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Abstract. Let L be the differential operator

Ly = i

(
1 0
0 −1

)
dy

dx
+
(

0 P (x)
Q(x) 0

)
y, y =

(
y1

y2

)
,

where P (x), Q(x) are 1-periodic functions such that Q(x) = P (x). The
operator L, considered on [0, 1] with periodic (y(0) = y(1)), or antiperi-
odic (y(0) = −y(1)) boundary conditions, is self-adjoint, and moreover,
for large |n| it has, close to nπ, a pair of periodic (if n is even), or an-
tiperiodic (if n is odd) eigenvalues λ+

n , λ
−
n . We study the relationship

between the decay rate of instability zone sequence γn = λ+
n − λ−n , n→

±∞, and the smoothness of the potential function P (x).

1. Introduction

The operator

(1.1) Ly = i

(
1 0
0 −1

)
dy

dx
+

(
0 P (x)

P (x 0

)
y, y =

(
y1

y2

)
,

with periodic function P (x) of period 1, P ∈ L2([0, 1]), is a self-adjoint
operator on the real line R. Its spectrum σ(L) is absolutely continuous and
has “band structure”, i.e.,

σ(L) = R \ ∪n∈Z(λ−n , λ
+
n ),

where

· · · < λ−n ≤ λ+
n < λ−n+1 ≤ λ+

n+1 < · · · ,
and λ−n , λ

+
n is a pair of eigenvalues of the same differential operator L, but

considered on the interval [0, 1], respectively with periodic (for even n), and
antiperiodic (for odd n) boundary conditions (bc):

Per+ : y(0) = y(1), P er− : y(0) = −y(1).

See basic facts and further references on 1-D Dirac operators in [19], [21],
[22], [26].

The first author acknowledges the hospitality of The Mathematics Department of The
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Let γn = λ+
n − λ−n , n ∈ Z, be the lengths of spectral gaps, or zones

of instability, (λ+
n , λ

−
n ). What is the relationship between the decay rate of

γn, n→ ±∞, and the smoothness of a potential p?
In the case of Schrödinger (Hill) operators this question has a long history.

Let us remind a few results and steps in understanding of this relation. H.
Hochstadt [15] proved that a real-valued L2-potential v of a Schrödinger
operator

My = −y′′ + v(x)y, v(x+ 1) = v(x), x ∈ R,
is a C∞-function if and only if the gap sequence (γn)∞1 decays faster than
any power of 1/n, that is

(γn) ∈ `a = {(xn) :
∞∑
n=1

|xn|2(1 + n2)a <∞}

for every a > 0 (see [21]). For H. Hochstadt, it was an important step in
analysis of finite-zone potentials; as soon as one knew that such a potential
is a C∞- function, it was possible [12, 15, 16] to use derivatives and derive
polynomial identities involving v, v′, v′′, . . . to determine v. Further analysis
of finite-zone potentials [9, 25] led to Dubrovin equations (see [10]).

The Gelfand-Levitan trace formula [11] and Dubrovin equations [9] have
been used by E. Trubowitz [27] to show that a real-valued L2-potential v(x)
is analytic if and only if the gap sequence (γn) decays exponentially fast,
that is

∃a > 0, C > 0 : γn ≤ C exp(−an) ∀n ≥ 0.

In terms of weighted sequence spaces

`2
Ω = {(xn) :

∑
|xn|2Ω2(n) <∞},

Sobolev or analytic functions v,

v(x) =
∑

vk exp(2πikx),

can be characterized as having their Fourier-coefficient sequences in `2
Ω,

where Ω = (1 + n2)a/2, or Ω = exp(an), a > 0, respectively. T. Kappeler
and B. Mityagin [17, 18] raised the general question about the relationship
between the two conditions v ∈ H(Ω) and (γn) ∈ `2

Ω, where

(1.2) H(Ω) = {v : (vk) ∈ `2
Ω},

for general (submultiplicative) weights. They showed that

(1.3) v ∈ H(Ω)⇒ (γn) ∈ `2
Ω.

The opposite implication

(1.4) (γn) ∈ `2
Ω ⇒ v ∈ H(Ω)
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required a delicate analysis of special non-linear equations in sequence
spaces and a priori estimates of Sobolev norms of their solutions. It has
been done in [2, 3, 4] for, roughly speaking, all submultiplicative sequences
of subexponential growth, i.e.,

lim (log Ωn) /n = 0.

This is not just a technical restriction. For Ω with superexponential growth
like exp(|n|b, b > 1, the implications (1.3) and (1.4) are not valid, but the
proper adjustment can be made, and it is presented in [5]. Analysis of
non-selfadjoint Hill operators, i.e., the case of complex-valued potentials, is
done in [6]; see further references there.

Let us return to Dirac operators. Surprisingly enough, we could not find
in the literature even a Hochschtadt type statement in this case. Still, after
[17, 18] the approach developed there for the Schrödinger-Hill case has been
used in the Dirac case in [13], [14] to get claims about the decay rate of
spectral gaps:

(1.5) p ∈ H(Ω) =⇒
∑
n∈Z

γ2
nΩ2

n <∞

for some weights Ω, with rigid and (as we will see) unnecessary restrictions
on Ω.

The main goal of the present paper is to show that for subexponential
weights Ω the H(Ω)-smoothness of a potential P, i.e., the condition P ∈
H(Ω), follows from `2

Ω-decay of two-sided sequence (γn), i.e.,

(1.6)
∑

γ2
nΩ2

n <∞ =⇒ P ∈ H(Ω)

(see Theorem 11, Sect. 4, for accurate formulation). This result has been
announced in [7], Thm 2(i). Maybe, it’s worth to mention that there is an
analogue of this implication (and equivalence) in the non-selfadjoint case
(see [7], Thm 2(ii); this result will be given in detail in [8]).

In particular, (1.5) and (1.6) tell us that
(a) (γn) decays faster than any power of 1/n if and only if P ∈ C∞

(compare to [15]).
(b) (γn) decays faster than exp(−an) for some a > 0 if and only if P is

analytic in a strip around the real axis (compare to [27])
(c) (γn) decays faster than exp(−anβ), β ∈ (0, 1), for some a > 0 if and

only if the Fourier coefficients (pk) of P decay faster than exp(−A|k|β), for
some A > 0 (compare [4]).

In the case of Schrödinger - Hill operators we have proven similar state-
ments in [4] and [6]. The general scheme of the present paper is close to
the scheme of [4]. However, the technical details and difficulties are quite
different, because
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(i) Dirac operator is not semibounded;
(ii) its resolvent is not a trace class operator.

We are going to make this point explicit and specific in our proofs and
comments below.

The structure of our paper is as follows.

Abstract
1. Introduction
2. Basic equation and formulae for gaps
3. Weights; Carlemann sequences
4. Basic results: estimates on the smoothness of the potential in terms

of the decay rate of spectral gaps
5. Conclusions and comments

2. Basic Equation and formulae for spectral gaps

1. The Dirac operator

(2.1) L0y = i

(
1 0
0 −1

)
dy

dx
, y =

(
y1

y2

)
,

considered on the interval [0, 1] with periodic (y(0) = y(1)) or antiperiodic
(y(0) = −y(1)) boundary conditions, has a discrete spectrum, respectively,
{2kπ, k ∈ Z} and {(2k + 1)π, k ∈ Z}. Each eigenvalue nπ, both for peri-
odic (if n is even), or antiperiodic (if n is add) boundary conditions has
multiplicity 2, and

(2.2) e1
n(x) =

(
1
0

)
e−inπx, e2

n(x) =

(
0
1

)
einπx

are eigenfunctions corresponding to the eigenvalue nπ. Moreover, if the
Hilbert space H = L2[0, 1]× L2[0, 1] is equipped with the scalar product

(2.3)

〈(
f1

f2

)
,

(
g1

g2

)〉
=

∫ 1

0

(
f1(x)g1(x) + f2(x)g2(x)

)
dx,

then each of the systems {e1
2k, e

2
2k, k ∈ Z} and {e1

2k+1, e
2
2k+1, k ∈ Z} is an

orthonormal basis in H.
The operator

(2.4) L = L0 + V, V =

(
0 P (x)

Q(x) 0

)
,

where P and Q are 1-periodic functions, may be considered as a perturba-
tion of L0. Further we always assume that P,Q ∈ L2[0, 1]; then the operator
L, considered with periodic or antiperiodic boundary conditions, has also
a discrete spectrum. The following statement is known (see, for example
[20, 21, 22, 23], in particular, [24], Thm. 4.1 and Prop. 4.3).
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Lemma 1. There exists N0 = N0(P,Q) such that for each |n| ≥ N0 the
open disc with center πn and radius π/2 contains exactly two (counted with
multiplicity) periodic (if n is even), or antiperiodic (if n is odd) eigenvalues
{λ−n , λ+

n } of L, i.e.,

(2.5) |λ±n − πn| < π/2, |n| ≥ N0

2. Suppose that λ = nπ + z, |n| ≥ N0, is a periodic (or antiperiodic)
eigenvalue of L with |z| < π/2 and y 6= 0 is a corresponding eigenvector. Let
E0
n = [e1

n, e
2
n] be the eigenspace of L0 that corresponds to nπ, and let H(n)

be its orthogonal complement. We denote by P 0
n and Q0

n, respectively, the
orthogonal projectors on E0

n and H(n). Then the equation (nπ+z−L)y = 0
is equivalent to the following system of two equations:

(2.6) Q0
n(nπ + z − L0 − V )Q0

ny +Q0
n(nπ + z − L0 − V )P 0

ny = 0,

(2.7) P 0
n(nπ + z − L0 − V )Q0

ny + P 0
n(nπ + z − L0 − V )P 0

ny = 0.

Taking into account that P 0
nQ

0
n = Q0

nP
0
n = 0 and P 0

nL
0Q0

n = Q0
nL

0P 0
n = 0

we obtain that (2.6) and (2.7) can be written as

(2.8) Q0
n(nπ + z − L0 − V )Q0

ny −Q0
nV P

0
ny = 0

(2.9) −P 0
nV Q

0
ny − P 0

nV P
0
ny + zP 0

ny = 0

The operator

(2.10) A = A(n, z) := Q0
n(nπ + z − L0 − V )Q0

n : H(n)→ H(n)

is invertible for large |n| (see below (2.18), (2.26) and (2.27)). So, solving
(2.8) for Q0

ny, we obtain Q0
ny = A−1Q0

nV P
0
ny, where P 0

ny 6= 0 (otherwise
Q0
ny = 0 which implies y = P 0

ny + Q0
ny = 0). Now (2.9) implies (after

plugging the above expression for Q0
ny in it) that (S − z)P 0

ny = 0, where
the operator S is given by

(2.11) S := P 0
nV A

−1Q0
nV P

0
n + P 0

nV P
0
n : E0

n → E0
n.

Let

(
S11 S12

S21 S22

)
be the matrix representation of the two-dimensional oper-

ator S with respect to the basis e1
n, e

2
n; then

(2.12)
S11 = 〈e1

n, Se
1
n〉, S22 = 〈e2

n, Se
2
n〉, S12 = 〈e1

n, Se
2
n〉, S21 = 〈e2

n, Se
1
n〉.

Hence we obtain (since P 0
ny 6= 0)

(2.13) det

∣∣∣∣ S11 − z S12

S21 S22 − z

∣∣∣∣ = 0.

In the selfadjoint case (Q(x) = P (x)), if λ is a double eigenvalue, then
there exists another eigenvector ỹ (corresponding to λ), such that y and ỹ
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are linearly independent. Then P 0
ny and P 0

n ỹ are linearly independent also.
Indeed, if P 0

ny = cP 0
n ỹ then

Q0
ny = A−1Q0

nV P
0
ny = cA−1Q0

nV P
0
n ỹ = cQ0

nỹ,

which leads to a contradiction:

y = P 0
ny +Q0

ny = c
(
P 0
n ỹ +Q0

nỹ
)

= cỹ.

Thus S ≡ 0, i.e., if λ = πn+ z is a double eigenvalue of a self-adjoint Dirac
operator L, then (for large enough n)

(2.14) S11 − z = 0, S12 = 0, S21 = 0, S22 − z = 0.

3. Let H1 and H2 be the subspaces of H generated, respectively, by
{e1

m,m ∈ Z} and {e2
m,m ∈ Z}, and let H1(n) and H2(n) be, respectively,

the intersections of these spaces with H(n). Then H = H
1 ⊕ H2, so each

operator B : H→ H may be identified with a 2× 2 operator matrix (Bij),
where Bij : Hj → H

i, i, j = 1, 2. If we consider the matrix representation
of B in the basis {e1

2k, e
2
2k, k ∈ Z} (or {e1

2k+1, e
2
2k+1, k ∈ Z}) then this

matrix itself combines the matrix representations of Bij. Of course, similar
remark holds for operators acting in H(n).

Further we always work with one of the bases (2.2) (respectively, using
the first basis in the case of periodic boundary conditions, and the second
one in the case of antiperiodic boundary conditions). However, we don’t
specify below which basis is used because the formulas for the matrix repre-
sentations in these bases are formally the same (with running indices being
even in the first case, and odd in the second case).

Let

(2.15) P (x) =
∑
m∈Z

p(m)eimπx and Q(x) =
∑
m∈Z

q(m)eimπx,

where p(m) = q(m) = 0 for odd m, be the Fourier expansions of the
functions P and Q. It is easy to see that the operator V has the following
matrix representation

(2.16) V =

(
0 V 12

V 21 0

)
, V 12

km = p(−k −m), V 21
km = q(k +m).

The diagonal operator Q0
n(nπ + z − L0)Q0

n : H(n) → H(n) is invertible
in H(n) for any z with |z| ≤ π/2. Let Dn denote its inverse operator; then
the matrix representation of Dn is

(2.17) Dn =

(
D11
n 0
0 D22

n

)
,

(
D11
n

)
km

=
(
D22
n

)
km

=
δkm

π(n− k) + z
.

The operator A defined in (2.10) can be written as

(2.18) A = Q0
n(nπ + z − L0)Q0

n(1− TnQ0
n),
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where

(2.19) Tn = DnQ
0
nV : H→ H(n).

Thus A = A(n, z) is invertible if and only if 1− TnQ0
n is invertible in H(n).

By (2.16) and (2.17) one can easily see that the operator (2.19) has a matrix
representation

(2.20) Tn =

(
0 T 12

n

T 21
n 0

)
,

where
(2.21)

(T 12
n )km =

p(−k −m)

π(n− k) + z
, (T 21

n )km =
q(k +m)

π(n− k) + z
, k,m ∈ Z, k 6= n.

We need also the matrix representation of its square T 2
n . From (2.20) and

(2.21) it follows that

(2.22) T 2
n =

(
T 12
n T

21
n 0

0 T 21
n T

12
n

)
,

where

(T 12
n T

21
n )km =

∑
j 6=n

p(−k − j)q(j +m)

[π(n− k) + z][π(n− j) + z]
,

(k,m ∈ Z, k 6= n)(2.23)

(T 21
n T

12
n )km =

∑
j 6=n

q(k + j)p(−j −m)

[π(n− k) + z][π(n− j) + z]
.

Lemma 2. The norm of the operator T 2
n : H→ H(n) tends to 0 as |n| → ∞.

More precisely, if |z| < π/2, then
(2.24)

‖T 2
n‖ ≤ C

‖P‖‖Q‖√
|n|

+C‖P‖

 ∑
|k|≥|n|

|q(k)|2
1/2

+C‖Q‖

 ∑
|k|≥|n|

|p(k)|2
1/2

,

where C is an absolute constant.

Proof. The norm of T 2
n does not exceed its Hilbert-Schmidt norm, so, by

(2.22), it is less than the sum of the Hilbert-Schmidt norms of the operators
T 12
n T

21
n and T 21

n T
12
n .

We estimate in detail only the Hilbert-Schmidt norm ‖T 12
n T

21
n ‖HS because

‖T 21
n T

12
n ‖HS could be estimated in the same way. One can easily see that

(2.25)
1

|π(n− k) + z|
≤ 1

|n− k|
for |z| < π/2, k 6= n,
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so by (2.23) we have

‖T 12
n T

21
n ‖2

HS ≤
∑
k 6=n

∑
m

(∑
j 6=n

|p(−k − j)||q(j +m)|
|n− k||n− j|

)2

≤ Σ1 + Σ2 + Σ3,

where

Σ1 =
∑

|k−n|≥ |n|
2

∑
m

(∑
j 6=n

. . .

)2

, Σ2 =
∑
k 6=n

∑
m

 ∑
|j−n|≥ |n|

2

. . .


2

Σ3 =
∑

|k−n|< |n|
2

∑
m

 ∑
|j−n|< |n|

2

. . .


2

.

Now we estimate each of these sums separately. By Cauchy inequality we
obtain

Σ1 ≤
∑

|k−n|≥ |n|
2

∑
m

(∑
j 6=n

1

(n− k)2(n− j)2

)(∑
j 6=n

|p(−k − j)|2|q(j +m)|2
)

≤ π2

3

∑
|k−n|≥|n|/2

1

(n− k)2

∑
j 6=m

∑
m

|p(−k − j)|2|q(j +m)|2 ≤ C1

n
‖P‖2‖Q‖2.

The sum Σ2 can be estimated in an analogous way, so

Σ2 ≤
C1

n
‖P‖2‖Q‖2.

Finally, we obtain that Σ3 does not exceed

∑
|k−n|< |n|

2

∑
m

 ∑
|j−n|< |n|

2

|p(−k − j)|2|q(j +m)|2

(n− k)2

(∑
j 6=n

1

(n− j)2

)

≤ π2

3

∑
|k−n|<|n|/2

1

(n− k)2

∑
|j−n|<|n|/2

|p(−k − j)|2
∑
m

|q(j +m)|2

≤ C2‖Q‖2
∑
|ν|≥|n|

|p(ν)|2,

which completes the proof. �

By Lemma 2, for each potential matrix V there exists N1 = N1(V ) such
that

(2.26) ‖T 2
n‖ ≤ 1/2 for n ≥ N1.
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Since
‖T 2k

n ‖ ≤ ‖T 2
n‖k and ‖T 2k+1

n ‖ ≤ ‖Tn‖‖T 2
n‖k,

the series

(1− TnQ0
n)−1 =

∞∑
`=0

T `nQ
0
n

converges. Thus, in view of (2.18), A−1 exists and

(2.27) A−1 =
∞∑
`=0

T `nDn, n ≥ N1.

Now, from (2.11) and (2.19) it follows that

(2.28) S = P 0
nV P

0
n +

∞∑
`=0

P 0
nV T

`
nDnQ

0
nV P

0
n =

∞∑
k=0

P 0
nV T

k
nP

0
n ,

so, in view of (2.12),

(2.29) Sij =
〈
ein, Se

j
n

〉
=
∞∑
k=0

Sijk ,

where

(2.30) Sijν =
〈
ein, V T

k
ne

j
n

〉
, k = 0, 1, 2, . . . .

From (2.16) and (2.21 - 2.23) it follows that

V T 2ν
n =

(
0 V 12(T 21

n T
12
n )ν

V 21(T 12
n T

21
n )ν 0

)
,(2.31)

V T 2ν+1
n =

(
V 12T 21

n (T 12
n T

21
n )ν 0

0 V 21T 12
n (T 21

n T
21
n )ν

)
.(2.32)

It is easy to see that〈
ein, V T

2ν
n ein

〉
= 0, i = 1, 2; ν = 0, 1, 2, . . . ,

therefore by (2.12), (2.28), (2.29) and (2.32) we obtain

(2.33) S11 =
∞∑
ν=0

S11
2ν+1, S22 =

∞∑
ν=0

S22
2ν+1,

where

(2.34) S11
2ν+1 =

〈
e1
n, V T

2ν+1
n e1

n

〉
=
〈
e1
n, V

12T 21
n (T 12

n T
21
n )νe1

n

〉
=∑

j0,j1,...,j2ν 6=n

p(−n− j0)q(j0 + j1)p(−j1 − j2)q(j2 + j3) . . . p(−j2ν−1 − j2ν)q(j2ν + n)

[π(n− j0) + z][π(n− j1) + z] . . . [π(n− j2ν−1) + z][π(n− j2ν) + z]
,

(2.35) S22
2ν+1 =

〈
e2
n, V T

2ν+1
n e2

n

〉
=
〈
e2
n, V

21T 12
n (T 21

n T
12
n )νe2

n

〉
=
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i0,i1,...,i2ν 6=n

q(n+ i0)p(−i0 − i1)q(i1 + i2)p(−i2 − i3) . . . q(j2ν−1 + j2ν)p(−j2ν − n)

[π(n− i0) + z][π(n− i1) + z] . . . [π(n− i2ν−1) + z][π(n− i2ν) + z]
.

In an analogous way we obtain formulas for S12 and S21. Indeed,〈
e1
n, V T

2ν+1
n e2

n

〉
= 0,

〈
e2
n, V T

2ν+1
n e1

n

〉
= 0, ν = 0, 1, 2, . . . ,

and therefore, from (2.12), (2.28), (2.29) and (2.31) it follows

(2.36) S12 =
∞∑
ν=0

S12
2ν , S21 =

∞∑
ν=0

S21
2ν ,

where

(2.37) S12
0 =

〈
e1
n, V e

2
n

〉
= p(−2n), S21

0 =
〈
e2
n, V e

1
n

〉
= q(2n),

and for ν = 1, 2 . . .

(2.38) S12
2ν =

〈
e1
n, V T

2ν
n e2

n

〉
=
〈
e1
n, V

12(T 21
n T

12
n )νe2

n

〉
=∑

j1,...,j2ν 6=n

p(−n− j1)q(j1 + j2)p(−j2 − j3)q(j3 + j4) . . . q(j2ν−1 + j2ν)p(−j2ν − n)

[π(n− j1) + z][π(n− j2) + z] . . . [π(n− j2ν−1) + z][π(n− j2ν) + z]
,

(2.39) S21
2ν =

〈
e2
n, V T

2ν
n e1

n

〉
=
〈
e2
n, V

12(T 21
n T

12
n )νe1

n

〉
=∑

j1,...,j2ν 6=n

q(n+ j1)p(−j1 − j2)q(j2 + j3)p(−j3 − j4) . . . p(−j2ν−1 − j2ν)q(j2ν + n)

[π(n− j1) + z][π(n− j2) + z] . . . [π(n− j2ν−1) + z][π(n− j2ν) + z]
.

Lemma 3. (a) For any potential functions P,Q

(2.40) S11(n, z) = S22(n, z).

(b) If Q(x) = P (x), then

(2.41) S12(n, z) = S21(n, z).

Proof. (a) Changing the summation indices in (2.35) by

js = i2ν−s, s = 0, 1, . . . , 2ν

we obtain (by (2.34) that

S22
2ν+1 = S11

2ν+1, ν = 0, 1, 2, . . . ,

and therefore, by (2.33), we have S22 = S11.

(b) If Q(x) = P (x), then q(m) = p(−m) ∀m ∈ Z, and therefore, (2.37),

(2.38) and (2.39) yield S21
2ν(n, z) = S12

2ν(n, z) for each ν = 0, 1, 2, . . . , so
(2.36) implies (2.41). �

4. Let us set for convenience

(2.42) αn(z) := S11(n, z) βn(z) := S21(n, z).
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Lemma 4. For each pair P (x), Q(x) of potential functions there exists
N2 > 0 such that for n ≥ N2 and |z| ≤ π/2, αn(z) and βn(z) are well
defined, differentiable, and

(2.43) sup
|z|≤π/2

|α′n(z)| → 0, sup
|z|≤π/2

|β′n(z)| → 0 as n→∞.

Proof. By (2.10) and (2.11)

d

dz
S(n, z) = −P 0

nV Q
0
n(A−1)2Q0

nV P
0
n ,

and therefore, in view of (2.12) and (2.42), we have

α′n(z) = −〈P 0
nV Q

0
n(A−1)2Q0

nV P
0
ne

1
n, e

1
n〉,(2.44)

β′n(z) = −〈P 0
nV Q

0
n(A−1)2Q0

nV P
0
ne

1
n, e

2
n〉.(2.45)

By (2.27)

A−1Q0
nV =

∞∑
`=0

T `nDnQ
0
nV =

∞∑
k=1

T kn ,

and therefore,

(2.46) A−1
(
A−1Q0

nV
)

=

(
∞∑
`=0

T `nDn

)(
∞∑
k=1

T kn

)
= DnTn + TnDnTn +R,

where, in view of Lemma 2,

(2.47) ‖R‖ = O
(
‖T 2

n‖
)
→ 0 as n→∞.

Thus, by (2.44) and (2.45), we have

(2.48) α′n(z) = −〈V DnTne
1
n, e

1
n〉 − 〈V TnDnTne

1
n, e

1
n〉 − 〈V Re1

n, e
1
n〉,

(2.49) β′n(z) = −〈V DnTne
1
n, e

2
n〉 − 〈V TnDnTne

1
n, e

2
n〉 − 〈V Re1

n, e
2
n〉.

We are going to show that all terms on the right of the above formulae go
to 0 uniformly in z, |z| ≤ π/2, as n→∞.

From (2.47) it follows that

(2.50) 〈V Re1
n, e

1
n〉 → 0, 〈V Re1

n, e
1
n〉 → 0 as n→∞.

By (2.16), (2.20), (2.21) and (2.25),

(2.51)
∣∣〈V DnTne

1
n, e

1
n〉
∣∣ =

∣∣∣∣∣∑
k 6=n

p(n+ k)q(−k − n)

π(n− k) + z

∣∣∣∣∣ ≤ Σ1 + Σ2,

where
(2.52)

Σ1 =
∑

|n−k|≤|n|/2

|p(n+ k)||q(−k − n)|
|n− k|

, Σ2 =
∑

|n−k|>|n|/2

|p(n+ k)||q(−k − n)|
|n− k|

.
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Let us change the summation index k in Σ1 to i = n+ k. Then, since

|i| = |2n− (n− k)| ≥ 2|n| − |n− k| > |n|,
we obtain
(2.53)

Σ1 ≤
∑
|i|>|n|

|p(i)||q(−i)| ≤

∑
|i|>|n|

|p(i)|2
1/2∑

|i|>|n|

|q(i)|2
1/2

→ 0 as n→∞.

The Cauchy inequality yields the following estimate:

(2.54) Σ2 ≤ ‖P‖‖Q‖

 ∑
|n−k|>|n|/2

1

(n− k)2

1/2

= O(1/
√
|n|).

It is easy to see by (2.16), (2.20) and (2.21), that

(2.55) 〈V TnDnTne
1
n, e

1
n〉 = 0, 〈V DnTne

1
n, e

2
n〉 = 0.

Next we estimate 〈V TnDnTne
1
n, e

2
n〉 = 0. Set Un = TnDnTn; then, by (2.16)

and (2.20)–(2.23) the absolute value of each term in the matrix representa-
tion of Un does not exceed the absolute value of the corresponding term in
the matrix representation of (Tn)2, and therefore, by the proof of Lemma
2,

(2.56) ‖Un‖ = ‖TnDnTn‖ → 0 as n→∞.
Of course, (2.56) implies that

(2.57) 〈V TnDnTne
1
n, e

2
n〉 → 0 as n→∞.

Now, in view of (2.48) and (2.49), (2.50)–(2.57) show that (2.43) holds. �

Theorem 5. Let L be a self-adjoint Dirac operator given by (1.1), and let
(γn) be the sequence of its spectral gaps. Then there exist N2 > 0 and a
sequence of positive numbers (εn), εn → 0, such that

(2.58) 2|βn(z)|(1− εn) ≤ γn ≤ 2|βn(z)|(1 + εn), n ≥ N2,

where z = zn,

(2.59) |zn| ≤ π/2.

Proof. By Lemma 1, if n ≥ N0, then there are exactly two eigenvalues
λ±n = n2 + z±n of L (periodic for even n and antiperiodic for odd n) such
that |z±n | < π/2. Moreover, we know (see (2.26) and (2.27) that there exists
N1 > N0 such that for n ≥ N1 z

−
n and z+

n are roots of the quasi-quadratic
equation (2.13). Since the operator L is self-adjoint, z−n and z+

n are real
numbers, z−n ≤ z+

n , and

(2.60) γn = z+
n − z−n .
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By (2.40) and (2.41) in Lemma 3, the quasi-quadratic equation (2.13) be-
comes

(2.61) (z − αn(z))2 − |βn(z)|2 = 0,

which splits into two equations

(2.62) z − αn(z)− |βn(z)| = 0,

(2.63) z − αn(z) + |βn(z)| = 0.

Set

(2.64) δn = sup
|z|≤π/2

|α′(n, z)|+ sup
|z|≤π/2

|β′(n, z)|.

By Lemma 4, δn → 0. Choose N2 > N1 so that

(2.65) δn < 1/8 for |n| ≥ N2.

Fix an n ≥ N2. If γn = 0, then λ−n = λ+
n is a double eigenvalue of L, so

(2.14) and (2.42) yield (2.58).
If z−n < z+

n , set

(2.66) ζ+
n = z+

n − αn(z+
n ), ζ−n = z−n − αn(z−n ).

Then, by (2.62) and (2.63),

(2.67) |ζ+
n | = |βn(z+

n )|, |ζ−n | = |βn(z−n )|.
By (2.66),

ζ+
n − ζ+

n =

∫ z+
n

z−n

(1− α′n(z)) dz.

Thus, in view of Lemma 4,

(2.68) (z+
n − z−n )(1− δn) ≤ |ζ+

n − ζ−n | ≤ (z+
n − z−n )(1 + δn),

which yields (since δn < 1/8)

(2.69) |ζ+
n − ζ−n | (1− δn) ≤ z+

n − z−n ≤ |ζ+
n − ζ−n | (1 + 2δn) ≤ 2|ζ+

n − ζ−n |.
Since z+

n and z−n are roots of (2.61), each of these numbers is a root of
either (2.62), or (2.63). There are two cases: (i) z+

n and z−n are roots of
different equations; (ii) z+

n and z−n are roots of one and the same equation.
In Case (i) we have, by (2.62), (2.63) and (2.67), that

(2.70) |ζ+
n − ζ−n | = |βn(z+

n )|+ |βn(z−n )| = |ζ+
n |+ |ζ−n |.

On the other hand, since βn(z+
n )− βn(z−n ) =

∫ z+
n

z−n
β′n(t)dt, (2.64) and (2.66)

imply that

(2.71) |βn(z+
n )− βn(z−n )| ≤ (z+

n − z−n )δn ≤ |ζ+
n − ζ−n | · 2δn
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Thus (2.67) and (2.70) yield∣∣|ζ+
n | − |ζ−n |

∣∣ =
∣∣|βn(z+

n )| − |βn(z−n )|
∣∣ ≤ (|ζ+

n |+ |ζ−n |
)
· 2δn.

so, since 2|ζ+
n | = (|ζ+

n |+ |ζ−n |) + (|ζ+
n | − |ζ−n |) ,(

|ζ+
n |+ |ζ−n |

)
(1− 2δn) ≤ 2|ζ+

n | ≤
(
|ζ+
n |+ |ζ−n |

)
(1 + 2δn) ,

and therefore, since δn < 1/8,

(2.72) 2|ζ+
n | (1− 2δn) ≤ |ζ+

n |+ |ζ−n | ≤ 2|ζ+
n | (1 + 4δn)

Finally, using again that δn < 1/8, we obtain by (2.69), (2.70) and (2.72)
that (2.58) holds with z = z+

n and εn = 8δn.
Case (ii), where z+

n and z−n are simultaneously roots of one of the equa-
tions (2.62) and (2.63), is impossible. Indeed, by (2.71) we would have since
δn < 1/8,

|ζ+
n − ζ−n | =

∣∣|βn(z+
n )| − |βn(z−n )|

∣∣ ≤ |ζ+
n − ζ−n | · 2δn ≤

1

4
|ζ+
n − ζ−n |,

which implies ζ+
n = ζ−n . But then (2.69) yield z+

n = z−n , which is a contra-
diction to our assumption that z+

n 6= z−n . �

3. Weights and Carlemann sequences

1. A sequence of positive numbers Ω(n), n ∈ Z is called weight, or weight
sequence, if

(3.1) Ω(−n) = Ω(n), Ω(n)↗∞ as n↗∞, n ≥ n0 > 0.

Each weight Ω generates a corresponding weighted `2-space

`2(Ω,Z) = {x = (xn)n∈Z : ‖x‖2 =
∑
n∈Z

|xn|2 (Ω(n))2 <∞}.

We say that two weights Ω1 and Ω2 are equivalent if

(3.2) ∃C > 0 : C−1Ω1(n) ≤ Ω2(n) ≤ CΩ1(n), n ∈ Z.
Obviously equivalent weights yield equivalent norms, so they generate one
and the same weighted `2-space.

A weight Ω is called submultiplicative if

(3.3) ∃C > 0 : Ω(n+m) ≤ CΩ(n)Ω(m), n,m ∈ Z.
Of course, if Ω1 and Ω2 are equivalent weights, then whenever one of them
is submultiplicative, the other one is submultiplicative also. Obviously, if
Ω satisfies (3.3) then Ω̃ = CΩ satisfies (3.3) with C = 1. Therefore, we may
assume that (3.3) holds with C = 1 by passing to an equivalent weight.
Moreover, it is easy to see that if (3.3) holds for |n|, |m| ≥ n0, then it holds
for all n,m ∈ Z, maybe with another constant.
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A weight Ω is said to be slowly increasing if

(3.4) sup
n

Ω(2n)/Ω(n) <∞.

It is easy to see that (3.4) implies

(3.5) ∃m > 0, C > 0 : Ω(n) ≤ C|n|m, for |n| ≥ 1.

Indeed, if M = supn≥1 Ω(2n)/Ω(n), then (3.4) implies that

Ω(2k) ≤ Ω(1)Mk = Ω(1)(2k)m, m = log2(M).

Now (3.5) follows (since Ω is monotone increasing for n ≥ n0) : if n0 ≤ 2k ≤
n < 2k+1 then

Ω(n) ≤ Ω(2k+1) ≤MΩ(2k) ≤MΩ(1)(2k)m ≤MΩ(1)nm.

Further we consider weights of the form

(3.6) Ω(n) = exp(h(|n|)), |n| ≥ n0 > 0,

or

(3.7) Ω(n) = exp(ϕ(log |n|)), |n| ≥ n0 > 0,

and characterize some properties of Ω in terms of h and ϕ.
Remark. Observe that in (3.6) or (3.7) we don’t care to define Ω for all n

because our main object is the corresponding weighted `2-space. Therefore
weights are important only ”up to equivalence” and the values of Ω(n)
for |n| < n0 may be chosen in an arbitrary way since the corresponding
`2-spaces will coincide.

Of course, with the formulae

ϕ(t) = h(et), h(n) = ϕ(log(n)),

one can easily pass from representation (3.6) to (3.7), and back.
It is more convenient to give concrete weights in the form (3.6). For

example,

(3.8) Ωm(n) = |n|m, m > 0,

are known as Sobolev weights, and

(3.9) Ωa,b(n) = exp(a|n|b), a > 0, b ∈ (0, 1),

are the Gevrey weights.

Lemma 6. A weight of the form (3.6) is submultiplicative if h is an in-
creasing concave function.



16 PLAMEN DJAKOV AND BORIS MITYAGIN

Proof. Indeed, one can easily see that if h : [n0,∞) → R is an increas-
ing concave function, then there exists an increasing concave function h1 :
[0,∞→ [0,∞) such that h1(n) = h(n) + C for n ≥ n0, n ∈ N.

Then the weight Ω is equivalent to the weight Ω1(·) = exp(h1(·)), so it is
enough to show that Ω1 is submultiplicative. On the other hand, since h1

is concave we have for m,n > 0

h1(0) + h1(m+ n) ≤ h1(m) + h1(n),

which implies (in view of (3.3) and (3.6)) that the weight Ω1 is submulti-
plicative. �

2. The next lemma characterize a class of rapidly increasing submulti-
plicative weights of the form (3.7). In particular, this class contains Gevrey
weights (3.9).

Lemma 7. Suppose ϕ : [0,∞)→ [0,∞), ϕ(0) = 0, is a twice differentiable
function such that the following conditions hold:

(3.10) ϕ′(t)↗∞ as t↗∞;

(3.11) et/ϕ′(t)↗∞ as t↗∞;

(a) Let ψ(s) be the Young dual function of ϕ, i.e.

(3.12) ψ(s) = sup
t≥0

[st− ϕ(t)], s ≥ 0.

Then

(3.13) ek :=
1

k
exp(ψ′(k))↗∞ as k ↗∞.

(b) In addition, if

(3.14) lim inf
t→∞

ϕ′(t)− ϕ′′(t)
logϕ′(t)

> 1,

then

(3.15) ∃p ∈ N, τ > 1 : kτ
(
ek
epk

)k
≤ 1 for k ≥ k0.

Proof. (a) Since (st− ϕ(t))′t = s− ϕ′(t) one can easily see, by (3.10), that
the expression st− ϕ(t) achives its maximum at the point

(3.16) t(s) = (ϕ′)−1(s),

thus

(3.17) ψ(s) = st(s)− ϕ(t(s)).
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The function s→ t(s) is increasing because ϕ′ is increasing. From ϕ′(t(s)) =
s and (3.17) it follows that

(3.18) ψ′(s) = t(s) + st′(s)− ϕ′(t(s))t′(s) = t(s),

(3.19) ψ′′(s) = t′(s) = 1/ϕ′′(t(s)).

Therefore, (3.11) implies that

ek = eψ
′(k)/k = et(k)/ϕ′(t(k))↗∞.

(b) One can easily see that (3.15) is equivalent to

(3.20) ∃p ∈ N : lim inf
k

k

log k
log

(
epk
ek

)
> 1.

By (3.13) we have log ek = ψ′(k) − log k, and therefore, (3.16) and (3.19)
imply that

log

(
epk
ek

)
= [ψ′(pk)− log(pk)]− [ψ′(k)− log k]

= k

∫ p

1

(
ψ′′(uk)− 1

uk

)
du = k

∫ p

1

(
1

ϕ′′[t(uk)]
− 1

ϕ′[t(uk)]

)
du.

For large enough k it follows from (3.14) and (3.16) that uk = ϕ′[t(uk)] >
ϕ′′[t(uk)], so

1

ϕ′′[t(uk)]
− 1

ϕ′[t(uk)]
>
ϕ′[t(uk)]− ϕ′′[t(uk)]

u2k2

Thus (again by (3.14)) we obtain that

(3.21)
k

log k
log

(
epk
ek

)
>

∫ p

1

ϕ′[t(uk)]− ϕ′′[t(uk)]

logϕ′[t(uk)]
· 1

u2
du

for large enough k. Let ` > 1 be the liminf in (3.14). Choose p ∈ N so that
`+1

2
(1 − 1/p) > 1. Since (` + 1)/2 < ` there exists k0 such that for k ≥ k0

(3.21) holds and the integral there is greater than∫ p

1

`+ 1

2
· 1

u2
du =

`+ 1

2
(1− 1/p) > 1.

This completes the proof of the lemma.
�

Remark. Obviously, if ϕ satisfies

(3.22) lim
t→∞

ϕ′(t)− ϕ′′(t)
logϕ′(t)

=∞
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then (3.14) holds. One can easily see that Gevrey weights (3.9) satisfy
(3.22). Now we present a family of weights that satisfy (3.14) but don’t
satisfy (3.22).

Consider weights (3.7) generated by

ϕ(t) =

∫ t

0

eω(u)du,

where

ω(u) = βu− (1− β) cosu+ αue−βu, α > 1, β ∈ (0, 1).

Then

ϕ′(t) = eω(t), ϕ′′(t) = eω(t)
[
β + (1− β) sin t+ α(1− βt)e−βt

]
,

so

(3.23)
ϕ′(t)− ϕ′′(t)

logϕ′(t)
=
eω(t)

ω(t)

[
(1− β)(1− sin t) + α(βt− 1)e−βt

]
which is greater than

(3.24) α
eω(t)

ω(t)

[
(βt− 1)e−βt

]
= α

βt− 1

ω(t)
exp[(β − 1) cos t+ αte−βt].

Let (tk) be a sequence of positive numbers such that tk →∞. Observe that
if lim infk(1− sin(tk)) > 0 then the expression (3.23) with t = tk goes to ∞
as k →∞, while whenever limk(1− sin(tk)) = 0 the expression (3.24) with
t = tk tends to α. On the other hand for t = tk = (4k + 1)π/2, k = 1, 2, . . .
the expressions (3.23) and (3.24) coincide. By these observations it is easy
to see that

lim inf
t→∞

[ϕ′(t)− ϕ′′(t)]/ logϕ′(t) = α.

Thus (3.14) holds, since α > 1, while (3.22) fails.

3. We say that a sequence of positive numbers (Mk)
∞
k=0 is a Carlemann

sequence if

(3.25) M0 = 1, Mk/ (kMk−1)↗∞.
We attach to any Carlemann sequence (Mk) the following sequences:

(3.26) m0 = 1, mk = Mk/Mk−1, e0 = 1, ek = mk/k, k ≥ 1.

We set also

(3.27) E0 := e0, Ek = e1 . . . ek = Mk/k!, k ≥ 1.

Observe that if a sequence (ek)
∞
k=0 satisfies the condition ek ↗ ∞, then it

generates a corresponding Carlemann sequence Mk = k!Ek with Ek defined
by (3.27).
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Suppose Ωϕ ∈ (3.7) is a weight that grows faster then any power of n.
For a technical reason we need to characterize the relation x = (xn) ∈ `2(Ω)
by the sequence of `1 norms

(3.28) ‖x‖k = ‖x0‖+
∑
|xn||n|k, k = 1, 2, . . . .

It turns out that this can be done in terms of an appropriate Carlemann
sequence generated by the function ϕ.

For every function ϕ such that (3.10), (3.11) and (3.14) hold we denote
by (Mk(ϕ)) the Carlemann sequence generated by

mk(ϕ) = exp(ψ′(k)), k = 1, 2, . . . ,

that is

Mk(ϕ) = exp(ψ′(1) + · · ·+ ψ′(k)), k = 1, 2, . . . ,

where ψ is the Young dual function of ϕ.
We may assume without loss of generality that the function ϕ is defined

on [0,∞), and moreover, that the condition ϕ′(t) − ϕ′′(t) > 0 holds for
t ≥ 0 (since otherwise one can consider an equivalent weight generated by a
suitable function ϕ̃). Moreover, the condition (3.11) implies that the weight
Ωϕ is submultiplicative. Indeed, since

Ωϕ(n) = exp[ϕ(log |n|)] = eψ(|n|) with ψ(s) = ϕ(log s),

we obtain, in view of (3.11), that the derivative

ψ′(s) =
ϕ(log s)

s
=
ϕ(log s)

elog s

is decreasing, so ψ(s) is a concave function. Thus, by Lemma 6, the weight
Ωϕ is submultiplicative.

Lemma 8. If ϕ satisfies (3.10), (3.11), (3.14) and Ωϕ(|n|) = exp(ϕ(log |n|))
then

(3.29) (a) x = (xn) ∈ `2(Ωϕ)⇒ ‖x‖k ≤ CMk(ϕ1), ϕ1(t) = ϕ(t)− t;

(3.30) (b) ‖x‖k ≤ CMk(ϕ)⇒ x = (xn) ∈ `2(Ωϕ2), ϕ2(t) = ϕ(t)−4t.

Proof. (a) Observe that we have (with ψ(0) = 0 )

ψ(k) ≤ ψ′(1) + · · ·+ ψ′(k) ≤ ψ(k + 1).

Therefore

sup
n

|n|k

Ωϕ(n)
= exp

(
sup
n

[k log |n| − ϕ(log |n|)]
)

≤ exp(ψ(k)) ≤Mk(ϕ) = exp(ψ′(1) + · · ·+ ψ′(k)).
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If x = (xn) ∈ `2(Ωϕ) then we obtain with Ω = Ωϕ by Cauchy inequality

‖x‖k =
∑
|xn||n|k =

∑
(|xn|Ωϕ(n))

(
|n|k/Ωϕ(n)

)
≤ ‖x‖`2(Ωϕ)

(∑ 1

n2
·
(
|n|k+1

Ωϕ(n)

)2
)1/2

≤ C sup
n

(
|n|k

Ωϕ(n)/n

)
≤ CMk(ϕ1),

where ϕ1(t) = ϕ(t)− t.
(b) Suppose that ‖x‖k ≤ CMk(ϕ); then for large |n| we have

C ≥ sup
k

‖x‖k
Mk

≥ |xn| sup
k

|n|k

Mk

≥ |xn| exp

(
sup
k

[k log |n| − (ψ′(1) + · · ·+ ψ′(k))]

)
≥ |xn| exp

(
sup
k

[k log |n| − ψ(k + 1)]

)
≥ |xn||n|−2 exp

(
sup
s>0

[s log |n| − ψ(s)]

)
= |xn||n|−2 exp(ϕ(log |n|)),

that is |xn||n|−2Ωϕ(n) ≤ C. Therefore∑
n

|xn|
Ωϕ(n)

n4
≤ C

∑
n

1

n2
<∞

which implies that

x = (xn) ∈ `1(Ωϕ2) ⊂ `2(Ωϕ2)

with ϕ2(t) = ϕ(t)− 4t.
�

Lemma 9. Suppose (ek)
∞
k=1 is a sequence of positive numbers such that

ek ↑ ∞ and let

E0 = 1, Ek =
k∏
1

ej, k ≥ 1.

Then the following implications hold:

(3.31)
∃ p ∈ N, τ > 0 : sup

k
kτ (ek/epk)

k <∞ ⇒ sup
k
kτ (Ek)

2/E2k <∞;

(3.32)
∞∑
k=1

(ek/epk)
k <∞ ⇒

∞∑
k=1

(Ek)
2/E2k <∞;
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(3.33)
∞∑
k=1

(Ek)
2/E2k <∞ ⇒ Q := sup

m

m∑
j=0

EjEm−j
Em

<∞,

and moreover,

(3.34) sup
m

∑
s0+···+sµ=m

Es0 . . . Esµ
Em

< Qµ, µ = 1, 2, . . . .

Remark. This lemma is a “multidimensional” version of the statements
on p. 164 in [2]. It improves Lemma 5 on p. 251 in [3], where we can now
omit the factor kp−2 in the hypothesis (5.7).

Proof. If k = pν + r with 0 ≤ r < p then we have

(Ek)
2

E2k

=
e1 . . . eν

ek+1 . . . ek+ν

· eν+1 . . . ek
ek+ν+1 . . . e2k

≤ e1 . . . eν
ek+1 . . . ek+ν

≤
(
eν
epν

)ν
(because ei < ej for i < j). Thus (3.31) and (3.32) hold.

To prove (3.33), (3.34) consider the sums

Tm =
m∑
j=0

EjEm−j
Em

.

Then

(3.35)
EjEm+1−j

Em+1

≤ EjEm−j
Em

, 0 ≤ j ≤ m,

because (3.35) is equivalent to

em+1−j ≤ em+1,

which holds since the sequence (ek) is increasing.
By symmetry

Tm = 2
∑

0≤j≤m/2

EjEm−j
Em

− δm,

where

δm =

{
0 , m = 2n+ 1

E2
n/E2n , m = 2n.

The next sum is

Tm+1 = 2
∑

0≤j≤m/2

EjEm+1−j

Em+1

+ δm+1,

and (3.35) implies that

Tm+1 ≤ Tm + δm + δm+1.
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Therefore we obtain

Tm ≤ 2 +
∞∑
k=1

(δk + δk+1) = 2 + 2
∞∑
n=1

E2
n/E2n <∞,

thus (3.33) holds.
Now we prove (3.34) by induction in µ. Let us denote by Sµ(m) the set

of all (µ + 1)-tuples of integers s = (s0, . . . , sµ) such that 0 ≤ si ≤ m and
|s| = s0 + · · ·+ sµ = m, i.e.

(3.36) Sµ(m) = {s = (s0, . . . , sµ) : 0 ≤ si ≤ m, |s| = m}.

By (3.33) it holds for µ = 1. Assume that (3.34) holds for some µ ≥ 1.
Then we have∑
s∈Sµ+1(m)

Es0 . . . Esµ+1

Em
=

m∑
sµ+1=0

 ∑
s∈Sµ(m−sµ+1)

Es0 . . . Esµ
Em−sµ+1

 Esµ+1Em−sµ+1

Em

≤ Qµ

m∑
sµ+1=0

Esµ+1Em−sµ+1

Em
≤ Qµ+1,

which proves (3.34). �

4. The next statement (Lemma 10) has as its prototypes Lemma 6 in [2]
and Theorem 3 in [3] (see also the proof of Prop. 4 there). But, influenced
by Lemma 1.1 in [1], now we use “maxima” instead of “sums“ in the formu-
lation, which makes the lemma more convenient for applications. The proof
of Lemma 10 uses the same idea that was used to prove its prototypes, but
it is more simple.

Lemma 10. Let (fk)
∞
k=1 be a sequence of positive numbers such that

(3.37) fk ↗∞,

and let

(3.38) F0 = 1, Fk =
k∏
j=1

fj, k = 1, 2, . . . .

If T > 0 and (Xk)
∞
k=0 is a sequence of positive numbers such that X0 = 1

and

(3.39) Xk ≤ max

(
T, sup

µ
max

si<|s|=m

Fs0 . . . Fsµ
Fk

Xs0 . . . Xsµ

)
, k ≥ 2,

where s = (s0, . . . , sµ) and |s| = s0 + · · · + sµ, then the sequence (Xk) is
bounded.
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Proof. For convenience the proof is divided into 3 steps.

Step 1. We may assume without loss of generality that

(3.40) X1 ≤ T/F1, 1 ≤ T/F2

(otherwise T could be replaced by a larger constant). Let

(3.41) k0 = min{k ≥ 2 : T > T k+1/Fk+1}.
It is easy to see by (3.37) and (3.38) that T k/Fk → 0 as k →∞, thus k0 is
well defined, and moreover, in view of (3.40) and (3.41) we have

(3.42) T ≤ T k

Fk
for 2 ≤ k ≤ k0, T >

T k

Fk
for k ≥ k0 + 1,

and

(3.43) fk > T for k > k0.

Step 2. Claim. The following inequalities hold:

(3.44) Xk ≤ T k/Fk, k = 0, 1, . . . , k0.

We prove (3.44) by induction. In view of (3.38) and (3.40) our claim holds
for k = 0, 1.

Let

(3.45) Ps =
Fs0 . . . Fsµ

F|s|
Xs0 . . . Xsµ , s = (s0, . . . , sµ).

Assume that (3.44) holds for k = 1, . . . ,m for some m with 1 ≤ m < k0.
Then, for each µ and for each (µ + 1)-tuple s = (s0, . . . , sµ) ∈ Sµ(m + 1),
we have by (3.44)

Ps ≤
Fs0 . . . Fsµ
Fm+1

· T
s0

Fs0
· · · T

sµ

Fsµ
=
Tm+1

Fm+1

.

By (3.42) Tm+1/Fm+1 ≥ T, thus (3.39) implies that

Xm+1 ≤ Tm+1/Fm+1,

i.e., (3.44) holds for k = m+ 1. The claim is proven.

Step 3. Here we show that

(3.46) Xk ≤ T for k ≥ k0 + 1.

For a technical reason we prove also that

(3.47) Ps < T for s = (s0, . . . , sµ) with sj < |s| = k, k ≥ k0 + 1.

Observe that in view of (3.39), if the inequalities (3.47) hold for some k,
then (3.46) holds for the same k also.
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We are proving (3.46) and (3.47) by induction for k ≥ k0 + 1. Let k =
k0 + 1. For each (µ+ 1)-tuple s = (s0, . . . , sµ) ∈ Sµ(k0 + 1) with sj < k0 + 1
we obtain by (3.44) and (3.42) that

Ps ≤
Fs0 . . . Fsµ
Fk+1

· T
s0

Fs0
. . .

T sµ

Fsµ
=
T k0+1

Fk0+1

< T.

Thus (3.47), and of course (3.46), hold for k = k0 + 1.
Let m ≥ k0 + 1; assume that (3.46) and (3.47) hold for every k = k0 +

1, . . . ,m. Then, we claim that (3.46) and (3.47) hold for k = m+ 1. Indeed,
fix any (µ + 1)-tuple s = (s0, . . . , sµ) with |s| = m + 1 and sj < m + 1.
There are several cases:

(a) If sj ≤ k0 for every j = 0, . . . , µ, then the numbers Xsj satisfy the
estimates (3.44). Thus one can easily see (as in the proof for k = k0 + 1 )
that

Ps ≤ Tm+1/Fm+1 < T,

so in this case (3.47) holds.
(b) Suppose that there exists j with sj > k0, say j = 0. (Since a transpo-

sition of s0, . . . , sµ does not change Ps one may assume without loss of gen-
erality that j = 0.) Then we have two subcases: (b1) where m+1−s0 ≤ k0,
and (b2) where m+ 1− s0 > k0.

In the subcase (b1) we estimate Ps by using (3.46) for Xs0 and (3.44) for
Xs1 , . . . , Xsµ . Since T < fk for k > k0 by (3.43), we obtain that

Ps ≤
Fs0Fs1 . . . Fsµ

Fm+1

· T · T
s1

Fs1
· · · T

sµ

Fsµ
= T · Tm+1−s0

fs0+1 . . . fm+1

< T,

thus (3.47) holds for k = m+ 1..
In the case (b2) we have

Ps =
Xs0Fs0Fm+1−s0

Fm+1

(
Fs1 . . . Fsµ
Fm+1−s0

Xs1 . . . Xsµ

)
.

The expression in the brackets equals Ps̃ with s̃ = (s1, . . . , sµ), |s̃| = m +
1 − s0, so by the inductive assumption Ps̃ < T. Since Xs0 < T (by (3.46)
with k = s0) we have

Ps <

[
TFs0Fm+1−s0

Fm+1

]
· T,

so it remains to show that the expression in the square brackets does not
exceed 1. By (3.42) Fk0 ≤ T k0−1, and therefore,

Fs0 = Fk0fk0+1 . . . fs0 ≤ T k0−1fk0+1 . . . fs0 .
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Thus
TFs0Fm+1−s0

Fm+1

≤ T k0fk0+1 . . . fs0
fm+2−s0 . . . fm+1

< 1,

because due to (3.37) and (3.43) each factor in the numerator of the latter
fraction is strictly less than the corresponding factor in the denominator.

�

4. Basic results; estimates on the smoothness of the

potential in terms of the decay rate of spectral gaps

1. Our main result is the following statement.

Theorem 11. Let L be a selfadjoint Dirac operator given by (1.1), with
a potential function P ∈ L2([0, 1])), p(x) =

∑
p(2n)ei2nx. Let Ω be a

submultiplicative weight (see (3.1) and (3.3)) such that either Ω slowly
increasing (i.e., (3.4) holds), or Ω is a rapidly increasing weight of the
form Ω(n) = exp(ϕ(log |n|)), where ϕ has the properties (3.10), (3.11) and
(3.14). Then

(4.1)
∑
n∈Z

|λ+
n − λ−n |2(Ω(2n))2 <∞ =⇒

∑
n∈Z

|p(2n)Ω(2n)|2 <∞.

An implication into the opposite direction is given by Theorem 12 below;
see further comments in Sect. 5.1.

Theorem 12. Let L be a selfadjoint Dirac operator given by (1.1), with a
potential function P ∈ L2([0, 1])), p(x) =

∑
p(2n)ei2nx. If Ω is a submulti-

plicative weight, then

(4.2)
∑
|p(2n)|2(Ω(2n))2 <∞ =⇒

∑
|λ+
n − λ−n |2(Ω(2n))2 <∞.

Proof. By Theorem 5, for large enough n,

(4.3) γn = λ+
n − λ−n � 2|βn(zn)| with |zn| ≤ π/2,

where, in view of (2.42) and (2.36)–(2.38),

(4.4) βn(n, zn) = p(−2n) +
∞∑
ν=1

S21
2ν(n, zn).

Therefore, by (2.25), we have

(4.5) |βn(zn)| ≤ |p(−2n)|+
∞∑
ν=1

∣∣S21
2ν(n, zn)

∣∣ ≤ |r(2n)|+
∞∑
ν=1

σν(n, r),

where

(4.6) r = (r(m))m∈Z, r(m) = max(|p(m)|, |p(−m)|).
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and
(4.7)

σν(n, r) =
∑

j1,...,j2ν 6=n

r(n+ j1)r(−j1 − j2)r(j2 + j3) . . . r(−j2ν−1 − j2ν)r(j2ν + n)

|n− j1||n− j2| . . . |n− j2ν |
.

Consider the operator

(4.8) σ : r = (r(m)) ∈ `2(Z)→ (σ(n, r)) ∈ `2(Z),

where

(4.9) σ(n, r) =
∞∑
ν=1

σν(n, r).

So, in view of (4.3)–(4.9), the following statement completes the proof of
Theorem 12.

Proposition 13. If Ω is a submultiplicative weight, then for each sequence
of non-negative numbers,

(4.10)
∑
|r(2n)|2(Ω(2n))2 <∞ =⇒

∑
|σ(n, r)|2(Ω(2n))2 <∞.

Proposition 13 is proven in Sect. 4.2 as a corollary of some basic proper-
ties of the operator σ. �

The proof of Theorem 11 follows from the properties of the operator σ
also, but it is much more complicated. Set

ζ(n) = |β(n, zn)|;
then Theorem 11 will be proven if we show that

(4.11)
∑
|ζ(n)|2(Ω(2n))2 <∞ =⇒

∑
|p(2n)|2(Ω(2n))2 <∞.

Under the above notations we have, by (4.4), that

(4.12) |p(−2n)| ≤ |βn(zn)|+
∞∑
ν=1

∣∣S21
2ν(n, zn)

∣∣ ≤ |ζ(n)|+
∞∑
ν=1

σν(n, r).

In the same way, changing n to −n one can see that

(4.13) |p(2n)| ≤ |β−n(z−n)|+
∞∑
ν=1

∣∣S21
2ν(−n, z−n)

∣∣ ≤ |ζ(−n)|+
∞∑
ν=1

σν(n, r),

Thus, by (4.12) and (4.13), we obtain, with ξ(n) = max(ζ(n), ζ(−n)),

r(2n) ≤ ξ(n) +
∞∑
ν=1

σν(n, r) = ξ(n) + σ(n, r).

Thus, in view of the above discussion, Theorem 11 would be proven if we
prove the following statement.
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Theorem 14. Let Ω be a submultiplicative weight (see (3.1) and (3.3))
such that either Ω slowly increasing (i.e., (3.4) holds), or Ω is a rapidly
increasing weight of the form Ω(n) = exp(ϕ(log n)), where ϕ has the prop-
erties (3.10), (3.11) and (3.10). If ξ = (ξ(m))m∈Z and r = (r(m))m∈Z are
two sequences of non-negative numbers such that

(4.14) r ∈ `2(Z), r(m) = 0 for odd m,

(4.15) r(2n) ≤ ξ(n) + σ(n, r), |n| ≥ n∗,

then

(4.16)
∑
n∈Z

|ξ(n)Ω(2n)|2 <∞ =⇒
∑
n∈Z

|r(2n)Ω(2n)|2 <∞.

The remaining part of this section is devoted to the proof of Theorem 14.
Some of the steps of this proof are interesting by themselves (e.g., Lemma 15
and Proposition 16 give a proof of Proposition 13). Therefore, the claims
that follow below are formulated and proven as independent statements,
although they are steps in the proof of Theorem 12.

2. Throughout the paper we assume that the weights are submultiplica-
tive. The following property of the operator σ(n, r) reveals why this as-
sumption is so important.

Lemma 15. If Ω is a submultiplicative weight such that

Ω(k +m) ≤ Ω(k)Ω(m) ∀k,m ∈ Z,
(i.e., (3.3) holds with C = 1) then, for each sequence of non-negative num-
bers r = (r(m))m∈Z,

(4.17) σ(n, r)Ω(2n) ≤ σ(n, r̃) where r̃ = (r(m)Ω(m))m∈Z.

Proof. Since the weight Ω is submultiplicative, we have, for each 2ν-tuple
(j1, . . . , j2ν), that

Ω(2n) ≤ Ω(n+ j1)Ω(−j1 − j2)Ω(j2 + j3) · · ·Ω(−j2ν+1 − j2ν)Ω(j2ν + n),

and therefore,

r(n+ j1)r(−j1− j2) · · · r(j2ν + n)Ω(2n) ≤ r̃(n+ j1)r̃(−j1− j2) · · · r̃(j2ν + n)

Thus, in view of (4.7), we obtain

σν(n, r)Ω(2n) ≤ σν(n, r̃) ν = 1, 2, . . . ,

so, by (4.9),

σ(n, r)Ω(2n) =
∞∑
ν=1

σν(n, r)Ω(2n) ≤
∞∑
ν=1

σν(n, r̃) = σ(n, r̃).

�
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Next we use the properties of the operator σ to prove the following crucial
estimate.

Proposition 16. Under the above notations

(4.18)
∑
|n|≥N

|σ(n, r)|2 ≤ 2

N
+ (R(N))2, N > N∗,

where

(4.19) R(N) :=
∑
|n|≥N

|r(n)|2.

Proof. By (4.7) the sequence (σ(n, r)) is the sum of the sequences (σν(n, r)),
and therefore, by the triangle inequality for `2-norms, we obtain

(4.20)

∑
|n|≥N

|σ(n, r)|2
1/2

≤
∞∑
ν=1

∑
|n|≥N

|σν(n, r)|2
1/2

.

To estimate
∑
|n|≥N |σν(n, r)|2, for fixed ν ∈ N, we divide the set of sum-

mation indices in (4.7)

J(n) = {j = (j1, . . . , j2ν) : j1, . . . , j2ν 6= n}
into several subsets by setting

a = {α = (α1, . . . , α2ν) : αs ∈ {0, 1}}, |α| = α1 + · · ·+ α2ν ,

and

Jα(n) =

{
(j1, . . . , j2ν) ∈ J(n) :

∣∣∣∣ |n− js| ≤ |n|/2 if αs = 0
|n− js| > |n|/2 if αs = 1

}
.

Then
J(n) =

⋃
α∈a

Jα(n),

so ∑
J(n)

· · · =
∑
α∈a

∑
j∈Jα(n)

· · · ,

and therefore, the triangle inequality implies that

(4.21)

∑
|n|≥N

|σν(n)|2
1/2

≤
∑
α∈a

∑
|n|≥N

∣∣∣∣∣∣
∑

j∈Jα(n)

· · ·

∣∣∣∣∣∣
21/2

.

By the Cauchy inequality,

(4.22)
∑
|n|≥N

 ∑
j∈Jα(n)

· · ·

2

≤
∑
|n|≥N

Aα(n)Bα(n),
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where

(4.23) Aα(n) =
∑

j∈Jα(n)

1

(n− j1)2 . . . (n− j2ν)2

≤

 ∑
|n−k|≤|n|/2

1

(n− k)2

2ν−|α| ∑
|n−k|>|n|/2

1

(n− k)2

|α| ≤ (π2

3

)2ν−|α|(
4

N

)|α|
,

and

(4.24) Bα(n) =
∑

j∈Jα(n)

|r(n+ j1)|2|r(−j1 − j2)|2 · · · |r(j2ν + n)|2.

In order to estimate
∑
|n|≥N Bα(n) we change the indices of summation to

i1 = n+ j1, i2 = −j1 − j2, . . . , i2ν = −j2ν−1 − j2ν , i2ν+1 = j2ν + n.

Then

(4.25)
∑
|n|≥N

Bα(n) ≤
∑
i∈Iα
|r(i1)|2 · · · |r(i2ν+1)|2,

where Iα = Iα(N) is the set of indices i = (i1, . . . , i2ν+1) given by

Iα = I1(α)× · · · × I2ν+1(α),

where

Is(α) =

{
Z if αs = 1

{is : |is| ≥ N} if αs = 0
for s = 1, 2ν + 1

and

Is(α) =

{
Z if αs−1 = 1 or αs = 1

{is : |is| ≥ N} if αs−1 = 0 and αs = 0
, 2 ≤ s ≤ 2ν.

Indeed, α1 = 0 (or α2ν+1 = 0) means that |n− j1| ≤ |n|/2 (respectively,
|n− j2ν | ≤ |n|/2). Thus

|i1| = |n+ j1| = |2n− (n− j1)| ≥ |2n| − |n|/2 > |n| ≥ N,

and the same argument shows that |i2ν+1| ≥ N. Fix an s such that 2 ≤ s ≤
2ν. If αs−1 = αs = 0 then

|n− js−1| ≤ |n|/2, |n− js| ≤ |n|/2,
thus

|is| = |js−1 + js| = |2n− (n− js−1)− (n− js)| ≥ |2n| − 2(|n|/2) ≥ |n| ≥ N.

Now we have

(4.26)
∑
|n|≥N

Bα(n) ≤
2ν+1∏
s=1

∑
is∈Is(α)

|r(is)|2 ≤ (R(N))γ(α)(‖r‖2)2ν+1−γ(α),
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where

(4.27) γ(α) := card{s : Is(α) 6= Z} ≥ 2ν + 1− 2|α|.
Indeed, one can easily see by the definition of Is(α) that

γ(α) = (1− α1) + (1− α2ν) +
2ν∑
s=2

(1− αs)(1− αs−1)

≥ (1− α1) + (1− α2ν) +
2ν∑
s=2

(1− αs − αs−1) = 2ν + 1− 2|α|.

Taking into account (4.22), (4.23), (4.26) and (4.27), we obtain
(4.28)∑
|n|≥N

 ∑
j∈Jα(n)

· · ·

2

≤
(
π2

3

)2ν (
2√
N

)2|α|

(R(N))γ(α) (‖r‖2
)2ν+1−γ(α)

≤ K2ν+1(ρ(N))2|α|+γ(α)) ≤ K2ν+1(ρ(N))2ν+1,

where

ρ(N) =
2√
N

+R(N), K =
π2

3
(‖r‖2 + 1).

Obviously ρ(N)→ 0 as N →∞, so there is N∗ such that

(4.29) ρ(N) < (8K)−1 for N ≥ N∗.

Since card(a) = 22ν , the inequalities (4.21), (4.28) and (4.29) imply, for
N ≥ N∗, that

∞∑
ν=1

∑
|n|≥N

|σν(n, r)|2
1/2

≤
∞∑
ν=1

4ν (Kρ(N))ν+1/2

≤ 4(Kρ(N))3/2

∞∑
ν=0

2−ν ≤ 8(Kρ(N))3/2 ≤ 1

2
ρ(N).

Thus, by (4.20),∑
|n|≥N

|σ(n.r)|2 ≤ 1

4
(ρ(N))2 ≤ 2

N
+ (R(N))2,

which completes the proof. �

Proof of Proposition 13. Suppose that Ω is a submultiplicative weight (we
may assume that (3.3) holds with C = 1) and r = (r(n))n∈Z is a sequence
of non-negative numbers such that r(m) = 0 for odd m and

(4.30)
∑

(r(2n)Ω(2n))2 <∞.
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Lemma 15 implies that

(4.31) σ(n, r)Ω(2n) ≤ σ(n, r̃), where r̃ = (r(m)Ω(m)) .

Therefore, in view of (4.30), we have r̃ ∈ `2(Z), so, by Proposition 16, there
exists N∗ > 0 such that

∑
|n|≥N∗

(σ(n, r̃))2 ≤ 2

N
+

 ∑
|n|≥N∗

|r̃(n)|2
2

<∞.

Thus, by (4.31), we obtain that∑
(σ(n, r)Ω(2n))2 ≤

∑
(σ(n, r̃))2 <∞,

which proves Proposition 13.

3. Two elementary lemmas.

Lemma 17. If (B(n))∞1 and (R(n))∞1 are decreasing sequences of positive
real numbers such that

(4.32) B(n)↘ 0, R(n)↘ 0,

(4.33) R(2n) ≤ C1B(n) + C1(R(n))2, C1 > 0, n = 1, 2, . . . ,

and

(4.34) B(n) ≤ C2B(2n), C2 > 0, n = 1, 2, . . . ,

then there exists a constant C > 0 such that

(4.35) R(2n) ≤ CB(n), n = 1, 2, . . . .

Proof. By (4.32) there exists n1 such that

R(n) <
1

2C1C2

for n ≥ n1.

Therefore, by (4.33) and (4.34), we obtain

(4.36)
R(4n)

B(2n)
≤ C1 +

1

2C2

R(2n)

B(2n)
≤ C1 +

1

2

R(2n)

B(n)
, n ≥ n1.

Consider the sequence

(4.37) Xk = R(2k+1n1)/B(2kn1), k = 1, 2, . . . .

From (4.36) it follows that

(4.38) Xk+1 ≤ C1 +
1

2
Xk, k = 1, 2, . . . .
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One can easily derive from (4.38), by induction, that

Xk+1 ≤ C1

k∑
j=0

2−j + 2−kX1,

thus the sequence (Xk) is bounded:

(4.39) Xk ≤ 2C1 +X1.

Fix an arbitrary n ≥ n1. Then we have

2kn1 ≤ n < 2k+1n1

for some k ≥ 0. Since R(m) is decreasing, (4.34), (4.37) and (4.39) yield

R(2n) ≤ R(2k+1n1) = XkB(2kn1) ≤ XkC2B(2k+1n1) ≤ CB(n),

with C = C2(2C1 +X1), i.e., (4.35) holds. �

The next lemma explains that, due to Abel’s transform, a sequence
(x(n)) ∈ `1 belongs to a weighted `1-space generated by a weight T (n)
if and only if the sequence (X(N)),

X(N) =
∑
|n|≥N

|x(n)|,

belongs to the weighted `1-space generated by the weight T (N)−T (N−1).

Lemma 18. If (T (n)), n ∈ Z is a weight sequence then the following con-
ditions are equivalent:

(i)
∑
n

|x(n)|T (n) <∞;

(ii)
(ii.a) X(N)T (N)→ 0 as N →∞, X(N) =

∑
|n|≥N |x(n)|;

(ii.b)
∑

nX(n)[T (n)− T (n− 1)] <∞.

Proof. (i)⇒ (ii). If (i) holds, then

X(N)T (N) ≤
∑
|n|≥N

|x(n)|T (n)→ 0,

thus part (a) of (ii) holds. Moreover, if 0 < M < N then∑
M≤|n|≤N

|x(n)|T (n) =
N∑

n=M

(|x(−n)|+ |x(n)|)T (n)(4.40)

= X(M)T (M)−X(N + 1)T (N) +
N∑

n=M+1

X(n) (T (n)− T (n− 1)) .
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By (i) the left-hand side of the above identity goes to 0 as M →∞. Since

X(N + 1)T (N) ≤ X(N + 1)T (N + 1)→ 0,

we obtain, by part (a) of (ii), that

N∑
n=M+1

X(n) (T (n)− T (n− 1))→ 0 as M →∞,

thus the series in (ii.b) satisfies the Cauchy convergence condition.
The implication (ii)⇒ (i) follows from (4.40) also. Indeed, by part (ii.a)

X(M)T (M) → 0 as M → ∞, thus the Cauchy convergence condition for
the series in (ii.b) implies the Cauchy convergence condition for the series
in (i).

�

4. Now we prove Theorem 14 in the case where Ω is a slowly increasing
submultiplicative weight.

Proposition 19. Suppose Ω is a slowly increasing (i.e. Ω ∈ (3.4)) submul-
tiplicative weight. If r = (r(n))n∈Z and ξ = (ξ(n))n∈Z are two sequences of
non-negative numbers such that

r(n) = 0 for odd n, r ∈ `2,

and

(4.41) r(2n) ≤ ξ(n) + σ(n, r),

where σ is the operator defined by (4.8), (4.9) and (4.7), then

(4.42)
∑
n

|ξ(n)|2 (Ω(2n))2 <∞ ⇒
∑
n

|r(2n)|2 (Ω(2n))2 <∞.

Proof. Since the weight Ω is slowly increasing we have, by (3.5), that

(4.43) ∃a > 0 : Ω(m) ≤ |m|a for |m| > 1.

For convenience the proof is divided into two steps.

Step 1. Proof of the claim in the case where a < 1/4.
By (4.41),

(4.44)
∑
|n|≥N

|r(2n)|2 ≤ 2
∑
|n|≥N

|ξ(n)|2 + 2
∑
|n|≥N

|σ(n, r)|2,

and therefore, by Proposition 16, we obtain for N ≥ 4 (since (Ω(N))2 ≤
N1/2 ≤ N/2)

(4.45) R(2N) ≤ 2X(N) +
2

(Ω(N))2
+ 2(R(N))2,
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where

(4.46) X(n) =
∑
|n|≥N

|ξ(n)|2.

On the other hand we have

εN := X(N)(Ω(N))2 ≤
∑
|n|≥N

|ξ(n)|2(Ω(n))2 → 0,

and therefore,

(4.47) X(N) = εN/(Ω(N))2 with εN → 0.

Consider the sequence (B(N)) given by

(4.48) B(N) := X(N) +
1

(Ω(N))2
.

Since the weight Ω is slowly increasing, (4.47) and (4.48) imply that

(4.49) sup
N
B(N)/B(2N) <∞, B(N) ≤ C̃/(Ω(N))2.

By (4.45) we have

R(2N) ≤ B(N) + 2(R(N))2,

so, in view of (4.49), Lemma 17 gives us that

(4.50) R(2N) ≤ C1B(N) ≤ C1
C̃

(Ω(N))2
.

On the other hand, by (4.44) and Proposition 16, we obtain

(4.51) R(2N) ≤ 2X(N) + 4/N + 2(R(N))2.

Notice that (4.43) with a < 1/4 implies (Ω(N))4/N → 0. So, since Ω is
slowly increasing weight, (4.50) and (4.51 yield

(4.52) R(2N) ≤ 2X(N) +
C2

(Ω(N))4
.

Now (4.47) and (4.52) imply that

(4.53) R(2N)Ω(N)2 → 0 as N →∞.
Moreover, (4.52) implies

(4.54)
∑
N

R(2N)
(
(Ω(N))2 − (Ω(N − 1))2

)
<∞.

Indeed, by Lemma 18 (since (ξn) ∈ `2(Ω)) we have that∑
N

X(N)
(
(Ω(N))2 − (Ω(N − 1))2

)
<∞.
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On the other hand∑
N

((Ω(N))2 − (Ω(N − 1))2)

(Ω(N))4
≤
∑
N

(
1

(Ω(N − 1))2
− 1

(Ω(N))2

)
<∞,

thus (4.54) holds. So, in view of (4.53) and (4.54), by Lemma 18
∑
|r(m)|2(Ω(m))2 <

∞, i.e., (4.42) holds if a < 1/4.

Step 2. Proof of the claim in the case where a ≥ 1/4.
If Ω(m) ≤ |m|a with a ≥ 1/4, then we choose k0 so that a/k0 < 1/4, set

(4.55) Ωk(m) = (Ω(m))k/k0 , k = 1, . . . , k0,

and prove that the claim holds for Ωk by induction in k. Since Ω1(m) <
|m|1/4, by Step 1 the claim holds for k = 1.

Assume that r = (r(m)) ∈ `2(Ωk) for some k, 1 ≤ k < k0. Multiplying
both sides of (4.41) by Ωk(2n) and using that Ωk is submultiplicative, we
obtain

(4.56) r̃(2n) ≤ ξ̃(n) + σ(n, r̃),

where

r̃(m) = r(m)Ωk(m), ξ̃(m) = ξ(m)Ωk(2m), m ∈ Z.
Since (r(m)) ∈ `2(Ωk) and (ξm) ∈ `2(Ω) we have that

r̃ = (r̃(m)) ∈ `2, (ξ̃(m)) ∈ `2(Ωk0−k) ⊂ `2(Ω1).

From this by Step 1 it follows that (r̃(m)) ∈ `2(Ω1), thus r = (r(m)) ∈
`2(Ωk+1).

Hence r = (r(m)) ∈ `2(Ωk) for k = 1, . . . , k0. By (4.55), Ωk0 = Ω. This
proves Proposition 19.

�

5. Finally, we prove Theorem 14 for rapidly increasing weights of the
form Ωϕ(|n|)) = exp(ϕ(log |n|)).

Proposition 20. Suppose (Mk)
∞
k=0 is a Carlemann sequence (see (3.25) -

(3.27)) such that Mk = k!Ek with

(4.57)
√
k(Ek)

2/E2k → 0,

(4.58) ∃τ ∈ (0, 1) :
∞∑
k=1

(
(Ek)

2/E2k

)τ → 0.

If r = (r(n))n∈Z and ξ = (ξn)n∈Z are sequences of non-negative numbers
such that

r(n) = 0 for odd n, r ∈ `2
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and

(4.59) r(2n) ≤ ξ(n) + σ(n, r), |n| ≥ n∗,

where σ is the operator defined by (4.8) - (4.7), then
(4.60)

|ξ|k :=
∑
n

|ξn||2n|k ≤ CMk ∀k =⇒ ‖r‖k =
∑
n

|r(2n)||2n|k ≤ C̃Mk ∀k.

Proof. By Proposition 19,

|ξ|k <∞ =⇒ ‖r‖k <∞, ∀k ∈ N.
Set

(4.61) ‖r‖k = XkMk‖r‖0, k = 0, 1, 2, . . . .

The lemma will be proven if we show that the sequence (Xk) is bounded.
Multiplying (4.59) by |2n|k+1 and summing for |n| ≥ N∗ > n∗ (now

N∗ > n∗ is arbitrary, but later it will be chosen large enough) we obtain
(4.62)

‖r‖k+1 ≤
∑
|n|<N∗

|r(2n)||2n|k+1 +
∑
|n|≥N∗

|ξ(n)||2n|k+1 +
∑
|n|≥N∗

σ(n, r)|2n|k+1

≤ C1(2N∗)
k+1 + |ξ|k+1 +

∞∑
ν=1

∑
|n|≥N∗

|2n|k+1σν(n, r),

where C1 = maxm |r(m)|.
Next we fix ν ∈ N and estimate the sum

Sν :=
∑
|n|≥N∗

|2n|k+1σν(n, r).

Observe that by (4.7)

(4.63) Sν =
∑
|n|≥N∗

|2n|k+1
∑

j1,...,j2ν 6=n

r(n+ j1)r(−j1 − j2) . . . r(j2ν + n)

|n− j1||n− j2| . . . |n− j2ν |
.

As in the proof of Proposition 16 we divide the set of indices in the above
sum into subsets

J(n) = {j = (j1, . . . , j2ν) : j1, . . . , j2ν 6= n} =
∑
α∈a

Jα(n),

where a is the set of all 2ν-tuples α = (α1, . . . , α2ν) with αi ∈ {0, 1}, and

Jα(n) =

{
(j1, . . . , j2ν) ∈ J(n) :

∣∣∣∣ |n− js| ≤ |n|/2 if αs = 0
|n− js| > |n|/2 if αs = 1

}
.

By the definition of Jα(n) we have

|n− j1| . . . |n− j2ν | ≥ (|n|/2)|α| ≥ (N∗/2)|α| for j ∈ Jα(n).
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With this estimate for the denominator in (4.63) we obtain

(4.64) Sν ≤
∑
α∈a

(N∗/2)−|α|
∑
|n|≥N∗

∑
Jα(n)

|2n|k+1r(n+ j1 . . . r(j2ν + n).

Set

(4.65) a′ = {α ∈ a : |α| = |α1 + · · ·α2ν | ≥ ν}, a′′ = a \ a′,
and split the sum in (4.64) into two subsums:

(4.66)
∑
α∈a

· · · =
∑
α∈a′
· · ·+

∑
α∈a′′
· · ·

First we estimate
∑

α∈a′ . Taking into account that card [a] = 22ν we
obtain

(4.67)
∑
α∈a′
· · · ≤ (8/N∗)

ν
∑
n

∑
j1,...,j2ν

|2n|k+1r(n+ j1) . . . r(j2ν + n).

By the binomial formula

|2n|k+1 = |(n+ j1) + (−j1 − j2) + (j2 + j3) + · · ·+ (j2ν + n)|k+1

≤
∑
|s|=k+1

(
k + 1

s

)
|n+ j1|s0 · | − j1 − j2|s1 · · · |j2ν + n|s2ν ,

thus (4.67) implies∑
α∈a′
· · · ≤

(
8

N∗

)ν ∑
|s|=k+1

(
k + 1

s

)
‖r‖s0‖r‖s1 . . . ‖r‖s2ν

=

(
8

N∗

)ν
(2ν+1)‖r‖2ν

0 ‖r‖k+1+

(
8

N∗

)ν ∑
|s| = k + 1
si < k + 1

(
k + 1

s

)
‖r‖s0‖r‖s1 . . . ‖r‖s2ν .

Obviously there exists N1 > 0 such that
∞∑
ν=1

(8/N∗)
ν(2ν + 1)‖r‖2ν

0 < 1/2 for N∗ > N1.

Thus we have
(4.68)
∞∑
ν=1

∑
α∈a′ν

≤ 1

2
‖r‖k+1 +

∞∑
ν=1

(
8

N∗

)ν ∑
|s| = k + 1
si < k + 1

(
k + 1

s

)
‖r‖s0‖r‖s1 . . . ‖r‖s2ν

(where the notation a′ν is used to show the dependence of a on ν).
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Next we estimate
∑

α∈a′′ . Consider the expressions

(4.69) i1 = n+ j1, i2 = −j1 − j2, . . . , i2ν = −j2ν−1 − j2ν , i2ν+1 = j2ν + n

(these formulas are used in the proof of Proposition 16 to change the indices
of summation). It is easy to check by the definition of Jα(n) that if j ∈
Jα(n) then

α1 = 0⇒ |i1| = |n+ j1| > |n|, α2ν = 0⇒ |i2ν+1| = |j2ν + n| > |n|

and

αs−1 = αs = 0⇒ |is| = |js−1 + js| > |n|, 2 ≤ s ≤ 2ν

(see for details the proof of Proposition 16).
Let γ(α) denotes the number of expressions is in (4.69) such that |is| > n

for j ∈ Jα(n). Of course, γ(α) is the same function that is used in the proof
of Proposition 16, so, by (4.27), we have

γ(α) ≥ 2ν + 1− 2|α|.

In particular, since |α| ≤ ν − 1 for α ∈ a′′, we obtain

γ(α) ≥ 3 for α ∈ a′′.

Choose indices s1, s2 so that the corresponding expressions is1 and is2 in
(4.69) satisfy

|is1| > |n|, |is2| > |n| for j = (j1, . . . , j2ν) ∈ Jα(n).

Set

(4.70) k1 = k2 =
k + 1

2
for odd k, k1 =

k

2
, k2 = 1 +

k

2
for even k.

Then

|n|k+1 ≤ |is1|k1|is2|k2 for j ∈ Jα(n).

Thus, changing the indices of summation by formulas (4.69) we obtain by
(4.64)

(4.71)
∑
α∈a′′
· · · ≤

∑
α∈a′′

(
2

N∗

)|α| ∑
|n|≥N∗

∑
Jα(n)

2k+1|is1|k1|is2|k2r(i1) . . . r(i2ν+1),

≤
∑
α∈a′′

(√
2

N∗

)2|α|

2k+1
∑
Iα(N∗)

|is1|k1|is2 |k2r(i1) . . . r(i2ν+1),

where Iα(N∗) = Iα1 × · · · × Iα2ν+1 with

Iαs = {m ∈ Z : |m| > N∗} if |is| > n ∀j ∈ Jα(n),

and Iαs = Z otherwise.
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Set

(4.72) R(N∗) =
∑
|n|>N∗

|r(n)|, ρ(N∗) =
√

2/N∗ +R(N∗).

With these notations (4.71) implies∑
α∈a′′
· · · ≤

∑
α∈a′′

(√
2

N∗

)2|α|

2k+1
∑
Iα(N∗)

‖r‖k1‖r‖k2 | (R(N∗))
γ(α)−2 ‖r‖2ν+1−γ(α)

0

≤
∑
α∈a′′

(ρ(N∗))
2|α|+γ(α)−2 2k+1‖r‖k1‖r‖k2|K2ν−1,

where K = max(1, ‖r‖0). Since

card [a′′] ≤ 2ν , 2|α|+ γ(α) ≥ 2ν + 1

(by (4.27)) we obtain

(4.73)
∑
α∈a′′
· · · ≤ (2Kρ(N∗))

2ν−12k+1‖r‖k1‖r‖k2|.

From (4.72) it follows that ρ(N∗) → 0 as N∗ → ∞, so there exists N2 > 0
such that

2Kρ(N∗) < 1/2 for N∗ ≥ N2.

Thus (4.73) implies that

(4.74)
∞∑
ν=1

∑
α∈a′′
· · · ≤ 2k+1‖r‖k1‖r‖k2 for N∗ ≥ N2.

Now we add together the above estimates. From (4.62), (4.64), (4.68)
and (4.74) it follows that for N∗ > max(N1, N2)

‖r‖k+1 ≤ C1(2N∗)
k+1 + ‖ξ‖k+1 + 2k+1‖r‖k1‖r‖k2

+2
∞∑
ν=1

(
8

N∗

)ν ∑
|s| = k + 1
si < k + 1

(
k + 1

s

)
‖r‖s0‖r‖s1 . . . ‖r‖s2ν

Substituting the norms of r by (4.61), and estimating from above the norm
of ξ by (4.60), we obtain (with Mk = k!Ek, and after dividing with (k +
1)!Ek+1‖r‖0):

(4.75) Xk+1 ≤
2C1

‖r‖0

· (2N∗)
k+1

(k + 1)!Ek+1

+ 2C + 2k+2 k1!k2!

(k + 1)!
· Ek1Ek2

Ek+1
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+2
∞∑
ν=1

(
8‖r‖2

0

N∗

)ν ∑
|s| = k + 1
si < k + 1

Es0 . . . Es2ν
Ek+1

Xs0 . . . Xs2ν ,

where k1 and k2 are given in (4.70).
Obviously the first term in the above estimate of Xk+1 goes to 0 as

k → ∞, so it is bounded. The same is true for the third term. Indeed,
if k + 1 is even, say k + 1 = 2m, then k1 = k2 = m, and by the Stirling
formula we have in view of (4.57) that

22mm!m!

(2m)!
· EmEm
E2m

�
√
m(Em)2/E2m → 0.

If k+1 is odd, say k+1 = 2m+1, then k1 = m, k2 = m+1, and we obtain

22m+1m!(m+ 1)!

(2m+ 1)!
· EmEm+1

E2m+1

= 22mm!m!

(2m)!
· EmEm
E2m

[
2m+ 2

2m+ 1
· em+1

e2m+1

]
→ 0,

because the expression in the square brackets is bounded. Thus we have
(4.76)

D := sup

(
2C1

‖r‖0

· (2N∗)
k+1

(k + 1)!Ek+1

+ 2C + 2k+2 k1!k2!

(k + 1)!
· Ek1Ek2

Ek+1

)
<∞.

By Lemma 9 the assumption (4.58) implies that

∃Q > 0 : sup
k

∑
|s|=k+1

(
Es0 . . . Es2ν

Ek+1

)τ
< Q2ν .

Therefore the double sum in (4.75) does not exceed the expression

2 sup
ν≥1

max
|s| = k + 1
si < k + 1

((
Es0 . . . Es2ν

Ek+1

)1−τ

Xs0 . . . Xs2ν

)
·
∞∑
ν=1

(
8‖r‖2

0Q
2

N∗

)ν
.

If
N∗ > N3 := 40‖r‖2

0Q
2,

then the sum in the above expression is less than 1/4. so in view of (4.76)
we obtain that

Xk+1 ≤ max

2D, sup
ν≥1

max
|s| = k + 1
si < k + 1

((
Es0 . . . Es2ν

Ek+1

)1−τ

Xs0 . . . Xs2ν

) .

Hence by Lemma 10 (with T = 2D, Fk = (Ek)
1−τ we obtain that the

sequence (Xk) is bounded, which completes the proof of Proposition 20. �
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Now we complete the proof of Theorem 14 for weights of the form Ωϕ(n) =
exp(ϕ(|n|)), where ϕ has the properties (3.10), (3.11) and (3.14). Let ξ =
(ξ(m))m∈Z and r = (r(m))m∈Z be sequences with non-negative terms such
that

(4.77) r(2n) ≤ ξ(n) + σ(n, r), n ≥ n∗.

We have to prove that

(4.78)
∑

(ξ(n)Ωϕ(2n))2 <∞ =⇒
∑

(r(m)Ωϕ(m))2 <∞.

Set

ξ = (ξ(m)), ξ(2m) = ξ(m), ξ2m+1 = 0.

By part (a) of Lemma 9,∑(
ξ(m)Ωϕ(m)

)2
<∞ =⇒ ∃C > 0 : ‖ξ‖ = |ξ|k ≤ CMk(ϕ1),

where ϕ1(t) = ϕ(t)− t and (Mk(ϕ1)) is the Carlemann sequence generated
by ϕ1 (see the text after (3.4) prior Lemma 8).

By Proposition 20 there exists C̃ > 0 such that

‖ξ‖k = |ξ|k ≤ CMk(ϕ1) =⇒ ‖r‖k ≤ C̃Mk(ϕ1) k = 0, 1, 2, . . . .

On the other hand part (b) of Lemma 8 yields

(4.79) ‖r‖k ≤ C̃Mk(ϕ1) ∀k =⇒
∑

(r(m)Ωϕ̂(m))2 <∞,

with ϕ̂(t) = ϕ1(t)− 4t = ϕ(t)− 5t.
Consider the sequences

r̂ = (r(k)Ωϕ̂(k)) , ξ̂ = (ξ(k)Ωϕ̂(2k)) .

Multiplying (4.77) by Ωϕ̂(2n), we obtain, by Lemma 15, that

(4.80) r̂(2n) ≤ ξ̂(n) + σ(n, r̂).

By (4.79) we have that r̂ ∈ `2(Z). Since Ωϕ(m) = Ωϕ̂(m) · |m|5, our hypoth-
esis yields

(4.81)
∑(

ξ̂(k)|2m|5
)2

=
∑

(ξ(m)Ωϕ(2m))2 <∞.

In view of (4.80) and (4.81), Proposition 19 can be applied to the sequences

r̂, ξ̂ and the weight Ω(n) = |n|5, so we obtain
∑

(r̂(m)|m|5)
2
<∞. Thus∑

(r(m)Ωϕ(m))2 =
∑(

r̂(m)|m|5
)2
<∞,

which completes the proof of Theorem 14. Therefore, Theorem 11 has been
proven as well.
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5. Conclusions and comments

1. If L is a Dirac operator of the form (2.4), not necessarily selfadjoint,
the left side inequality in (2.58), Theorem 5, does not hold. But in any
case, |λ+

n − λ−n | could be estimated from above if we use the basic equation
(2.13) and Lemma 4. More precisely, the following is true.

Lemma 21. If L is a Dirac operator of the form (2.1), then

(5.1) |λ+
n − λ−n | ≤ 2 max

|z|≤π/2

∣∣S12(n, z)
∣∣+ max

|z|≤π/2

∣∣S21(n, z)
∣∣ , n 6= n∗.

Proof. Indeed, with αn(z) = S11(n, z) = S22(n, z) and

(5.2) ζ = z − αn(z),

the equation (2.13) becomes

(5.3) ζ2 = S11(n, z)S22(n, z).

By Lemma 4, there exists n∗ > N0, where N0 is the constant from Lemma 1,
such that ∣∣∣∣dαn(z)

dz

∣∣∣∣ ≤ 1

2
for |z| ≤ π/2, |n| ≥ n∗.

Thus (5.2) defines in the disc |z| < π/2 a holomorphic mapping ζ(z) =
z − αn(z) such that

1/2 ≤ |dζ/dz| ≤ 3/2.

From here it follows that

1

2
≤ |z+

n − z−n | ≤ |ζ(z+
n )− ζ(z−n )| ≤ 2|z+

n − z−n |,

where, in view of Lemma 1, |z±n | < π/2 for |n| ≥ n∗. So, taking into account
that |λ+

n − λ−n | = |z+
n − z−n |, we obtain that

1

2
|λ+
n − λ−n | ≤ |ζ+

n − ζ−n | ≤ 2|λ+
n − λ−n |,

where ζ+
n = ζ(z+

n ) and ζ−n = ζ(z−n ).
On the other hand, (5.3) implies that∣∣ζ±n ∣∣ =

∣∣S12(n, z±n )S21(n, z±n )
∣∣1/2 ≤ 1

2

∣∣S12(n, z±n )
∣∣+

1

2

∣∣S21(n, z±n )
∣∣ .

Therefore,

|ζ+
n − ζ−n | ≤ |ζ+

n |+ |ζ−n | ≤ max
|z|≤π/2

∣∣S12(n, z)
∣∣+ max

|z|≤π/2

∣∣S21(n, z)
∣∣ ;

hence (5.1) holds.
�
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Theorem 22. Let L be a Dirac operator of the form (2.1) with potential
P (x) =

∑
p(2n)ei2nx and Q(x) =

∑
q(2n)ei2nx. If Ω is a submultiplicative

weight, then
(5.4)∑(

|p(2n)|2 + |q(2n)|2
)

(Ω(2n))2 <∞ =⇒
∑
|λ+
n−λ−n |2(Ω(2n))2 <∞.

Proof. Set

(5.5) r(m) = max(|p(−m)|, |p(m)|, |q(−m)|, |q(m)|)

In view of (2.36) -(2.39) we obtain by (2.25)

(5.6) max
|z|≤π/2

|S12(n, z)| ≤ σ(n, r), max
|z|≤π/2

|S21(n, z)| ≤ σ(n, r),

where r = (r(m) and σ(n, r) is defined by (4.8) and (4.7). Now the claim
follows from Proposition 13.

�

Under rigid assumptions on Ω, which, for example, exclude such weights
Ω as Ω(m) = exp(a|m|), or Ω(k) = [log(e+ |k|)]a , a > 0, the claim (5.4)
can be found in [13] or [14].

2. The present paper deals only with the case of subexponential growth
of the weight Ω, i.e., Ω(m) ≤ ea|m|, a > 0. The case of superexponential
weights Ω could be analyze as well. We will present such analysis elsewhere.
See such analysis of Hill–Schrödinger operators in [5].
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