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Abstract. Let us consider the Dirac operator

L = iJ d
dx + U, J =

(
1 0
0 −1

)
, U =

(
0 a cos 2πx

a cos 2πx 0

)
,

where a 6= 0 is real, on I = [0, 1] with boundary conditions bc =
Per+, i.e., F (1) = F (0), and bc = Per−, i.e., F (1) = −F (0), F =(

f1

f2

)
∈ H1(I). Then σ(Lbc) = −σ(Lbc), and all λ ∈ σPer+(L(U))

are of multiplicity 2, while λ ∈ σPer−(L(U)) are simple (Thm
15). This is an analogue of E. L. Ince’s statement for Mathieu-Hill
operator.

Links between spectra of Dirac and Hill operators lead to de-
tailed information about spectra of Hill operators with potentials
of the Ricatti form v = ±p′ + p2 (Section 3). It helps to get ana-
logues of Grigis’ results [8] on zones of instability of Hill operators
with polynomial potentials and their asymptotics for the case of
Dirac operators as well (Section 4.2).

keywords: Dirac operator, periodic potential, Hill operator, eigen-
value multiplicity, zones of instability.

1. Introduction

1. Let us consider Dirac operator

(1.1) L = iJ
d

dx
+ V, J =

(
1 0
0 −1

)
, V =

(
0 p
q 0

)
on I = [0, 1] with boundary conditions bc = Per+ or Per−. If q(x) =

p(x) then Lbc is a self-adjoint operator, and its spectrum consists of the
sequence {λn}∞−∞ of its eigenvalues. Their multiplicities could be 1 or
2.

In the case of Hill-Mathieu operator

(1.2) M = − d2

dx2
+ a cos 2πx, a ∈ R, a 6= 0,

The first author acknowledges the hospitality of The Ohio State University at
Newark during the academic year 2003/2004.
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on I, with bc = Per+ or Per−, E. L. Ince [10] showed that all eigen-
values in both σPer+(M) and σPer−(M) are simple (see [5], [13]).

If M is considered on R as a selfadjoint (Schrödinger) operator, it
follows that all spectral gaps are open, i.e.,

(1.3) σ(M) = [0, λ−1 ]
⋃
∪∞n=1[λ

+
n , λ−n+1]

is absolutely continuous and

(1.4) λ−1 < λ+
1 < λ−2 < λ+

2 < · · · , γn = λ+
n − λ−n > 0,

where {λ+
n , λ−n } are eigenvalues of M on I for bc = Per+ if n is even,

or for bc = Per− if n is odd,

λ±n � π2n2, n →∞.

E. Harrel [9] and B. Avron, B. Simon [1] gave the asymptotics of
γn(M), M ∈ (1.2). They showed that

γn = 8π2

(
|a|
4π2

)n
1

((n− 1)!)2

(
1 + O(1/n2)

)
.

Later, A. Grigis [8] studied the asymptotics of γn(M) for arbitrary
trigonometric polynimial potentials. For information about the asymp-
totics of γn(M) in the case of real-valued C∞ or analytic potentials we
refer to [2, 3], and the bibliography there. Recently, we found in [4] the
asymptotics of spectral gaps γn(L) of Dirac operator L ∈ (1.1) with
the cosine potential.

2. However, before we would give any statements on spectra (not
semibounded any more) and spectral gaps of Dirac operator, we need to
explain carefully some semantic (and mathematical) difficulties related
to counting or enumeration of gaps and eigenvalues by index n running
over all integers Z.

Lemma 1. (Counting lemma). Let V ∈ (1.1) be C∞ function, i.e.,

p, q ∈ C∞, and q(x) = p(x). There exists an even integer m = m(V )
such that

(1.5) σ± = σPer±(L) ⊂ Im ∪
⋃

|k| > m
k ∈ Γ±

Dk,

where

(1.6) Γ+ = 2Z, Γ− = 2Z + 1,

and intervals
(1.7)
Im = [−(m + 1/2)π, (m + 1/2)π], Dk = [(k − 1/3)π, (k + 1/3)π].
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Moreover,

(1.8) #(σ+∩Dk) = 2 if k is even; #(σ+∩Dk) = 0 if k is odd

(1.9) #σ− ∩Dk = 0 if k is even; #(σ− ∩Dk) = 2 if k is odd

and

(1.10) #σ+ ∩ Im = # ({2Z} ∩ Im) = 2(m + 1),

(1.11) #σ− ∩ Im = # ({2Z + 1} ∩ Im) = 2m.

This statement can be found in [14].
We do not need in this paper a stronger version of a Counting Lemma

(for non-C∞ or non-symmetric potentials) which can be found in [11],
[7] and [14].

Now, by Lemma 1, we know that each of the intervals Dk, |k| > m,
for either even k or odd k, contains two eigenvalues (maybe coinciding,
i.e., one eigenvalue of multiplicity 2). We denote and index them as

(1.12) λ+
k , λ−k , λ−k ≤ λ+

k , |k| > m.

Indexes k, |k| ≤ m, are remaining, 2m + 1 of them, but (1.10) and
(1.11) tell us that exactly 2(m + 1) + 2m = 2(2m + 1) eigenvalues, or
2m + 1 pairs are remaining without labeling. By (1.10), (1.11) they lie
in the interval Im so moving from the left we index them as

λ−−m ≤ λ+
−m < λ−−(m−1) ≤ λ+

−(m−1) < · · · < λ−m ≤ λ+
m.

This procedure labels each eigenvalue, and (1.10), (1.11) and (1.12)
guarantee that nobody (either index or eigenvalue) left behind. More-
over, each eigenvalue with an even index comes from bc = Per+, and
each eigenvalue labeled by an odd index comes from bc = Per−.

This procedure is in particular important when we count and index
spectral gaps

(1.13) γn = λ+
n − λ−n .

By this definition, their indexes come from the pair {λ−n , λ+
n }. If λ−n =

λ+
n then of course γn = 0, i.e., this gap is closed, but it has not to be

forgotten.
Only with this rule of indexation we can write proper asymptotics

and count many closed gaps. Proposition 12 and Proposition 24 make
this point pronouncedly.

3. In [4] we analyzed spectra σ± of Dirac operator

(1.14) L = iJ
d

dx
+

(
0 p
p 0

)
, p = a cos 2πx,
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and showed γ−n = γn, and that for N = N(a) sufficiently large

γn = 0 for even n, |n| > N,

(1.15)

γn = 2|a|
( a

4π

)n−1
[(

n− 1

2

)
!

]−2 [
1 + 0

(
ln n

n

)]
, for odd n > N∗.

Of course, it implies that for |n| > N odd gaps are open but even gaps
are closed.

One of the main goals (and results) of this paper is to show that
the same is true for all gaps, i.e., for Dirac operator (1.14) with cosine
potential

γn = 0 for even n, γn > 0 for odd n, n ∈ Z.

Links between spectra of Dirac operators (1.14) with any even p, and
Hill operators with a potential v(x) = ±p′(x) + p2(x) (Sect. 3, Thm
15) help us to reformulate Grigis’ results on zones of instability of Hill
operators with a polynomial potential for Dirac operators as well.

Acknowledgement. We thank Prof. L. Friedlander of University of
Arizona for discussions related to our paper and other topics of spectral
analysis of differential operators.

2. Special case of potential with
p(x) = a(1 + e−2πix), q(x) = p(x).

This potential has a series of nice and special features. Its investiga-
tion is important for us as a step in finding multiplicities of eigenvalues
of Dirac operator with cosine potential.

Proposition 2. In the case
(2.1)

p(x) = a
(
1 + e2πix

)
, q(x) = p(x) = a

(
1 + e−2πix

)
, a ∈ R \ 0,

all eigenvalues λ ∈ σ(Lbc), bc = Per+ or Per−, are simple, i.e., of
multiplicity 1.

1. This is our main result in Section 1. The conclusive argument is
given in Subsection 1.5. Many elements of the proof have claims on
potentials that are more general than just (2.1). But we always assume
that p and q are periodic, of period 1, i.e.,

p(x + 1) = p(x), q(x + 1) = q(x), ∀x ∈ R.

Lemma 3. Suppose F =

[
f
g

]
is a λ-eigenfunction of Lbc, i.e.

(2.2) LF = λF, F ∈ D(Lbc).
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(a) If

(2.3) q(x) = p(1− x),

then

(2.4) K =

[
g(1− x)
f(1− x)

]
is a λ-eigenfunction as well.

(b) If

(2.5) p(1− x) = p(x), q(1− x) = q(x)

then

K̃ =

[
f(1− x)
−g(1− x)

]
is a (−λ)-eigenfunction, i.e.

(2.6) LK̃ = −λK̃.

Proof. (a) Condition (2.2) means that

if ′(x) + p(x)g(x) = λf(x),

(2.7)

−ig′(x) + q(x)f(x) = λg(x).

Substituting 1− x instead of x, and taking into account that

f ′(1− x) = −[f(1− x)]′, g′(1− x) = −[g(1− x)]′,

we obtain that

−i[f(1− x)]′ + p(1− x)g(1− x) = λf(1− x),

(2.8)

i[g(1− x)]′ + q(1− x)f(1− x) = λg(1− x).

Thus (2.3) implies that (2.8) may be written as

(2.9) LK = λK.

By the definition (2.4), it is clear that

(2.10) F ∈ Per+ ⇔ K ∈ Per+;

and

(2.11) F ∈ Per− ⇔ K ∈ Per−.

Therefore

(2.12) K ∈ D(Lbc) iff F ∈ D(Lbc),

so (2.9) and (2.12) mean that K is a λ-eigenfunction of Lbc.



6 PLAMEN DJAKOV AND BORIS MITYAGIN

(b) To prove part (b), with (2.5), we can rewrite (2.7) as

−i[f(1− x)]′ + p(x)[−g(1− x)] = (−λ)f(1− x),

(2.13)

−i[−g(1− x)]′ + q(x)f(1− x) = (−λ)[−g(1− x)].

This is an equivalent of (2.6). (2.10) and (2.11) hold as well. Lemma
3 is proven. �

2. Lemma 3(a) leads to a decomposition of λ-eigenfunctions into
“even” and “odd” components D and H :

(2.14) 2

[
f(x)
g(x)

]
=

[
d(x)

d(1− x)

]
+

[
h(x)

−h(1− x)

]
= D + H,

where

d(x) = f(x) + g(1− x), h(x) = f(x)− g(1− h).

If we know this special structure of vector functions D or H, then the
system (2.2), or (2.7), will be equivalent to one differential equation for
a function d(x) or a function h(x). For D we write (2.7) as

id′(x) + p(x)d(1− x) = λd(x),

(2.15)

−i[d(1− x)]′ + q(1− x)d(1− x) = λd(1− x).

These lines are identical if (see (2.3)

q(1− x) = p(x).

The same type formulas show that LH = λH is equivalent to one
differential equation

(2.16) ih′(x)− p(x)h(1− x) = λh(x).

We explained that the following is true.

Lemma 4. Under assumptions of Lemma 3, if λ has a multiplic-
ity 2, then both equations (2.15) and (2.16) have non-zero solutions
d(x), h(x) ∈ Per+(Per−) if bc = Per+(Per−).

Proof. Indeed (let us assume bc = Per+),
(2.17)

D(x) =

[
d(x)

d(1− x)

]
, so D(0) =

[
d(0)
d(1)

]
= D(1) =

[
d(1)
d(0)

]
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and D ∈ Per+ is equivalent to d(0) = d(1). In an analogous way we
have
(2.18)

H(x) =

[
h(x)

−h(1− x)

]
, so H(0) =

[
h(0)
−h(1)

]
= H(1) =

[
h(1)
−h(0)

]
and H ∈ Per+ implies (and is equivalent to) h(0) = h(1).

The same type formulas do the case Per−.
Both D and H are nonzero functions. Indeed, as (2.14) shows

E(λ) = {LF = λF, F ∈ bc}
is

Lin Span{D ∈ (2.17) and H ∈ (2.15), D, H ∈ bc},
and by Lemma’s assumption

(2.19) dim E(λ) = 2.

If, say, all H ∈ (2.18) + (2.16) are zero functions then F (0) = τ

[
1
1

]
,

and if C(x) is the (unique) solution of an initial value problem

LC = λC, C(0) =

[
1
1

]
,

we have F = τC and dim E(λ) ≤ 1, in contradiction to (2.19).

If all D ∈ (2.17) + (2.15) are zero functions then F (0) = σ

[
1
−1

]
,

and if C(x) is the unique (!) solution of an initial value problem

LC = λC, C(0) =

[
1
−1

]
,

then we have F = σC and again dim E(λ) ≤ 1 < 2, in contradiction
to (2.19). Lemma 4 is proven. �

3. Now we’ll deal with Equations (2.15) and (2.16) in terms of Fourier
coefficients of functions d and h. But at the start it is important to make
clear that we have two cases Per+ and Per−, and

(2.20) d(x) =
∑
k∈Γ

dke
iπkx, x ∈ [0, 1],

(2.21) h(x) =
∑
k∈Γ

hke
iπkx, x ∈ [0, 1],

where

(2.22) Γ = 2Z if bc = Per+, Γ = 2Z + 1 if bc = Per−.
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Lemma 5. If p ∈ (2.1), and Γ ∈ (2.22), the equations (2.15) and
(2.16), with conditions d, h ∈ bc, are equivalent to equations

(2.23) −(πk + λ)dk + a(d−k + d−k+2) = 0, k ∈ Γ

(2.24) (πk + λ)hk + a(h−k + h−k+2) = 0, k ∈ Γ

correspondingly.

Proof. Equations (2.23) and (2.24) come if we compare Fourier coeffi-
cients, k ∈ Γ, of the functions on the left and on the right in (2.15) and
(2.16). �

With a 6= 0, put

(2.25) B = π/a, λ = πµ.

Then a−1(πk + λ) = B(k + µ), and we rewrite (2.23) and (2.24) as

(2.26) −B(k + µ)dk + d−k + d−k+2 = 0, k ∈ Γ

(2.27) B(k + µ)hk + h−k + h−k+2 = 0, k ∈ Γ

Lemma 6. For any S(k), k ∈ Γ, Γ = 2Z or 2Z + 1, the recurrences

(2.28) S(k)xk + x−k + x−k+2 = 0, k ∈ Γ

determine the sequence (xk)k∈Γ by the value of x0, if Γ = 2Z, or x1, if
Γ = 2Z + 1. In particular, xk = 0 ∀k if x0, or respectively x1, is zero.

Proof. (i) Case Γ = 2Z. Put k = 0 in (2.28); then

(2.29) x2 = −[1 + S(0)]x0.

If k = 2 we have

(2.30) S(2)x2 + x−2 + x0 = 0,

so

(2.31) x−2 = −x0 − S(2)x2 = x0[−1 + S(2)(1 + S(0))].

If we know all xi, −2m ≤ i ≤ 2m, i ∈ Γ, then (2.28) with k = −2m
gives

(2.32) S(−2m)x−2m + x2m + x2m+2 = 0

which determines x2m+2. In an analogous way from (2.28) with k = 2m
it follows

(2.33) S(2m + 2)x2m+2 + x−2m−2 + x−2m = 0,

thus

(2.34) x−(2m+2) = −x−2m − S(2m + 2)x2m+2

is defined as well.
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This induction process determines the sequence (xk)k∈Γ. Of course,
if x0 = 0 we obtain by induction that all xk = 0, k ∈ Z.

(ii) Case Γ = 2Z + 1.
First we choose k = 1 in (2.28), so

(2.35) S(1)x1 + x−1 + x1 = 0

and

x−1 = −[1 + S(1)]x1.

If we know all xi, |i| ≤ 2m + 1, m ≥ 0, then (2.28) with k =
−(2m + 1) gives

(2.36) S(−2m− 1)x−(2m+1) + x2m+1 + x2m+3 = 0

which determines x2m+3. Next, from (2.28) with k = 2m + 3 we obtain

(2.37) S(2m + 3)x2m+3 + x−(2m+3) + x−(2m+1) = 0,

so x−(2m+3) is defined as well.
This induction process determines the entire sequence (xk)k∈Γ. Of

course, if x1 = 0, we obtain by induction that all xk = 0, k ∈ Γ.
Lemma 6 is proven. �

4. The specific form of S(k) was not important in Lemma 6. Of
course, it covers the cases

(2.38) S(k) = εB(k + µ), ε = 1 or − 1,

so (2.26) and (2.27) are particular examples of (2.28). Therefore Lemma
6 implies that d0 for Γ = 2Z or d1 for Γ = 2Z + 1 in (2.23) and (2.26),
(and h0 or h1 in (2.24) and (2.27)), uniquely determine the entire se-
quence (dk)k∈Γ (and (hk)k∈Γ). But now these coefficients depend on a
parameter µ.

Lemma 7. With S ∈ (2.38) if
(a) x0 = 1 for Γ = 2Z
or
(b) x1 = 1 for Γ = 2Z + 1

then the elements of the sequence (xk) defined by (2.28) in Lemma 6
are polynomials of µ.

Proof. (a) First, we consider the case Γ = 2Z.
By (2.29) we have

(2.39) x2 = −[1 + εBµ] := P2(µ),

and by (2.30) and (2.31)

(2.40) x−2 = −1− εB(µ + 1)P1(µ) := P−2(µ)
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is a polynomial of degree 2. By induction, (2.32), (2.33) and (2.34)
define polynomials Pk(µ), k ∈ Γ. Indeed, if these polynomials are
known for |k| ≤ 2m then we have

(2.41) x2m+2 = −x2m − εx−2mB(−2m + µ) = P2m+2(µ)

where

P2m+2(µ) := −P−2m(µ) + εB(2m− µ)P−2m,

and

(2.42) x−2(m+1) = −x−2m − εx2m+2B(2m + 2 + µ) = P−2(m+1)(µ)

where

P−2(m+1)(µ) := −P−2m(µ) + εP2m+2(µ)B(2m + 2 + µ).

These formulae prove Lemma 7 if Γ = 2Z.

(b) Now, let Γ = 2Z + 1.
Put

(2.43) Q0(µ) := 1

and by (2.35)

(2.44) x1 = −(1 + εB(µ + 1)) := Q1(µ).

We omit details. As in (2.36), (2.37) gives a sequence of polynomials
Qk(µ), k ∈ Γ, such that

(2.45) xk = Qk(µ).

Lemma 7 is proven. �

Lemma 8. If (xk, k ∈ Γ) is a solution of (2.26) or (2.27) then for
any k such that k 6= µ, µ + 2

(2.46) H(k)xk +
xk+2

k − 2
+

xk−2

k − 2− µ
= 0,

where

(2.47) H(k) = B2(k + µ) +
1

k − µ
+

1

k − 2− µ
.

Proof. With parameter ε = 1 or -1 we can rewrite (2.26) and (2.27) in
a unified form as

(2.48) εB(k + µ)xk + x−k + x−k+2 = 0

or

(2.49) B(k + µ)xk + εx−k + εx−k+2 = 0
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Therefore

(2.50) εxk = − 1

B(k + µ)
(x−k + x−k+2)

and (2.48) or (2.50) implies for −k and −(k − 2) that

(2.51) εx−k =
1

B(k − µ)
(xk + xk+2)

and

(2.52) εx−k+2 =
1

B(k − 2− µ)
(xk−2 + xk)

Now if we put these εx−k and x−k+2 into (2.49) we’ll come exactly to
(2.46)-(2.47). �

It is important that Equation (2.46) does not depend on ε but both
(dk) ∈ (2.23) and (hk) ∈ (2.24) which come from D and H of Lemma
2.1 satisfy the same equations (2.46).

For any two sequences (xk), (yk), k ∈ Γ let us define a Wronskian

(2.53) W (x, y; i) = xi+2yi − xiyi+2, i ∈ Γ.

Lemma 9. If (2.53) holds, and x, y are two solutions of (2.46), µ 6∈ Γ,
then

(2.54) w(k)/(k − µ) = w(k − 2)/(k − 2− µ),

where w(i) = W (x, y; i), i ∈ Γ.

Proof. Write Equation (2.46) for y so

(2.55) H(k)yk +
yk+2

k − µ
+

yk−µ

k − 2− µ
= 0.

If we multiply both sides of (2.46) by yk and both sides of (2.55) by xk

and subtract these equations we come to the identity (2.54). �

5. By Lemma 6 and Lemma 7 we have two uniquely defined se-
quences (d) ∈ (2.26) and (h) ∈ (2.27) with (if Γ = 2Z)

(2.56) d0 = 1, h0 = 1,

and

(2.57) dk = P+
k (µ), hk = P−

k (µ),

where +,− means that in (2.41), (2.42) we put ε = +1 for (d) and
ε = −1 for (h).

If Γ = 2Z + 1 we have

(2.58) d1 = 1, h1 = 1,
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and

(2.59) dk = Q+
k (µ), hk = Q−

k (µ),

where +,− means that in (2.44), (2.45) we put ε = +1 for (d) and
ε = −1 for (h).

Lemma 9 helps us to evaluate explicitly Wronskian

(2.60) w(k) = W (d, h; k), k ∈ Γ.

Of course, everything depends on µ, so we should write w(k; µ) for w(k)
in (2.60). By Lemma 7

(2.61) w(k; µ) = dk+2(µ)hk(µ)− dk(µ)hk+2(µ)

is a polynomial of µ of degree ≤ |k| + 2. For any µ 6∈ Z we can use
(2.54), k ∈ Z, to realize that

(2.62) z(k; µ) =
w(k; µ)

k − µ

does not depend on k, i.e.

(2.63)
w(k; µ)

k − µ
=

w(j; µ)

j − µ
, ∀k, j ∈ Γ, µ 6∈ Z.

But if j 6= k the right-hand side is analytic at µ∗ = k; therefore the
left-hand side is regular at µ∗ = k as well, and the polynomial w(k : µ)
should vanish for µ = k, i.e.

(2.64) w(k; µ) = Rk(µ) · (k − µ),

where Rk is a polynomial, and (2.63) can be rewritten as

(2.65) Rk(µ) = Rj(µ), ∀k, j ∈ Γ, ∀µ ∈ C.

If Γ = 2Z then R0(µ) = w(0; µ)/(−µ). By (2.39)

(2.66) w(0; µ) = P+
1 (µ)− P−

1 (µ) = −(1 + Bµ) + (1−Bµ) = −2Bµ,

so

(2.67) R0(µ) = 2B and Rk(µ) = 2B ∀k.

Finally, (2.64) becomes

(2.68) w(k; µ) = 2B(k − µ), ∀k ∈ Γ, µ ∈ C.

If Γ = 2Z + 1, µ + 1 6= 0, by (2.44)

(2.69) R−1(µ) =
w(−1; µ)

−1− µ

where
(2.70)
w(−1; µ) = Q+

1 −Q−
1 (µ) = −(1+B(µ+1))+(1−B(µ+1)) = −2B(µ+1),



MULTIPLICITIES OF THE EIGENVALUES 13

so

(2.71) R−1(µ) = 2B

and by (2.63) and (2.65)

(2.72) Rk(µ) = 2B, ∀k ∈ Γ.

Finally, as in (2.68) we conclude

(2.73) w(k; µ) = 2B(k − µ), ∀k ∈ Γ, µ ∈ C.

We have proven the following

Lemma 10. Let (d) and (h) be defined by (2.26) and (2.27). Then

(2.74) w(k; µ) = W (d, h; k) = 2B(k − µ), ∀k ∈ Γ, ∀µ ∈ C.

6. It immediately leads to the main claim of this section.

Proposition 11. For each scalar λ in (2.23) and (2.24) the two non-
zero sequences (d) and (h) do not belong to `2(Γ) simultaneously.

Proof. Without loss of generality (by Lemma 6) we can assume that
(2.56) if Γ is evens or (2.58) if Γ is odds hold. If both d and h belong to
`2(Γ) then their Wronskian sequence (2.60) goes to zero as k → ±∞.
It contradicts to (2.74) because B 6= 0 [see (2.25)] and the right-hand
side of (2.74) is unbounded. Proposition 11 is proven. �

Proof of Proposition 2. If λ is of multiplicity 2 then by Lemma 4
there are two L2-(even analytic) functions d(x), h(x) which are linearly
independent eigenfunctions such that D of (2.17) and H of (2.18) are
eigenvector functions of Lbc. Then by Lemma 5 their Fourier coefficient
sequences (d) and (h) are nonzero `2-solutions of (2.23) and (2.24),
correspondingly. By Prop. 11, this is impossible. Proposition 2 is
proven.

3. Transformation of potentials and change of the
spectra

0. In section 1 we showed that a potential V =

(
0 p
q 0

)
with

(3.1) p(x) = a
(
(1 + e2πix

)
, a ∈ R, q(x) = p(x)

leads to Dirac operator

(3.2) L = iJ
d

dx
+ V, bc = Per±,
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such that all eigenvalues in both Per+ and Per− cases are simple. It
implies that all gaps (zones of instability) are open, i.e.

(3.3) λ+
n − λ−n = γn(V ) 6= 0, ∀n ∈ Z

Now we transform the potential (3.1) into the cosine-potential. It is
done in a few steps by using some special transformations that are quite
general. We explain them in a more general setting than we would just
need to analyze the cosine potential. Sometimes, we present well-known
facts (compare [12], Ch. 1), at least as a folklore, in the framework that
fits better to these manipulations with changing potentials.

1. Increasing frequency.
A system (3.2) could be rewritten as an evolution equation

(3.4) (a) F ′(t) = A(t)F (t), (b) A(t + 1) = A(t),

where

(3.5) A(t) = i

(
−λ p(t)
−q(t) λ

)
.

For any initial data

(3.6) F (0) = h ∈ C2

its solution is given by

(3.7) F (t) = U(t)h, t ∈ R,

where U(t) is a fundamental matrix-solution, i.e.

(3.8) U ′(t) = A(t)U(t), U(0) = 1C2 .

A monodromy matrix

(3.9) S = U(1),

and periodicity (3.4)(b) implies that

(3.10) U(m) = Sm, ∀m ∈ Z.

For A ∈ (3.5) Lyapunov function is defined as

(3.11) δ(λ) = Trace S,

and

(3.12) σ(LPer+) = {λ : δ(λ) = +2},

(3.13) σ(LPer−) = {λ : δ(λ) = −2}.
Then

(3.14) det S = 1,
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so the eigenvalues of S are c and 1/c, with

(3.15) c = +1 iff δ(λ) = +2,

(3.16) c = −1 iff δ(λ) = −2.

Moreover, λ ∈ (3.12) [or ∈ (3.13)] has a multiplicity 1 if

(3.17) δ′(λ) 6= 0,

and a multiplicity 2 if

(3.18) δ′(λ) = 0.

After this basic information on the monodromy matrix, let us follow
carefully to its changes if we increase frequency of a potential.

Fix m ≥ 2, m ∈ Z. If

(3.19) w(t) = F (mt),

with F being defined by (3.4) and (3.6), then

(3.20) w′(t) = mF ′(mt) = mA(mt)F (mt), w(0) = F (0) = h

i.e. w(t) is a solution of an evolution equation

(3.21) w′(t) = B(t)w(t), w(0) = h,

where

(3.22) B(t) = mA(mt) = i

(
−mλ mp(mt)

−mq(mt) mλ

)
.

But by (3.19)

(3.23) w(t) = F (mt) = U(mt)h,

so a fundamental matrix-solution W (t) for (3.21) is determined by U :

(3.24) W (t) = U(mt)

and the corresponding monodromy matrix by (3.10) is equal to

(3.25) T = W (1) = U(m) = Sm.

A matrix-function B ∈ (3.22) would come from Dirac potential Q

(3.26) Q =

(
0 mp(mt)

mq(mt) 0

)
,

and if ∆(µ) denotes Lyapunov function of this Dirac operator then by
(3.22), (3.26) and (3.14)

(3.27) ∆(mλ) = Trace T = cm + 1/cm.

This rational function of c

(3.28) ∆ = cm + 1/cm
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is a polynomial of δ = c + 1/c, i.e.

(3.29) cm + 1/cm = Pm(c + 1/c).

Remark. Pm is essentially the Chebyshev polynomial Tm(x) = cos(m arccos x).
To be precise, Pm(2λ) = 2Tm(λ).

The structure and factorization of ∆± 2 will tell us about the spec-
trum of L(Q), Q ∈ (3.26) in terms of the spectrum of L(V ), V ∈ (3.2),
(3.5). But first let us do the case m = 2 where

(3.30) c2 + 1/c2 + 2 = (c + 1/c)2 = δ2,

(3.31) c2 + 1/c2 − 2 = δ2 − 4 = (δ − 2)(δ + 2).

These simple formulae help us to describe spectra of LPer±(Q), m = 2,
i.e.

(3.32) p2(t) = 2p(2t), q2(t) = 2q(2t)

if we know spectra LPer±(V ).
Indeed, by (3.30)

(3.33) ∆(2λ) + 2 = δ2(λ).

It means that µ = 2λ is an antiperiodic eigenvalue of L(Q) if and
only if

(3.34) δ(λ) = 0.

Such λ is not a point of σPer±(V ). Moreover, by (3.33) and (3.34)

(3.35) 2∆′(2λ) = 2δ(λ)δ′(λ) = 0.

Therefore, all eigenvalues σ(LPer−(Q)) are of multiplicity 2.
Next, by (3.31)

(3.36) ∆(2λ)− 2 = (δ − 2)(δ + 2).

It means that µ = 2λ is a periodic eigenvalue, i.e. 2λ ∈ σPer+(L(Q)),
if and only if

(3.37) δ(λ) = 2, or δ(λ) = −2,

or if

(3.38) λ ∈ σPer+(L(V )) ∪ σPer−(L(V ))

Multiplicities are preserved because ±2 are simple roots of the poly-
nomial on the right-hand side of (3.36). Indeed, like in (3.35)

(3.39) 2∆′(2λ) = 2δ(λ)δ′(λ),

but now δ(λ) = ±2 and

(3.40) ∆′(2λ) = ±2δ′(λ).
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Therefore, ∆′(2λ) = 0 at roots of (3.36) if and only if δ′(λ) = 0. It
explains that multiplicity is the same. It leads us to the following
statement.

Proposition 12. Let V (x + 1) = V (x) and Q ∈ (3.26, m = 2) or
(3.32). Then

(a) all antiperiodic eigenvalues of L(Q) are of multiplicity 2, and
gaps

(3.41) γ2k+1(Q) = 0

are closed;
(b) periodic eigenvalues of L(Q) are 2-multiples of both periodic and

antiperiodic eigenvalues of L(V ) of the same multiplicity, so

(3.42) σPer+(L(Q)) = {2µ| µ ∈ σPer+(L(V )) ∪ σPer−(L(V ))}.
Even gaps are determined by

(3.43) γ2k(Q) = 2γk(V ), k ∈ Z.

In particular, if all eigenvalues of L(V ) are simple then all periodic
eigenvalues of L(Q) are simple and v.v.

Proof. Each antiperiodic eigenvalue of L(Q)) is a root of the equation

(3.44) ∆(µ) + 2 = 0,

or by (3.33)

(3.45) 0 = ∆(µ) + 2 = (δ(µ/2))2 .

It happens if and only if δ(µ/2) = 0, and in this case µ is a double root
of (3.44). Of course, the gaps are closed. This proves Part (a).

Each periodic eigenvalue of L(Q)) is a root of the equation

(3.46) ∆(µ)− 2 = 0,

or by (3.36)

(3.47) 0 = ∆(µ)− 2 = (δ(µ/2)− 2)(δ(µ/2) + 2),

therefore (3.42) holds. Multiplicities are preserved by (3.39)-(3.40).
Counting lemma (Lemma 1) gives a proper enumeration of eigenvalues
and spectral gaps. It leads to formula (3.41). �

See more general constructions for m ≥ 2 in Prop. 20, Sect. 4.1.

3. Gauge transform and shift of spectra.
Again, as in (1.1), let

(3.48) L = L(V ) = iJ
d

dx
+ V,
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and let

(3.49) LF = λF, F ∈ Per+ (or Per−).

Put

(3.50) Mβ =

(
eiπβx 0

0 e−iπβx

)
, β ∈ Z,

Define G(x) by

(3.51) F = MβG, or G = M−1
β F = M−βF.

Let us notice that
M ′

β(x) = iπβJMβ(x),

so
F ′ = M ′

βG + MβG′ = iπβJF + MβG′

and by (3.49)

iJ(iπβJF + MβG′) + V MβG = λMβG,

or
iMβJG′ + V MβG = (λ + πβ)MβG

and
iJG′ + (M−1

β V Mβ)G = (λ + πβ)G.

If we consider a new potential

(3.52) U(x) = M−1
β V Mβ =

(
0 pe−2πiβx

qe2πiβx 0

)
then G satisfies a differential equation

(3.53) iJG′ + U(x)G = (λ + πβ)G.

For any β ∈ Z the new potential is periodic: U(x + 1) = U(x) if the
initial potential V is periodic. Now (3.51) shows that if β is even then

F ∈ Per+ ⇔ G ∈ Per+, F ∈ Per− ⇔ G ∈ Per−,

but for odd β

F ∈ Per+ ⇔ G ∈ Per−, F ∈ Per− ⇔ G ∈ Per+.

Equation (3.53) shows how spectra shift. Our discussion proved the
following.

Lemma 13. If β is even then with notation (3.48) and (3.52)

(3.54) σPer±(L(U)) = πβ + σPer±(L(V )),

and λ for L(V ) and πβ + λ for L(U) have the same multiplicities. If
β is odd then

(3.55) σPer±(L(U)) = πβ + σPer∓(L(V )),
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and λ for L(V ) and πβ + λ for L(U), with corresponding bc, have the
same multiplicities.

4. We’ve proven everything by now. Let us collect this information
to make claims about the cosine-potential. But first, put

(3.56) V (x) =

(
0 a(1 + e−2πi)x

a(1 + e2πix) 0

)
.

By Proposition 2 we know that its periodic and antiperiodic eigenvalues
λ are simple. Therefore, by Proposition 12 if we consider the potential

(3.57) Q(x) =

(
0 2a(1 + e−4πi)x

2a(1 + e4πix) 0

)
then

(3.58) all periodic eigenvalues of L(Q) are simple,

and

(3.59) all its antiperiodic eigenvalues are double, or of multiplicity 2.

If we put β = 1 (an odd integer) and transform Q as in (3.52), i.e.,

U(x) = M−1
1 QM1 =

(
0 2a(e−2πix + e2πix)

2a(e−2πix + e2πix) 0

)
then

(3.60) U(x) =

(
0 4a cos 2πx

4a cos 2πx 0

)
.

By (3.55) in Lemma 13

(3.61) σPer+(L(U)) = π + σPer−(L(W ))

and

(3.62) σPer−(L(U)) = π + σPer+(L(W ))

with multiplicities preserved.
Then (3.59) transformed by (3.61) means that all periodic eigenval-

ues of L(U) are double, i.e., of multiplicity 2, while (3.58) transformed
by (3.62) means that all antiperiodic eigenvalues of L(U) are simple.
It concludes the proof of our main claim:

Theorem 14. For real a 6= 0, if U(x) =

(
0 a cos 2πx

a cos 2πx 0

)
then

all λ ∈ σPer+(L(U)) are double, and all λ ∈ σPer−(L(U)) are simple.
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4. Links between spectra of Dirac and Hill operators

Results of Section 2, in particular its main Theorem 14, about spectra
of Dirac operators lead to information about spectra of Hill operators
with potentials induced by a potential of Dirac operators.

1. Let L be a Dirac operator (1.1) with p = q real-valued, and with
bc = Per+ or Per−. We will use Pauli (selfadjoint) matrices

I =

(
1 0
0 1

)
, H =

(
1 −i
i 0

)
, K =

(
0 1
1 0

)
, J =

(
1 0
0 −1

)
.

Their commutation rules are

J2 = K2 = H2 = I, JK = −KJ = iH,

(4.1)

JH = −HJ = −iK, KH = −HK = iJ.

Now we can write L as

(4.2) L = iJD + pK;

therefore

(4.3) L2 = −D2 + p2 − p′H.

Observe that

(4.4)
1√
2
(1− iK) · 1√

2
(1 + iK) = 1

and

(4.5)
1

2
(1− iK)H(1 + iK) =

1

2
(1− iK)2H = −iKH = J,

so L2 is (unitary) equivalent to

(4.6) M =
1

2
(1− iK)L2(1 + iK) = −D2 + p2 − p′J.

This is a diagonal matrix, and

(4.7) M

(
y1

y2

)
=

(
h−y1

h+y2

)
,

where

(4.8) h±u = −u′′ + (p2 ± p′)u

can be considered as Hill operators. Boundary conditions bc = Per+,
or Per−, should be chosen the same for h+ and h− correspondingly to
the boundary conditions of L.
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Let us denote

(4.9) E(T, τ) = {x ∈ X : Tx = τx}
a τ -eigen-subspace of an operator T if τ ∈ σdisc(T ). Put

(4.10) µ = λ2.

The operator h is self-adjoint, and therefore its spectrum is discrete.
It is easy to see that

(4.11) E(L2, µ) = E(L, λ) + E(L,−λ).

The Pauli matrix

(4.12) H :

(
f
g

)
→ i

(
−g
f

)
gives an (unitary) isomorphism between the spaces E(L, λ) and E(L,−λ),
so their dimensions are equal, and

(4.13) dim E(L2, µ) = 2 dim E(L, λ).

With J being diagonal, by (4.6) and (4.7), we have

(4.14) M =

(
h− 0
0 0

)
+

(
0 0
0 h+

)
and

(4.15) E(M, µ) = (E(h−, µ)⊕ 0)⊕ (0⊕ E(h+, µ)).

Notice that with even p and odd p′ the linear map

(4.16) S : f(x) → f(1− x)

gives an isomorphism

(4.17) S : E(h−, µ) → E(h+, µ),

so the two subspaces on the right of (4.15) are isomorphic and their
dimensions are equal, i.e.,

(4.18) dim E(h−, µ) = dim E(h+, µ).

Therefore by (4.15) we have

(4.19) dim E(M, µ) = 2 dim E(h±, µ).

On the other hand, by (4.6), we obtain

(4.20) dim E(M, µ) = dim E(L2, µ).

Comparing (4.20), (4.19), (4.13) we conclude that

(4.21) dim E(L, λ) = dim E(h+, µ).

This formula proves the following theorem.
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Theorem 15. Let L be a Dirac operator (1.1) with p = q, p real-valued,
even, and bc = Per+ or Per−, and let h± be the Hill operators (4.8)
with bc = Per+ (or correspondingly Per−). Then

(4.22) σ(h+) = σ(h−) = {µ = λ2 : λ ∈ σ(L)},
and for each µ = λ2 ∈ σ(h±) its multiplicity, i.e., dim E(h±, µ) is the
same as the multiplicity of λ, an eigenvalue of L, i.e., dim E(L, λ).

2. This Theorem 15 helps us to transform statements of Theorem
14 into claims about spectra of Hill operators with potentials

(4.23) v±(x) = ±p′ + p2(x), p(x) = a cos 2πx,

or

(4.24) v(x) = b cos 4πx + c sin 2πx, b = a2/2, c = 2πa.

Proposition 16. Let

(4.25) hy = −y′′ + v(x)y, x ∈ [0, 1],

where v is defined in (4.24), a ∈ R \ 0. Then
(i) all periodic eigenvalues, i.e., µ ∈ σPer+(h), are double, so all even

spectral gaps are closed;
(ii) all antiperiodic eigenvalues, i.e., µ ∈ σPer−(h), are simple, so all

odd spectral gaps are open.

It should be mentioned that these statements are known. It has been
proven by Magnus and Winkler [12], Thm 7.9, in more general form.
They give an analogous statement if in (4.24) we have 8bt2 = (c/π)2, t
being an integer. See more details in Example 1, Sect. 4.2, below.

Corollary 17. A real-valued trig polynomial

(4.26) v(x) = b cos 4πx + c sin 2πx,

(4.27) 8b = (c/π)2, c 6= 0,

has a minimal period 1, but all even zones of instability are closed, i.e.,
γn = 0 for every even n.

Indeed, this statement immediately follows from Proposition 16 be-
cause for a 6= 0 the conditions (4.27) and (4.24) on b and c are equiva-
lent.

See further discussion of these questions and related Grigis’ results
([8], Cor. 4.3) in Sect. 5.2.

3. Of course, analysis of this section gives information about the size
of spectral gaps of Hill operators with potential (4.23) if we will use
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our result in [4], mentioned in the introduction; see (1.15). By Thm
15, formula (4.22),

(4.28) σ(h) = {µ = λ2 : λ ∈ σ(L)}.
A pair (µ−n , µ+

n ) close to π2n2 comes from (λ−n , λ+
n ) close to πn, n > 0,

and

(4.29) µ+ − µ− = (λ+)2 − (λ−)2 = (λ+ + λ−)(λ+ − λ−).

By Lemma 1, (1.7),

(λ−n , λ+
n ) ⊂ [(n− 1/3)π, (n + 1/3)π] if n > M(a),

so

(4.30) λ+
n + λ−n = 2πn(1 + 0(1/n)).

It is an easy part. But we know, by [4], Thm. 1, (26), a sharp asymp-
totic [see (1.15) in Introduction] for λ+

n − λ−n = γn(L), n odd, as well.
If we combine (1.15) and (4.29), (4.30) we come to the following.

Proposition 18. Under assumptions of Prop. 16, for n odd we have

γn(h) = 4π|a|n
( a

4π

)n−1
[(

n− 1

2

)
!

]−2(
1 + O

(
log n

n

))
.

If n is even, then Prop. 16 tells us that γn(h) = 0. Prop. 18 is a
quantitative addition to Prop. 16 (ii).

5. Comments

1. Proposition 12 suffices in our dealing with the cosine-potential.
But to get more examples let us state a general elementary fact about
polynomial roots of unity and polynomial representation of

(5.1) ∆ = cm + 1/cm

in terms of δ = c + 1/c.

Lemma 19. If m = 2n is even then

(5.2) ∆− 2 = (δ − 2)(δ + 2)
n−1∏
k=1

(
δ − 2 cos

kπ

n

)2

,

(5.3) ∆ + 2 =
n−1∏
k=0

(
δ − 2 cos

2k + 1

2n
π

)2

.

If m = 2n + 1 is odd then

(5.4) ∆− 2 = (δ − 2)
n∏

k=1

(
δ − 2 cos

2kπ

m

)2

,
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(5.5) ∆ + 2 = (δ + 2)
n∏

k=1

(
δ + 2 cos

2kπ

m

)2

.

Proof. These formulas are elementary (see, e.g. [6], pp 146-147). They
follow from (5.1). Let us explain (5.3); others can be done in the same
way. We have

(5.6) ∆ + 2 = cm + 1/cm + 2 =
(cm + 1)2

cm
.

Put

(5.7) ω = ei2π/m = eiπ/n

and τ = eπ/2n, so τ 2 = ω, and

(5.8) τωk = τ−1ω−k = τ−1ω2n−k = τω2n−1−k.

Therefore,

cm + 1 =
m−1∏

0

(c− τωk) =
n−1∏
k=0

·
2n−1∏
k=n

· · ·

=
n−1∏
k=0

(c− τωk)(c− τω)2n−1−k

=
n−1∏
k=0

(c2 − 2cRe(τωk) + 1)

=
n−1∏
k=0

(
c2 − 2c cos

2k + 1

m
π + 1

)
and

(cm + 1)2

cm
=

n−1∏
k=0

(
c2 − 2c cos 2k+1

m
π + 1

c

)2

=
n−1∏
k=0

(
δ − 2 cos

2k + 1

m
π

)2

.

Observe that (5.5) follows from (5.4) - and v.v. - if we replace c by
−c. �

These formulae can be used - in the same way as we’ve proven Propo-
sition 12 - to show that the following statement holds.
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Proposition 20. Let V (x + 1) = V (x), and Q ∈ (3.26), m ≥ 2.
(A) Let m be even, m = 2n. Then all antiperiodic eigenvalues of

L(Q) are of multiplicity 2, and gaps are closed, i.e.

(5.9) γ2k+1(Q) = 0.

More precisely,

σ (LPer−(Q)) = {mλ| δ(λ) = 2 cos
k + 1

n
π, 0 ≤ k ≤ n− 1.},

and each µ = mλ in this spectrum is of multiplicity 2.
(B) Let m be even, m = 2n. Then

σ (LPer+(Q)) = S0 ∪ S1,

where
S0 = {mλ| δ(λ) = 2 or δ(λ) = −2}

and

S1 =
n−1⋃
k=1

{mλ |δ(λ) = 2 cos
kπ

n
},

with µ = mλ ∈ S0 being of multiplicity 2, and µ = mλ ∈ S0 having the
same multiplicity as λ ∈ σ(L(V )).

(C) Let m = 2n + 1 be odd. Then

σ (LPer−(Q)) = T 0 ∪ T 1,

where

T 0 = {mλ |δ(λ) = −2}, T 1 =
n⋃

k=1

{mλ : δ(λ) = −2 cos
kπ

n
},

with µ ∈ T 1 being of multiplicity 2, and µ = mλ ∈ T 0 having the same
multiplicity as λ ∈ σ (LPer−(Q)) .

(D) Let m = 2n + 1 be odd. Then

σ (LPer+(Q)) = T 0 ∪ T 1,

where

T 0 = {mλ |δ(λ) = 2}, T 1 =
n⋃

k=1

{mλ : δ(λ) = 2 cos
kπ

n
},

with µ ∈ T 1 being of multiplicity 2, and µ = mλ ∈ T 0 has the same
multiplicity as λ ∈ σ (LPer+(Q)) .

Proof. As in the proof of Prop. 11 we need to interpret the formulae
of Lemma 19, the analogues of (3.33) and (3.36). Then (5.3) leads
to (A), (5.2) leads to (B), (5.4) leads to (C) and (5.5) leads to (D).
Proposition 20 is proven. �
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This proposition tells us not just about eigenvalues of L(Q); it ex-
plains their positions in comparison with eigenvalues of L(V ) and gives
us a proper count and enumeration. We omit explicit statements which
would follow case by case the lines of Proposition 20.

2. Asymptotics of spectral gaps of Dirac and Hill operators with trig
polynomial potentials

This paper concerns on whether zones of instability are open or
closed, i.e., whether

(5.10) γn = 0, or γn > 0,

without special interest in the size of γn if it is positive. (Our Letter [4]
was about asymptotics of spectral gaps.) However, even if our concern
is (5.10),asymptotic formulas could help to claim that γn > 0 for n
large enough. In this context the following A. Grigis’ result is very
interesting.

Proposition 21. ([8], Corollary 4.3). Let

v(x) = b cos 2πNx +
∑
|k|≥N0

cke
2πikx,

where b > 0, c−k = ck for |k| ≤ N0, c0 6= 0, 0 < N0 < N and the
integers N0 and N are relatively prime. If (cN0)

N is not a negative
number, then all zones of instability (µ+

n , µ−n ) of the Hill operator

(5.11) My = y′′

are open for n large enough.

Example 1. (see Sect. 3.3, Prop. 16).

(5.12) v(x) = b cos 4πx + c sin 2πx

In this case N = 2, N0 = 1, c = −ic/2 and

(5.13) c2
1 = −c2/4 < 0,

so Prop. 21 cannot be applied. By Thm 7.9, [12], if in (5.12) 8bt2 =
(c/π)2, then for t being odd integer, all but finitely many (≤ |t| + 1)
even zones of instability are closed, and all odd zones of instability are
open. If t is an even integer, then all but finitely many (≤ |t|+ 1) are
closed, and all even zones of instability are open. If t is not an integer,
then all gaps are open.

In Prop. 18 we used our results [4] on asymptotics of spectral gaps
of a Dirac operator to get such an asymptotics for Hill operator with
the potential (4.24). But we can go to the opposite direction by using
our constructions of Sect. 3.1-2 together with Grigis’ Cor. 4.3 in [8] to
get statements on spectral gaps of Dirac operator (1.1) with
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(5.14) p(x) = q(x) = a cos 2Kπx +
∑
|k|≤K0

ake
2πikx,

where aK0 6= 0, a−k = ak = ak. Its twin Hill operator (see Thm 15)
has potential

(5.15) v(x) = p′(x) + p2(x) =
1

2
a2 cos 2Kπx +

∑
|k|≤K0

cke
2πikx

where

(5.16) N = 2K, N0 = K + K0, cN0 =
1

2
aaK0 ,

so (cN0)
N =

(
1
2
aaK0

)2K
is negative if and only if (aK0)

2K is negative.

Corollary 22. Let p = q be of the form

(5.17) p(x) = a cos 2πKx +

K0∑
k=1

ak cos 2πkx,

where

(5.18) a > 0, aK0 6= 0, 0 < K0 < K,

and

(5.19) 2K, K + K0 be relatively prime.

Then for |n| ≥ N∗ large enough, the zones of instability of Dirac oper-
ator (1.1) are open.

Example 2. Certainly, (5.19) holds if K > 1, K0 = K − 1. Therefore,
any trig-polynomial

(5.20) p(x) = a cos 2πKx + b cos 2π(K − 1)x +
K−2∑
k=1

ak cos 2πkx

with all coefficients real, and a > 0, b 6= 0, satisfies the hypotheses of
Corollary 22. Its Dirac operator (1.1), with p = q, has open zones of
instability for |n| large enough.

Example 3. As an excercize in junior high school trigonometry, we
can write a series of polynomials by using Corollary 22, which give
Dirac operators with all, but may be finitely many, open gaps:

(i) a cos 2πKx + b cos 2π(K − 1)x, a > 0, b 6= 0;
(ii) a cos 10πx + b cos 4πx + c cos 2kπx;
(iii) a cos 14πx + b cos 8πx +

∑3
1 ck cos 2kπx, where ck are real.

Is it true that all of its zones of instability are open in the case of
Dirac operator with potential (5.20)?
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Of course, the main Grigis’ result [8], Thm. 2 could also be rewritten,
after our Theorem 15, for Dirac operators.

Proposition 23. Let L be a Dirac operator with q = p ∈ (5.14)−(5.19)

of Corollary 22. Then there exists a polynomial Q(t) =
∑N−1

j=1 λjt
j

with coefficients depending algebraically on a, (ak)
K0
1 in (5.17), such

that with a notation
(5.21)

Ak(n) = exp

[
2inkπ

N
+ 2nQ

((
a2

4n2

)1/N

e2ikn/N

)]
, N = 2K,

the following holds:

(5.22) γn(L) = 2

(
a2

2π2
· e2

n2

)n/2K
∣∣∣∣∣
2K−1∑
k=0

Ak(n) (1 + O(log n/n))

∣∣∣∣∣ ,
(5.23) γ−n(L) = γn(L).

Remark. As before, we readjust formulas from [8] for the interval
[0, π] to the interval [0, 1].

Proof. In essence, we rewrite Thm. 2, [8], p.643, with understanding
of Thm 15 and Prop. 16 (see Sect. 3.2-3.3), that

(5.24) σ(h) = {µ = λ2 : λ ∈ σ(L)},

where h is the Hill operator (4.8) with a potential

v(x) = p2 + p′, p ∈ (5.17)− (5.19).

Conditions imposed on p imply that v(x) satisfies Hypotheses of Thm.
2, [8], and therefore by (1.11), [8], p. 643, we have an asymptotics for

(5.25) γn(h) = µ+
n − µ−n .

But by (4.29), Sect. 3.4 above,

(5.26) λ+ − λ− =
1

λ+ + λ−
· (µ+ − µ−),

and

(5.27) γn(L) = λ+
n − λ−n =

1

2πn
γn(h) · (1 + O(log n/n)) .

Substitution of Grigis’ formula (1.11), [8], p. 643, for γn(h) into
(5.27) on the right gives us the statement (5.22) of Prop. 23. It com-
pletes its proof. �
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Remark. Let us notice that in the case of two term potential v(x) =
b cos 4πx+ c sin 2πx we found an explicit sharp asymptotics of spectral
gaps. These results will be published elsewhere.

3. Hill operator with increased frequency of its potential.
Maybe, after Propositions 11, 12 and 20 we need to mention how the

same scheme works in the case of Hill operator

(5.28) My = −y′′ + v(x)y, x ∈ I = [0, 1],

where

(5.29) v(x) = v(x + 1) ∈ L2(I),

with boundary conditions bc = Per+ or Per−. Let f be an eigenfunc-
tion of Mbc, i.e.

(5.30) −f ′′ + v(x)f = λf,

(5.31) f(0) = f(1), f ′(0) = f ′(1) if bc = Per+,

or

(5.32) f(0) = −f(1), f ′(0) = −f ′(1) if bc = Per−.

If S = Sλ(x) is the fundamental 2× 2-matrix solution of (5.30), i.e.

(5.33) Sλ(x)

(
y0

y1

)
=

(
y(x)
y′(x)

)
gives the solution of the equation

(5.34) −y′′ + (v(x)− λ)y = 0,

with initial data

(5.35) y(0) = y0, y′(0) = y1,

then (5.29) implies

(5.36) Sλ(m) = (Sλ(1))
m.

Put

(5.37) a(x) = y(mx);

then

a′(x) = my′(mx), a(0) = y(0), a′(0) = my′(0).

Therefore, if y ∈ (5.30) it follows

(5.38) −a′′ + m2v(mx)a = m2λa(x),
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and by (5.33) and (5.37) we have, with K =

[
1 0
0 m

]
,(

a(x)
a′(x)

)
= K

(
y(mx)
y′(mx)

)
=(5.39)

KS(mx)

(
y(0)
y′(0)

)
= KS(mx)K−1

(
a(0)
a′(0)

)
.

It shows that the matrix function

(5.40) U(x) = KS(mx)K−1

is the fundamental matrix solution of equation (5.38). Therefore, its
monodromy matrix is

(5.41) U(1) = KS(m)K−1 = KS(1)mK−1,

and the corresponding Lyapunov function is

(5.42) ∆(m2λ) = Trace
(
KS(1)mK−1

)
= Trace S(1)m = cm +

1

cm
,

where c, 1/c are roots of quadratic equation

(5.43) z2 − Tr (S(1)) z + 1 = 0

and
δ(λ) = c + 1/c

is a Lyapunov function for (5.30).
The identity (5.42) and Lemma 19 justifies the analogues of Propo-

sitions 11 - 20 for Schrödinger-Hill operators.

Proposition 24. Let Σ+ and Σ− be periodic and antiperiodic spectra
of the operator M ∈ (5.28), and let Σ+

m, Σ−
m be periodic and antiperiodic

spectra of the operator Mm,

Mmg(x) = −g′′(x) + m2v(mx)g(x), 0 ≤ x ≤ 1.

Then for even m = 2n we have

Σ+
m = T 0 ∪ T 1,

where
T 0 = {m2λ : δ(λ) = 2 or δ(λ) = −2}

T 1 =
n−1⋃
k=1

T 1
k , T 1

k = {m2λ : δ(λ) = 2 cos
2k

m
π},

and

Σ−
m = T 1 =

n−1⋃
k=0

T 1
k , T 1

k = {m2λ : δ(λ) = 2 cos
2k + 1

m
π}.
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If m = 2n + 1 is odd then Σ+
m = T 0 ∪ T 1 where

T 0 = {m2λ : δ(λ) = 2}

T 1 =
n⋃

k=1

T 1
k , T 1

k = {m2λ : δ(λ) = 2 cos
2k

m
π},

Σ−
m = T 0 ∪ T 1 where

T 0 = {m2λ : δ(λ) = −2}

T 1 =
n⋃

k=1

T 1
k , T 1

k = {m2λ : δ(λ) = −2 cos
2k

m
π}.
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