈ Soc(A) since (E, +, ◦(α,β)) ∼= (E, +, ◦(0,0)). Hence
R has no quasi-Baer right essential overring.

Finally, let I =
(

J(A) 0
0 0

)
E R. Then there is no h = h2 ∈ R with IR ≤ess

hRR. Hence R is not right FI-extending. Note that f =
(

1 0
0 1

)
∈ T . Thus

(T, +, ◦(0,0)) = e(T, +, ◦(0,0)) ⊕ f(T, +, ◦(0,0)) ∼= A ⊕ T2(A/J(A)), where T2(−)
is the 2-by-2 upper triangular matrix ring over a ring. From [18, Theorem 1.3
and Corollary 2.5], (T, +, ◦(0,0)) is right FI-extending. Thus all (T, +, ◦(α,0)) with
α ∈ Soc(A) are right FI-extending. Therefore the (T, +, ◦(α,0)) with α ∈ Soc(A)
are right FI-extending right ring hulls of R.

In Example 4.16, we have seen that, in general, C right ring hulls and C pseudo
right ring hulls are distinct and may not be unique (when they exist) even if the
ring is right nonsingular. Also in Example 4.17, there is a ring where all right
FI-extending ring hulls are mutually isomorphic, but it does not have a quasi-Baer
right ring hull. However, the semiprime condition on the ring rescues us from this
somewhat chaotic situation, for the classes C = FI or C = eqB. In the following
theorem, we establish the existence and uniqueness of quasi-Baer and right FI-
extending right ring hulls of a semiprime ring. This result indicates the ubiquity
of the right FI-extending and quasi-Baer ring hulls by showing that every nonzero
ring R has a nontrivial homomorphic image, R/P (R), which has each of these hulls.
Mewborn [63] (see Theorem 2.4) showed the existence of a Baer (absolute) hull
for a commutative semiprime ring. Our next theorem also generalizes Mewborn’s
result since a commutative quasi-Baer ring is a Baer ring.
Theorem 4.18. ([28, Theorem 3.3]) Let R be a semiprime ring. Then:

(i) Q̂FI(R) = RB(Q(R)) = R(FI, Q(R)).
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(ii) Q̂qB(R) = Q̂eqB(R) = RB(Q(R)) = R(eqB, Q(R)).
(iii) If R is right Osofsky compatible, then RB(Q(R)) = QFI(R) = QqB(R) =

QeqB(R).

Corollary 4.19. ([28, Corollary 3.16]) Let R be a semiprime ring and T a right ring
of quotients of R. Then T is quasi-Baer (hence right FI-extending) if and only if
B(Q(R)) ⊆ T .

Our first corollary to Theorem 4.18 generalizes both the result of Mewborn,
Theorem 2.4, and the result of Hirano, Hongan, and Ohori, Theorem 2.8.

Corollary 4.20. (see [28, Theorem 3.8]) If R is a reduced ring, then QB(R) =
RB(Q(R)) (i.e., R has a Baer hull).

Corollary 4.21. ([28, Corollary 3.17]) (i) If R is a semiprime ring, then the central
closure of R, the normal closure of R, Qm(R), Qs(R), and Q(R) are all quasi-Baer
and right FI-extending.

(ii) Assume that Q(R) is semiprime. Then Q(R) is quasi-Baer and right FI-
extending. Also there exists a right essential overring of R containing Q(R) which
is maximal with respect to being quasi-Baer (or right FI-extending).

In [47], Ferrero has shown that Qs(R) ∈ qB for a semiprime ring R. There is
a semiprime ring R for which neither Qm(R) nor Qs(R) is Baer. In fact, there is
a simple ring R given by Zalesski and Neroslavskii [50] which is not a domain and
0, 1 are its only idempotents. Then Qm(R) = R (and hence Qs(R) = R). In this
case, Qm(R) is not a Baer ring.

In [67] Osofsky poses the question: If E(RR) has a ring multiplication which
extends its right R-module scalar multiplication, must E(RR) be a right self-
injective ring? Example 4.23 below shows that this is not true in general. We
can, however, show that the ring E(RR) does satisfy the right FI-extending prop-
erty - a generalization of right self-injectivity, for the case when the ring R is right
FI-extending or when Q(R) is semiprime.

Corollary 4.22. ([28, Corollary 3.18]) Let R be a right Osofsky compatible ring. If
R has a right FI-extending right essential overring which is a subring of E(RR),
then E(RR) is a right FI-extending ring. In particular, if Q(R) is semiprime, then
E(RR) is a right FI-extending ring.

The following example, due to Camillo, Herzog, and Nielsen [36] illustrates
Corollary 4.22. In fact, in the following example, there exists a right Osofsky
compatible ring R which is right extending, but the compatible ring structure on
E(RR) is not right self-injective. However, by Corollary 4.22, the compatible ring
structure on E(RR) is right FI-extending.

Example 4.23. ([28, Example 3.19]) Let R{X1, X2, . . . } be the free algebra over
the field R of real numbers with indeterminates X1, X2, . . . . Put

R = R{X1, X2, . . . }/〈XiXj − δij X2
1 〉,
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where 〈XiXj − δij X2
1 〉 is the ideal of R{X1, X2, . . . } generated by XiXj − δij X2

1

with i, j = 1, 2, . . . and δij the Kronecker delta. We denote the canonical image of
Xi by xi in R. Set V = Rx1⊕Rx2⊕ · · · , P = Rx2

1 and let the bilinear form on V
be given by B(xi, xj) = δij . Then B is non-degenerate and symmetric. Hence we
see that

R =








k v p
0 k v
0 0 k


 ∣∣ k ∈ R, v ∈ V, and p ∈ P



 ,

where the addition is componentwise and the multiplication is defined by


k1 v1 p1

0 k1 v1

0 0 k1







k2 v2 p2

0 k2 v2

0 0 k2


 =




k1k2 k1v2 + k2v1 k1p2 + k2p1 + B(v1, v2)x2
1

0 k1k2 k1v2 + k2v1

0 0 k1k2


 .

Let ER = [HomR(RR,RR)]R. Then it is shown in [23] that ER is an injective
hull of RR. Further, ER has a compatible ring structure with its R-module scalar
multiplication, but it is not right self-injective. Note that R is a commutative local
ring. Also 


0 0 P
0 0 0
0 0 0




is the smallest nonzero ideal of R and it is essential in R. Hence R is uniform,
so it is extending. Thus by Corollary 4.22, the compatible ring structure on the
injective hull ER is right FI-extending.

The following example provides a ring R which is neither semiprime, right
(nor left) nonsingular, right (nor left) FI-extending, nor quasi-Baer. However, we
have that QFI(R) = RB(Q(R)). Thus, even without the semiprime condition, a
ring can have a natural unique FI-extending absolute right ring hull. Recall from
[22] that a ring R is right strongly FI-extending if for each I E R there is e = e2 ∈ R
such that IR ≤ess eRR and eR E R.
Example 4.24. Let A be a QF-ring with J(A) 6= 0. Assume that A is right strongly
FI-extending, and A has nontrivial central idempotents while the subring of A
generated by 1A contains no nontrivial idempotents (e.g., A = Q⊕Mat2(Z4)). Let
1∏∞

i=1 Ai
denote the unity of

∏∞
i=1 Ai, where Ai = A. Take R to be the subring

of
∏∞

i=1 Ai generated by 1∏∞
i=1 Ai

and
⊕∞

i=1 Ai. Observe that Q(R) =
∏∞

i=1 Ai =
E(RR) by [85, 2.1]. Now R has the following properties:

(i) R is neither semiprime nor right FI-extending.
(ii) RB(Q(R)) = R(FI, Q(R)) = QFI(R).
(iii) RB(Q(R)) is neither right extending nor quasi-Baer.
Let c be a nontrivial idempotent of A. Let πi and κi denote the i-th projection

and injection , respectively, of the direct product. Let K be the ideal of R generated
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by {κi(c) | 1 ≤ i < ∞}. Then there exists no b = b2 ∈ R such that KR ≤ess bRR.
Thus R is not right FI-extending.

Now let I E R. Then πi(I) E Ai. By [60, p.421, Exercise 16], there exists
ei ∈ B(Ai) such that πi(I)Ai ≤ess eiAiAi

, since Ai is right strongly FI-extending
by assumption. Let e ∈ Q(R) such that πi(e) = ei. Then

IR ≤ess eQ(R)R and e ∈ B(Q(R)).

Hence B(ER) = δFI(R). Let S = 〈R∪ δFI(R)(1)〉Q(R) = RB(Q(R)). Then DFI(S →
R) holds (see [24, p.638]). By [24, Lemma 2.19 and Corollary 2.18], S = R(FI, Q(R)).

Next we show that S = QFI(R). Let T be a right FI-extending right ring of
quotients of R. Take e ∈ B(Q(R)) = δFI(R)(1). Then eQ(R) ∩ T E T . Since T
is right FI-extending, there is f = f2 ∈ T such that (eQ(R) ∩ T )T ≤ess fTT . So
(eQ(R) ∩ T )R ≤ess fTR from [24, Lemma 1.4]. Since fTR ≤ess fQ(R)R, (eQ(R) ∩
T )R ≤ess fQ(R)R. Hence (eQ(R) ∩ R)R ≤ess fQ(R)R. Also (eQ(R) ∩ R)R ≤ess

eQ(R)R. Since e ∈ B(Q(R)), fQ(R) ∩ eQ(R) = efQ(R) and ef = (ef)2. Thus
fQ(R) = eQ(R), so e = f ∈ T . Therefore B(Q(R)) ⊆ T . Hence S is a subring of
T . Consequently, S is the right FI-extending absolute right ring hull of R.

To see that S, in general, is not right extending, take A = Q⊕Mat2(Z4) and
let V be a right ideal of S generated by

{
κi

[(
0,

(
1 0
0 0

))]
| 1 ≤ i < ∞

}
.

Then V is not right essential in a right direct summand of SS .
Since Q(R) is a QF-ring, Q(R) = Q`(R) = E(RR). By [60, p.421, Exercise

16], S`(Q(R)) = B(Q(R)). Note that Q(R) is not semiprime, so Q(R) cannot be
right p.q.-Baer from [14, Proposition 1.7]. By Theorem 3.9(i), RB(Q(R)) is not
quasi-Baer.

After giving some preliminary results on the class pqB of right p.q.-Baer
rings, we describe ring hulls for this and related classes over semiprime rings.

Proposition 4.25. (i) ([15, Proposition 1.8] and [14, Proposition 1.12]) The center
of a quasi-Baer (resp., right p.q.-Baer) ring is Baer (resp., PP).

(ii) ([14, Proposition 3.11]) Assume that a ring R is semiprime. Then R is
quasi-Baer if and only if R is p.q.-Baer and the center of R is Baer.

(iii) ([81, pp.78-79] and [15, Theorem 3.5]) Let a ring R be regular (resp.,
biregular). Then R is Baer (resp., quasi-Baer) if and only if the lattice of principal
right ideals (resp., principal ideals) is complete.

(iv) A ring R is biregular if and only if R is right (or left) p.q.-Baer ring and
rR(`R(RaR)) = RaR, for all a ∈ R.

Recall from [30], we say that a ring R is principally right FI-extending (resp.,
finitely generated right FI-extending ) if every principal ideal (resp., finitely gener-
ated ideal) of R is essential as a right R-module in a right ideal of R generated by
an idempotent. We use pFI (resp., fgFI) to denote the class of principally (resp.,
finitely generated) right FI-extending rings.
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Lemma 4.26. ([14, Corollary 1.11]) Let R be a semiprime ring. Then the following
conditions are equivalent.

(i) R is right p.q.-Baer.
(ii) R is principally right FI-extending.
(iii) R is finitely generated right FI-extending.

Our next result, when applied to a commutative reduced ring yields Picavet’s
weak Baer envelope [71]; and when it is applied to a regular ring of bounded index,
it yields the unique smallest almost biregular ring of Burgess and Raphael [34,
Theorem 1.7] (see Section 2).

Theorem 4.27. ([30, Theorem 8]) Let R be a semiprime ring. Then:
(i) 〈R ∪ δpFI(R)(1)〉Q(R) = Q̂pFI(R) = R(pFI, Q(R)).

(ii) 〈R ∪ δpFI(R)(1)〉Q(R) = Q̂pqB(R).

(iii) 〈R ∪ δpFI(R)(1)〉Q(R) = Q̂fgFI(R) = R(fgFI, Q(R)).

Note that δpFI(R)(1) = {c ∈ B(Q(R)) | there is x ∈ R with RxRR ≤ess

cRR}.
Corollary 4.28. ([30, Theorem 15]) Let R be a reduced ring. Then QpqB(R) exists
and is the PP absolute right ring hull.

The next two equivalence relations are particularly important to our study.

Definition 4.29. ([24, Definition 2.4]) (i) Let A be a ring and let δ ⊆ I(A). We
define an equivalence relation α on δ by e α c if and only if ce = e and ec = c.

(ii) We define an equivalence relation β on δC(R) by e β c if and only if there
exists XR ≤ RR such that XR ≤ess eE(RR) and XR ≤ess cE(RR).

Note that for e, c ∈ δC(R), e α c implies e β c. Also note that α = β if and
only if every element of DC(R) has a unique essential closure in E(RR). So if
Z(RR) = 0, then α = β.

The following example again indicates the independence of Definition 3.1 and
3.2 for D-E classes. Moreover, it shows that a nonsemiprime commutative ring R
can have an absolute self-injective right ring hull even when R is not right Osofsky
compatible. Recall from [60, Corollary 8.28] that a ring R is right Kasch if the left
annihilator of every maximal right ideal of R is nonzero.

Example 4.30. ([24, Example 2.15]) For a field F , let T = F [x]/x4F [x] and x be the
canonical image of x in T . Then T = F +Fx+Fx2 +Fx3. Let R = F +Fx2 +Fx3

which is a subring of T . Now R and T have the following properties.
(i) R is right Kasch, so R = Q(R) [60, Corollary 13.24].
(ii) T is a QF right essential overring of R. There is no proper intermediate

ring between R and T . Hence T = QFI(R) = QE(R) = QSI(R).
(iii) T is not a C ρ pseudo right ring hull of R for any choice of C and any

equivalence relation ρ on δC(R). Indeed, there is no c ∈ δC(R) such that c(1) ∈ T \R
and IR ≤ess cE(RR) for any nonzero ideal I of R.
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(iv) TR is not FI-extending (hence not extending). In fact, xRR E RR. But
there does not exist e ∈ I(End (TR)) such that xRR ≤ess eTR.

(v) Since TT is injective, T is maximal among right extending right essential
overrings of R.

(vi) By [62, Theorem 4] E(RR) has no ring multiplication which extends its
R-module scalar multiplication.

Our next result shows that when Q(R) = E(RR) the α pseudo right ring hulls
and β pseudo right ring hulls also exist, respectively for the right FI-extending and
right essentially quasi-Baer properties.

Corollary 4.31. ([24, Corollary 2.21]) Assume that Q(R) = E(RR).
(i) For each δα

E (R) (resp., δβ
FI(R)), R(E, α,Q(R)) (resp., R(FI, β,Q(R)) ex-

ists. Moreover, every right ring of quotients of R containing R(E, α, Q(R)) (resp.,
R(FI, β, Q(R)) is right extending (resp., right FI-extending).

(ii) Let S = 〈R ∪ δ(1)〉Q(R). If δ(1) = δα
eB(R)(1) (resp., δ(1) = δβ

eqB(R)(1)) and
S is a left ring of quotients of R, then R(eB, α, Q(R)) (resp., R(eqB, β, Q(R)))
exists. Moreover, any right and left ring of quotients of R which also lies between
R(eB, α, Q(R)) (resp., R(eqB, β, Q(R))) and Q(R) is right essentially Baer (resp.,
right essentially quasi-Baer). If Z(RR) = 0, then these intermediate rings are Baer
(resp., quasi-Baer).

We remark that the K absolute (absolute to Q(R)) right ring hull of R is
the intersection of all right essential overrings (of all right rings of quotients) of
R which are in K (see for example, Theorem 2.18). Our next result shows that
under suitable conditions, these intersections coincide with the intersections of the
α pseudo or the β pseudo right ring hulls for various D-E classes (e.g., E,FI, eB,
and eqB). Also under these conditions a C right ring hull will be a C α or a C β
pseudo right ring hull. We note that the condition X E R implies XT E T holds
for example when T is a centralizing extension of R or when R is a right Noetherian
ring and T is a right ring of quotients of R contained in Qr

c`(R) [60, pp.314-315].
This condition is useful in the following result.

Corollary 4.32. ([24, Corollary 2.23]) Let T be a right ring of quotients of R.
(i) Suppose that either α = β or some δβ

E (R)(1) ⊆ Cen(T ). Then T ∈ E if
and only if there exists an R(E, α, Q(R) which is a subring of T .

(ii) If X E R implies XT E T , then T ∈ FI if and only if there exists a
R(FI, β, Q(R)) which is a subring of T .

(iii) Suppose that either α = β or some δβ
eB(R)(1) ⊆ Cen(T ). If T is also a left

ring of quotients of R, then T ∈ eB if and only if there exists a R(eB, α, Q(R))
which is a subring of T .

(iv) If T is also a left ring of quotients of R and X E R implies TX E T ,
then T ∈ eqB if and only if there is a R(eqB, β, Q(R)) which is a subring of T .

Proposition 4.33. ([24, Corollary 2.24]) Assume that E(RR) = Q(R), Q(R) is a
left ring of quotients of R, and T is a right ring of quotients of R. Then:
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(i) δE(R) = δeB(R).
(ii) Assume that α = β or some δβ

E (R)(1) ⊆ Cen(T ). Then T ∈ E if and
only if T ∈ eB. Also every right extending α pseudo right ring hull of R is a right
essentially Baer α pseudo right ring hull of R and conversely.

(iii) Assume that Z(RR) = 0. Then T ∈ E if and only if T ∈ B. Moreover
every right extending α pseudo right ring hull of R is a right essentially Baer α
pseudo right ring hull of R which is Baer and conversely.

The following result provides an answer to Problem I of Section 1 for the case
when K = E, the class of right extending rings, and R = T2(W ) by characterizing
the right extending right rings of quotients which are intermediate between T2(W )
and Mat2(W ), where W is from a large class of local right finitely Σ-extending
rings (see [43] for finitely Σ-extending modules).

Theorem 4.34. ([24, Theorem 3.11]) Let W be a local ring, V a subring of W with

J(W ) ⊆ V , R =
(

V W
0 W

)
, S =

(
V W

J(W ) W

)
, and T = Mat2(W ). Then:

(i) For each e ∈ I(T ), there exists f ∈ I(S) such that e α f .
(ii) S ∈ E if and only if T ∈ E if and only if S = R(E, ρ, T ) for some ρ.
(iii) If W is right self-injective, then S = R(E, α, T ), and QqCon(R) =

R(E, T ) = T .
(iv) If T ∈ E (resp., W is right self-injective) and at least one of the following

conditions is satisfied, then S = QT
E (R) (resp., S = QE(R)):

(a) J(W ) ⊆ Cen(W ); (b) U(W ) ⊆ Cen(W ); (c) J(W ) is nil; (d) W is
right nonsingular.

(v) Assume that S = QT
E (R) and M is an intermediate ring between R and

T . Then M ∈ E if and only if M =
(

A W
J(W ) W

)
or M = T , where A is an

intermediate ring between V and W .
(vi) R ∈ FI if and only if W ∈ FI.

5. TRANSFERENCE BETWEEN R AND OVERRINGS

In this section, we consider Problem II from the introduction. Since RB(Q(R))
is used in the construction of several hulls, we show how various types of infor-
mation transfer between R and RB(Q(R)). Indeed, we prove that the properties
of lying over, going up, and incomparability of prime ideals hold between R and
RB(Q(R)) and so do the π-regularity and classical Krull dimension properties.
Moreover, we show that %(R) = %(RB(Q(R))) ∩ R, where % is a special radical.
We use LO, GU, and INC for “lying over”, “going up”, and “incomparability” [77,
p.292], respectively.

Lemma 5.1. ([28, Lemma 2.1]) Assume that R is a subring of a ring T and E is a
subset of S`(T ) ∪ Sr(T ). Let S be the subring of T generated by R and E.

(i) If K is a prime ideal of S, then R/(K ∩R) ∼= S/K.
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(ii) LO, GU, and INC hold between R and S. In particular, LO, GU, and
INC hold between R and RB(Q(R)).

We note that Lemma 5.1 generalizes results of Beidar and Wisbauer [9] for
RB(Q(R)) (see Theorem 2.9). Recall that a ring R is left π-regular if for each a ∈ R
there exist b ∈ R and a positive integer n such that an = ban+1. Observe from
[41] that the class of special radicals includes most well known radicals (e.g., the
prime radical, the Jacobson radical, the Brown-McCoy radical, the nil radical, the
generalized nil radical, etc.). For a ring R, the classical Krull dimension kdim(R)
is the supremum of all lengths of chains of prime ideals of R.

Theorem 5.2. ([28, Theorem 2.2]) Assume that R is a subring of a ring T and
E ⊆ S`(T ) ∪ Sr(T ). Let S be the subring of T generated by R and E. Then we
have the following.

(i) %(R) = %(S) ∩ R, where % is a special radical. In particular, %(R) =
%(RB(Q(R))) ∩R.

(ii) R is left π-regular if and only if S is left π-regular. Hence, R is left
π-regular if and only if RB(Q(R)) is left π-regular.

(iii) kdim (R) = kdim (S). Thus, kdim (R) = kdim (RB(Q(R))).
(iv) If S is regular, then so is R.

The following corollary complements Theorems 2.11 and 2.12.

Corollary 5.3. ([28, Corollary 3.6]) For a ring R, the following are equivalent.
(i) R is regular.
(ii) RB(Q(R)) is regular.
(iii) R is semiprime and Q̂qB(R) is regular.

Lemma 5.1 and Corollary 5.3 show a transference of properties between R

and RB(Q(R)) or Q̂qB(R). Our next example indicates that this transference, in
general, fails between R and its right rings of quotients which properly contain
RB(Q(R)) or Q̂qB(R).

Example 5.4. ([28, Example 3.7]) Let Z[G] be the group ring of the group G =
{1, g} over the ring Z. Then Z[G] is semiprime and Q(Z[G]) = Q[G]. Note that
B(Q[G]) = {0, 1, (1/2)(1 + g), (1/2)(1− g)}. Thus, using Theorem 4.17(ii),

Z[G] 6= Q̂qB(Z[G])

and Z[G] ⊆ Q̂qB(Z[G]) = {(a + c/2 + d/2) + (b + c/2 − d/2)g | a, b, c, d ∈ Z} ⊆
Z[1/2][G] ⊆ Q[G], and Q̂qB(Z[G]) 6= {(a+ c/2+d/2)+(b+ c/2−d/2)g | a, b, c, d ∈
Z} ⊆ Z[1/2][G] ⊆ Q[G], where Z[1/2] = 〈Z ∪ {1/2}〉Q.

In this case, for example, LO does not hold between Z[G] and Z[1/2][G].
Assume to the contrary that LO holds. From [77, Theorem 4.1], LO holds between
Z and Z[G]. Hence there exists a prime ideal P of Z[G] such that P ∩ Z = 2Z.
By LO, there is a prime ideal K of Z[1/2][G] such that K ∩ Z[G] = P . Now
K∩Z[1/2] = K0 is a prime ideal of Z[1/2]. So K0∩Z = K∩Z[1/2]∩Z = K∩Z = 2Z.
Thus 2 ∈ K0. But since K0 is an ideal of Z[1/2], 1 = 2·(1/2) ∈ K0, a contradiction.
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Next, Q[G] is regular but Z[G] is not, so Corollary 3.6 does not hold for right
rings of quotients properly containing RB(Q(R)) or Q̂qB(R).

By [53, Proposition 4] a semiprime ring R with bounded index is right and
left nonsingular. Thus in this case Q̂qB(R) = QqB(R).

Theorem 5.5. ([28, Theorem 3.8]) Let R be a semiprime ring. Then R has bounded
index at most n if and only if QqB(R) (QpqB(R)) has bounded index at most n. In
particular, if R is reduced, then QqB(R) = QB(R) and it is reduced.

We note that if R is a domain which is not right Ore, then R = QqB(R) has
bounded index 1, but Q(R) does not have bounded index. So we cannot replace
“QqB(R)” with “Q(R)” in Theorem 5.5. An immediate consequence of Corollary
5.3 and Theorem 5.5 is the next result.

Corollary 5.6. ([28, Corollary 3.9]) A ring R is strongly regular if and only if
RB(Q(R)) (QpqB(R)) is strongly regular.

In Theorem 4.18, for every semiprime ring R, we show that Q̂qB(R) and
Q̂FI(R) exist. Also as we see in Theorem 5.5, a semiprime ring with bounded index
1 (i.e., a reduced ring) always has a Baer absolute right ring hull. However a Baer
absolute right ring hull does not always exist even for prime PI-rings with bounded
index 2, as shown in our next example.

Example 5.7. ([28, Example 3.10]) For a field F and a positive integer k > 1, let
R = Matk(F [x, y]), where F [x, y] is the ordinary polynomial ring over F . Then R is
a prime PI-ring with bounded index k. (In particular, if k = 2, then R has bounded
index 2.) Now R has the following properties (observe that Q(R) = E(RR), hence
Q̂K(R) = QK(R) for any class K of rings).

(i) QB(R) does not exist.
(ii) QE(R) does not exist.
Since R is prime, R = QqB(R) = QFI(R). We claim that QB(R) does not

exist (the same argument shows that QE(R) does not exist). Assume to the
contrary that QB(R) exists. Note that F (x)[y] and F (y)[x] are Prüfer domains.
So Matk(F (x)[y]) and Matk(F (y)[x]) are Baer rings [58, p.17, Exercise 3] (and
right extending rings [43, pp.108-109]). Note that Q(R) = Matk(F (x, y)). Hence
QB(R) ⊆ Matk(F (x)[y]) ∩Matk(F (y)[x]) = Matk(F (x)[y] ∩ F (y)[x]). To see that
F (x)[y] ∩ F (y)[x] = F [x, y], let

γ(x, y) = f0(x)/g0(x) + (f1(x)/g1(x))y + · · ·+ (fm(x)/gm(x))ym =
h0(y)/k0(y) + (h1(y)/k1(y))x + · · ·+ (hn(y)/kn(y))xn ∈ F (x)[y] ∩ F (y)[x]

with fi(x), gi(x) ∈ F [x], hj(y), kj(y) ∈ F [y], and gi(x) 6= 0, kj(y) 6= 0 for i =
0, 1, . . . , m, j = 0, 1, . . . , n. Let F be the algebraic closure of F . If deg g0(x) ≥ 1,
then there is α ∈ F with g0(α) = 0. So γ(α, y) cannot be defined. But γ(α, y) =
h0(y)/k0(y)+(h1(y)/k1(y))α+· · ·+(hn(y)/kn(y))αn, a contradiction. Thus g0(x) ∈
F . Similarly, g1(x), . . . , gm(x) ∈ F . Hence γ(x, y) ∈ F [x, y]. Therefore F (x)[y] ∩
F (y)[x] = F [x, y]. Hence QB(R) = Matk(F (x)[y]∩F (y)[x]) = Matk(F [x, y]). Thus
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Matk(F [x, y]) ∈ B, a contradiction because F [x, y] is a non-Prüfer domain [58,
p.17, Exercise 3].

A ring is called right Utumi [81, p.252] if it is right nonsingular and right
cononsingular (Recall that a ring R is called right cononsingular if any right ideal
I of R with `R(I) = 0 is right essential in R).

Corollary 5.8. ([28, Corollary 3.11]) A reduced ring R is right Utumi if and only
if RB(Q(R)) = QE(R) = QqCon(R).

There is a non-reduced right Utumi ring R for which the equalities RB(Q(R))
= QqCon(R) and QE(R) = QqCon(R) in Corollary 5.8 do not hold, as the following
example shows.

Example 5.9. ([28, Example 3.12]) Let R = Matk(F [x]), where F [x] is the polyno-
mial ring over a field F and k > 1. Then R is right Utumi by [81, p.252, Proposition
4.9]. We show that R is not right quasi-continuous. For this, let Eij denote the
matrix in R with 1 in the (i, j)-position and 0 elsewhere. Take

f1 = xE11 + (1− x)E12 + xE21 + (1− x)E22

and
f2 = xE12 + E22

in R. Then f1 = f2
1 , f2 = f2

2 and f1R ∩ f2R = 0. Also (f1R ⊕ f2R)R ≤ess fRR

since the uniform dimension of fRR is 2, where f = E11 + E22 ∈ R. If there is an
idempotent g ∈ R such that f1R ⊕ f2R = gR, then gRR ≤ess fRR. So gR = fR
by the modular law. But this is impossible because (x2 + 1)E11 + E12 ∈ fR \ gR.
Therefore R is not right quasi-continuous. Now RB(Q(R)) = R 6= QqCon(R).
Also by [43, Lemma 12.8 and Corollary 12.10], R ∈ E, so R = QE(R). Thus
QE(R) 6= QqCon(R).

6. HOW DOES Q(R) DETERMINE R?

In this section, we investigate Problem III listed in the Introduction (i.e.,
Given classes K and S of rings, determine those T ∈ K such that Q(T ) ∈ S). We
take the class S to be

S := {Mat2(D) | D is a division ring}
and K to be E, B, or related classes.

Our first result of the section characterizes any right extending ring whose
maximal right ring of quotients is the 2× 2 matrix ring over a division ring.

Theorem 6.1. ([24, Theorem 3.1]) Let D be a division ring and assume that T
is a ring such that Q(T ) = Mat2(D) (resp., Q(T ) = Q`(T ) = Mat2(D)). Then
T is right extending (resp., T is Baer) if and only if the following conditions are
satisfied:

(i) there exist v, w ∈ D such that
(

1 v
0 0

)
∈ T and

(
0 0
w 1

)
∈ T ; and

(ii) for each 0 6= d ∈ D at least one of the following conditions is true:
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(1)
(

0 d
0 1

)
∈ T ,

(2)
(

1 0
d−1 0

)
∈ T , or

(3) there exists a ∈ D such that a−a2 6= 0 and
(

a (1− a)d
d−1a d−1(1− a)d

)
∈ T .

Corollary 6.2. ([24, Corollary 3.3]) (i) Let T be a ring such that Q(T ) = Mat2(D),

where D is a division ring and
(

1 0
0 0

)
∈ T . If

(
0 D
0 0

)
⊆ T or

(
0 0
D 0

)
⊆ T ,

then T is right extending and Baer.

(ii) Let A be a right Ore domain with D = Qr
c`(A). Then

(
A D
0 A

)
is a right

extending right ring hull of T2(A) and it is Baer.

As a consequence of Corollary 6.2, our next example provides a right extend-
ing generalized 2-by-2 triangular matrix ring T such that Q(T ) = Mat2(D), where
D = Qr

c`(A) and A is a right Ore domain, but T is not necessarily an overring of
T2(A).

Example 6.3. ([24, Example 3.4]) Let A be a right Ore domain with D = Qr
c`(A)

and B any subring of D. Then T =
(

B D
0 A

)
is right extending and Q(T ) =

Mat2(D). For an explicit example, take A = Z[x] or Q[x], and B = Z.

From [58, p.16, Exercise 2] it is well known that if A is a commutative domain
with F as its field of fractions and A 6= F , then Tn(A) (n > 1) is not Baer, but by
Theorem 3.9 any right ring of quotients of Tn(A) which contains Tn(F ) is Baer.
This result motivates the question: If A is a commutative domain, can we find
C right ring hulls or C ρ pseudo right ring hulls for Tn(A) and use these to
describe all C right rings of quotients of Tn(A) when C is a class related to
the Baer class? (See Problem I and Problem II in Section 1). Using Theorem 6.1,
we answer this question when A is either a PID or a Bezout domain (i.e., every
finitely generated ideal is principal [48]) and n = 2.

Theorem 6.4. ([24, Theorem 3.7]) Let A be a commutative Bezout domain with F
as its field of fractions, A 6= F , and T be a right ring of quotients of T2(A). If any
one of the following conditions holds, then T is right extending and Baer.

(i)
(

A F
0 A

)
is a subring of T .

(ii)
(

A a−1A
aA A

)
is a subring of T for some 0 6= a ∈ A.

(iii)
(

A (pk1−1
1 · · · pkm−1

m )−1A
aA A

)
is a subring of T for some 0 6= a ∈ A,

where a = pk1
1 · · · pkm

m , each pi is a distinct prime, and each ki is a positive integer.
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The following corollary illustrates how both Definitions 3.1 and 3.2 can be
used to characterize all right rings of quotients from a D-E class C (see Problem I
in Section 1).
Corollary 6.5. ([24, Corollary 3.9]) Let A be a commutative PID with F as its field
of fractions, A 6= F , and let R = T2(A).

(i) Let T be a right ring of quotients of R. Then T is right extending if and
only if either the ring

U =
(

A F
0 A

)

is a subring of T , or the ring

V =
(

A (pk1−1
1 · · · pkm−1

m )−1A
aA A

)

is a subring of T for some nonzero a = pk1
1 · · · pkm

m , where each pi is a distinct
prime of A.

(ii)
(

A F
0 A

)
is the unique right extending right ring hull of R.

(iii) R has no right extending absolute right ring hull.
(iv) In (i)-(iii) we can replace “right extending” with “Baer”, “right PP”, or

“right semihereditary”.

We remark that U and V , in Corollary 6.5, are right extending α pseudo
right ring hulls of R; whereas Q(R) = R(E, Q(R)). Moreover, if {p1, p2, . . . } is an
infinite set of distinct primes of A and

Vi =
(

A A
p1 · · · piA A

)
,

then V1 ⊇ V2 · · · forms an infinite descending chain of right extending α pseudo
right ring hulls none of which contains U . Thus no Vi is a right extending right
ring hull.
Corollary 6.6. ([24, Corollary 3.10]) Let A be a commutative PID with F as its
field of fractions, A 6= F , and let T be a right ring of quotients of R = T2(A). Take

S =
(

A F
0 F

)
and V =

(
A (p1

k1−1 · · · pm
km−1)−1A

p1
k1 · · · pm

kmA A

)
,

where each pi is a distinct prime of A.
(i) If T is right hereditary, then either S or V is a subring of T . The converse

holds when T is right Noetherian.
(ii) The ring S is the unique right hereditary right ring hull of R; but R has

no right hereditary absolute right ring hull.

7. HULLS OF RING EXTENSIONS

In this section, we seek solutions to Problem IV of Section 1 (i.e., Given a
ring R and a class of rings K, let X(R) denote some standard type of extension
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of R (e.g., X(R) = R[x], or X(R) = Matn(R), etc.) and let H(R) denote a right
essential overring of R which is “minimal” with respect to belonging to the class
K. Determine when H(X(R)) is comparable to X(H(R))), where K is qB or FI and
the types of ring extensions include monoid rings, full and triangular matrix rings,
infinite matrix rings, etc.
Theorem 7.1. ([27, Theorem 4]) Let R[G] be a semiprime monoid ring of a monoid
G over a ring R. Then:

(i) Q̂qB(R)[G] ⊆ Q̂qB(R[G]).
(ii) If G is a u.p.-monoid, then Q̂qB(R[G]) = Q̂qB(R)[G].

In [49] Goel and Jain posed the open question: If G is an infinite cyclic
group and A is a prime right quasi-continuous ring, is it true that A[G] ∈ qCon?
Since a semiprime right quasi-continuous ring is quasi-Baer (see [24, Proposition
1.3]) and A[G] is semiprime, Theorem 7.1 and [24, Proposition 1.3] show that
A[G] ∈ FI. Thus, from Theorem 7.1, when A is a commutative semiprime quasi-
continuous ring and G is torsion-free Abelian, then A[G] ∈ E, hence A[G] ∈ qCon.
This provides an affirmative answer to this question when A is a commutative
semiprime quasi-continuous ring.

Corollary 7.2. ([27, Corollary 5]) Let R be a semiprime ring. Then:
(i) Q̂qB(R[x, x−1]) = Q̂qB(R)[x, x−1].
(ii) Q̂qB(R[X]) = Q̂qB(R)[X] and Q̂qB(R[[X]]) = Q̂qB(R)[[X]] for a nonempty

set X of not necessarily commuting indeterminates.

Example 7.3. (i) ([28, Example 3.7]) Let Z[G] be the group ring of the group
G = {1, g} over Z. Then Z[G] is semiprime, Q̂qB(Z)[G] = Z[G] ⊆ Q̂qB(Z[G]) =
Z[G]B(Q[G]), and Z[G] 6= Q̂qB(Z[G]). Thus the “u.p.-monoid” condition is not
superfluous in Theorem 7.1(ii).

(ii) Let F be a field. Then F [x] is a semiprime u.p.-monoid ring and F [x] =
Q(F )[x] 6= Q(F [x]) = F (x), where F (x) is the field of fractions of F [x]. Thus “Q”
cannot replace “Q̂qB” in Theorem 7.1(ii).

Theorem 7.4. ([27, Theorem 7]) Let K be a class of rings such that Λ ∈ K if and
only if Matn(Λ) ∈ K for any positive integer n, and let HK(−) denote any of the
right ring hulls indicated in Definition 1 for the class K. Then for a ring R, HK(R)
exists if and only if HK(Matn(R)) exists for any n. In this case, HK(Matn(R)) =
Matn(HK(R)).

Corollary 7.5. ([27, Corollary 9]) Let R be a ring and n a positive integer. Then:
(i) Q̂IC(Matn(R)) = Matn(Q̂IC(R)) = Matn(RB(Q(R)).
(ii) Q̂IC(Tn(R)) = Tn(Q̂IC(R)) = Tn(RB(Q(R))).
(iii) If R is semiprime, then Q̂K(Matn(R)) = Matn(Q̂K(R)), where K = qB

or FI.

Theorem 7.6. ([27, Theorem 11]) Let R be a semiprime ring. If R and a ring S are
Morita equivalent, then Q̂qB(R) and Q̂qB(S) are Morita equivalent.
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In contrast to Theorem 4.17, the following result provides a large class of
nonsemiprime rings T for which QqB(T ) = Q̂FI(T ) = TB(Q(T )).
Theorem 7.7. ([27, Theorem 18]) Let R be a semiprime ring and n a positive
integer. Then:

(i) Q̂qB(Tn(R)) = Tn(Q̂qB(R)) = Tn(R)B(Q(Tn(R))).
(ii) Q̂FI(Tn(R)) = Tn(Q̂FI(R)) = Tn(R)B(Q(Tn(R))).

For a ring R and a nonempty set Γ, CFMΓ(R), RFMΓ(R), and CRFMΓ(R)
denote the column finite, the row finite, and the column and row finite matrix
rings over R indexed by Γ, respectively.

In [35, Theorem 1], it was shown that CRFMΓ(R) is a Baer ring for all infinite
index sets Γ if and only if R is semisimple Artinian. Our next result shows that
the quasi-Baer property is always preserved by infinite matrix rings.

Theorem 7.8. ([27, Theorem 19]) (i) R ∈ qB if and only if CFMΓ(R) (resp.,
RFMΓ(R) and CRFMΓ(R)) ∈ qB.

(ii) If R ∈ FI, then CFMΓ(R) (resp., CRFMΓ(R)) ∈ FI.
(iii) If R is semiprime, then we have that Q̂qB(CFMΓ(R)) ⊆ CFMΓ(Q̂qB(R)),

Q̂qB(RFMΓ(R)) ⊆ RFMΓ(Q̂qB(R)), and Q̂qB(CRFMΓ(R)) ⊆ CRFMΓ(Q̂qB(R)).

Example 7.9. There exist a commutative regular ring R and a set Γ such that

Q̂qB(CFMΓ(R)) ⊆ CFMΓ(Q̂qB(R)), Q̂qB(CFMΓ(R)) 6= CFMΓ(Q̂qB(R)),

Q̂qB(RFMΓ(R)) ⊆ RFMΓ(Q̂qB(R)), Q̂qB(RFMΓ(R)) 6= RFMΓ(Q̂qB(R)),
and

Q̂qB(CRFMΓ(R)) ⊆ CRFMΓ(Q̂qB(R)), Q̂qB(CRFMΓ(R)) 6= CRFMΓ(Q̂qB(R))

(see [27, Example 20] for details).

8. MODULES WITH FI-EXTENDING HULLS

In module theory the class of injective modules and, its generalization, the
class of extending modules have the property that every submodule of a member is
essential in a direct summand of the member. This property, originated by Chatters
and Hajarnavis in [37], ensures a rich structure theory for these classes. Although
every module has an injective hull, it is usually hard to compute. For many modules
a minimal essential extension which belongs to the class of extending modules may
not exist (e.g., ⊕∞n=1ZZ, see comment above Proposition 8.4). Moreover the class
of extending modules lacks some important closure properties (e.g., it is not closed
under direct sums).

Recall from [18] that a right R-module MR is FI-extending if every fully in-
variant submodule of MR is essential in a direct summand of MR. A ring R is
right FI-extending if RR is FI-extending. Note that the set of fully invariant sub-
modules of a module MR includes the socle, Jacobson radical, torsion submodule
for a torsion theory (e.g., Z(MR) the singular submodule), and MI for all right
ideals I of R, etc. Hence, the FI-extending condition provides an “economical use”
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of the extending condition by targeting only the fully invariant submodules, and
thus some of the most significant submodules of MR for an essential splitting of
MR. Natural examples of FI-extending modules abound: direct sums of uniform
modules, more specifically all finitely generated Abelian groups, and semisimple
modules.

We show that over a semiprime ring R, every finitely generated projective
module PR has a smallest FI-extending essential extension HFI(PR) (called the ab-
solute FI-extending hull of PR) in a fixed injective hull of PR. Moreover, HFI(PR)
is easily computable (see Theorem 8.2 and Proposition 8.4), it is from a class for
which direct sums and direct summands are FI-extending, and since HFI(PR) is
finitely generated and projective over Q̂FI(R), we are assured of a reasonable trans-
fer of information between PR and HFI(PR) (e.g., see Theorem 8.5 and Corollary
8.6).

Since many well known types of Banach algebras are semiprime (e.g., C∗-
algebras), all our results for semiprime rings are applicable. Finitely generated
modules over a Banach algebra are considered in [52]. Kaplansky [57] defined AW ∗-
modules over a C∗-algebra and used them to answer several questions concerning
automorphisms and derivations on certain types of C∗-algebras. Furthermore work
using this module appeared in [7]. Moreover, from [32, p.352], every algebraically
finitely generated C∗-module M is projective, hence HFI(M) exists. Since every
C∗-algebra A is both semiprime and nonsingular, Q̂FI(A) always exists by Theorem
4.18. Also in [28], we characterized all C∗-algebras with only finitely many minimal
prime ideals and showed that for such A, Q̂FI(A) is also a C∗-algebra. Thus our
results should yield fruitful applications to projective modules over C∗-algebras,
as well as many other algebras of Functional Analysis. We shall discuss some of
these applications to C∗-algebras in the next section in more detail.

Definition 8.1. ([29, Definition 1]) We fix an injective hull E(MR) of MR and a
maximal right ring of quotients Q(R) of R. Let M be a class of right R-modules
and MR a right R-module. We call, when it exists, a module HM(MR) the absolute
M hull of MR if HM(MR) is the smallest essential extension of MR in E(MR) that
belongs to M.

We first obtain the existence of the absolute FI-extending hull for every
finitely generated projective module over a semiprime ring. Also this module hull
is explicitly described.
Theorem 8.2. ([29, Theorem 6]) Every finitely generated projective module PR

over a semiprime ring R has the absolute FI-extending hull HFI(PR). Explic-
itly, HFI(PR) ∼= e(⊕nQ̂FI(R)R) where P ∼= e(⊕nRR), for some n and e = e2 ∈
End(⊕nRR).

Corollary 8.3. ([29, Corollary 7]) Assume that R is a semiprime right Goldie
ring. Then every projective right R-module PR has the absolute FI-extending
hull. Moreover, if P ∼= e(⊕ΛRR) with e = e2 ∈ EndR(⊕ΛRR), then HFI(PR) ∼=
e(⊕ΛQ̂FI(R)R).
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The FI-extending hull of a module, in general, is distinct from the injec-
tive hull of the module or its extending hull (if it exists). From Corollary 8.3,
HFI(⊕ΛZZ) = ⊕ΛZZ, where Z is the ring of integers. However in E(⊕ΛZZ) =
⊕ΛQZ, where Λ is infinite and Q is the field of rational numbers, there is not
even a minimal extending essential extension of ⊕ΛZZ. Our next result gives an
alternative description of HFI(PR) different from Theorem 8.2.

Proposition 8.4. ([29, Proposition 8]) Assume that PR is a finitely generated pro-
jective module over a semiprime ring R. Then HFI(PR) ∼= P ⊗R Q̂FI(R) as Q̂FI(R)-
modules. Hence HFI(PR) is also a finitely generated projective Q̂FI(R)-module.

From Osofsky [68], there is a prime ring R with J(R) = 0 such that E(RR) is a
non-rational extension of RR. So Q(R)R is not injective, thus End(E(RR)) 6∼= Q(R)
as rings by [61, p.95, Proposition 3]. Hence Q(End(RR)) 6∼= End(E(RR)) (see
also [25, Proposition 2.6]). However, a special case of our next result shows that
Q̂FI(R) ∼= End(HFI(RR)) for a semiprime ring R.

Theorem 8.5. ([29, Theorem 12]) Assume that R is a semiprime ring and PR is a
finitely generated projective module. Then:

(i) Q̂FI(End(PR)) ∼= End(HFI(PR)) as rings.
(ii) Rad(HFI(PR)Q̂FI(R)) ∩ P = Rad(PR), where Rad(−) is the Jacobson rad-

ical of a module.

When PR is a progenerator, we have the following.

Corollary 8.6. ([29, Corollary 13]) Let R be a semiprime ring.
(i) If PR is a progenerator of the category Mod-R, then HFI(PR)Q̂FI(R) is a

progenerator of the category Mod-Q̂FI(R).
(ii) If R and S are Morita equivalent, then Q̂FI(R) and Q̂FI(S) are Morita

equivalent.

Recall from [76] that a module MR is a quasi-Baer module if for any NR E
MR, there exists h = h2 ∈ Λ = End(MR) such that `Λ(N) = Λh, where `Λ(N) =
{λ ∈ Λ | λN = 0}. It is clear that RR is a quasi-Baer module if and only if
R is a quasi-Baer ring. Also it is shown in [76] that MR is quasi-Baer if and
only if for any I E Λ there exists g = g2 ∈ Λ such that rM (I) = gM , where
rM (I) = {m ∈ M | Im = 0}. Moreover, if MR is quasi-Baer, then End(MR) is a
quasi-Baer ring [76, Theorem 4.1]. Close connections between quasi-Baer modules
and FI-extending modules are investigated in [37].

In the next result, we obtain another close connection between FI-extending
modules and quasi-Baer modules which also generalizes some of the equivalences
in [18, Theorem 4.7].

Theorem 8.7. ([29, Theorem 14]) Assume that PR is a finitely generated projective
module over a semiprime ring R. Then the following are equivalent.

(i) PR is FI-extending.
(ii) PR is quasi-Baer.



A Theory of Hulls for Rings and Modules 35

(iii) End(PR) is a quasi-Baer ring.

(iv) End(PR) is a right FI-extending ring.

9. APPLICATIONS TO RINGS WITH INVOLUTION

In this section, C∗-algebras are assumed to be nonunital unless indicated
otherwise. Recall from [11] and [58] that a ring with an involution ∗ is called a
Baer ∗-ring if the right annihilator of every nonempty subset is generated by a
projection (i.e., an idempotent which is invariant under ∗) as a right ideal. (Recall
that an ideal I of a ring R with an involution ∗ is called self-adjoint if I∗ = I.) This
condition is naturally motivated in the study of Functional Analysis. For example,
every von Neumann algebra is a Baer ∗-algebra. With an eye toward returning to
the roots of the theory of Baer and Baer ∗-rings (i.e., Functional Analysis), in this
section we apply some of our previous results to rings with an involution.

In the first part of this section, we indicate that a ring R with a certain
(i.e., semiproper) involution has a quasi-Baer ∗-ring absolute to Q(R) right ring
hull. For a reduced ring this hull coincides with a Baer ∗-ring absolute right ring
hull. The section culminates with applications to C∗-algebras. We show that a
unital C∗-algebra is boundedly centrally closed if and only if it is quasi-Baer.
The existence of the boundedly centrally closed hull of a C∗-algebra A (i.e., the
smallest boundedly centrally closed intermediate C∗-algebra between A and its
local multiplier algebra Mloc(A)) is established. Moreover, it is shown that for
an intermediate C∗-algebra B between A and Mloc(A), B is boundedly centrally
closed if and only if BB(Q(A)) = B. All of the definitions, examples, and results
of this section appear in [28].

Definition 9.1. Let R be a ring with an involution ∗.
(i) R is a quasi-Baer ∗-ring if the right annihilator of every ideal is generated

by a projection as a right ideal ([16 or 20]).

(ii) We say that ∗ is semiproper if xRx∗ = 0 implies x = 0.

As in the case for a Baer ∗-ring, the involution can be used to show that the
definition of a quasi-Baer ∗-ring is left-right symmetric. If ∗ is a proper involution
(i.e., xx∗ = 0 implies x = 0 [20, p.10]), then it is semiproper. Thus all C∗-algebras
have a semiproper involution since they have a proper one [11, p.11]. There is a
semiproper involution on a prime ring which is not proper [20, p.4266]. If R is
a (quasi-) Baer ∗-ring, then ∗ is a (semi-) proper involution [11, p.13] and [16,
Proposition 3.4]. Part (ii) of the next lemma is known, but we include it for the
readers’ convenience.

Lemma 9.2. (i) Let ∗ be a semiproper involution on a ring R. Then R is semiprime
and every central idempotent is a projection. If R is reduced, then ∗ is a proper
involution.

(ii) If ∗ is a proper involution on a ring R, then R is right and left nonsingular.
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Since many rings from Functional Analysis have a (semi-) proper involution
(e.g., C∗-algebras), Lemma 9.2 and Theorem 4.17 guarantee that such rings have
quasi-Baer right ring hulls.

Proposition 9.3. Let R be a ∗-ring (resp., reduced ∗-ring). Then the following are
equivalent.

(i) R is a quasi-Baer ∗-ring (resp., Baer ∗-ring).
(ii) R is a quasi-Baer ring (resp., Baer ring) in which ∗ is a semiproper (resp.,

proper) involution.
(iii) R is a semiprime quasi-Baer ring and every central idempotent is a

projection.
Thereby the center of a quasi-Baer ∗-ring is a Baer ∗-ring.
Note that Baer ∗-rings are quasi-Baer ∗-rings. But the converse does not hold

as follows.

Example 9.4. (i) ([16, Example 2.2]) Let R = Mat2(C[x]). Then R is a Baer ring.
We can extend the conjugation on C to that on C[x]. Let ∗ denote the conjugate
transpose involution on R. Then ∗ is a proper involution. The right annihilator

rR

[(
x 2
0 0

)]
cannot be generated by a projection as a right ideal. So R is not a

Baer ∗-ring; but, by Proposition 9.3, R is a quasi-Baer ∗-ring.
(ii) Let − be the conjugation on C. If G is a polycyclic-by-finite group and

∗ is the involution on the group algebra C[G] defined by (
∑

agg)∗ =
∑

agg
−1,

then the involution ∗ is proper. From [16, Corollary 1.9], C[G] ∈ qB. So C[G] is a
quasi-Baer ∗-ring by Proposition 9.3. But in general C[G] is not a Baer ∗-ring. In
fact, let G = D∞ × C∞, where D∞ is the infinite dihedral group and C∞ is the
infinite cyclic group. Then the group G is polycyclic-by-finite. By [16, Example
1.10] C[G] is not a Baer ∗-ring.

There is a quasi-Baer ring R with an involution such that R has only finitely
many minimal prime ideals, but not all minimal prime ideals are self-adjoint. For
example, let F be a field and R = F ⊕ F , where ∗ is the exchange involution.
Then R is a Baer ring with only finitely many minimal prime ideals which are not
self-adjoint.

Proposition 9.5. Let R be a semiprime ∗-ring with only finitely many minimal
prime ideals. Then Q̂qB(R) is a quasi-Baer ∗-ring if and only if every minimal
prime ideal of R is self-adjoint.

Proposition 9.6. Let R be a ∗-ring and T a right essential overring of R.
(i) If ∗ extends to T and ∗ is semiproper on R, then ∗ is semiproper on T .
(ii) If ∗ extends to T , then ∗ is proper on R if and only if ∗ is proper on T .

Theorem 9.7. Let R be a ring (resp., reduced ring) with a semiproper involution ∗
and T be a right ring of quotients of R. If ∗ extends to T , then the following are
equivalent.

(i) T is a quasi-Baer ∗-ring (resp., Baer ∗-ring).
(ii) Q̂qB(R) is a subring of T .
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(iii) B(Q(R)) ⊆ T .
Thus Qs(R) is a quasi-Baer ∗-ring. Also Q̂qB(R) is the quasi-Baer ∗-ring

absolute to Q(R) right ring hull of R. If R is reduced, then Q̂qB(R) is the Baer
∗-ring absolute right ring hull of R.

In the remainder of this section, we focus on C∗-algebras. Recall that for a
C∗-algebra A, the algebra of all double centralizers on A is called its multiplier
algebra, M(A), which coincides with the maximal unitization of A in the category
of C∗-algebras. It is an important tool in the classification of C∗-algebras and in
the study of K-theory and Hilbert C∗-modules.

For a C∗-algebra A, recall that A1 = {a + λ1Q(A) | a ∈ A and λ ∈ C}. Then
A1 = {a + λ1M(A) | a ∈ A and λ ∈ C} because 1Q(A) = 1M(A). Note that M(A)
and A1 are C∗-algebras. For X ⊆ A, X denotes the norm closure of X in A.

Let A be a C∗-algebra. Then the set Ice of all norm closed essential ideals of
A forms a filter directed downwards by inclusion. The ring Qb(A) denotes the alge-
braic direct limit of {M(I)}I∈Ice , where M(I) denotes the C∗-algebra multipliers
of I; and Qb(A) is called the bounded symmetric algebra of quotients of A in [5,
p.57, Definition 2.23]. The norm closure, Mloc(A), of Qb(A) (i.e., the C∗-algebra
direct limit Mloc(A) of {M(I)}I∈Ice) is called the local multiplier algebra of A [5,
p.65, Definition 2.3.1]. The local multiplier algebra Mloc(A) was first used by El-
liott in [45] and Pedersen in [69] to show the innerness of certain ∗-automorphisms
and derivations. Its structure has been extensively studied in [5]. Since A is a norm
closed essential ideal of A1, Mloc(A) = Mloc(A1) by [5, p.66, Proposition 2.3.6].
Also note that Qb(A) = Qb(A1). See [5], [45], and [70] for more details on Mloc(A)
and Qb(A).

Lemma 9.8. Let A be a C∗-algebra. Then we have the following.
(i) B(Mloc(A)) = B(Q(A)) = B(Qs(A)) = B(Qb(A)).
(ii) Cen(Mloc(A)) is the norm closure of the linear span of B(Q(A)).

When A is a unital C∗-algebra, Theorem 4.17, Lemma 9.2, and Theorem
9.7 yield that AB(Q(A)) = Q̂qB(A) = QqB(A) exists and is the quasi-Baer ∗-ring
absolute right ring hull of A. Thus it is of interest to consider unital C∗-algebras
which are quasi-Baer ∗-rings.

Recall from [11] that a C∗-algebra is called an AW ∗-algebra if it is a Baer
∗-ring. In analogy, we say that a unital C∗-algebra A is a quasi-AW ∗-algebra if
it is a quasi-Baer ∗-ring. Thus by Proposition 9.3, a unital C∗-algebra A is a
quasi-AW ∗-algebra if A ∈ qB.

The next lemma shows that Qb(A) is a quasi-Baer ∗-algebra for any C∗-
algebra A.

Lemma 9.9. Let A be a C∗-algebra. Then we have the following.
(i) QqB(A1) is a ∗-subalgebra of Qb(A).
(ii) Qb(A) is a quasi-Baer ∗-algebra.

By Lemma 9.9, if A is a unital C∗-algebra, then QqB(A) is a ∗-subalgebra of
Mloc(A).
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Definition 9.10. ([5, p.73, Definition 3.2.1]) For a C∗-algebra A, the C∗-subalgebra
ACen(Qb(A)) (the norm closure of ACen(Qb(A)) in Mloc(A)) of Mloc(A) is called
the bounded central closure of A. If A = ACen(Qb(A)), then A is said to be
boundedly centrally closed.

A boundedly centrally closed C∗-algebra and the bounded central closure of
a C∗-algebra are the C∗-algebra analogues of a centrally closed subring and the
central closure of a semiprime ring, respectively. These have been used to obtain a
complete description of all centralizing additive mappings on C∗-algebras [3] and
for investigating the central Haagerup tensor product of multiplier algebras [4].
Boundedly centrally closed algebras are important for studying local multiplier
algebras and have been treated extensively in [5].

It is shown in [5, pp.75-76, Theorem 3.2.8 and Corollary 3.2.9] that Mloc(A)
and ACen(Qb(A)) are boundedly centrally closed. Every AW ∗-algebra and ev-
ery prime C∗-algebra are boundedly centrally closed [5, pp.76-77, Example 3.3.1].
Moreover, A is boundedly centrally closed if and only if M(A) is so [5, p.74, Propo-
sition 3.2.3]. However, there exists A which is boundedly centrally closed, but A1 is
not so [5, p.80, Remarks 3.3.10]. Hence it is of interest to investigate the boundedly
centrally closed intermediate C∗-algebras between A and Mloc(A).

Definition 9.11. Let A be a C∗-algebra. The smallest boundedly centrally closed
C∗-subalgebra of Mloc(A) containing A is called the boundedly centrally closed hull
of A.

The following lemma shows that a unital C∗-algebra A is boundedly centrally
closed if and only if A ∈ qB. It is shown that the boundedly centrally closed hull
of A is QqB(A). Moreover, this lemma is a unital C∗-algebra analogue of Theorem
4.17. It generalizes [5, pp.72-73, Lemma 3.1.3 and Remark 3.1.4].

Lemma 9.12. Let A be a unital C∗-algebra. Then:
(i) A is boundedly centrally closed if and only if A ∈ qB (i.e., a quasi-AW ∗-

algebra).
(ii) QqB(A) = ACen(Qb(A)).

(iii) QqB(A) is the boundedly centrally closed hull of A.
(iv) Let B be an intermediate C∗-algebra between A and Mloc(A). Then B

is boundedly centrally closed if and only if B(Q(A)) ⊆ B.

From Proposition 9.3 and Lemma 9.12(i), the center of a quasi-AW ∗-algebra
(i.e., a unital boundedly centrally closed C∗-algebra by Lemma 9.12(i)) is an AW ∗-
algebra. The next example shows that the class of quasi-AW ∗-algebras encom-
passes more variety than its subclass of AW ∗-algebras.

Example 9.13. (i) ([11, p.15, Example 1]) There is a quasi-AW ∗-algebra which
is not an AW ∗-algebra. Let A be the set of all compact operators on an infinite
dimensional Hilbert space over C. Then the heart of A1 is the set of bounded linear
operators with finite dimensional range space. So A1 is subdirectly irreducible.
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Since A1 is semiprime, A1 is prime and so A1 ∈ qB. Hence A1 is a quasi-AW ∗-
algebra. But as shown in [11, p.15, Example 1], A1 is not a Baer ∗-ring, thus A1

is not an AW ∗-algebra.
(ii) Every unital prime C∗-algebra is a quasi-AW ∗-algebra. There are prime

finite Rickart unital C∗-algebras (hence quasi-AW ∗-algebras) which are not AW ∗-
algebras [51].

(iii) From [11, p.43, Corollary], C is the only prime projectionless unital
AW ∗-algebra. Various unital prime projectionless C∗-algebras (hence quasi-AW ∗-
algebras) are provided in [40, pp.124-129 and 205-214].

Our next example provides a nonunital C∗-algebra A such that both A and
Mloc(A) are boundedly centrally closed, but A1 is not so.
Example 9.14. Let A be the C∗-direct sum of ℵ0 copies of C. Then Mloc(A) is
the C∗-direct product of ℵ0 copies of C. So both A and Mloc(A) are boundedly
centrally closed, but A1 is not so.

Thus Example 9.14 motivates one to seek a characterization of the boundedly
centrally closed (not necessarily unital) intermediate C∗-algebras between A and
Mloc(A). Our next result provides such a characterization in terms of B(Q(A))
and shows the existence of the boundedly centrally closed hull of a C∗-algebra A.
Theorem 9.15. Let A be a C∗-algebra and B an intermediate C∗-algebra between
A and Mloc(A). Then:

(i) B(Q(A)) ⊆ Cen(Qb(B1B(Q(A)))) = Cen(Qb(B)) ⊆ Cen(Mloc(A)).
(ii) BB(Q(A)) = BCen(Qb(B)).
(iii) B is boundedly centrally closed if and only if B = BB(Q(A)).
(iv) AB(Q(A)) is the boundedly centrally closed hull of A.

Assume that A is a C∗-algebra and B is an intermediate C∗-algebra between
A and Mloc(A). Then M(B) may not be contained in Mloc(A). However, the
next corollary characterizes M(B) to be boundedly centrally closed via B(Q(A)).
Moreover, parts (i) and (ii) are of interest in their own rights.
Corollary 9.16. Let A be a C∗-algebra and B an intermediate C∗-algebra between
A and Mloc(A). Then:

(i) B(Q(B)) = B(Q(A)).
(ii) Cen(Mloc(B)) = Cen(Mloc(A)).
(iii) M(B)Cen(Qb(M(B))) = M(B)B(Q(A)).
(iv) M(B) is boundedly centrally closed if and only if B(Q(A)) ⊆ M(B).
Surprisingly, the next result shows that under a mild finiteness condition,

QqB(A1) is norm closed.
Corollary 9.17. Let A be a C∗-algebra and n a positive integer. Then the following
are equivalent.

(i) A has exactly n minimal prime ideals.
(ii) QqB(A1) is a direct sum of n prime C∗-algebras.
(iii) The extended centroid of A is Cn.
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(iv) Mloc(A) is a direct sum of n prime C∗-algebras.
(v) Cen(Mloc(A)) = Cn.
(vi) Some boundedly centrally closed intermediate C∗-algebra between A and

Mloc(A) is a direct sum of n prime C∗-algebras.
(vii) Every boundedly centrally closed intermediate C∗-algebra between A

and Mloc(A) is a direct sum of n prime C∗-algebras.

Open Questions and Problems. (i) Determine which classes of rings are closed with
respect to right essential overrings. In particular, is the class of right extending
rings closed with respect to right essential overrings?

(ii) If a ring R is semiprime, then is RB(Q(R)) = QFI(R)?

Note that in [76, Example 4.2], there is an example of a module MR such
that End(MR) is a quasi-Baer ring, but MR is not quasi-Baer. In [29], we have
shown that for M = FI, if R is a semiprime ring then HFI(RR) = Q̂FI(R). This
motivates:

(iii) For a given class M of modules, determine necessary and/or sufficient
conditions on R such that HM(RR) = Q̂M(R).
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