1. (20 points) Circle your answer, or fill in the blank.

(a) Find the degree measure of the angle with the radian measure \(\frac{19\pi}{12} \).

 i) 570
 ii) 285
 iii) 0.087
 iv) not listed

(b) Find the radian measure of the angle with the degree measure \(-130^\circ\).

 i) \(-2.269\)
 ii) \(-74.8\)
 iii) \(-1.134\)
 iv) not listed

(c) The measures of two angles in standard position are: \(\frac{5\pi}{7} \) and \(\frac{40\pi}{7} \). Are these two angles coterminal?

 i) Yes
 ii) No

(d) The measure of an angle in standard position is \(-500^\circ\). A positive angle which is coterminal with the given angle is:

 i) \(-140^\circ\)
 ii) \(40^\circ\)
 iii) \(580^\circ\)
 iv) not listed

(e) Find an angle between \(0^\circ\) and \(360^\circ\) that is coterminal with \(1560^\circ\).
2. (a) (12 points) Sketch a triangle that has an acute angle θ, and find the other trigonometric ratios of θ, if $\sin(\theta) = \frac{5}{7}$.

\[
csc(\theta) = \underline{}
\]

\[
\cos(\theta) = \underline{}
\]

\[
\sec(\theta) = \underline{}
\]

\[
\tan(\theta) = \underline{}
\]

\[
\cot(\theta) = \underline{}
\]

(b) (8 points) How tall is a building if the angle of elevation from the ground is 25° at a distance of 80m from the base of the building.
3. (20 points) **Circle your answer.**

(a) Find the reference angle for 280°.

i) 280° ii) 80° iii) 10° iv) not listed

(b) Find the quadrant in which an angle θ lies, if \(\sin(\theta) < 0 \) and \(\cos(\theta) > 0 \).

i) I ii) II iii) III iv) IV

(c) Find the value of \(\sin(\theta) \) if \(\cos(\theta) = \frac{-4}{5} \) and \(\theta \) is in quadrant II.

i) \(\frac{1}{5} \) ii) \(\frac{-3}{5} \) iii) \(\frac{3}{5} \) iv) not listed

(d) Find the area of an equilateral triangle with sides of length 5 in.

i) 21.6 ii) 6.25 iii) 10.8 iv) not listed

(e) Write \(\tan(\theta) \) in terms of \(\sin(\theta) \), where \(\theta \) is an angle in quadrant II.

i) \(\frac{-\sin(\theta)}{\sqrt{1 - \sin^2(\theta)}} \) ii) \(\frac{\sin(\theta)}{\sqrt{1 - \sin^2(\theta)}} \) iii) \(\frac{-\sqrt{1 - \sin^2(\theta)}}{\sin(\theta)} \) iv) not listed
4. (20 points) **Circle your answer.**

(a) Find the terminal point \(P(x, y) \) on the unit circle determined by \(t = \frac{5\pi}{3} \).

i) \((0.5, -0.87)\) ii) \((-0.87, 0.5)\) iii) \((0.99, 0.09)\) iv) not listed

(b) The terminal point on the unit circle determined by \(t \) is the point \(P = \left(\frac{2}{3}, \sqrt{\frac{5}{3}}\right) \). Find the terminal point determined by \(t - \pi \).

i) \(\left(-\frac{2}{3}, \frac{\sqrt{5}}{3}\right)\) ii) \(\left(-\frac{2}{3}, -\frac{\sqrt{5}}{3}\right)\) iii) \(\left(\frac{2}{3}, -\frac{\sqrt{5}}{3}\right)\) iv) not listed

(c) Find the sign of \(\csc(t) \) if \(\cos(t) > 0 \) and \(\cot(t) < 0 \).

i) Positive ii) Negative

(d) Find \(\tan(t) \) if \(\sin(t) = \frac{-3}{4} \) and \(\sec(t) < 0 \).

i) \(\frac{3}{\sqrt{7}}\) ii) \(\frac{-3}{\sqrt{7}}\) iii) 3 iv) not listed

(e) Determine whether the function \(f(x) = 3x^2 + \cos(x) \) is even, odd, or neither.

i) Even ii) Odd iii) Neither
5. (a) (8 points) A sector of a circle has an angle of 50°. Find the area of the sector if the radius of the circle is 6 ft. Round your answer to two decimal places.

(b) (12 points) Given \(y = 3 \sin\left(\frac{\pi}{4} x + \frac{\pi}{2}\right) \), fill in the blank:

Amplitude:

Period:

Phase shift:

An appropriate interval on which to graph one complete period:

Graph one complete period, clearly indicating the \(x \)-intercepts.
Formula Sheet

• Area of a triangle with sides of length a, b, and included angle θ:

$$A = \frac{1}{2}ab\sin(\theta)$$

• Trigonometric identities:

$$\sin^2(\theta) + \cos^2(\theta) = 1$$
$$1 + \tan^2(\theta) = \sec^2(\theta)$$
$$1 + \cot^2(\theta) = \csc^2(\theta)$$