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Abstract

We introduce a family of conditions on a simplicial complex that we call local k-
largeness (k > 6 is an integer). They are simply stated, combinatorial and easily checkable.
One of our themes is that local 6-largeness is a good analogue of the nonpositive curvature:
locally 6-large spaces have many properties similar to nonpositively curved ones. However,
local 6-largeness neither implies nor is implied by nonpositive curvature of the standard
metric. One can think of these results as a higher dimensional version of small cancellation
theory. On the other hand, we show that k-largeness implies nonpositive curvature if k is
sufficiently large. We also show that locally k-large spaces exist in arbitrary dimension.
We use this to answer questions raised by D. Burago, M. Gromov and I. Leary.

Introduction

Spaces of nonpositive curvature have been intensively investigated over the past 50
years. More recently non-riemannian metric spaces, for which nonpositive or negative
curvature is defined by comparison inequalities, the so called CAT(0) or CAT'(—1) spaces,
have been studied, mainly in geometric group theory [BH].

Many C'AT(0) spaces are obtained by combinatorial constructions. These constitute
a significant part of small cancellation theory [LS], which deals mostly with 2-dimensional
complexes. Cubical complexes are the main source of high dimensional C'AT(0) spaces.
The crucial observation which permits their study is Gromov’s Lemma: a cubical complex
with its standard piecewise euclidean metric is CAT'(0) if and only if the links of its vertices
are flag simplicial complexes. The flag property is an easily checkable, purely combinatorial
condition.

It is natural to ask if something similar holds for simplicial complexes:

(1) can one formulate the CAT(0) property of the standard piecewise euclidean metric
on a simplicial complex in combinatorial terms;

(2) is there a simple combinatorial condition implying C'AT(0);

(3) is there a simple condition implying Gromov hyperbolicity.

We do not answer the first question but we provide a satisfactory answer to the two
remaining ones. Namely, in Section 1 we introduce the notion of a locally k-large simplicial
complex, where k > 4 is an integer. It is defined in terms of links in the complex by very
simple combinatorial means. We show in Sections 15 and 18 that, for every n, there is
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an explicit constant k(n) such that if X" is a locally k(n)-large, n-dimensional simplicial
complex, then its standard piecewise euclidean metric is CAT(0). Taking a slightly bigger
constant k(n) we conclude that X™ admits a CAT(—1) metric. We also show (Section 2)
that the universal covers of locally 7-large complexes are Gromov hyperbolic. These facts
are well known in dimension 2, where our definition of locally 6- and 7-large coincides with
the CAT(0) and, respectively the C AT (—1) property of the standard piecewise constant-
curvature metrics.

We claim that “locally 6-large” is the right simplicial analogue of nonpositive cur-
vature. This condition neither implies nor is implied by the C'AT(0) property of the
standard metric, but shares many of its consequences. We describe some of them later
in this introduction. The results are proved using combinatorial (but metrically inspired)
concepts. This is very much in the spirit of small cancellation theory. The novelty is that
our approach works in arbitrary dimension.

Let us point out that the flag condition from Gromov’s Lemma is equivalent to the
“4-large” property. Also, Siebenman’s ”flag-no-square” condition appearing in the study
of CAT(-1) property of cubical complexes is equivalent to “5-large”.

Finer properties of high dimensional locally 6-large simplicial complexes seem to be
fairly different from the properties one sees when studying nonpositively curved manifolds.
Manifolds of dimension greater than 2 do not admit locally 6-large triangulations. We will
show in a future paper that fundamental groups of many aspherical manifolds cannot be
embedded into the fundamental groups of locally 6-large complexes. Still, high dimensional
locally 6-large spaces abound. We construct great many very symmetric examples by
developing certain simplices of groups. In particular, we can obtain in this way compact
orientable locally 6-large pseudomanifolds of arbitrary dimension.

We now briefly describe the contents of the paper, which naturally splits into five
parts.

In the first part (Sections 1 and 2) we introduce the concepts of a locally k-large
simplicial complex, a k-systolic simplicial complex, and a k-systolic group. A simplicial
complex is called k-systolic if it is locally k-large, connected and simply connected. A
group is k-systolic if it acts simplicially, properly discontinously and cocompactly on a
k-systolic complex. A simplicial complex (or a group) is systolic if it is 6-systolic.

In Section 1 we give a useful criterion for k-largeness (k > 6) in terms of links and
lengths of homotopically nontrivial loops (Corollary 1.4). This is done with a simplification
argument on simplicial disc diagrams reminiscent of small cancellation theory arguments.
Similar reasoning allows us to establish in Section 2 the following result.

Theorem A (See Theorem 2.1 and Corollary 2.2 in the text).

(1) Let X be a 7-systolic simplicial complex. Then the 1-skeleton X() of X with its
standard geodesic metric is d-hyperbolic (in the sense of Gromov) with § = 2%.

(2) Any 7-systolic group is Gromov hyperbolic.

The main idea exploited in the second part of the paper (Sections 3-6) is that of local
convexity. We introduce it in Section 3 under the name of local 3-convexity. It allows
us to define “small extensions” (Sections 4 and 6). These may be viewed as an analogue
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of the exponential map with a built-in divergence property for trajectories. Using small
extensions we show the following three results.

Theorem B (See Theorem 4.1(1) in the text). The universal cover of a connected locally
6-large simplicial complex is contractible. In particular, any systolic simplicial complex is
contractible.

This is an analogue of the classical Cartan-Hadamard theorem.

Theorem C (See Theorem 4.1(2) in the text). Let f: Q@ — X be a localy 3-convex map
of a connected simplicial complex @) to a connected locally 6-large simplicial complex X.
Then the induced homomorphism f, : m1 ) — m X of fundamental groups is injective.

Note that Theorem C applies to the inclusion maps of locally 3-convex subcomplexes
() C X. The analogous statement in riemannian geometry asserts that the fundamental
group of a locally geodesically convex subset in a complete nonpositively curved manifold
injects into the fundamental group of the ambient space (this is also true for locally C AT'(0)
geodesic metric spaces).

Theorem D (See Theorem 5.1 in the text). Every connected locally 6-large simplicial
complex of groups is developable.

Theorem D will be crucial for the constructions in the last part of the paper. It is
analogous to the classical result asserting that nonpositively curved complexes of groups
are developable.

The results in part three of the paper (Sections 7-14) are based on a certain convexity
property of balls in systolic complexes, described in Section 7 (Lemma 7.8). The main
result in this part is the following.

Theorem E (See Theorem 14.1 in the text). Let G be a systolic group, i.e. a group acting
simplicially, properly discontinuously and cocompactly on a systolic complex. Then G is
biautomatic.

Many corollaries of Theorem E can be obtained by using the well-developed theory
of biautomatic groups [ECHLPT]. In particular, systolic groups satisfy quadratic isoperi-
metric inequalities, their abelian subgroups are undistorted, their solvable subgroups are
virtually abelian, etc.

Theorem E is the culmination of a series of results concerning systolic complexes,
which have independent interest. For example, in Section 8 we define a simplicial analogue
of the projection map onto a convex subset. We also show that this map does not increase
distances (Fact 8.2). In Section 9 we introduce the concept of directed geodesics and show
their existence and uniqueness (Corollary 11.3). Finally, we establish in Sections 12-13 the
two-sided fellow traveller property for directed geodesics, the main ingredient in the proof
of Theorem E.

To prove Theorem E one needs, besides properties of directed geodesics, an argument
enabling to pass from the space on which the group acts to the group itself, especially in
the case where the group action has nontrivial stabilizers. The argument we use in this
paper has been expanded and applied in other situations by the second author in [S].
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Part four of the paper (Sections 15-18) addresses the issue of relationship between the
k-systolic and C AT (k) properties. We have

Theorem F (See Theorem 15.1 in the text). Let II be a finite set of isometry classes

of metric simplices of constant curvature 1, 0 or —1. Then there is an integer k > 6,

depending only on II, such that:

(1) if X is a piecewise spherical k-large complex with Shapes(X) C II then X is CAT(1);

(2) if X is piecewise euclidean (respectively, piecewise hyperbolic), locally k-large and
Shapes(X) C IT then X is nonpositively curved (respectively, has curvature xk < —1);

(3) if, in addition to the assumptions of (2), X is simply connected, then it is CAT(0)
(respectively, CAT(—1)).

We offer two proofs of Theorem F. The first one (in Sections 15-16) covers the general
case, but the estimates for the systolic constants are not explicit. The second one (Section
17) yields potentially explicit constants, but covers only metrics for which the simplices
have all angles acute. In Section 18 we make explicit estimates, based on the second of the
proofs, for the standard piecewise euclidean metric, and obtain the following.

Theorem G (See Theorem 18.1 in the text). Let k£ be an integer such that

T2
5 "

k> + 2.

Then any k-systolic simplicial complex X with dim X < n is CAT(0) with respect to the
standard piecewise euclidean metric.

The last part of the paper (Sections 19-22) deals with constructions of k-large com-
plexes of high dimensions. The complexes we obtain arise as developments of appropriate
simplices of groups. The constructions are based on the second important idea of the
paper, the notion of extra-tilability of simplices of groups (Section 20). Extra-tilability
matches with local convexity of balls in systolic spaces in an interesting way, and allows
us to construct subgroups with large fundamental domains. As a consequence, we obtain
large compact quotients of universal covers of simplices of groups, which in turn allows us
to use induction in the constructions.

The key result in this part is Theorem H below. The technical notions occurring in its
statement, which are standard in the theory of complexes of groups, are recalled in Section
19.

Theorem H (See Proposition 21.1 in the text). Let A be a simplex and suppose that for
any codimension 1 face s of A we are given a finite group A,;. Then for any k£ > 6 there
exists a simplex of finite groups G = ({G,}, {¢s-}) and a locally injective and surjective
morphism m : G — F to a finite group F such that Gao = {1}, G5 = A for any codimension
1 face s of A, and the development D(G,m) associated with the morphism m is a (finite
and) k-large simplicial complex.

As an application of Theorems F and H we obtain the following.

Theorem J (See Corollary 21.3(2),(3) in the text).
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(i) For each natural number n there exists an n-dimensional compact simplicial orientable
pseudomanifold whose universal cover is CAT'(0) with respect to the standard piece-
wise euclidean metric.

(ii) For each natural number n and each real number d > 0 there exists an n-dimensional
compact simplicial orientable pseudomanifold whose universal cover is C AT(—1) with
respect to the piecewise hyperbolic metric for which the simplices are regular hyper-
bolic with edge lengths d.

Theorem J answers a question of D. Burago and collaborators [Bu, BuFKK], motivated
by their investigations of billiards. The result can be extended from simplices to more
general domains. We plan to present the exposition of this more general result in a future
paper.

As a step in the proof of Theorem J one gets the existence of k-large compact ori-
entable pseudomanifolds of arbitrary dimension n, for any & > 6. It is interesting to com-
pare this with our earlier paper [JS], where we establish the existence of hyperbolic Coxeter
groups of arbitrary virtual cohomological dimension. The existence of such (right-angled)
groups is reduced in [JS] to the existence in arbitrary dimension of compact orientable
pseudomanifolds which satisfy the flag-no-square condition (they occur as nerves of the
corresponding right-angled Coxeter groups). Since the flag-no-square condition is equiv-
alent to 5-largeness, we obtain in the present paper compact orientable pseudomanifolds

which satisfy even stronger conditions, with a significantly different construction than that
in [JS].

The result from [JS] mentioned above can also be compared with another result from
the present paper, Theorem K, which can be deduced from Theorem H.

Theorem K (See Corollary 21.3(1) in the text). For each natural number n there exists
a developable simplex of groups whose fundamental group is Gromov-hyperbolic, virtually
torsion-free, and has virtual cohomological dimension n.

A less immediate consequence of Theorem H, below, answers a question of M. Gromov.
Normal simplicial pseudomanifolds occurring in the statement of this result form a natural
class containing, among others, all triangulations of manifolds. By a branched covering we
mean a simplicial map which is a covering outside the codimension 2 skeleton.

Theorem L (See Theorem 22.1 in the text). Let X be a compact connected normal
simplicial pseudomanifold equipped with a piecewise euclidean (respectively, piecewise hy-
perbolic) metric. Then X has a compact branched covering Y which is nonpositively
curved (respectively, has curvature k < —1) with respect to the induced piecewise con-
stant curvature metric.

We apply the same methods to answer a question of Ian Leary concerning homo-
topy types of classifying spaces for proper G-bundles of Gromov hyperbolic groups G (see
[QGGT, Question 1.24]). We refer to [LN] for the background on the following result.

Theorem M (See Corollary 22.4 in the text.) Any finite complex K is homotopy equiva-
lent to the classifying space for proper G-bundles of a CAT'(—1) (hence Gromov hyperbolic)
group G.
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results (roughly, those in Sections 1-8 and 19-21). Part of his work is described in [H].
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1. k-large and k-systolic simplicial complexes.

In this section we define and study first properties and examples of k-large and k-
systolic simplicial complexes.

Let X be a simplicial complex, and ¢ a simplex in X. The link of X at o, denoted
X, is a subcomplex of X consisting of all simplices that are disjoint from ¢ and which
together with o span a simplex of X. The residue of o in X, Res(o, X), is the union of
all simplices of X that contain o. The residue Res(o, X) is naturally the join of o and the
link X,.

A subcomplex K in X is called full (in X) if any simplex of X spanned by a set of
vertices in K is a simplex of K. If K is full in X, then K, is full in X, for any simplex o
in K. A similar property holds also for residues.

A simplicial complex X is flag if any set of vertices, which are pairwise connected by
edges of X, spans a simplex in X. Clearly, a full subcomplex in a flag complex is flag. Note
also that X is flag iff for any simplex ¢ the link X, is full in X. Flag simplicial complexes
arise naturally in the study of C AT'(0) property of cubical complexes [Gr-HG, BH].

A full cycle in a simplicial complex X is a full subcomplex « of X isomorphic to a
triangulation of S'. Denote by |y| the length of 7, i.e. the number of 1-simplices in 7.
Define the systole of X to be

sys(X) = min{|y| : v is a full cycle in X}.

In particular, we have sys(X) > 3 for any simplicial complex X, and if there is no full
cycle in X, sys(X) = oco. This definition is somewhat reminiscent of the notion of systole
in riemannian geometry, hence the name.



1.1 Definition. Given a natural number k > 4, a simplicial complex X is

— k-large if sys(X) > k and sys(X,) > k for each simplex o of X;

— locally k-large if the residue of every simplex of X is k-large;

— k-systolic if it is connected, simply connected and locally k-large.
A group acting properly discontinously and cocompactly on a k-systolic space is called a
k-systolic group. A 6-systolic complex or group is called systolic.

6-systolic complexes and groups are the main objects of study in this paper. Since
the word ”six-systolic” is somewhat hard to pronounce, we abbreviate it to ”systolic”.

Some easy properties of the above introduced classes of simplicial complexes are gath-
ered in Fact 1.2. The proofs are immediate hence we omit them.

1.2 Fact.

(0) A complex is locally k-large iff the link of every nonempty simplex has the systole at
least k.

(1) A (locally) k-large complex is (locally) m-large for k > m.

(2) A full subcomplex in a (locally) k-large complex is (locally) k-large.

(3) A simplicial complex is 4-large if and only if it is flag.

(4) For k > 4, X is k-large if and only if it is flag and sys(X) > k.

(5) Suppose that X is k-large and S}, denotes the triangulation of S* into m intervals. If
m < k then any simplicial map from S} to X extends to a simplicial map from the
disc D?, triangulated so that triangulation on the boundary is S! and so that there
are no interior vertices in D?.

Note that, in view of property (4) above, a simplicial complex X is 5-large if it is a
”flag-no-square” complex, or verifies ”Siebenmann no square condition”, a condition which
arises in the study of C AT (—1) property of cubical complexes [Gr-HG].

There are 4-systolic (respectively 5-systolic) complexes that are not 4-large (respec-
tively, 5-large). For example, take two octahedra (respectively, icosahedra), delete the
interior of a triangle from each copy and glue the resulting boundaries. However, for k > 6
we have

1.3 Proposition. If X is a k-systolic simplicial complex with k£ > 6 then X is k-large.

Before proving the above proposition, we derive its corollary which will be useful for
our later constructions of k-large complexes in Sections 20-21. Denote by sys,(X), and
call the homotopical systole of X, the minimal length of a homotopically nontrivial loop
in the 1-skeleton of X.

1.4 Corollary. Let £ > 6. A simplicial complex X is k-large iff it is locally k-large and
sysp(X) > k.

Proof: One of the implications follows from Proposition 1.3 by noting that if X is locally k-
large then there is no full homotopically trivial cycle of length less than &k in X (because, by
Proposition 1.3, there is no such cycle in the universal cover of X'). The second implication
follows by observing that the shortest homotopically nontrivial cycle in any simplicial
complex X is full.



Proof of Proposition 1.3: We need to show that sys(X) > k. Consider a full cycle v
in X. A filling of v is a continuous map f : A — X such that A is the 2-disc and the
restriction f|pa is a homeomorphism on 7. Since X is simply connected, there is a filling
fo : Ag — X. Using relative Simplicial Approximation Theorem we can also arrange that
Ay is a simplicial disc and fj is a simplicial map (which is a simplicial homeomorphism
on the boundary). Recall that a simplicial map is nondegenerate if it is injective on each
simplex of the triangulation.

To proceed with the proof we need two lemmas, the first of which is related to van
Kampen Lemma from the small cancellation theory. The elementary proofs of both lemmas
are defered until the end of this section.

1.5 Lemma. Let X be a simply connected simplicial complex, and ~ a cycle in X. Then
there exists a filling f of +, which is a nondegenerate simplicial map with respect to an
appropriate triangulation Ay of the disc and equal to v on the boundary.

1.6 Lemma. Let X, v, satisfy the assumptions of Lemma 1.5, and X is locally k-large.
Then there exists a nondegenerate simplicial filling f : Ay — X of ~, such that every
interior vertex of Ay is contained in at least k triangles. Any filling of 4 with the minimal
number of triangles has this property. If moreover v is a full subcomplex in X, then every
boundary vertex of A, is contained in at least two triangles, and there is at least one
internal vertex in As.

To conclude the proof of Proposition 1.3 we use the Gauss Bonnet Theorem. Let y(v)
denote the number of triangles containing vertex v. Then

1= x(82) = [0 (3~ x(0) + Y26~ x()].

veEB vel

where B denotes the set of vertices on the boundary and I the set of vertices in the interior
of As. Since the second sum is at most 6 — k, and the terms of the first sum are at most
1, we conclude that |y| = #B > k, and hence sys(X) > k.

1.7 Examples and non-examples of k-large complexes with k£ > 6.

(1) A graph X is k-large iff sys(X) > k.

(2) Let Y be a triangulation of Euclidean or hyperbolic plane by congruent equilateral
triangles with angles 27/m. Let X be a simplicial surface obtained as a quotient of
Y. If 6 < k < m then X is k-large iff sys,(X) > k. By residual finiteness of the
automorphism group of Y, this gives lots of k-large surfaces.

(3) Using the combinatorial Gauss-Bonnet theorem, one sees that a triangulation of the
2-sphere is never k-large, for any £ > 6. It follows that no triangulation of a manifold
M with dim M > 3 is 6-large, since 2-spheres occur as links of some simplices in M.

(4) As we show later in this paper, for any k& > 6 there exist k-large simplicial pseudo-
manifolds in any dimension. Moreover, any finite simplicial pseudomanifold admits a
finite k-large branched cover, for any k > 6.

Proof of Lemma 1.5: We introduce a class of complexes and maps more general than
simplicial ones. An almost simplicial 2-complex is a cell complex whose cells are simplices
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glued to lower dimensional skeleta through nondegenerate maps. It means that for 1-skeleta
multiple edges and loops are allowed, and that the interior of each edge of a 2-cell is glued
to the 1-skeleton homeomorphically on the interior of some 1-cell. A simplicial map from
an almost simplicial 2-complex to a simplicial complex is determined by its values at the
vertices in the same way as an ordinary simplicial map (for example, a loop is necessarily
mapped to a vertex).

Suppose 7 is a closed embedded (contractible) polygonal curve in a simplicial complex
X, and suppose fo : Ag — X is a simplicial filling of v. We will first modify it to a
nondegenerate simplicial filling f} : Aj — X with A almost simplicial. This will be done
in a sequence of modifications as follows. Suppose e is an edge in Ay which is mapped
by fo to a vertex. Then there are two 2-cells in Ay adjacent to e. Delete (the interior of
the union of) these two cells from A and glue the four resulting free edges in pairs, so
that the two distinct vertices of e are identified. This gives an almost simplicial disc A’
with the simplicial map f’ to X induced from fy (and is the reason for introducing almost
simplicial triangulations).

We wish to repeat the same modification procedure with the new triangulation, but
now, due to the fact that the triangulation is almost simplicial, we need to consider two
more cases.

The first possibility is that e is a loop. It then bounds a subdisc D of A’. There
is also a 2-cell C' outside D adjacent to e. If all the edges of C' are loops, then we have
a nested family of discs bounded by them; take e* to be the outermost loop and repeat
the argument with e* in place of e. Eventually we arrive at the situation where the two
remaining edges of C are embedded. Now delete from A’ the interior of the union of D
and C, and glue the two resulting free edges to get a new almost simplicial disc A’ with
the induced simplicial map f’ to X.

The second possibility is that e is adjacent on both sides to the same 2-cell C of A’.
Then e is not a loop, and plays the role of two out of three boundary edges of C'. The
remaining third edge is necessarily a loop; thus we are in the situation as in the previous
case, and we perform the modification as above.

Since a modification reduces the number of 2-cells in A’, we eventually obtain an
almost simplicial filling f{ : A, — X which is nondegenerate (since it is nondegenerate on
the 1-skeleton of Af).

The next step is to further modify the filling so that it remains nondegenerate but
becomes simplicial. Note that, since f{ is nondegenerate, A{, has no loop edges. It is then
sufficient to eliminate multiple edges (i.e. edges sharing both endpoints), while keeping
induced maps to X nondegenerate, as an almost simplicial disc without loops and multiple
edges is simplicial.

Consider a pair eq, ez of edges in A{; with common endpoints. Their union bounds a
subdisc D of Aj. Remove the interior of D from Aj and glue the resulting two free edges
with each other, getting new A{, with new nondegenerate simplicial map f’ to X induced
from the previous one. Again, the procedure terminates, since the number of 2-cells in Aj
decreases. The final result f; : A; — X is a nondegenerate simplicial filling, as required.

Notice that the procedure we describe does not change the map f on the boundary.

Proof of Lemma 1.6: Take a filling produced in Lemma 1.5 and suppose v is an interior
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vertex of Aj contained in less than k triangles. First we shall construct a filling f{ : A} —
X of v, with A} having one less interior vertex than A;. We delete the interior of subdisc
Res(v,Ay), replace it with the triangulation given by Fact 1.1 (5), and define f{ so that
it coincides with f; on Ay \ int[Res(v, A1)].

The resulting filling is in general not nondegenerate, but the triangulation does have
fewer simplices. Now we apply to it procedure used in the proof of Lemma 1.5, which
produces a nondegenerate simplicial map with still fewer simplices.

[teration of this procedure terminates after finitely many steps yielding a simplicial
disc Ay and a map fs : Ay — X which establishes the first part of Lemma 1.6.

Now, each boundary vertex is contained in at least 2 triangles and there is at least
one interior vertex, since otherwise the boundary 0As is not full in As and thus v is not
full in X. This completes the proof of Lemma 1.6.

2. T-systolic implies hyperbolic.

One of the main themes of this paper is that k-systolic complexes with k& > 6 resemble
to a large extent C'AT'(0) spaces, though there are no obvious CAT'(0) metrics on them.
As a first step in this direction we show in this section that 7-systolic complexes and
groups are hyperbolic in the sense of Gromov. This solves a problem pointed out by
M.Gromov [Gr-Al, Remark (a) on p. 176] to find a purely combinatorial condition for
simplicial complexes of arbitrary dimension that yields hyperbolicity. For an exposition of
the theory of hyperbolic metric spaces and groups see [BH, GdelaH].

2.1 Theorem. Let X be a 7-systolic simplicial complex. Then the 1-skeleton XM of X
with its standard geodesic metric is §-hyperbolic (in the sense of Gromov) with § = 21.

Since a 7-systolic group is quasi-isometric to (the 1-skeleton of) the corresponding
7-systolic simplicial complex on which it acts, Theorem 2.1 implies the following.

2.2 Corollary. A 7-systolic group is hyperbolic in the sense of Gromov.

Proof of Theorem 2.1: Take any three points z,y, z in X(*) (not necessarily vertices),
and join them by three geodesics Vuy, Yoz, Yy I X @ to obtain a triangle v. We need to
show that every point on the side 7, is distance at most 2% in X from the union of
remaining two sides.

Clearly 7y, is embedded. Without loss of generality we can assume that vy is embedded
(i.e. geodesics vy, Va2, Vy- intersect only at their endpoints) in view of the following

2.3 Lemma. Suppose z,y € X1 are joined by two geodesics Yays Vay- Lhen for any
vertex a on 7y, there is a vertex a* on 7, so that a,a” are joined by an edge in X. In
particular, any point on the geodesic ., is distnce at most 1% in X from the geodesic
Vay-

Proof of Lemma 2.3: Without loss of generality we can assume 7zy,7,, are disjoint
(except at the endpoints). Lemma 1.5 produces a filling in X of the digon formed by
Yay, Vays SO that each vertex on the boundary is contained in at least 2 triangles, possibly

with the exception of z,y. Suppose Lemma 2.3 is false. Then (the filling of) the digon has
at least one internal vertex.
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Apply the Gauss Bonnet formula as in the proof of Proposition 1.3 to the digon. In
the first sum at most two terms can be equal 2; the second sum is strictly negative. Thus,
if there are k negative terms in the first sum, there are also at least k + 3 positive terms.
Hence on one of geodesics, say 7.y, there are n vertices with negative contribution to
the Gauss-Bonnet and at least n 4 2 vertices with positive contribution. Thus negative
vertices cannot separate positive ones, and we have two positive vertices, perhaps separated
by several zero vertices (i.e. vertices with zero contribution to the Gauss Bonnet). But
this contradicts the fact that v,, is a geodesic in X (1), hence the lemma.

Coming back to the proof of Theorem 2.1, take a filling of v in X constructed as in
Lemma 1.5. The domain of the filling map is a disc A triangulated so that each vertex
in the interior is contained in at least 7 triangles, and each vertex at the boundary, with
possible exception of points x, ¥, z, is contained in at least two triangles.

A vertex on the boundary is called positive, negative or zero vertex if 3 — x(v) is
positive, negative or zero respectively. Let p (respectively n) denote the number of positive
(respectively negative) vertices at the boundary 0A (we exclude points z,y, z if they are
vertices). Since 7y, is a geodesic in X (1), any two positive vertices in the interior of v, are
separated by a negative one. Apply the Gauss Bonnet formula to the disc A. There are at
most three terms in the first sum equal 2 (at most one near each of the points x,y, z) and
the remaining terms of this sum are at most 1. If the second sum is less or equal —4 then
n < p+ 4, and hence on one of the sides of the triangle there are at least 2 more positive
vertices than negative. Thus there are two positive vertices which are not separated by a
negative one, a contradiction. Hence A has at most three internal vertices.

But a triangulation with at most three internal vertices is thin: each point on one side
is distance at most 2% in the 1-skeleton from the union of remaining sides. To prove this,
take first a vertex v on 7., whose distance from both z,y is bigger than 2. If its distance
in AM from the union of remaining sides is also bigger than 2, there are at least 6 vertices
in A which are distance 2 from v. Only two of these vertices are on 7,,, so at least four
of them are internal in A, a contradiction. Thus the distance of v from the remaining two
sides is at most 2. It follows easily that the distance in A() of any point on the side Yoy
from the union of remaining two sides is at most 2%.

Triangles in the range of the filling map are thinner than in the source, which concludes
the proof.

3. 3-convexity in simplicial complexes.

In this section we introduce a variant of the notion of convexity for simplicial complexes
and establish its basic properties. It plays the key role in our later developments.

Given a simplicial complex X and its subcomplex @, a cycle in the pair (X, Q) is
a polygonal path v in the 1-skeleton of X with endpoints contained in ) and without
selfintersections, except a possible coincidence of the endpoints . A cycle v as above is full
in (X, Q) if its simplicial span in X is contained in the union yU Q. A subcomplex @ in a
simplicial complex X is 3-convez if @ is full in X and every full cycle in (X, Q) of length
less than 3 (i.e. consisting of less than 3 edges) is contained in Q.
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Remark. Note that a full subcomplex @ of X is 3-convex iff every full cycle in (X, Q)
intersecting @ only at its endpoints has length > 3. Thus our term 3-convexity is motivated
by the term r-convexity (where r > 0 is a real number) used in the context of geodesic
metric spaces (compare [BH], Definition 1.4, p. 4).

Facts 3.1-3.3 below follow easily from the definitions.

3.1 Fact.

(1) The intersection of any family of 3-convex subcomplexes is a 3-convex subcomplex.
(2) If Q is 3-convex in X and L is 3-convex in @ then L is 3-convex in X.

(3) Let X be a flag simplicial complex and @ its 3-convex subcomplex. Then for any
simplex o of @) the link @), is 3-convex in the link X, .

A subcomplex @ is locally 3-conver in X if for every nonempty simplex o of ) the
link @, is 3-convex in the link X, .

3.2 Fact.

(1) Any 3-convex subcomplex in a flag complex X is a locally 3-convex subcomplex in X.

(2) The intersection of any family of locally 3-convex subcomplexes is a locally 3-convex
subcomplex.

We now turn to convexity properties in k-large and locally k-large complexes. Since
a full subcomplex of a k-large complex is k-large, we have

3.3 Fact.
(1) A 3-convex subcomplex of a k-large simplicial complex is k-large.
(2) A locally 3-convex subcomplex in a locally k-large simplicial complex is locally k-large.

A relative homotopical systole for the pair (X, Q) of a simplicial complex and its
subcomplex, denoted sysp (X, @), is the lenght of the shortest cycle in (X, Q) that forms
a homotopically nontrivial loop in the quotient space X/@). The next proposition shows
that in locally 6-large simplicial complexes 3-convexity can be characterised in terms of
local 3-convexity and the relative homotopical systole.

3.4 Proposition. Let X be a locally 6-large simplicial complex and let ) be its full
subcomplex.

(1) If @ is locally 3-convex in X and sysp (X, Q) > 3 then @ is 3-convex.

(2) The converse implication holds provided X is flag.

Proof: To prove (2), take the shortest cycle v in (X, Q) homotopically nontrivial in X/@Q
and note that it intersects @ only at its endpoints. The length |y| of 7 cannot be 1 since
Q is full. If |y| = 2 then v is not full in (X, Q) due to 3-convexity of ). Then either
the endpoints of v span an edge not contained in @, which contradicts the fullness of @),
or otherwise the three vertices of « span a 2-simplex in X, contradicting the fact that
~ is homotopically nontrivial in X/Q. Hence sys;(X,Q) > 3. Since X is flag and @ is
3-convex, it is also locally 3-convex (Fact 3.3.1), and part (2) follows.

To prove part (1), suppose we have a full cycle v in (X, @), intersecting @) only at its
endpoints, of length d. We have to prove that d > 3. If v is homotopically nontrivial in
X/Q we are done, since sys, (X, Q) > 3. We therefore assume that v induces a contractible
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loop in X/Q. It implies that there is a path 7 contained in @, with the same endpoints
as v, such that the union v U n is a contractible loop in X. Moreover, n can be chosen so
that it is of minimal length. In particular v U n is embedded in X. If the endpoints of v
coincide then 7 reduces to a path of length 0 consisting of a single vertex.

By Lemma 1.5, there is a simplicial disc D filling the loop yUn in X. Among all
choices of n and D, we pick one for which D has the smallest number of triangles (that
may affect the choice of 7). By Lemma 1.6 the interior vertices of D are contained in at
least 6 triangles of D.

Every interior vertex of v (viewed as the boundary vertex of D) is contained in at
least two triangles of D, since « is full in (X, Q). Every interior vertex v of n (viewed
as the boundary vertex of D) is contained in at least 3 triangles of D. Indeed, if v is
contained in one triangle of D, (the image of) the triangle is in @ (since @ is full), and 7
is not of minimal length. If v is contained in two triangles of D, they are both in @ by
local 3-convexity and by minimality of 7, and then D is not minimal. Finally, initial and
terminal vertices of v (which may coincide) are contained in at least one triangle.

Denote, as in Section 1, by x(v) the number of triangles in D containing v. Let [,G, F
denote the sets of interior vertices in D, v and n respectively. Suppose that the endpoints
of v do not coincide, and denote them by a,b. Applying the inequalities we just established
and the Gauss Bonnet theorem we get

(0+d—1+0+4).

[N

1= E[Z(G—X(U))‘i‘2(3—X(0))+2(3—X(U))+3—X(a)+3—x(b)] <
vel veG veER

Thus 3 < d as required.
Dealing similarly with the remaining case, in which the endpoints of v coincide, we
get even sharper estimate 4 < d. Hence the Proposition.

Proposition 3.4 allows to decide inductively if a subcomplex in a 6-large complex is
3-convex, by refering to 3-convexity of its links. Next few results apply this idea to some
simple examples, which we will use later in the paper. By diameter of a complex we mean
the maximum distance between its vertices in the 1-skeleton of the complex.

3.5 Lemma. Let Q) be a full locally 3-convex subcomplex in a 6-large complex X and
suppose that @ is connected and diam(Q) < 3. Then @ is 3-convex in X.

Proof: With Proposition 3.4, it suffices to prove that sys,(X,Q) > 3. Let v be a path in
(the 1-skeleton of) X, with both endpoints in @, that is homotopically nontrivial in the
quotient X/@Q. By the assumptions of the lemma, there is a path 7 of length < 3 contained
in () and with the same endpoints as . Moreover, the closed path v U7 is homotopically
nontrivial in X, and since X is 6-large, the length of this path is at least 6 by Corollary
1.4. But this means that the length of v is at least 3, which finishes the proof.

3.6 Lemma. Let @ be a full connected subcomplex in a 6-large simplicial complex X.
Suppose that diam(Q) < 3 and that for each simplex o of @Q either Q, = X, or @, is
connected with diam(Q,) < 3. Then @ is 3-convex in X.

Proof: Induction over the dimension of () using Lemma 3.5.
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3.7 Corollary. Let X be a 6-large simplicial complex.
(1) Any simplex is a 3-convex subcomplex of X.
(2) The residue in X of any simplex is a 3-convex subcomplex.

Proof: The link of a simplex is a simplex and thus part (1) follows by applying Lemma
3.7. For part (2) note that the link of the residue Res(o, X) at any its simplex 7 is either
a single simplex (when 7N o = @), or the whole of X, (when 7 contains o), or the residue
of some simplex in X, (when 7 intersects o at a proper face of o), and that the diameter
of any residue is < 2.

4. Locally 3-convex maps and their applications.

Given a nondegenerate simplicial map f : Q — X and a simplex o € @, the induced
map on links fo : Qr — Xy is a map obtained by restricting f to the link @, (the
image of this restriction is necessarily contained in the link X¢,)). We will say that a
nondegenerate simplicial map f : Q — X is locally injective, if for any simplex ¢ C Q
the induced map f, is injective. Let X be a locally 6-large simplicial complex and ) an
arbitrary simplicial complex. A nondegenerate locally injective simplicial map f: Q — X
is locally 3-convez, if for each simplex o C @ the image f,(Qs)) is 3-convex in Xy
(inparticular, f,(Qs) can be the whole of X¢(,)). Note that if Q C X is a locally 3-convex
subcomplex then the inclusion map is clearly locally 3-convex.

4.1 Theorem. _

(1) The universal cover X of a connected locally 6-large simplicial complex X is con-
tractible. In particular, any systolic simplicial complex is contractible.

(2) Let f: @ — X be a locally 3-convex map of a connected simplicial complex @ to
a connected locally 6-large simplicial complex X. Then the induced homomorphism
f+ 1 mQ — m X of fundamental groups is injective.

The tool for proving Theorem 4.1 is the fact that locally 3-convex maps can be ex-
tended to covering maps. We formulate this fact more precisely as Proposition 4.2 below,
and then show how it implies the theorem. The proof of Proposition 4.3 occupies the last
part of this section and it uses a technical result, Lemma 4.3, the proof of which we defer
until Section 6.

4.2 Proposition. Let f: @ — X be a locally 3-convex map of a simplicial complex () to
a locally 6-large simplicial complex X. The map f extends to a covering map f. : Q. — X
in such a way that @) is a deformation retract of Q).

Proof of Theorem 4.1. A function f: {v} — X that sends a vertex v to a vertex of X
is clearly locally 3-convex. By Proposition 4.2, it extends to a covering map f. : Y — X,
where Y is contractible. This proves part (1).

To prove (2), note that by Proposition 4.2 the map f extends to a covering map
fe : Qe — X such that the inclusion @) C Q. is a homotopy equivalence. Since a covering
map induces a monomorphism of fundamental groups, the theorem follows.

The proof of Proposition 4.2 requires some preparations. Given a locally 3-convex
map f: Q — X, define

0;Q ={0 € Q| fs : Qo — Xj(o) is not an isomorphism},
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and observe that 0¢(Q is a simplicial subcomplex of ). 9rQ can be thought of as a kind
of boundary of @ relative to f, hence the notation. For a subcomplex K of a simplicial
complex L, denote by N (K) the subcomplex of L being the union of all (closed) simplices
that intersect K.
A small extension of a locally 3-convex map f : Q — X isamap Ef : EQ — X
satisfying the following conditions:
(E1) EQ is a simplicial complex containing ) as a subcomplex and Ngg(Q) = EQ;
(E2) Ef is a nondegenerate simplicial map that extends f;
(E3) for each simplex 7 € EQ that intersects @ the map (Ef), : (EQ)r — Xj() is an
isomorphism;
(E4) Ef is locally 3-convex;
(E5) @ is a deformation retract in EQ.

4.3 Lemma. Every locally 3-convex map f : @ — X to a locally 6-large complex X
admits a small extension.

We defer the proof of the lemma until Section 6 and show how it implies Proposition
4.2.

Proof of Proposition 4.2: Put E°f = f and E°Q = Q. Define recursively a sequence
of small extensions E/f : E'Q — X by E'T1Q = E(E'Q) and E'T1f = E(E’f). Put
Qe = Ui~ EiQ and f, := Uj=o EJ f, thus getting a map f. : Q. — X. Since by property
(E3) of a small extension the induced map (f.); : (Qc)r — Xy, (7) is an isomorphism for
each simplex 7 € )., it follows that f, is a covering map. By property (E5), @ is contained
in Q. as a deformation retract, hence the proposition.

5. Locally 6-large simplicial complexes of groups.
In this section we sketch the necessary background for and the proof of the following.

5.1 Theorem. Every connected, locally 6-large, simplicial complex of groups is devel-
opable.

Theorem 5.1 allows to construct locally 6-large simplicial complexes by means of
complexes of groups. We will extensively exploit this possibility in our constructions in
Part II of this paper.

The proof of Theorem 5.1 is based on a version of Proposition 4.2 for locally 3-convex
maps to locally 6-large simplicial complexes of groups, and it is very similar to the proof
of Theorem 4.1(1).

We refer the reader to [BH]| for details related to the notion of a complex of groups.

For a simplicial complex X, let X be the scwol (small category without loops, as
defined in [BH], p. 520) related to the barycentric subdivision of X, defined as follows.
A vertex set V = V(X) of X consists of simplices o of X and a set £ = £(X) of directed
edges of X' consists of pairs a = (7,0) such that o is a proper face of 7 (i.e. o C 7 and
o#T).

A complex of groups G(X) = ({Go}, {¥or},{gorp}) over a simplicial complex X is
given by the following data (cf. [BH], p. 535, Definition 2.1):
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(1) for each o € V a group G, called the local group at o;

(2) for each (7,0) € € an injective homomorphism ¥y, : G — Gy;

(3) for each triple ¢ C 7 C p of simplices with o # 7 # p a twisting element g,,, € G4
with the following compatibility conditions:

(Z) Ad(gorp)wop = 77Z}07'¢Tp7

where Ad(g,-,) is the conjugation by ¢g,-, in G, and

(”) 77b<77' (ngTI')gO'Tﬂ' = Y9orpYopr-

for each tuple c C 7 C p C w with 0 # 7 # p # 7.

Remark. For many purposes (e.g. for our considerations in Sections 19-22) it is sufficient
to deal with the so called simple complexes of groups, for which all the twisting elements
are trivial. We may then speak of a complex of groups G(X) = ({Gs}, {1sr}) consisting
of local groups GG, and injective homomorphisms 1,,. Since the compatibility condition
(¢) reads then as 9, = Yyr17p, we may view the homomorphisms v, as inclusions of
subgroups.

Let G(X) be a complex of groups over a simplicial complex X, and let o be a simplex
of X. For any simplex 7 € X, put GY := Ys(rs0)(Greo) C Go. A link of G(X) at o,
denoted L(G(X), o) is a complex defined by

L(G(X),0) = [ | 7% (Go/GD]/ ~,

T€X,

where the equivalence relation ~ is determined by the maps (71,91G?) — (72,92GY,)
induced by inclusions on first coordinates, for all simplices 71 C 7 € X, and for all
91,92 € G, such that g1G?, = 929;(171*0)(72*0)(;0 (cf. [BH], p. 564, section 4.20).

T1

Remark. Simplices (7,9GZ) map injectively into the link L(G(X),0). Nevertheless,
L(G(X),0) needn’t be a simplicial complex in the strict sense, since it may contain double
edges.

Link L(G(X),o0) carries a natural action of the group G, defined by g(z,¢d'G?) =
(x,99'G7). There is a G,-invariant map p, : L(G(X),0) — X, defined by p,(z,9G?) =
x, which is nondegenerate (i.e. injective on each simplex) and induces an isomorphism

G\L(G(X),0) — X,.

5.2 Definition. A complex of groups G(X) over a simplicial complex X is locally 6-large,
if for each simplex o of X the link L(G(X),0) is a 6-large simplicial complex.

Above definition makes the statement of Theorem 5.1 precise. Our method of proof
requires the notion of a locally 3-convex map to a locally 6-large complex of groups.

Let @ be a simplicial complex and G(&X') a locally 6-large complex of groups over a
simplicial complex X. A map of @ to G(X) consists of a nondegenerate simplicial map
f: @ — X (which induces in the obvious way maps V(Q) — V(&) and £(Q) — E(X),
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denoted also by f, for the associated scwols Q and X'), and a family ¢(7,0) : (1,0) € £(Q)
of elements ¢(7,0) € G4, such that

¢(p,0) = (7, 0)V 0y () (D(P, T))GF (o) f () f(p) fOr 0 C T C p.

Remark. The above notion of map to a simplicial complex of groups is a special case
of the notion of morphism for complexes of groups, cf. [BH], p.536, Definition 2.4. Tt is
obtained by viewing a simplicial complex @) as the trivial simplicial complex of groups over
Q (i.e. a complex with trivial local groups, homomorphisms and twisting elements).

For any simplex 0 € @ a map (f,¢) : @ — G(X) induces the map (f,¢), : Qr —
L(G(X), f(0)) of links, defined by

(f, 8o (7) = (F(7), élo, 0 % 7)GH7))

(compare [BH], p. 565, Proposition 4.23).

5.3 Definition. Let G(X) be a locally 6-large simplicial complex of groups. A map (f, ¢) :
Q — G(X) is locally 3-convex if for each simplex o € @) the induced map (f,¢), : Qs —
L(G(X), f(0)) is injective and the image (f, ¢),(Q,) is 3-convex in the link L(G(X), f(0)).
A map (f,¢) : @ — G(X) is a covering, if for each simplex ¢ € @ the induced map
(f,d)o : Qe — L(G(X), f(0)) is an isomorphism.

We now state a result that generalizes Proposition 4.2 to the case of locally 3-convex
maps to simplicial complexes of groups.

5. 4 Proposition. Let (f,¢) : @ — G(X) be a locally 3-convex map of a simplicial
complex @ to a locally 6-large simplicial complex of groups G(&X'). Then (f, ¢) extends to
a covering map (fe, ¢e) : Q. — G(X) in such a way that @ is a deformation retract of Q..

The proof of the above proposition goes along the same lines as the proof of Proposition
4.2. The objects 0¢Q and £ occuring in the latter proof (especially in the cunstruction of a
small extension for a convex map f in Section 6) have to be replaced by the objects s 4)Q
and &y 4) defined in an analogous way as follows. ¢ 4)Q is the subcomplex of () consisting
of all those simplices ¢ C @ for which the induced map (f,¢), : Qo — L(G(X), f(0)) is
not an isomorphism. &g 4) is the set of all pairs (o,7) such that ¢ C J(54)Q, T C
L(G(X), f(0)) and TN (f, d)s(Qs) = 0. We omit details.

Proof of Theorem 3. Let G(X) be a simplicial complex of groups over a connected
simplicial complex X and suppose it is locally 6-large. We have to show that G(&X) is
developable.

Denote by {v} the simplicial complex consisting of a single vertex v. A mapi: {v} —
X that sends v to any vertex of X may be viewed as a convex map of {v} to G(X) (the
family ¢(7,0) : (1,0) € E({v}) is then empty). By Proposition, the map ¢ extends to a
covering map (h, ) : Y — G(X), for a simplicial complex Y that retracts on the vertex v
and hence is contractible. In particular, (h,)) is the universal covering of G(X').

Let T" be the group of deck-transformations of the covering (h, ). The elements of T’
are the simplicial automorphisms v : Y — Y which satisfy the following two conditions:
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(1) the map hovy : Y — X and the family ¢ o y(7,0) : (7,0) € £()) describe a well
defined map (h o, o) from Y to G(X);
(2) v preserves the projection h, i.e. ho~y = h.
By the properties of the universal covering, G(X) is isomorphic to the complex of
groups associated to the action of I' on Y and hence it is developable. This finishes the
proof.

6. Existence of small extensions.
This section is entirely devoted to the proof of Lemma 4.3.

We start with some definitions and notation. Given a locally 6-large simplicial complex
X and a locally 3-convex map f : Q — X, define the following family of pairs of simplices

Er i ={(0,7) €0;Q x X : 7 C Xy(6), 7N fo(Qo) = 0}

Observe that given a small extension Ef : EQ — X of f, to any pair (o,7) € & there
corresponds a simplex (Ef);1(7) € (EQ), C EQ, which we denote shortly 77, and that we
have Ef(77) = 7. This shows that pairs from £; represent sort of germs of the extension
of f to Ef. In fact, we will construct a small extension F f making use of the set £¢. For
this we also need the smaller family

¥ = {(o,7) € & : thereisno p O o with (p,7) € £},

As we will see later, the elements of the set £7"** will correspond bijectively, through
the map (o,7) — 77, to the simplices disjoint with @ in the constructed small extension
domain EQ.

The next lemma collects basic properties of the families £¢ and £

6.1 Lemma.

(1) If (o,7) € & and p C o then (p,7) € &;.

(2) If (04, 7) € & for i = 1,2 and o1 N oy # () then there is 0 € @ containing both ¢ and
oo such that (o,7) € &.

(3) If (0i,7) € EF*e for i = 1,2 and if 01 # 02 then 01 N oy = (.

(4) Given (o,7) € &, there exists a unique simplex 7, , C 95Q such that o C 7, , and
(To,7,T) € EFOT.

(5) If (o,7) € &5 and p C o then 7, » = 7y ;.

In the proofs of Lemma 6.1 and the remaining results in this section we will often use
the following.

Notation.

(1) Given a simplex o and its face p, we denote by o — p the face of o spanned by all the
vertices not contained in p.

(2) Given simplices 0,7 in a simplicial complex K, denote by o * 7 the simplex of K
spanned by the union of the vertex sets of o and 7. Note that in general such a
simplex in K may not exist. We will speak of simplices of this form only when they
exist.
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Proof of Lemma 6.1: To prove (1), consider first the case when 7 is a O-simplex (i.e.
a vertex). Let (o,v) € &, where v is a vertex, and let p C 0. If (p,v) ¢ &, it follows
that v € f,(Q,). We also have 0 — p C f,(Q,), because o C (). On the other hand, the
simplex f(o — p) *v C X, is not contained in f,(Q,), because the simplex f(o)*v C X
is not contained in Q. This contradicts fullness of f,(Q,) C X,y (which holds by local
3-convexity of f). Thus the assertion follows in this case.

To deal with the other cases, suppose now that (o,7) € £ and dim7 > 1. For any
vertex v of 7 we clearly have (o,v) € ;. It follows from what we have just proved for
vertices that if p C o then v ¢ f,(Q,) for any vertex v € 7. Then clearly 7N f,(Q,) =0
and thus (p,7) € &. This finishes the proof of (1).

To prove (2), we first show that the union of the vertices of o; and o9 spans a simplex
of Q. Put p = 01 Noy. Since Q,, is flag (because the isomorhic complex f,(Q,) is 3-convex,
and hence full, in X(,) which is 6-large and hence flag), it is sufficient to show that there
is an edge in ), between any two vertices v € 01 —p and vy € 02 — p. For arbitrary vertex
t € 7 we get polygonal path f(v1)tf(v2) in (Xy(,), f,(Q),)), intersecting f,(Q,) only at its
endpoints. By 3-convexity of f,(Q,) in X(,), this curve cannot be full in (X, fo(Q,)),
and hence there is an edge in X,y between f(v1) and f(v2). By the fact that f,(Q,) is
full in X¢(,), this edge is in f,(Q,), and thus viv, is an edge in Q,,.

Let o be the simplex of ) spanned by the union of o1 and 3. We now show that
T € X§() or equivalently that f(o) and 7 span a simplex of X. For this it is sufficient to
show that the three simplices 7, f(o — o1) and f(o — 02) span a simplex of X¢(,). The
latter follows from the fact that Xy, is flag (since X is locally 6-large) and from the easy
observation that the three simplices span the simplices of X5, s,) Pairwise.

It remains to show that 7N f,(Qy) = 0, but this follows from the inclusion f,(Q,) C
fo1(Qo,) and the assumption that (1,7) € £¢. Thus we get (0,7) € ¢, which completes
the proof of (2).

Part (3) is a direct consequence of part (2), while (4) and (5) follow easily from (3).

We now start the construction of a small extension. Together with verification of
conditions (E1)-(E5) from the definition, this construction occupies the rest of this section.

Simplicial complex EQ. As the vertex set of EQ take the (disjoint) union of the vertex
set of @ and the set {(o,v) € £7'*" : v is a vertex}. For any pair (0,7) € & let d, » be the
simplex spanned by the set consisting of all vertices in ¢ and all vertices of form (7,4, 1),
where ¢ is a vertex of 7. Define E(Q to be the union of ) and the simplices ¢, , for all
(o,7) € &

It is immediate from the above description that @ C EQ and Ngg(Q) = EQ, i.e. that
the constructed complex EQ satisfies condition (E1) in the definition of a small extension.
The next fact collects some more detailed properties of the complex E(Q, useful for later
arguments in this section.

6.2 Fact.

(1) The simplices of EQ with all vertices in @) are exactly the simplices of (). In other
words, ) is a full subcomplex in EQ).

(2) The simplices of EQ with part of vertices in @) and part of vertices outside @ are
exactly the simplices 6, : (0,7) € £. Moreover, for distinct pairs (o,7) € & the
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corresponding simplices d, , are distinct.

(3) The simplices of EQ disjoint with @) are exactly the simplices 6, » —o : (0,7) € EF***.

(4) If 01 C 09 and (04, 7) € & for i = 1,2 then the corresponding simplices 6y, » — 0;
coincide.

(5) For distinct pairs (o,7) € £7"*® the corresponding simplices d,,» — o are distinct.
Moreover, if (0;,7) € £§** for i = 1,2 and 01 # 02 (which by Lemma 6.1(3) means
that these simplices o; are disjoint) then the corresponding simplices d,, , are also
disjoint.

(6) Complex EQ is the union of @ and the family of (closed) simplices 05, : (0,7) € E7*%.
Proof: All parts except (5) follow easily from the description of EQ. To prove (5), suppose
that (0;,7;) : ¢ = 1,2 are distinct pairs from 8}"“””. If 7 # 75 then the sets of vertices of the
simplices 0, -, —0; : © = 1,2 are easily seen to be distinct. If 71 = 75 then o0y # 02, and we
are in the assumptions of the second statement in (5). Since we know that then o1 Noy = 0,
it is sufficient to show that the simplices d,, », —o; are disjoint for ¢ = 1, 2. For brevity, put
T:=T; =Ty, and let £ € 7 be a vertex. We will show that the vertex (7y,,¢,t) € 05y,r — 02
is not a vertex of the simplex d,, » — o1, which is clearly sufficient for completing the proof
of (5). The vertices in 6., -, —oy other than (7., ¢,t) are distinct from (7, ¢, ), since their
projections to X differ from ¢. It thus remains to show that (7s, +,t) # (7syt,1), i.€. that
Tor,t 7 Tyt SUppose that the latter is not true and 74, + = 7, +. Then o1*07 is a simplex
of 0¢Q, since both o7 and oy are contained in 7,, ;. We then have f(oy) * (7 —t) C X,
flo2)x (T —1t) C Xy and f(o1)* f(o2) = f(01%02) C X;. Since the link X} is flag (because
X is locally 6-large), it follows that f(o1 % 02) * (T —t) C X4, and hence (o1 * 02, 7) € &;.

This contradicts any of the assumptions (o;,7;) € £ thus completing the proof.

Simplicial map Ef : EQQ — X. Define E'f by putting first Ef|g = f and Ef((o,v)) =
v for all vertices (o,v), and then extending simplicially. Observe that since in this way
the vertices of any simplex 0, are mapped bijectively to the vertices of the simplex
f(o) « T C X, the simplicial map Ef : EQ — X is both well defined and nondegenerate,
hence it fulfills condition (E2) of a small extension.

Passing to condition (E3), note that if g : K — L is a nondegenerate simplicial map,
and if for some vertex v € K the induced map g, : K, — Lgy(,) is an isomorphism, then
for any simplex 0 C K containing v the map g, : Ko — Lgy(s) is also an isomorphism. It
is then sufficient to prove that (Ef), : (EQ), — X¢(y) is an isomorphism for any vertex
v € . This fact is immediate for all vertices v of @) not contained in 9@Q), since for them
we have (FQ), = Q, and (Ef), = f,. It remains to prove this fact for vertices v € 0¢Q.

A nondegenerate simplicial map is an isomorphism if it is bijective on the vertex sets
and surjective. We now check those two properties for the map (Ef), with any vertex
v e an.

Given v € 04Q), the simplices of EQ that contain v are either contained in ) or have
a form d, » with (o,7) € £ and v € 0. Thus, the vertices of (£Q), are either contained in
@), or are the vertices other than v in 1-simplices 9, ,, (for all (v, w) € £; with w a vertex).
The latter vertices are the vertices (my ., w) € E7***. Vertices of Q, are mapped by (Ef),
bijectively on the vertices of f,(Q,), while the vertices (7, ,,w) are mapped bijectively to
the vertices w € Xy(,) not contained in f,(Q,). Thus the map (Ef), : (EQ)y, — Xy, is
bijective on the vertex sets.
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To prove surjectivity of the map (Ef),, choose any simplex p in the link Xg(,).
We need to show that p is in the image of (Ef),. If p C f,(Q,), there is nothing to
show. Otherwise, put py := p N f,(Q,). Since, by local 3-convexity of f, f,(Q,) is a
full subcomplex of Xy (,), po is either empty or a single proper face of p. We then clearly
have (v,p — po) € &f, and we deduce that (v * f~(po),p — po) € Ef. Since clearly
Ef((0psf1(p0),p—po)) = p * [(v), it follows that p is in the image of (Ef), as required.

Local 3-convezity of Ef. Since, according to (E2), the map (Ef)s : (EQ)s — Xj(s) is
an isomorphism for any simplex § C E(Q that intersects @, the local 3-convexity condition
for Ef is fulfilled at such simplices. Thus to establish (E3), it remains to check that for
any simplex p in EQ disjoint with @ the induced map (Ef), : (EQ), — Xy(,) is injective
and the subcomplex (Ef),((EQ),) is 3-convex in the link X¢(,y. For this we need the
following.

6.3 Lemma. Given a simplex p in EQ disjoint with @, let p = d,, — o for the appropriate
(0,7) € £7'* as in Fact 6.2(3)). Then o C (EQ), and N(gq),(0) = (EQ),.

The proof of Lemma 6.3 requires the following.

6.4 Claim. The residue Res(p, EQ) is equal to the union U of the simplices d, -, such
that (09, 70) € &, 09 C o and 7 C 7p.

Proof: The inclusion U C Res(p, EQ) is easy in view of Fact 6.2(4). To get the converse
inclusion, denote by 7 an arbitrary simplex in EF() that contains p. By the construction
of EQ, m is contained in a simplex 0,/ . for some (o/,7") € &;. Looking at vertices
not contained in @ in 6, , and d,/ ./, we conclude that 7 C 7’. Then (¢/,7) € & and
consequently (7,7 ,,7) € EF'**. Since we have also (0,7) € £7'**, Lemma 6.1(3) implies
that either 7,/ ; = 0 or me rNo = (). In the first of these two cases we have 0/ C 7y = 0
and thus p C 0,/ 7, (0/,7") € &, 7 C 7" and ¢’ C 0. Hence m C U. The case of
7o' Mo = () is in fact impossible, since if it holds then the argument as in the proof of
the second statement in Fact 6.2(3) shows that the simplices d, , and Ox_, - are disjoint,
and thus cannot both contain p. Hence the claim. 7

Proof of Lemma 6.3: A simplex d,, -, as in the claim determines the simplex 5, -, — p
in the link (EQ),. The claim implies that (EQ), is the union of such simplices 4, -, — p-
Since any such simplex shares a face with the simplex o, namely the face og, it follows
that N(gq),(0) = (EQ),, as expected.

We are now ready to prove that the map Ef is locally injective, a first step in showing
its local 3-convexity. The next lemma establishes much stronger local property of Ef
which will be referred to in later parts of the paper.

6.5 Proposition. Given a simplex p = §, . — o with (0,7) € E‘?_@, the induced map
(Ef), maps the link (EQ), isomorphically onto the subcomplex Nx,  (f(c)) in the link
Xf(0)- In particular, this map is injective.

Proof: The proof relies on the following general observation which we state without proof.
Claim. Let K be a simplicial complex, 7 C K a simplex, and suppose that Ng(7) = K.

Furthermore, let L be a flag simplicial complex and h : K — L a nondegenerate simplicial
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map. If for any simplex a C 7 the induced map hy : Ko — Lj(q) is an isomorphism, then
h maps K isomorphically on the subcomplex N, (h(r)).

We now check that putting K = (EQ),, 7 = 0, L = X4,y and h = f,, all the
assumptions in the claim are satisfied. Assumption in the first sentence follows from
Lemma 6.3. The induced map (Ef), is nondegenerate because, by condition (E2), so is
Ef. The link X, is flag because X is locally 6-large. It remains to check the properties
of the induced maps ho = ((Ef),)a : (EQ)p)a — (Xf(p))(Ef)p(a)-

Observe that we have the identifications ((EQ),)a = (EQ)pxas (Xf(p)(Ef),(a) =
Xgf(pra) and ((Ef)p)a = (Ef)pxa- The fact that ((Ef),)a is an isomorphism follows
then from the already proved property (E3) for Ef, by realizing that the simplex p x «
intersects () at a. Thus, by applying the claim, the proposition follows.

In order to prove that the map E'f is locally 3-convex it now remains to prove that,
under notation of Proposition 6.4, the image complex (Ef),((EQ),) is 3-convex in the
link Xy,). We do this by referring to Lemma 3.7. The proposition implies that the
subcomplex (Ef),((EQ),) is connected and that diam[(Ef),((EQ),)] < 3. Since the
links of the complex (Ef),((EQ),) are isomorphic to the complexes (Ef), ((EQ),) for
appropriate simplices p’ D p, it follows that (Ef),((EQ),) satisfies the assumptions of
Lemma 3.7, which completes the proof of property (E4) for Ef.

Deformation retraction. Put
Q' :=QU Ogr: (0,7) € EF dimT < i}.
) f

Assuming that dim X = n, the dimension of any simplex 7 such that (o,7) € £7'* is not
greater than n — 1, and by recalling Fact 6.2(5) we get

Q=Q°cQ'c...cQ”=EQ.

We will show that @ is a deformation retract of Q**! for i = 0,1,...,n — 1, which clearly
implies that @) is a deformation retract of EQ).

6.6 Lemma. Let (0,7) € €y and dim 7 = 4. Then, denoting 77 = 0y, — 0, we have
(1) 0, N Q" = o % 7%, where O77 is the ordinary boundary subcomplex of the simplex

77

(2) d,.- \ Q' is a connected component in Q1 \ Q°.
Proof: By definition, Q° is a subcomplex of FQ consisting of all those simplices of EQ
which have at most i vertices outside ). Thus d, , NQ" consists of those faces of d, » which
have at most ¢ vertices outside ). Since 6, = 0%77, 65 ,NQ = 0 and dim 77 = dim 7 = ¢,
this easily implies (1).

To prove (2), it is sufficient to show that for any (¢o/,7') € £7*** with dim7’ = 4,
distinet from (o, 7), we have (4, \ Q") N (0,7 \ Q%) = (). Suppose this is not true and
consequently 0, N,/ 7 is not contained in o * 97°. Then 77 C 6y N dps 7, and in
fact 77 has to be a face in (7/)7 , becouse the vertices of 77 are all outside Q. Since
dim 77 = dim(7')? (they are both equal to i), we have 77 = (7/)° . In view of Fact 6.2(3)
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this implies that (o,7) = (¢, 7’), which contradists the assumption that these pairs are
distinct. Thus the lemma follows.

To finish the proof that Q' is a deformation retrat of Q*t! observe that, in view
of Lemma 6.6(2), deformation retarction of Q**! onto Q¢ can be composed out of in-
dependantly performed deformation retractions of simplices d,,~ (for (o,7) € £7'" and
dim7 = i) onto their intersections with Q’. The existence of the latter deformation re-
tractions is implied by Lemma 6.6(1) and the elementary fact that o * 07 is a deformation
retract of o x 7. Since this gives the last condition (E5) from the definition of a small

extension, the proof of Lemma 4.3 is completed.

7. Systolic complexes and their convex subcomplexes.

Recall that a simplicial complex X is systolic if it is locally 6-large, connected and
simply connected. In this section we start the systematic study of systolic complexes, by
introducing the notion of convexity and deriving its basic properties.

A subcomplex @) in a systolic complex X is conver if it is connected and locally 3-
convex. Note that, by Corollary 3.8, any simplex and any residue in a systolic complex is
convex.

7.2 Lemma. Let () be a convex subcomplex of a systolic complex X. Then
(1) @ is contractible;

(2) @ is full in X

(3) Q is 3-convex in X.

Proof: In view of contractibility of X (Theorem 4.1(1)), (1) follows from Proposition 4.2
applied to the inclusion map Q — X. By Proposition 4.2 (and its proof), X is isomorphic
to the complex ). obtained from @ by the infinite sequence of small extensions. Together
with Fact 6.2(1) (which says that @ is full in EQ), this implies (2). By the facts that
X is contractible and @ is connected, the quotient (X/Q) is simply connected and thus
sysp(X, Q) = oo. Together with Proposition 3.5, this implies (3).

The next lemma describes small extensions of (the inclusion maps of) convex subcom-
plexes.

7.3 Lemma. Let f: @ — X be the inclusion map of a convex subcomplex () in a systolic
complex X. Then any small extension Ff : FQ) — X maps EQ isomorphically to the
subcomplex Nx(Q) C X. Thus EQ can be identified with the subcomplex Nx (@) and
E f with the inclusion map Nx(Q) — X.

Proof: According to Proposition 4.2 and its proof, a small extension Ef : FQ — X can
be further extended to a covering map f:Y — X, in such a way that @) is a deformation
retract of Y. One easily observes that then EQ = Ny (Q) and Ef = f|gg. Since X is

simply connected and Y connected, the covering map f is an isomorphism. Hence the
lemma.

7.4 Corollary. If () is a convex subcomplex in a systolic complex X then the subcomplex
Nx(Q) is also convex in X.
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Proof: In view of Lemma 7.3, it follows from condition (E4) of a small extension that
Nx(Q) is locally 3-convex. Since it is also connected, the corollary follows.

Given a convex subcomplex @ in a systolic complex X, define a system B,, = B,,(Q, X)
of combinatorial balls in X of radii n centered at @) as By := @ and By := Nx(By) for
k > 1. From Corollary 7.4 we get

7.5 Corollary. Let ) be a convex subcomplex in a systolic complex X. Then for any
natural n the ball B, (@, X) is a convex subcomplex in X.

By the latter corollary, each ball B,, is a full subcomplex in X and hence it is equal
to the simplicial span in X of the vertex set V(B,,). For n > 1 denote by S,, = 5,(Q, X)
the subcomplex in X spanned by the vertices at combinatorial distance n from (). Since
balls are full, we get that S, (Q, X) C B,(Q, X).

For a convex subcomplex @) C X the boundary 0@ is a subcomplex consisting of all
simplices ¢ C @ with Q, # X,. If f : @ — X denotes the inclusion map, we have
0Q = 05Q. We state without proof an easy fact which follows from property (E3) of small
small extensions in view of Fact 7.3.

7.6 Lemma. For any convex subcomplex () in a systolic complex X and any n > 1 we
have

(1) 9B, (Q,X) C 5,(Q, X);

(2) Sp(Q,X) is full in X.

Proof: In view of Fact 7.3, (1) follows from property (E3) of small extension. The sphere
Sn(Q, X) is by definition full in the ball B, (Q, X), and since the latter is convex and thus
full in X, this proves (2).

The next result will be often used in later sections, especially in establishing properties
of contraction maps (onto convex subsets) and directed geodesics.

7.7 Lemma. For any convex subcomplex @) in a systolic complex X and for any simplex
o C Nx(Q) disjoint with @ the intersection @ N Res(o,X) is a single simplex of Q.
Moreover, if o’ is a face of o, then @ N Res(o, X) is a face of Q N Res(o’, X).

Proof: In view of Lemma 7.3, it follows from the Claim 6.4 that the intersection ) N
Res(o, Nx(Q)) is a single simplex of ). Since the residues of ¢ in X and in Nx(Q)
coincide, the first assertion follows. The second assertion is clear due to reversed inclusion
between residues of a simplex and its face.

7.8 Lemma. Let Q C X be a convex subcomplex and let p be a simplex in Nx (Q) disjoint
with Q. Let 0 = Q N Res(o, X) be the simplex as in Lemma 7.7. Then the link of the
subcomplex Nx(Q) at p has a form of the simplicial neighbourhood of a single simplex,
namely [Nx(Q)], = Nx, (o).

Proof: In the proof of convexity of Ef in Section 6 we have shown that for any simplex
p C EQ disjoint with @ and for the correcponding simplex o = Q N Res(p, EQ) we have

(EQ)p = Nipg),(0)-
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In view of Lemma 7.3, Lemma 6.4 implies that [Nx(Q)], = Ny, (), (o) But, since
o C Q, we have Nx(0) = Ny, (g)(0) and hence also Ny, (g),(0) = Nx, (o), which
finishes the proof.

In our later considerings and constructions we will need the following special case of
the above lemma.
For later applications, we state the specialization of Lemma 7.8 to the case of balls.

7.9 Corollary. For any simplex p of a sphere S, (Q, X) and the corresponding simplex
o= B, 1(Q,X) N Res(p, X) we have [B,(Q, X)], = Nx, (o).

We will call the property of balls described in the above corollary strong converity.

8. Contractions onto convex subcomplexes.

In this section we define and study a natural map from a 6-systolic complex to its
convex subcomplex, which we call contraction. This map resembles the projection of a
CAT(0) space to its convex subset along the shortest geodesics connecting points of the
space with the subset. We introduce also contraction rays which are analogues of the
geodesics.

In this section we use the following notation. Given a simplicial complex K, we
denote by K’ its first barycentric subdivision. For a simplex ¢ C K, we denote by b, the
barycenter of o, a vertex in K’. We denote by distx the combinatorial distance (in the
1-skeleton of K') between the vertices of K. We also use a simplified notation B,,Q, S,,Q
for balls B, (Q, X) and spheres S, (@, X), X being fixed throughout the whole section).

Given a convex subcomplex () in a systolic complex X, define an elementary contrac-
tion mq : (B1Q)" — Q' between the barycentrically subdivided complexes by putting

 fbong fonNQ#0
TQ(bs) = {bT if cNQ =10, where 7 = Res(o, X) N Q

and extending simplicially. By Lemmas 7.2(3) and 7.7, m¢ is a well defined simplicial map.
It is also clear that m¢ restricted to @’ is the identity on @, i.e. mq is a retraction.

Remark. One verifies that, viewing B1(Q as a small extension domain E() for the inclusion
map ¢ — X, the elementary contraction mg coincides with the deformation retraction
EQ — Q constructed in Section 6.

8.1 Lemma. Let @ be a convex subcomplex in a systolic complex X, and let o C (B1Q)’
be a simplex not contained in Q’. Then mg (o) C (0Q)'.

Proof: Since (0Q)" is a full subcomplex in @', it is sufficient to prove the lemma for
vertices. A vertex in (B1Q)" not contained in Q" has the form b, for some simplex 7 C B1Q
not contained in Q. Let p C @ be the simplex given by 7g(b;) = b,. By the definition of
7Q, if 7 intersects @) then 7 — p € X, and if 7 is disjoint with @) then 7 € X,. In any case
it follows that @, # X,, hence p C 9Q and b, € (0Q)’.

Denote by Pg : (B,Q)" — Q' the composition map 7p, ,Q© 7B, ,Q©---TB,Q © TQ
and observe that Pj extends P’ if n > m. Denote then by Py : X’ — Q' the union
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U, P5 and call it the contraction to Q. The first two parts of the next fact follow from
the properties of elementary contractions. Part (3) is true for any simplicial map between
two simplicial complexes.

8.2 Fact. The contraction Py satisfies the following properties:

(2) if o is a simplex of X’ not contained in @’ then Py (o) C 0Q;
3) disto (Po(v), Po(w)) < distx:(v,w) for any vertices v, w € X'.
Q\1LQ Q

Let @ C X be a convex subcomplex and let o C S,,). Then a contraction ray from o
to () is the sequence o = 0g,01,...,0, of simplices in X given by o, = 7TBn_k+1Q(Uk_1)
for k =1,...,n. Equivalently this sequence is given by o = Pp, ,¢(00).

Now we list obvious properties of contraction rays.

8.3 Fact.

(1) Any two consecutive simplices o, 0x11 in a contraction ray are disjoint and span a
simplex of X.

(2) If o and o, are simplices in a contraction ray then for any vertices v € o} and
w € o, we have distx(v,w) = |k —m)|.

(3) If o0g,...,0, is a contraction ray on @ then ok, 0k4i1,...,0,, for any 0 < k < n, is
also a contraction ray on Q).

A less obvious property, giving an intrinsic characterization of contraction rays, is

8.4 Lemma. If 0g,...,0, is a contraction ray on () then og,...,o0x, for any 0 < k < n,
is a contraction ray on oy, where we view oy as a convex subcomplex of X.

Proof: Note first that B,,0x C Bp_g+m@ for any 0 < m < k. Since Res(og—m—1,X)
contains oy _,,, we have

Ok—m C RGS(O'k_m_l,X) N B0 C RGS(O'k_m_l,X) N Brn—ktm®@ = Ok—m.-
Thus all the inclusions above are equalities, so in particular
Res(ok—m—1,X) N Bpog = 0k—m,

hence the lemma.

8.5 Corollary. A contraction ray in a systolic complex is uniquely determined by its
initial and final simplex.

8.6 Lemma. Let 0 and 7 be two simplices in a systolic complex X such that distx (v, w) =
n for all vertices v € o and w € 7. Then there is a face p C 7 such that ¢ is connected to
p by a contraction ray of form o,01,...,0,_1,p.

Proof: the required contraction ray corresponds to the contraction P, on the subcomplex
T C X, with p = P, (0).
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9. Directed geodesisc.

In this section we introduce the notion of a directed geodesic in a locally 6-large
simplicial complex, as certain sequence of simplices. The adjective “directed” tells that
these geodesics are in general not symmetric, i.e. they fail to be geodesics after reversing
the order. In Sections 10-12 we study global properties of directed geodesics in systolic
complexes.

9.1 Definition. A sequence (0,,) of simplices in a locally 6-large simplicial complex X is

a directed geodesic if it satisfies the following properties:

(1) any two consecutive simplices 0;, 0341 in the sequence are disjoint and span a simplex
of X;

(2) for any three consecutive simplices 0;, 041, 0;+2 in the sequence we have

Res(di,Xng) N By (Ui+27XUi+1) =0.

Observe the lack of symmetry in condition (2). Observe also the local nature of the
whole definition. It is clear for example that images of directed geodesics under covering
maps, or their lifts under such maps, are again directed geodesics. The next lemma shows
an alternative simpler way to define directed geodesics in systolic complexes.

9.2 Lemma. If X is a systolic complex then condition (2) in the definition of a directed
geodesic (Definition 9.1) can be replaced with the following condition

(2’) Res(ai, X) N B1 (Ui+2, X) = 0j41-

Proof: Since Res(04, X,,,,) = Res(04, X) N X,,., and By(0i42, X
X we get the inclusion

) = Bi(0it2, X) N

Oit1

O'i+17

041 % [RQS(O'Z',XUi+1) N Bl(O'H_Q?XJi_H)] C RGS(O’Z',X) N Bl(O'H_Q,X)

(where ox() = o). Hence (2’) implies (2). To prove the converse, suppose that Res(o;, X)N
B (042, X) contains a vertex v not in o;41. Then (2) implies that v is not in the link X, ,
and hence also not in the ball By (011, X). Moreover, both o; and o;45 are contained in
Res(v, X) N Byi(oit+1,X), which is a simplex according to Lemma 7.7. Thus o; and 0,4,
span a simplex, but this is impossible due to condition (2) and the fact that B (o;41, X)
is full in X.

Existence of many directed geodesics is provided by the following two results.
9.3 Lemma. Each contraction ray in a systolic simplicial complex is a directed geodesic.

Proof: By Fact 8.3(1), a contraction ray oy, ..., o, satisfies condition (1) of Definition
9.1. In view of Lemma 9.2, it is now sufficient to check condition (2’) from this lemma.
To do this, note that any subsequence 0;, 041,012 is a contraction ray on o;1o (see Fact
8.3(3) and Lemma 8.4). By the definition of a contraction ray and by Lemma 7.7 we get
Res(o;, X) N By(0442,X) = 04+1, and the lemma follows.

9.4 Corollary. Any sequence of simplices in a locally 6-large complex X that lifts to a
contraction ray in the universal cover of X is a directed geodesic.
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In Section 11 we shall prove that (lifts of) directed geodesics coincide with contraction
rays.

10. Directed geodesics and convexity.

In this section we study the behaviour of directed geodesics with respect to convex
subcomplexes in systolic complexes. We also get few more properties of convex subcom-
plexes.

In the proofs in this section we will often use (without refering explicitely to) both
assertions of Lemma 7.7.

10.1 Lemma. Let @ be a convex subcomplex in a systolic complex X. Let B, = B,(Q, X)

and S, = 5,(Q,X) be the systems of balls and spheres in X centered at ). For any

directed geodesic 01, 09,03 and for any n > 0:

(1) if o1 C By, and 09 C Sy,41 then o3 C S, 19;

(2) if o1 C B,, and oy intersects B,, but is not contained in B,,, then o3 N B,, = 0;

(3) if oy intersects B,, but is not contained in B, and if oo N B, = (), then o3 is not
contained in B, 4.

Proof: To prove (1), observe that o3 N B, = (), since otherwise both simplices o3 N B,
and o7 are faces of the simplex Res(o2, X) N By, and this contradicts condition (2’) from
Lemma 9.2. Suppose that 7 = 03 N 5,41 is not empty. It is a face of ¢ since, by Lemma
7.6(2), the sphere S, 11 is full in X. Note that both simplices o1 and Res(o2*7, X)NB,, are
faces of the simplex Res(o2, X )N B,,. It follows that the intersection By (1, X)NRes(o1, X)
contains the join oy *[Res(oyx T, X )N B,,], and hence is larger than o5 (here we use flagness
of X). Thus the same is true for the intersection B;(os, X) N Res(o1, X ), contradicting
condition (2’) of Lemma 9.2. This implies that o3 is disjoint with both B, and S,1,
hence it is contained in S, 2.

To prove (2), suppose that the intersection 7 := o3 N B,, is not empty. It is then a
face of o3 (because B, is full) and we denote it by 7. Similarly, using the fact that spheres
are full in X, denote by p the simplex S, 11 Noy. Observe that both o; and 7 are faces of
the simplex Res(p, X) N By, which clearly contradicts condition (2’) of Lemma 9.2.

To prove (3), note that by the assumtions we get that oo C Sj41.

If 7 = 03N B, # 0 then both 7 and oy are the faces of the simplex Res(o2, X) N By,
contradicting condition (2’) of Lemma 9.2. If o3 C S,41 then the simplex Res(oy *
03, X)N B, and the simplex o1 N B,, are faces of the simplex Res(oy, X)N B,,, which again
contradicts (27).

Since o3 is disjoint with B,, and not contained in S, 11, it is not contained in B, 1,
hence the lemma.

Remark. The following uniform interpretation of the three parts of Lemma 10.1 provides
the idea for proving the next result. A simplex o7 is closer to @ than a simplex o4 if any
of the assumptions from parts (1)-(3) is satisfied. The lemma says that if oy is closer than
o9 then oy is closer than os.

10.2 Proposition. Let () be a convex subcomplex in a systolic complex X, and let
0g,-..,0p be a directed geodesic in X such that o9 C @ and o, C (. Then for each
0 < i <n we have 0; C Q.
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Proof: Suppose that some of the simplices in the directed geodesic is not contained in
Q. Then there is ¢ such that o; C @ and ;41 is not contained in ). Applying Lemma
10.1 inductively, we get that o is not contained in @ for all £ > i. This contradicts the
assumption that o,, C ), hence the proposition.

10.3 Lemma. The intersection of any family of convex subcomplexes in a given systolic
complex is a convex subcomplex.

Proof: Since any convex subcomplex is locally 3-convex, it follows from Fact 3.3(2) that
the intersection of convex subcomplexes is locally 3-convex. It remains to show that this
intersection is connected.

Let v,w be any two vertices in the intersection. By Lemma 8.6, these vertices are
connected by a contraction ray. Since, according to Lemma 9.3, this contraction ray is a
directed geodesic, it follows from Proposition 10.2 that its all simplices are contained in
the intersection. Consequently, since the intersection of full subcomplexes is full, there is
a path in (the 1-skeleton of) the intersection between v and w, hence connectivity.

10.4 Lemma. For each subcomplex K of a systolic complex X there is the smalles convex
subcomplex conv(K) in X that contains K (we will call it the convexr hull of K in X).
Moreover, if K is bounded (with respect to the combinatorial distance), its convex hull is
also bounded.

Proof: Since K is contained in at least one convex subcomplex of X, namely in X itself,
we define conv(K) to be the intersection of all convex subcomplexes in X containing K.
According to Lemma 10.3, this intersection is convex. If K is bounded, it is contained in
some ball in X centered at a vertex. Since, by Corollary 7.5, this ball is convex, the convex
hull of K is clearly bounded.

11. Existence and uniqueness of directed geodesics.

In this section we show that directed geodesics in systolic complexes coincide with
contraction rays. Using this fact we conclude that pairs of vertices are connected by
directed geodesics and get uniqueness of such connections.

We start with a preparatory result.

11.1 Lemma. Let X be a systolic complex, () its convex subcomplex, and suppose that
o is a simplex in the sphere S1(Q, X). Denote by 7 the simplex Res(o,X) N Q. Then

[B1(7, X)]o = [B1(X, Q)]

Proof: Since 7 C Q, it is clear that [By(7, X)], C [B1(X,Q)],. To prove the converse
inclusion, note that since all the involved complexes are full in X, it is sufficient to show that
if v is a vertex in [B1(X, Q)]s then v € [Bi(1, X)],. Let v be any vertex of [B1(X,Q)]s-
If v € Q then v € Res(o,X)NQ = 7, and hence v € [By(1,X)|,. If v ¢ @ then
oxv C S1(Q,X) and thus Res(o x v, X) N Q # (. Moreover, by Lemma 7.7 we have
Res(o*xv, X)NQ C Res(o,X)NQ = 7, and hence v € By (7, X). Since the ball By (71, X) is
full in X, we get that o x v C By (7, X) and thus again v € [B;(7, X)],, hence the lemma.

11.2 Proposition. A directed geodesic oy, ..., 0, in a systolic complex is a contraction
ray on its final simplex o,.
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Proof: By Lemma 9.2 we have Res(o,_2,X) N By(0,,X) = 0n-1, SO 0n—2,0,-1,0n

is a contraction ray on o,. Suppose inductively that for some 1 < k < n — 2 the se-

quence 0g,0k+1,-..,0, 1S a contraction ray on o,. We will prove that the sequence

Ok—1,0k,---,0n is also a contraction ray on o,. To do this, we need to show that (1)

o—1 is disjoint with the ball B,,_j(oy, X) and (2) Res(ox—1,X) N Bp_i(0n, X) = ok.
By Lemma 11.1 we have

[B1(0k+1, X)lo, = [B1(Bn—k—1(0n, X), X)]o, = [Bn—t(0n, X)]o,-

We then get
k-1 N [Br-k(0n; X)loy, = 0r—1 N [B1(0kt1, X)]o, =0,
where the last eqality follows from the definition of directed geodesic applied to the sim-

plices 0% _1,0%, 0k+1. Since the ball B, _(0,, X) is full in X and ox_1 * o is a simplex of
X, this implies (1). Moreover, since X is flag and balls in X are full, we get

(11.2.1) Bl(dk,X) N Bl(O'k+1,X) = o} * [Bl(O'kJrl,X)]ak = o} * [Bn,k(O'n,X)]a =

k:
= Bl(ak,X) N Bn—k(anyX)-

By Lemma 7.7, the intersection Res(ox_1,X) N B,_k(0on, X) is a simplex containing oy,
so in particular this intersection is contained in the ball Bj(ok, X). Consequently, by
applying (11.2.1) we have

Res(ak_l,X) N Bn_k(O'n,X) = RGS(O'k_l,X) N Bn_k(dn,X) N Bl(O'k,X) =
Res(ak_l,X) ﬂBl(Uk_H,X) ﬂBl(O'k,X) = oy,

where the last eqality follows from Lemma 9.2. This shows that ox_1,0%,...,0, is a
contraction ray on o,, hence the proposition.

Proposition 11.2 and Lemma 9.3 show that the sets of directed geodesics and of
contraction rays coincide. As a consequence of Corollary 8.5 and Lemma 8.6 we obtain
therefore the following.

11.3 Corollary. Given vertices v, w in a systolic complex there is exactly one directed
geodesic from v to w.

As an easy consequence of Fact 8.3(2) we get also the following.
11.4 Corollary. Let v, w be two vertices in a systolic complex X such that distx (v, w) =
n. Then the directed geodesic from v to w consists of n + 1 simplices.
12. Fellow traveller property.

In this section we prove that directed geodesics in a systolic complex satisfy fellow
traveller property. We show this property in a setting suitable for applications in Section
13, where we prove that systolic groups are biautomatic.

Let X be a systolic simplicial complex and let v, w be vertices in X. An allowable
geodesic from v to w in the 1-skeleton X (1) is an infinite sequence (u;)$2, of vertices of X
such that if v = 0¢,01,...,0, = w is the directed geodesic in X from v to w then
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(1) u; € o; for 0 < i < n (in particular, up = v and u,, = w);

(2) u; = u, =w for i > n.

Fact 8.3(1) (together with Proposition 11.2) implies that the sequence of vertices in an
allowable geodesic, before it becomes constant, forms a polygonal path in the 1-skeleton
X Moreover, Fact 8.3(2) implies the following.

12.1 Fact. If distx(v,w) = n and (u;)2, is an allowable geodesic from v to w, then for
0 < j <k <n we have distx(uj,ur) = k — j, i.e. the subsequence (u;);_, determines a
geodesic in X1,

We will prove the following variant of the fellow traveller property.

12.2 Proposition. Let X be a systolic complex and suppose that (u;):2, and (¢;):2, are
allowable geodesics in X from v to w and from p to ¢ respectively. Then for each i > 0
we have

distx (ui, t;) < 3 - max[distx (v, p),distx (w,q)] + 1.

Remark. Note that fellow traveller property does not in general hold for arbitrary
geodesics in the 1-skeleton of a systolic complex, as can be easily observed for example in
the triangulation of the euclidean plane by congruent equilateral triangles.

The proof of Proposition 12.2 is based on Lemma 12.3, the first part of which we prove
at the end of this section, and second in Section 13. In this lemma we use a convention
that if oo, ..., 0, is a directed geodesic then it extends to the infinite sequence (0;)5°, by
putting o; = o, for i > n. We denote by X’ the first barycentric subdivision of a simplicial
complex X and by b, the barycenter of a simplex ¢ C X (which is a vertex in X).

12.3 Lemma. Let X be a systolic complex and let (0;)", (7:)7, be directed geodesics
in X.

(1) If 0y, = Ty, then distx/ (by,,br,) < 2-distx: (b, br,) for each i > 0.

(2) If 0g = 19 is a vertex then distx/(by,,br,) < distx/(bs,,,bs,, ) for each i > 0.

Proof of Proposition 12.2 (assuming Lemma 12.3): Let (o)™, (73)"™, and (p;)i_,
be the directed geodesics in X from v to w, from p to ¢ and from p to w respec-
tively. By Lemma 12.3, for each ¢ > 0 we have distx/(by,,b,,) < 2 - distx/(bs,,bpo)
and distx/(bp,,br,) < distx/(bp,,bs,,). It clearly implies that for each i > 0

diStX/ (bgi, b7—1> S 3 - max[distx/ (bgo, b’To)? diStX/ (bgn, bTm)].
Since for any vertices z,y belonging to simplices «, 3 in X respectively we have
2-distx(z,y) < distx/(ba,bg) +2 and distx/(z,y) =2-distx(z,y),

the proposition follows.

Proof of Lemma 12.3(1): Under assumptions of the lemma, oy € S,,(0,, X) and 79 €
S (T, X) = Sy (0, X). Suppose n > m. Then distx:(by,,br,) > 2n —2m. On the other
hand, applying Fact 8.2 to the convex subcomplex Q = B,,,—;(0,, X) = Bp—i(Tm, X) (or
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Q =0y, =7p ifi > m) we get distx/ (b
following estimate:

d’iStX/(bUi , bﬂ) < diStX/(boi , bgiJr"im) + diStX’(baHn,m , sz) <
diStX/(bUO, bTO) + (2n — 2m) <2- diStX/(bUO, bTO),

br,) < distx:(bs,,br,). This implies the

Oi+n—m)

which finishes the proof.

13. Inverse contraction.

In this section we study properties of the family of all directed geodesics in a systolic
complex X which start at a fixed vertex p. As a byproduct we obtain the proof of Lemma
12.3(2).

Let X be a systolic complex and let p be a vertex in X. We say that a simplex
T C X is accessible from p if there exists a directed geodesic from p to 7. By Fact 8.3(2),
to be accessible from p, a simplex 7 must be contained in some sphere S, (p, X). Not
all simplices from such spheres are accessible from p. However, it follows from Corollary
11.3 that every vertex in X distinct from p is accessible from p. Let 7 C S,11(0, X) be
a simplex accessible from p. Denote by ¢,(7) the simplex that precedes 7 in the directed
geodesic from p to 7. More precisely, if 0,01, ...,0,, 0,41 is the directed geodesic from p
to 7 (i.e. o9 = p and 0,41 = 7) then we put c,(7) = oy,.

We use the notation concerning barycentric subdivisions as in the previous section.

13.1 Proposition. For any systolic complex X, any vertex p in X and any n > 0 there
is a simplicial map ¢ : [Bny1(p, X)]" — [Bn(p, X)]’ satisfying the following properties:
(1) cp restricted to [By(p, X)]" is the identity;

(2) cp(br) = b, (r) for any accessible from p simplex 7 C Sy, 41(0, X).

The proof of Proposition 13.1 requires several preparatory results. Before getting to
them we first give the proof of Lemma 12.3(2) based on the proposition.

Proof of Lemma 12.3(2): Let (0;) and (7;) be the sequences as in the lemma. Consider
the maps C. : X’ — [B;(00, X)]’ given by

oo
i itk itk—1 i
Cao'_Ucoo 0Cy " 0...0C,
k=1

and note that we have CJ (bs,) = b,, and C (b,) = br. Since the maps C; are
simplicial map, they do not increase combinatorial distances, hence the lemma.

Next serie of results prepares a background for proving Proposition 13.1.

13.2 Lemma. If 7 is accessible from p and p is a face of 7, then p is accessible from p
and ¢,(p) = (7).

Proof: Let p,01,...,0,-1,7 be the directed geodesic from p to 7. It is sufficient to
show that p,o1,...,0,_1,p is also a directed geodesic. To do this, we only need to check

the condition for directed geodesic at the final triple ¢, _2,0,-1,p. It follows easily by
observing that By (p, X,, ) C Bi(7, X,, _,)-
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13.3 Corollary. If two accessible from p simplices intersect then their corresponding
directed geodesics from p coincide except at the last simplices, i.e. ¢,(71) = ¢, (72).

13.4 Lemma. Suppose e = (v1,v2) is a 1-simplex in S, (p, X) not accessible from p and
denote by o the last common simplex in the directed geodesics from p to vy and wvs.
Denote by 0¢,01,03,... 0L | v and 09,0%,03,...,02_1, v the directed geodesics from
0o to v; and vy (which are parts of the corresponding geodesics from p). Suppose that the
contraction ray from oy on e terminates at v; (it terminates at some vertex of e since e
is not accessible from p, and hence also not accessible from og). Then (1) 0§ C o1, (2)
ol No3 =0 and (3) 0l,02 span a simplex of X.

Proof: Note that by our assumptions the directed geodesic g, 01,03,...,0L | vy is the
contraction ray from oy on e. Therefore we have

ot = Res(09, X) N By,_1(v1,X) = Res(og, X) N Bp_1(e, X) and
0% = Res(0g, X) N By,_1(v2, X) C Res(0g,X) N By_1(e, X),

hence (1).

To prove (2), suppose that o3 N o3 = a # (. Then, according to Lemma 13.2,
00,01, and 0, 07, o are directed geodesics. Moreover, these geodesics are distinct because
o1 # o2, which contradicts uniqueness (Corollary 8.5 and Proposition 11.2).

To prove (3), note that in view of (1) we have
o3 = Res(o}, X)N By, _2(e, X) C Res(o?,X) N B,,_2(e, X) and
03 = Res(02,X) N By,_2(v2, X) C Res(0?, X)N B,,_2(e, X),
where the first inclusion follows from (1) and second from the fact that vy C e. By Lemma
7.7, the intersection § = Res(0?,X) N B,_2(e, X) is a simplex in X, and since we have
03,05 C 3, the lemma follows.

13.5 Lemma. Suppose e = (v1,v2) is a 1-simplex in S, (p, X) not accessible from p. Then
the simplices ¢,(v1) and ¢,(v2) span a simplex of X.

Proof: As in the statement of Lemma 13.4, denote by oy the last common simplex in
the directed geodesics from p to v; and vy. Denote also by og,01,03,...,0L ;,v1 and
00,0%,03,...,02_1, v the directed geodesics from o to v; and vy (which are parts of the
corresponding geodesics from p), and assume (without loss of generality) that the first of
them is the contraction ray from og on e.

Claim 1. Let o1 — 07 be the face of the simplex o] spanned by the vertices not contained
in 0. Then o] — 0% C Sp(v2, X).

To prove Claim 1, note that for any vertex u € o1 — o} we have the estimate
distx (u,v2) < distx (u,01) + distx(0},v9) =14 (n — 1) = n.

If distx (u,ve) =n — 1 for some u € o1 — 0%, then u € Res(0g, X) N By,_1(v2, X) = 0%, a
contradiction.

A similar argument based on Claim 1 and the fact that o —o? and o span a simplex
in X gives the following.
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Claim 2. For k =2,3,...,n — 1 we have o}, C S;,_g41(ve, X).

Returning to the proof of Lemma 13.5, we will show that for k = 1,2,...,n — 1 the
simplices aé, 0,3 span a simplex of X. The assertion holds for £k = 1,2 due to Lemma 13.4.
Suppose, by induction, that a,ﬁ, 0,3 span a simplex. Then both a,}; 41 and a,% are contained
in the intersection Res(oi) N By, —_k(va, X) which is a simplex of X (the first inclusion
is provided by Claim 2). Consequently, both simplices o} 41 and a,% 41 are contained in
Res(o2,X) N By—k—1(e, X), which is also a simplex of X, hence 0']1_1_1 and 0'%+1 span a
simplex.

This shows that the simplices ¢,(v1) = o
as required.

1

L, and ¢p(v2) = 02_; span a simplex of X,

13.6 Lemma. For any simplex 7 C S, (p, X) the family {c,(v) : v is a vertex of 7} of
simplices spans a simplex in S, _1(p, X).

Proof: Observe first that any two simplices ¢, (v1), ¢p(v2) from the family span a simplex.
If (v1,v2) is a 1-simplex not accessible from p, this is due to Lemma 13.5. Otherwise this
follows from the equality ¢,(vi) = ¢,(v2) implied by Lemma 13.2.

Since the complex X is flag and the sphere S,,_1(p, X) is a full subcomplex, the above
observation implies that the whole family spans a simplex of this sphere.

For a simplex 7 C S,,(p, X) not accessible from p put ¢,(7) to be the simplicial span
of the family of simplices {c,(v) : v is a vertex of 7}. Observe that due to Lemma 13.2
this definition applied to simplices 7 accessible from o agrees with the original one. We
thus obtain the following.

13.7 Corollary. If 7 C S, (p, X) is a simplex and p is a face of 7 then ¢,(p) is a face of
cp(T).

13.8 Lemma. If v € S,_;(p, X) and w € S,,(p, X) are vertices that span a 1-simplex e
then the simplex ¢,(w) and the vertex v span a simplex in S,_1(p, X).

Proof: Since the intersection Res(w, X)NS,,—1(p, X) is a simplex (Lemma 7.7), the lemma
follows by observing that both ¢,(w) and v are contained in this intersection.

The argument similar to that in Lemma 13.6 gives the following.

13.9 Corollary. If 7 C B,(p,X) is any simplex then the family of simplices {c,(v) :
v is a vertex of 7N S, (p, X))} U {7 N B,_1(p, X)} spans a simplex in B;,,_1(p, X).

Proof of Proposition 13.1: In view of Corollary 13.9, the map ¢, is well defined
by putting c;(b;) to be the barycenter of the simplicial span of the family {c,(v) :
v is a vertex of 7N S,1+1(p, X)} U {7 N B, (p, X)}, for any simplex 7 C B,,+1(p, X).

14. Systolic groups are biautomatic.

We refer the reader to [ECHLPT] for the background on biautomatic groups. Being
biautomatic implies various algorithmic and geometric properties for a group, in particular
semihyperbolicity [AB| and its consequences.
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14.1 Theorem. Let G be a group acting simplicially properly discontinuously and co-
compactly on a systolic complex X. Then G is biautomatic.

Proof: The proof is based on the fact that directed geodesics in X are recognizable in
local terms and satisfy fellow traveller property. Specifically, we will construct a finite
symmetric subset A C G generating G as a semigroup, and a language £ over A (whose
strings are closely related to some directed geodesics in X) such that

(1) L is regular;

(2) the canonical map £ — G is surjective;

(3) L satisfies 2-sided fellow traveller property.

To prove that £ is regular, we shall construct a nondeterministic finite state automaton
for which L is the accepted language.

Given a systolic group G acting on the corresponding complex X, put K = G\ X',
where X’ is the barycentric subdivision of X. Since G acts on X’ without inversions (i.e.
if an element g € G fixes a simplex of X’ then it fixes all vertices in this simplex), K is a
multisimplicial complex (simplices are embedded in K but a set of vertices may span more
than one simplex). Moreover, since the action of G on X is cocompact, K is finite.

Generating set A. Choose a set of representatives Vj for the family of G-orbits in
the vertex set V(X') (with respect to the induced action of G' on this set). For a vertex
v € V(X’) we shall denote by v € Vj the representative of its G-orbit. For any v € V(X’)
define the set A, := {g € G : v = gv} and call it the set of labels of v.

14.2 Fact. A, =g -Gz = G, - g for any g € A,, where G; and G, are the stabilizers of
the corresponding vertices in G.

Let E(X’) be the set of all pairs (v,w) € V(X') x V(X
A

1-simplex of X’. For any pair (v,w) € E(X’) put A, =
A:={A,: (v,w) € E(X')} the multilabelling on E(X").

') such that v,w span a
1. A,. Call the family

(Y

14.3 Lemma. (1) Ay, = Ay},
(2) Multilabelling A on E(X’) is G-invariant, i.e. Agy g = Ay for any (v,w) € E(X')
and any g € G.

(3) For a fixed vy € Vj the set

A=A = (0,w) € B(X)FU Gy \ {1}

(where 1 is the unit of () is a finite symmetric set generating G as a semigroup.

Proof: Parts (1) and (2) are obvious. To prove (3), observe that by G-invariance multil-
abelling A on E(X’) induces the multilabelling on the set E of pairs of vertices that span
a 1-simplex of K (we will denote this induced labelling also by A). Thus the finiteness of
A follows from finiteness of K and from finiteness of the label sets A, ., as well as from
finiteness of the stabilizers of vertices in X’ (implied by proper discontinuity of the action
of G on X). The fact that A is symmetric follows from part (1). It remains to prove that
A generates G as a semigroup.

Let ¢ € G be arbitrary. Let vg,v1,...,v, = gvg be the sequence of vertices in a
polygonal path in the 1-skeleton of X’. For each v; choose a label g; € A,, with the only
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restriction that g, = g. Put \; := gi__llgz- for i =1,...,n and note that g = goA1 A2 ... \,.
Since go € Ay, = Gy, and A; € Ay, , 4, the lemma follows.

Language L. Fix V as above, a vertex vy € Vj, and take A to be the generating
set as in Lemma 14.3(3). We define a language £ over the alphabet A by describing, for
arbitrary g € G, the set of all strings in £ that are mapped to g through the evaluation
map L — G.

Let 0g,01,...,0,_1,0, be the directed geodesic in X from vy to gvg. It induces the
sequence
00,00 *01,01,01 ¥X092,...,0p,_1,0pn_1 *%¥0p,0pn
of simplices, and consequently the sequence bg,b1,...,bs, of vertices in X’ being the

barycenters of the simplices in the previous sequence. Clearly, this sequence corresponds
to a polygonal path connecting vy to gvg in the 1-skeleton of X’. Consider all strings
over A defined in terms of the path bg, b1, ..., bs, as follows. For i = 0,1,...,2n choose
a label g; € A, arbitrarily, with the only restriction that gs, = ¢g. For ¢ =1,2,...,n put
Ni =g, 11 g; and take the string goA1 ... A2, with omitted occurencees of the unit element
of G. Note that for g = 1 this construction gives only the nullstring €. Take as £ the set
of all such strings, for all g € G.

It is clear from the description of £ and from the existence of directed geodesics in X
between any two vertices, that the evaluation map £ — G is surjective. To prove fellow
traveller property for £, consider the map ¢ : G — X given by ¢(g) := gvo and note that
it is a quasi-isometry. Note also that paths in the Cayley graph C(G, .A) corresponding to
the strings of £ are, by definition, mapped through ¢ uniformly close to the appropriate
directed geodesics in X, where the distance is controlled by the diameter of the (finite
due to cocompactness of G) set V. Thus the language £ inherits the 2-sided fellow
traveller property from the set of directed geodesics in X (Proposition 12.2). We omit
straightforward details of this argument.

To get the fact that GG is biautomatic, it remains to prove that the language L is
regular.

Finite state automaton. Consider a nondeterministic finite state automaton M defined
as follows. The unique start state in M is the vertex v € K corresponding to the vertex
vo € X' through the quotient map X’ — K. Other states are the pairs (v,h) : h € Gy,
and the triples (u,w,\) : (u,w) € E(K), A € Ay . The accept states in M are the state
(v,1) and the states of form (u,w, \) with w = v.

There are three kinds of arrows in M.

(1) For each h € G,, there is an arrow labelled h from the start state v to the state (v, h).

(2) For each u € V(K) such that (v,u) € E(K) and for each A € A, ,, there is an arrow
labelled A from each of the states (v, h) to the state (v,u, \).

(3) The third kind of arrows requires longer description. Suppose u, w, y are the vertices of

K such that (u,w) € E(K) and (w,y) € E(K), and suppose A € A, ,, and g € Ay, .

Let w,w,y be the representatives in V[ of the G-orbits of these vertices. Note that

then we have (A\~1u,w) € EF(X') and (w, uj) € E(X'). Denote by p, o, T respectively

the simplices in X whose barycenters are A~1u, w, ujj. There is an arrow labelled g
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from the state (u,w,\) to the state (w,y, ) iff one of the following two conditions
holds:

(i) p and 7 are disjoint and span o;

(ii) o is a proper face in both p and 7 and

Res(py, Xo) N By (76, X,) = 0.

Denote by L), the language accepted by the automaton M. The fact that £L C Ly
follows easily from the description of strings in £. To prove the converse inclusion, consider
any path of arrows in the automaton M that gives an accepted string of the language L.
This path is uniquely determined by the corresponding sequence of states, and we denote
this sequence by

Uo, (u0790)a (UO,Ul,)\]), ) (un—launa An)?

where uy = u, = v, (ui—1,u;) € E(K), go € Gy, and A\; € Ay, , 4, for 1 <i < n. A string
in £, obtained from this path is ggA; ...\, where the occurences of the unit 1 € G are
omitted.

For each 0 < i < n denote by g; € G the product go); ... \; and by @; the vertex in Vj
representing the G-orbit in V' (X’) corresponding to u;. For each such i put b; := g;u; and
denote by o; the simplex of X with barycenter b;. Observe that any triple b;_1, b;, b;11
can be expressed as

g\ i, Gitli, Gidit1Tisa

and thus the triple p, 0,7 of simplices with barycenters ;- Vi1, 1, Nip11i41 is mapped
by g; to the triple o;,_1,0;,0;+1. By the description of arrows in M, and by the facts that
oo = vg and o,, = g,v are the vertices and that each g; is a simplicial automorphism of
X, we get that if ¢ is odd then 0,1 and 0,41 are disjoint and span o;, while if ¢ > 0 is
even then o; is a proper face in both ;-1 and 0,47 and

Res((0i-1)0,, Xo;) N B1((0341) 0,5 Xo,) = 0.
In particular, it follows that n is even and that for any even 0 < ¢ < n we have
Res(0i_2,Xy,) N Bi(0i42, X,,) = 0.
Thus the sequence g, 02,04,...,0, is a directed geodesic in X from vy to g,vg, and
02i41 = 02; * 09,42 for any 0 < i < n/2. Since we also have g; € Ay, for 0 < i < n, the

string goA1 ... A, (with occurences of 1 deleted) has the form as in the description of the
language L, i.e. it belongs to £. This proves the regularity of L.

15. Systolic versus CAT (k).

In this section we discuss the relationship between k-systolic conditions and compar-
ison C AT (k) conditions for various metrics on simplicial complexes. As a main reference
on CAT (k) spaces we use [BH].
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We start with few remarks concerning the standard piecewise euclidean metrics on
simplicial complexes. In these metrics each simplex is isometric with the regular euclidean
simplex of the same dimension with side lengths equal 1. An easy observation shows that
in dimension 2 a simplicial complex X is systolic iff it is CAT(0) with respect to the
standard piecewise euclidean metric. A local version of this observation says that X is
locally 6-large iff it is nonpositively curved.

It turns out that the equivalence of the two curvature conditions as above does not
hold in higher dimensions. To see a counterexample in dimension 3, recall that the angle «
in the regular 3-simplex between a 2-face and a 1-face meeting at a vertex is less than /3.
Consider a simplicial complex X beeing the union of six 3-simplices defined as follows.
Consider vertices v; and 1-simplices e; with i € Z/3Z and a 2-complex K given as

K= U (v; % e; Ue; xvj41).
1€Z/3Z

Take X to be the simplicial cone over K. X is easily seen to be 6-systolic, and on the
other hand it is not C AT'(0) since the spherical link of X at the cone vertex contains closed
geodesic of length 6c, which is less than 27. Similar counterexamples can be constructed
in any dimension n > 3. This shows that 6-systolic complexes are not necessarily C' AT(0)
for the standard piecewise euclidean metric.

The converse implication between the two conditions is also not true in higher dimen-
sions. Consider the n-dimensional simplicial complex Y,, equal to the simplicial join of an
(n—2)-dimensional simplex o and the 1-dimensional cycle consisting of five edges. Clearly,
Y, is not 6-systolic, as its link at ¢ shows. On the other hand, the dihedral angle (3, in
the regular n-simplex (between the faces of codimension 1) grows to 7/2 as n grows to
infinity. In fact, 3, > 27/5 for all n > 4. This implies that Y, is CAT(0) if n > 4, so a
CAT(0) complex is not necessarily 6-systolic in these dimensions.

A more subtle question is whether a 6-systolic complex admits any piecewise euclidean
metric for which it is CAT'(0). We do not have the answer to this question, but we suspect
it is negative.

An important problem that we study in the remaining part of this section is whether
the stronger systolic conditions, i.e. k-systolicity for sufficiently large k, imply C'AT(0) or
even C AT (—1) condition for piecewise euclidean or piecewise hyperbolic metrics. Given a
metric simplicial complex X, denote by Shapes(X) the set of isometry classes of the faces
of X. Our main result in this section is the following.

15.1 Theorem. Let II be a finite set of isometry classes of metric simplices of constant

curvature 1, 0 or —1. Then there is a natural number k£ > 6, depending only on II, such

that:

(1) if X is a piecewise spherical k-large complex with Shapes(X) C II then X is CAT(1);

(2) if X is piecewise euclidean (respectively, piecewise hyperbolic), locally k-large and
Shapes(X) C II then X is nonpositively curved (respectively, has curvature K < —1);

(3) if, in addition to the assumptions of (2), X is simply connected then it is CAT(0)
(respectively, CAT(—1)).
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Remarks.

(1) The above theorem, combined with the constructions of k-systolic complexes in Sec-
tions 19 and 20, provides large class of new interesting examples of CAT(1), CAT(0)
and CAT(—1) spaces.

(2) The proof of Theorem 15.1 given below does not lead to effective estimates for the
number k. In Section 18 we explicitely estimate k£ for regular piercewise euclidean
metrics.

Observe that parts (2) and (3) of the theorem follow directly from part (1) in view of
characterization of the curvature bounds in terms of CAT(1) property for spherical links
of a complex [BH, Theorems 5.2 and 5.4, p. 206]. We thus concentrate on the proof of
part (1).

A simplicial complex is co-large if it is k-large for any natural k. Using Fact 1.1(4) we
can also characterize co-large simplicial complexes as those which are flag and contain no
full cycle. In the proof of Theorem 15.1 we need the following result, the proof of which
occupies Section 16.

15.2 Proposition. Let X be a piecewise spherical oo-large simplicial complex with
Shapes(X) finite. Then X contains no closed local geodesic.

Remark. Note that the above proposition implies that any piecewise spherical (with con-
stant curvature 1) oco-large simplicial complex is CAT(1). The straightforward argument
for this uses the following two facts:

(1) a piecewise spherical complex is C AT'(1) iff neither this complex nor any of its (spher-
ical) links contains a closed geodesic of length less than 27 (compare [BH, Theorem
5.4(7), p. 206));

(2) links of an oo-large simplicial complex are oo-large.

To formulate next result helpful in proving Theorem 15.1 we need some preparation.
Given a closed geodesic v in a piecewise spherical simplicial complex X with Shapes(X)
finite, the size of v is the number of maximal nontrivial subsegments in v contained in
a single simplex of X. Note that this number is always finite since any local geodesic of
finite length in X is the concatenation of a finite number of segments, each contained in
a simplex ([BH, Corollary 7.29, p. 110]). The following result is a reformulation of [BH,
Theorem 7.28, p. 109] or [B, Lemma 1].

15.3 Theorem. Given a finite set S of isometry classes of spherical simplices, there is a
natural number N (depending on §) such that if a local geodesic «y in a piecewise spherical
simplicial complex X with Shapes(X) C S has length less than 27 then its size is less than
N.

Proof of Theorem 15.1: As mentioned before, it is sufficient to prove part (1) of the
theorem, i.e. the case of piecewise spherical complexes.

Let § be the link completion of II, i.e. the union of II and the set of isometry classes of
all links in simplices representing all classes from II. Since II is finite, so is S. Consider all
closed geodesics v of length less than 27 in all piecewise spherical flag simplicial complexes
X with Shapes(X) C S. For each such geodesic denote by K. the full subcomplex in
the corresponding complex X spanned by the union of all simplices of X whose interior
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is intersected by <. There are only finitely many combinatorial types of complexes K
as above because, due to Theorem 15.3, the number of vertices in any such complex is
bounded by a universal constant (e.g. by the product of a constant N from Theorem 15.3
for the set S and the maximal dimension of a simplex with isometry class in S).

Since each of the complexes K, contains a closed geodesic, it follows from Proposition
15.2 that it is not oo-large. In particular, the systole sys(K) of any such complex is finite.
Put

k = max{sys(K,) : K, as above} + 1

and note that the maximum is taken over a finite set (due to finiteness of combinatorial
types of complexes K. ).

We claim that any k-large piecewise spherical simplicial complex Y with Shapes(Y') C
IT is CAT(1). To prove this, observe that due to the definition of k, neither Y nor any of
its links contains a closed geodesic of length less than 27 (this implies that Y is CAT'(1),
as already mentioned before; see [BH, Theorem 5.4(7), p. 206]). If this were not the
case, we would have the corresponding subcomplex K. with sys(K,) < k in a complex Z
isomorphic either to Y or to some link of Y. Since Shapes(Z) C S, we would have K,
containing a full cycle of length less than k. But, since K is a full subcomplex in Z, the
same cycle would be full in the complex Z, contradicting the fact that Y is k-large. This
completes the proof.

15.4 Remark. Theorem 15.1 applies in particular to finite dimensional simplicial com-
plexes equipped with the standard piecewise euclidean metrics. Note however that for
these metrics the number k in the assertion of the theorem necessarily grows to infinity
as the dimension of a complex grows. To see this, recall that if ¢ is the regular spherical
(2n — 1)-simplex with side lengths 7/3 (i.e. the simplex occuring as the spherical link of
the regular euclidean 2n-simplex at a vertex) then the distance d,, between the barycenters
of opposite (n — 1)-faces in o converges to 0 as n grows. In fact d, = arccos(;’7). For
any m > 3 consider the simplicial complex X2" of dimension 2n defined as the simplicial
cone over the complex U;cz/mzTi * Ti4+1, where 7; is an (n — 1)-simplex for any i € Z/mZ.
Clearly, X2" is an m-systolic simplicial complex. If we equip it with the standard piecewise
euclidean metric, its spherical link at the cone vertex obviously contains a closed geodesic
of length m - d,,. A necessary condition for X2" to be CAT(0) is that m - d,, > 2, i.e.
that m > 2m/d,,, which justifies our observation.

16. oo-large simplicial complexes.

In this section we prove Proposition 15.2. To do this we need some preparatory results.
The reader is advised to keep in mind a tree as both an example and a helpfull analogue
of a general oo-large simplicial complex.

16.1 Lemma. A connected oco-large simplicial complex is simply connected, and hence
oo-systolic (i.e. k-systolic for any k).

Proof: A homotopically nontrivial cycle with minimal number of edges in its homotopy
class is full.
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16.2 Lemma. Let X be a connected oo-large simplicial complex and let o be any of its
simplices. Then the map from the set of connected components of Bi(Res(o,X),X) \
Res(o, X) to the set of connected components of X \ Res(o, X), induced by inclusion, is a
bijection.

Proof: Under our assumptions X is clearly 6-systolic. By applying Corollary 3.8(2)
and Corollary 7.5 we get that the ball Bj(Res(o,X),X) is convex (in the combinato-
rial sense of Section 7) in X. Now, by applying Proposition 4.2 to the inclusion map
Bi(Res(0,X),X) — X, and using the fact that X is simply connected, we get that there
is a deformation retraction of X on Bj(Res(o,X),X). Moreover, a deformation retrac-
tion as above obtained at the end of Section 6 has the following additional property: the
image of the complement of B;(Res(o, X), X) never intersects the residue Res(o, X). In
particular, restriction of this deformation retraction to X \ Res(c, X) is still a deformation
retraction of X \ Res(o, X) on Bi(Res(o,X),X) \ Res(o, X), hence the lemma.

16.3 Lemma. Let X be an oco-large simplicial complex and let ¢ be any simplex of X.

For a subset A C X denote by A its closure in X.

(1) For a connected component U in B;(Res(a, X), X) \ Res(o, X) the intersection U N
Res(o,X) is a single simplex contained in the subcomplex do * X, of the residue
Res(o, X) = 0 * X,.

(2) The same conclusion holds for a connected component U in X \ Res(o, X).

(We follow the convention that do = () when o is a 0-simplex, and that K « ) = K.)

Proof: The proof will proceed by induction with respect to dim X. Before starting induc-
tion, note that in both parts (1) and (2) the inclusion U N Res(o, X) C do * X, is implied
by the following two observations:

(a) any simplex of U is contained in a simplex whose interior is disjoint with Res(c, X);
(b) the simplices of Res(o, X) not contained in do * X, have o as a face and thus cannot

be the faces of simplices not contained in Res(o, X).

To start induction, observe that part (1) of the lemma clearly holds if dim X < 1.
Observe also that, in view of Lemma 16.2, part (1) implies part (2) for any given X.
It thus remains to prove that if part (2) holds for all links in X (which have smaller
dimension than X) then part (1) holds for X. Suppose that, contrary to the inductive
assertion, U N Res(o, X) is not a single simplex for some connected component U in
Bi(Res(0,X),X) \ Res(o,X). Then there exist simplices pg, p1 of U N Res(o, X) such
that po is maximal in U N Res(o, X) and p; is not contained in py. Consider a polygonal
curve « in U from an interior point ag of pg to an interior point a; of p;, contained in U
except at the endpoints. Such a curve exists since U is connected. Let +' be the image
of v under the contraction map ¢ (as defined in Section 8) of By(Res(o, X), X) onto the
subcomplex Res(o, X) (beware that the residue Res(o, X) is convex in X). Since, by the
construction of Section 8, ¢ maps the component U to the set U N Res(o,X), 7' is a
polygonal curve in U N Res(o, X) from ag to a;. Let p be the simplex in U N Res(o, X)
whose interior is visited by 7/ immediately after 7/ leaves pg, and let v be the initial part
of v/, started at ag, consisting of segments contained in pg and the last segment entering
the interior of p and terminating at a point a in the interior of p. Let 7 = pg N p be the
(nonempty) common face of py and p. Then there exists a polygonal curve  in U from
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ag to a, contained in U N Res(1, X) except at the endpoints. For example, we can take as
n the initial part n; of v which is mapped by ¢ to the initial part v of 4/, and add to it
the curve 7y (connecting the final point of 7; to the point a) corresponding to the trace of
the final point of 7; under the deformation retraction of B;(Res(o, X ), X ) onto Res(o, X)
as defined at the end of Section 6 (the final map of this deformation retraction coincides
with ¢).

We now pass to the link of X at 7. Denote by o — 7 the face of ¢ spanned by all
vertices of ¢ not contained in 7. In particular, if 7 is disjoint with ¢ we have 0 — 7 = 0.
Moreover, since 7 C do * X, the simplex o — 7 is nonempty. Note also that o — 7 C X,
Res(oc — 1,X;) = [Res(0, X)), and (0 — 7) * (X;)o—r = [00 * X5+

Note that the curve 7 as above induces a polygonal curve 1 in the link X,. Moreover,
n’ is contained in X, \ Res(oc — 7, X — 7), except at the endpoint which are interior points
in simplices pg — 7 and p — 7. Let V be the connected component in X, \ Res(oc — 7, X )
containing the interior of the curve n’. The simplices py — 7 and p — 7 are then contained
in the intersection V N Res(oc — 7, X,), where V is the closure of V in X,. Since V is
clearly contained in the link U, we get that po — 7 is a maximal simplex in the intersection
VNRes(oc—7,X,). Since p— is clearly disjoint with pg— 7, it follows that the intersection
V N Res(oc — 7,X,) is not a single simplex. This contradicts our inductive assumption
concerning links of X, thus proving the lemma.

16.4 Lemma. Let X be a piecewise spherical oco-large simplicial complex. Suppose a
local geodesic v in X enters a simplex o (of dimension at least 1) through the interior of a
boundary simplex 7 of ¢ and, after passing through its interior, leaves it. Then, leaving o,
~v also leaves the residues Res(o, X ) and Res(7, X). Moreover, the connected components
Uy,U; of X \ Res(o,X) and X \ Res(r, X) respectively, entered by ~ immediately after
leaving o, coincide as subsets of X.

Proof: To prove the first assertion, denote by p the boundary simplex of ¢ through
interior of which « leaves o. Clearly the faces 7 and p span o (otherwise v wouldn’t pass
through interior of o) and, since p # o, the simplex 7 is not a face of p. The simplex 7
whose interior is entered by v immediately after leaving o intersects o at p and hence does
not contain 7 by what was said above. It follows that 7 is not contained in the residue
Res(1, X), which shows that leaving o the local geodesic v leaves Res(7, X). At the same
time 7y leaves Res(o, X) since Res(o, X) C Res(t, X).

The last inclusion in the previous paragraph implies that U, C U, C X \ Res(o, X).
Moreover, being a connected component of the open subset X \ Res(7,X) in X, U, is
open in X, and hence also in X \ Res(o, X). To get the second assertion of the lemma it
is sufficient to prove that U, is closed in X \ Res(o, X) (a subset which is both open and
closed is a connected component).

We will show that the closure U, of U, in X is contained in U, U Res(o, X), i.e. that
U,NRes(t,X) C Res(o, X). According to Lemma 16.3(2), the intersection U, N Res(T, X)
is a single simplex in Res(7, X ), and it clearly contains the simplex p defined in the first
part of this proof. It follows that the simplex of X spanned by the simplices U, N Res(T, X)
and 7 (which exists due to definition of residue) contains both p and 7, and thus contains
their simplicial span ¢. This implies that U, N Res(, X) C Res(o, X), hence the lemma.
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16.5 Lemma. Let X be a piecewise spherical oo-large simplicial complex. Suppose a local
geodesic v in X passes from the interior of a simplex oy to the interior of a simplex o
through the interior of their common face 7. Suppose also that then v leaves o;. Denote
by Up the connected component in X \ Res(og, X) entered by v immediately after leaving
09, and by V the connected component in X \ Res(7, X) entered by v immediately after
leaving o1. Then V' C Uy. (Note that we know, due to Lemma 16.4, that leaving oy the
local geodesic v leaves also the residue Res(t, X).)

Proof: Since we have Res(og, X) C Res(, X), the connected components in X\ Res(7, X)
are subsets in the connected components in Res(og, X). It is then sufficient to prove that
immediately after leaving o1 the local geodesic v remains in Uy. To do this, denote by p
the boundary face of o1 through interior of which v leaves o;. We will show that p is not
contained in Res(op, X). Since this implies that the interior of p is contained in Uy, the
desired property of v follows by openness of Uy.

Suppose on the contrary that p is contained in Res(cg, X). Then both 7 and p are
contained in Res(op, X). By the facts that Res(og,X) is a full subcomplex in X (see
Corollary 3.8(2) and Lemma 7.2(3)) and that the faces 7 and p span oy (otherwise ~y
couldn’t pass through interior of o;), we get that oy is contained in Res(cg, X). But this
contradicts the fact that leaving o the local geodesic 7 leaves also the residue Res(og, X),
thus finishing the proof.

Proof of Proposition 15.2: We will prove that once a local geodesic v in X leaves a
simplex o of dimension at least 1, after passing through its interior, and enters a connected
component U in X \ Res(o, X), it stays in this component forever. This clearly implies
the proposition. Let a be a point of 4 contained in the interior of ¢ and let b be any point
approached by 7 after leaving . The segment [a, b] of v canonically splits into nontrivial
subsegments [a;_1,a;] for i = 1,2,..., r, satisfying the following properties (compare [BH,
Corollary 7.29, p. 110]):

(1) ap = a, a, = b;

(2) the interior (a;_1,a;) of each segment [a;_1,a;] is contained in the interior of a single

(and unique) simplex o; of X, and 0; # 0,41 fori=1,...,r — 1.
For i = 2,3,...,r denote by 7; the simplex which is a common face of the simplices
oi—1,0; and for which a;_; is an interior point. Then, for ¢ = 1,...,r — 1 denote by

U; the connected component in X \ Res(o;, X) that contains open subsegment (a;, a;41).
Similarly, for ¢ = 2,...,r denote by V; the connected component in X \ Res(r;, X) that
contains (a;,a;1+1). These definitions of U; and V; make sense since, due to the first
assertion in Lemma 16.4, open subsegment (a;, a;+1) is disjoint with both Res(c;, X) and
Res(t;, X).

Lemma 16.5 implies that V;;.1 C U; for e =1,...,r — 1, while by the second assertion
of Lemma 16.4 we have U; = V; for ¢« = 2,...,r — 1. Since 01 = ¢ and consequently
U, = U, it follows that U,_; C U; = U. Furthermore, we have (a,_1,a,) C U,_1
and a,_1 € U,_1 N Res(o,_1,X), where the last intersection is (by Lemma 16.3(2)) a
single closed simplex. Thus a, ¢ Res(o,_1,X) and, since a, € U,_1 and U,_; \ U,_; =
U,_1N Res(o,_1,X), we conclude that a, € U,.. However, since a,, = b and U,_; C U, we
get b € U, which finishes the proof.
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Remark. Note that the arguments of this section give in fact a result slightly more general
than Proposition 15.2, and of more combinatorial flavor. Namely, consider the class of
curves 7 in an oo-large simplicial complex X satisfying the following two conditions:
(1) any restriction of 7 to a compact interval is contained in a finite subcomplex of X;
(2) each connected part of v contained in a single closed simplex o of X is a straight
segment for the affine structure in o.
Then there is no closed curve in this class.
To see that this generalizes Proposition 15.2, recall that if o is a spherical simplex then
the family of geodesic segments in o coincides with the family of straight affine segments
for appropriately chosen affine structure on o.

17. Acute angled complexes.

In this section we present another proof of Theorem 15.1, for the restricted case of
acute angled complexes. Despite being less general, the proof has two advantages. First,
its conclusion in the spherical case is stronger, namely that there is no homotopically trivial
closed local geodesic both in the complex and in any of its links. Second, the proof in this
section allows explicit and realistic estimates for the number £ in the assertion. In Section
18 we give such estimates for standard piecewise euclidean metrics on complexes of any
dimension.

A constant curvature simplex (spherical, euclidean or hyperbolic) is acute angled if all
its dihedral angles (between codimension 1 faces) are less than w/2. A constant curvature
metric simplicial complex is acute angled if all its faces are acute angled. Observe that if o is
an acute angled simplex then its links o at all faces 7 are acute angled spherical simplices.
Thus, all links of an acute angled complex are acute angled spherical complexes. Hence,
as in Section 15, it is clearly sufficient to prove the theorem for (acute angled) spherical
complexes.

We start with few definitions. A small ball in a systolic simplicial complex X is a
subcomplex of form B;(o, X) for some simplex o of X and for some i € {0,1,2}. Given a
real number r > 0, we say that a subset A in a geodesic metric space X is r-convex if for
any two points in A at distance in X less than r, any geodesic in X connecting these two
points is contained in A. The proof of Theorem 15.1 presented in this section relies on the
following.

17.1 Proposition. Let X be a systolic piecewise spherical acute angled simplicial complex
and suppose that

(0) the set Shapes(X) is finite;

(1) all links of X are CAT(1);

(2) all the small balls in the links of X are m-convex.

Then X does not admit a closed local geodesic. Moreover, for any simplex v in X any ball
B = B,,(v, X) is local-geodesically convex (i.e. any local geodesic segment in X with its
endpoints in B is contained in B).

Before giving a proof we present two useful corollaries to Proposition 17.1. Note that,
by combining assumption (1) and the first assertion of the proposition we get that X as
above is CAT'(1). This observation is refined in the first corollary below. The girth of the
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complex X, denoted girth(X), is the infimum of the lengths of homotopically nontrivial
paths in X.

17.2 Corollary. Let X be a locally 6-large piecewise spherical acute angled simplicial
complex satisfying assumptions (0), (1) and (2) in Proposition 17.1, and suppose that
girth(X) > 2n. Then X is CAT(1).

Proof: Recall that if all links of a piecewise spherical complex X are CAT(1) and if there
is no closed geodesic in X of length less than 27 then X is CAT'(1). It remains to check the
second assumption in the above statement. By applying Proposition 17.1 to the universal
covering of X we conclude that there are no closed homotopically trivial geodesics in X.
On the other hand, the length of each homotopically nontrivial closed geodesic in X is not
less then girth(X) > 2w, and the corollary follows.

To prove Theorem 15.1 we will need another result easily implied by Proposition 17.1.

17.3 Corollary. Let X be as in Corollary 17.2. Put
0 := max{diam(o) : o0 € Shapes(X)}.

Suppose also that girth(X) > m + 5. Then any small ball in X is 7w-convex.

Proof: Fix a small ball B in X. It is sufficient to prove that any geodesic segment in X
intersecting B only at its endpoints has length > 7. This is true if X is simply connected
since it follows from the last assertion of Proposition 17.1 that there is no geodesic segment
in X intersecting B only at its endpoints. Thus, in the general case, such a geodesic segment
has to be homotopically nontrivial in X/B, and hence its length [ can be estimated by

[ > girth(X) — diam(B) > girth(X) — 50 > (7 + 50) — 56 = 7.

This finishes the proof.
To prove Proposition 17.1 we need four preparatory results.

17.4 Fact. Let K be a connected subcomplex in a C'AT'(1) piecewise spherical complex S.
Suppose that links of K are m-convex in the corresponding links of S and that diam(K) < .
Then (1) K is m-convex in S and (2) K is CAT(1).

Proof: Since diam(K) < 7, any two points of K are connected by a geodesic segment in
K of length less than 7. Since K is locally m-convex in S, this segment is a local geodesic
in S (compare [BH, Remark 5.7, p. 60] or [CD, Lemma 1.6.5]). Since S is CAT(1), this
segment is a geodesic in S ([BH, Proposition 1.4(2), p. 160]) and, since S is m-uniquely
geodesic (condition (6) in [BH, Theorem 5.4, p. 206]), it is the unique geodesic in S
connecting these two points, hence (1). The same argument shows that K is w-uniquely
geodesic, hence (2) (by equivalence of (5) and (6) in [BH, Theorem 5.4, p. 206]).

17.5 Lemma. Let Xg =0 X and Yy = o %Y, where Y is a subcomplex in a simplicial
complex X, o is a simplex and * denotes the simplicial join. Suppose that X is equipped
with a piecewise spherical metric with all simplices acute angled, and that the spherical

45



link (Xo), is CAT(1) while the spherical link (Yj), is m-convex in (X¢),. Then Xj is
CAT(1) and Y} is m-convex in X.

Proof: Denote by ¢ the operation of spherical join for piecewise spherical complexes.
Viewing the simplex ¢ as embedded in the sphere S™ of dimension n = dimo, we can
consider the embedding i : Xg — S™ x; (Xo), which is isometric on simplices of Xj. For
appropriate choice of a piecewise spherical simplicial structure on S™ x; (Xo),, ¢ identifies
X as a subcomplex in S™ 4 (Xo),-

By induction on k = dim(X), we will prove simultaneously the following three statem-
nts:

(1) Xp is m-convex in S™ x4 (Xg), (here we identify Xy with its image ¢(X) through the

embedding i);

(2) Xois CAT(1);

(3) Yy is m-convex in Xj.

The statements are clearly true if £ = 1. The inductive step will be based on the observation
that the assumptions in 17.5 are inherited by pairs of spherical links (Xo),, (Yp), for any
simplex 7 of Yy. More precisely, denote by o + 7 the smallest simplex in Xy containing
both ¢ and 7, and by ¢ — 7 the maximal face of ¢ disjoint with 7 (empty, if ¢ C 7). Then,
for any 7 in X we have (X¢), = (0 — 7) % (Xo)o4,. Moreover, if 7 is contained in Yy, we
also have (Yy), = (6 —7) *(Yp)s4r. The metric assumptions of the lemma are satisfied for
these links because both CAT'(1) and m-convexity are the properties inherited by links.

Fix the pair Xy, Yy as in the lemma and suppose inductively that the assertions (1)-
(3) are satisfied by the pairs of links as above. View X, as a subset in the spherical
join S™ x4 (Xo),. If 7 is a simplex of X containing o, then the metric links (Xy), and
[S™ %4 (X0)o|r coincide. Otherwise, the inclusion (Xo)7 C [S™ %4 (Xo)s|- has the same
form as the inclusion Xy C S™ 4 (X¢),. More precisely, the link [S™ % (X(),] canonically
identifies with the spherical join S™ x4 (Xo)g4r, where S™ is the sphere of dimension
m = dim(o + 7),. Moreover, (Xy), has the form as Xy, with the simplex (6 +7), =0 —7
playing the role of o, and with [(X¢);]o—r = (X0)o++ (metrically). An inclusion of o — 7
in S determines then the inclusion of (Xg), in S™ %4 (Xo)s4- which coincides with the
inclusion of the metric links at 7 of Xy and S™ %4 (Xo),-

By combining the above observation with assertion (1) in the inductive assumption
we conclude that links of X are m-convex in the corresponding links of the simplicial join
S™ x5 (X0)o. Since this join is CAT(1) (because spherical joins of C'AT(1) spaces are
CAT(1)) and diam(Xy) < 7 (due to acute angleness), assertions (1) and (2) for X follow
from assertions (1) and (2) of Fact 17.4.

To prove that Y, is m-convex in X, observe that links of Yy are m-convex in the
corresponding links of Xj. In view of the above described forms of links of Xy and Y{ this
follows from the statement (3) in the inductive assumption. Since X is already proved to
be CAT(1), and the diameter of Yy is less than m, Fact 17.4(1) implies statement (3) for
the pair Xo, Yy, and the lemma follows.

Next two preparatory results concern combinatorial properties (related to convexity)
of balls in systolic simplicial complexes. We fix the following assumptions and notation for
these two results. Let X be a systolic simplicial complex with dim(X) = n and let v be a
simplex of X. For a ball B = B,,(v, X) in X with m > 1 and with the sphere S = S,,, (v, m)
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(as defined in Section 7) consider the sequence B = B ¢ B! ¢ B> C ... C B" = Nx(B)
of subcomplexes in X defined recursively by

B'=B"'U U{Res(a,X) co C S, dim(o) =n —i}.

Clearly, we then have B™ = B1(B, X) = By+1(v, X).

17.6 Lemma. Let o C S be a simplex of dimension n — i¢. Then
(1) the link (B*"1), is a small ball in X,;
(2) BN Res(o,X) = Res(o, B7™1).

Proof: Recall that, by Corollary 7.8, B, = Bi(p, X, ) for some simplex p C X,,. Moreover,
from the definition of B*~! it follows that (B*!), = B1(B,, X, ), hence (1).

To prove (2), suppose that 7 is a simplex in B*~'NRes(o, X). Let 71, 72 be the maximal
faces of 7 disjoint from B and contained in B respectively. The latter is well defined since
B is full in X (Lemma 7.2(3)). For the same reason 71, 72 span 7 and that 7, o span a
simplex of B. Since 75 C B!, there is a simplex p C S of dimension at least n —i+ 1 such
that 75 C Res(p, X). On the other hand, by Lemma 7.7, Res(72, X )N B is a single simplex,
and since it contains p, its dimension is at least n—i+1. It follows that [Res(m2, X )N B]* 72
is a simplex in B*~!. But Res(ms, X) N B also contains o, hence o and 7 = 71 * 7 span a
simplex of Bi~1. This gives the inclusion B*~! N Res(o, X) C Res(o, B*~1), and since the
converse inclusion is obvious, the lemma follows.

17.7 Lemma. If 01, 09 are two distinct simplices of dimension n—i in S then Res(o1, X)N
Res(o9, X) C B L.

Proof: Let 7 C Res(o1, X) N Res(o2, X) and suppose that, contrary to the assertion, 7 is
not contained in B*~!. Since B is full in X (see Lemmas 7.5 and 7.2(3)) and B C B""1,
by passing to a face of 7 if necessary, we may (and will) assume that 7 is disjoint with B.
By convexity of B we know that the intersection Res(7, X) N B, which contains both oy
and o9, is then a single simplex (Lemma 7.7) which is contained in S and which we denote
by o. It follows that dimo > dim oy = dim oy = n — 4, and hence Res(o, X) C B~!. But
7 is clearly contained in Res(o, X), and hence also in B*~1, a contradiction. Hence the
lemma.

Proof of Proposition 17.1.

It is sufficient to prove the last assertion in the statement of the proposition, i.e. that
balls in X are local-geodesically convex: if there is a closed local geodesic v in X then any
ball intersecting v and not containing it is not local-geodesically convex.

By the assumption that Shapes(X) is finite we know that a local geodesic in X of finite
length is the concatenation of a finite number of segments, each contained in a simplex of
X ([BH, Corollary 7.29, p. 110]). Thus, to prove the proposition, it is sufficient to apply
recursively the following

Claim. A local geodesic v in X that leaves a ball B = B,,(v, X) does not return to B
before leaving the ball B,,11(v, X).
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Suppose that dim(X) = n. To get the claim it is sufficient to show that, for any
1 <14 < n, if a local geodesic v leaves B*~! then it does not return to B*~! before leaving
B

Let v be a local geodesic that leaves B*~!. We may assume that v is a local geodesic
ray in X starting at a point p € B*~! and locally near p intersecting B*~! only at p. It
may happen that v leaves B; at the same moment, i.e. that locally near p it intersects
B? only at p. Then our assertion holds. We will then consider the opposite case, when ~
remains in B* near p.

Note that, due to Lemma 17.7, the sets Res(o, X) \ B*~! for all simplices ¢ C S
with dim o = n — i are pairwise disjoint. Thus, leaving B*~!, v enters exactly one of them.
Again by Lemma 17.7, it is sufficient to show that  does not return to B*~! before leaving
Res(o, X).

Now we make use of Lemma 17.5. Put X = Res(o,X) and Yy = B! N X,. We
then have Xg = o x X, and, by Lemma 17.6, Yy = o x (B*"!), (simplicially). Since, by
Lemma 17.6(1), (B*~1), is a small ball in X,, it follows from assumptions of Proposition
17.1 that the pair Xy, Y, satisfies both combinatorial and metric assumptions of Lemma
17.5. Thus X is CAT'(1) while Yp is m-convex in Xj.

Any part of the local geodesic v passing through X is clearly a local geodesic in Xj.
Moreover, since a local geodesic of length less than 7 in a CAT(1) space is a geodesic, and
since diam(Xy) < m, any local geodesic in X has length less than 7. By m-convexity of
Yy, the maximal initial segment 7o of v contained in X (which has length less than )
intersects Yy only at the initial point p, and hence it intersects B*~! only at p. Thus, v
does not return to B*~1 before leaving Xy = Res(o, X), which completes the proof.

Proof of Theorem 15.1 (for acute angled piecewise spherical complexes).

Note first that the theorem clearly holds for complexes X with dim X < 1. Moreover,
the number £ can be chosen so large that additionally the small balls in those complexes
are all m-convex. We will prove theorem together with additional property of m-injectivity
for all small balls in X, using induction with respect to n = dim X.

Suppose that the theorem and the assertion that all small balls in X are m-convex
holds for all complexes X with dim X < n. Let II be a finite set of (isometry classes
of) acute angled spherical simplices, and denote by L(II) the set of (isometry classes of)
all links of simplices from II. Then L(II) is also finite. Let k; be a natural number as
prescribed by the inductive assumption for complexes X with Shapes(X) C L(II) and
dim X < n. Let X be a k;-large complex with Shapes(X) C II and with dim(X) =n+ 1.
Then, by the inductive assumption, the links of X are CAT'(1) and all small balls in those
links are m-convex. Thus X satisfies the assumptions of Proposition 17.1, and hence also
the assumptions of Corollaries 17.2 and 17.3 except perhaps those concerning girth. To get
the inductive step, note that by requiring that sys;,(X) > k for sufficiently large k > k;
we can assure that girth(X) is as large as we wish. In particular, we can assure that
girth(X) > max(2m, 7 + 59), where § = max{diamA : A € IT}. It follows that if X is
k-large (which implies that links of X are kj-large and sysp,(X) > k) then X is CAT(1)
(Corollary 17.2) and the small balls in X are m-convex (Corollary 17.3). This finishes the
inductive proof.

17.8 Remark. In the next section we give explicit estimates of girth(X) in terms of
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sysp(X) for piecewise spherical complexes occuring as links in complexes with the stan-
dard piecewise euclidean metric. In view of the last part of the above proof, this gives
explicit constants k in Theorem 15.1, depending only on dimension, for complexes with
the standard piecewise euclidean metric. In principle, such explicit estimates for constants
k can be obtained for other finite sets of acute angled shapes as well.

18. Explicit constants.

In this section we prove more explicit version of Theorem 15.1(3), for complexes with
standard piecewise euclidean metrics. It is obtained by referring to the arguments from
Section 17. A large part of the section deals with more general metrics and the obtained
results can be used to derive explicit estimates for other classes of piecewise constant
curvature acute angled complexes. In the case that we study in detail we get the following.

18.1 Theorem. Let k£ be a natural number such that

T2
2

k> -n+ 2.
Then any k-systolic simplicial complex X with dim X < n is CAT(0) with respect to the
standard piecewise euclidean metric.

Remark. The estimate for k in the above theorem is obviously not optimal. It gives
k > 34 for n = 2, while k > 6 is clearly sufficient. For n = 3 the theorem gives n > 49,
while a carefull application of our methods allows to get £ > 11. The estimate seems also
to be far from optimal asymptotically, as k — oo. We expect that k > C - y/n for some
constant C is sufficient asymptotically.

To prove Theorem 18.1 we need few preparatory results. At first we deal with arbitrary
metric simplicial complexes X with Shapes(X) finite and with metrics on the simplices
given by riemannian metrics. Our aim is the following.

18.2 Proposition. Let S be a finite set of isometry classes of riemannian simplices.
Then there exists a constant Ds > 0 such that if X is a metric simplicial complex with
Shapes(X) C S then girth(X) > Dgs - (sysp(X) — 2).

In the proof of the above proposition we will need to estimate distances in complexes
X in terms of gradients of some piecewise smooth functions. A function f : X — R is
piecewise smooth if its restriction f|, to any simplex o C X is smooth. Given such a
function, put

My = sup{max{||V(f|,)(z)|| :x € 0} : 0 C X},

where V denotes gradient and ||- || denotes length (for vectors tangent to o) with respect to
the riemannian metric on o. One of the well known properties of gradient is the following.

18.3 Lemma. Let f : X — R be a piecewise smooth function on a connected metric
(riemannian) simplicial complex X. Then for any points p,q € X we have |f(p) — f(q)] <
My - dx(p,q). In particular, if the supremum M} is finite then

dx (p, ) > Mif Af@) - £@).
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Given a connected simplicial complex X and a simplex o C X, a distance-like function
for (X, o) is a piecewise smooth function f : X — R such that S;(o, X) C f=1(i). (Recall
that S;(o, X) is a subcomplex of X spanned by the set of all vertices in X at polygonal
distance i from o.)

18.4 Lemma. Given a finite set S of isometry classes of metric (riemannian) simplices,
there is a constant 0 < Mg < oo with the folowing property. For any connected metric
simplicial complex X with Shapes(X) C S and for any simplex o C X there is a distance-
like function f for (X,o) with My < Ms.

Proof: We will show that distance-like functions for complexes X with Shapes(X) finite
can be constructed out of a finite (up to a constant) collection Fgs of functions on the
simplices from Shapes(X). This clearly implies the lemma since in case of such functions
the supremum My is taken essentially over a subset in a finite set of numbers, namely the
set of maxima of gradient lengths for functions in Fs. A collection Fs as above can be
constructed as follows.

For each 1-simplex E in S consider all combinations of values 0 and 1 at the vertices
of E. For each such combination take a smooth function ¢ : £ — R compatible with the
prescribed values at vertices and such that ¢ is constant if the two values at vertices are
equal. Further, for each 2-simplex A in S consider all combinations of values 0 and 1 at
the vertices. Given such a combination, for each boundary face of A consider the already
defined function on the simplex in S isometric to this face, respecting the prescribed values
at vertices. Extend the so obtained function on the boundary of A to a smooth function
on A so that it is a constant function if the prescribed values at the vertices are all equal.
By applying this procedure gradually to the simplices in S of all dimensions we get a finite
collection ]—"g of functions. As Fs take the set of all functions obtained from the functions
in F2 by adding natural constants (including 0).

For any complex X with Shapes(X) C S and for any simplex o C X one can construct
a distance-like function f for (X, o) simplex-wise, out of the functions from Fg, as follows.
As values of f at the vertices of X take their polygonal distances from o. Next, observe
that for any simplex 7 in X one of the following two cases holds:

(1) the values of f at the vertices of T are all equal;
(2) the set of values of f at the vertices of 7 consists of two natural numbers that differ

by 1.

This observation shows that we can extend f gradually to higher dimensional skeleta of
X, using the functions from Fgs.

By the construction of the functions in Fs we know that if for some simplex 7 in X
the above case (1) holds then a function f obtained as above is constant at 7. This implies
that f is also constant at the spheres S;(o, X), with values ¢, and thus it is a distance-like
function for (X, o), as required. This finishes the proof.

Proof of Proposition 18.2: Let X be the universal cover of X with the lifted metric.
Then girth(X) is equal to the infimum of the distances d)?(pl, p2) over all points p € X

and all pairs p1,p2 of distinct lifts of p to X. Fix a pair p1,p2 as above, and let o be a
simplex of X containing p;. Observe that, if m = sys,(X), then py lies outside the ball
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By_a(0, X). Tt follows that

(18.2.1) d(p1,p2) > inf{dz(p1,q) : ¢ € Sm—2(0,X)}.
Let Ms be as in Lemma 18.4. Since Shapes()? ) C S, the same lemma implies that there
is a distance-like function f for (X,o) with My < Ms. We clearly have f(p;) = 0 and

f(q) = m — 2 for amy q € S,,,_2(0, X). Applying Lemma 18.3 we get

g (pr0) 2 3 (m=2) = = (m=2) = = (sysa(X) - 2)

Combining this with the inequality (18.2.1) we get the proposition for Dg = 1/Ms.

We now shift our attention to piecewise constant curvature acute angled complexes.
We will apply Proposition 18.2 together with the results and ideas of Section 17 to get the
following.

18.5 Proposition. Let Sy be a finite set of isometry classes of acute angled spherical
simplices, and denote by S its link completion, i.e. the union of Sy and the set of isometry
classes of links at all faces for all simplices in Sy. Let Ds be a constant as in Proposition
18.2, and k a natural number such that

7
k > max][6, ﬁ +2).

If X is a k-large piecewise spherical complex with Shapes(X) C Sy then X is CAT(1).

By applying the characterization of the CAT'(0) and CAT(—1) conditions in terms of
the CAT (1) condition for links (see condition (4) in [BH, Theorem 5.4, p. 206]), Proposi-
tion 18.5 implies the following.

18.6 Corollary. Let 7 be a finite set of isometry classes of acute angled euclidean
(respectively hyperbolic) simplices, and denote by S the set of isometry classes of links
at all faces for all simplices in 7. Let Dg be a constatnt as in Proposition 18.2, and k a
natural number such that

7
k > max|[6, ﬁ + 2].

If X is a k-systolic piecewise euclidean (respectively piecewise hyperbolic) complex with
Shapes(X) C 7 then X is CAT(0) (respectively CAT(—1)).

Proof of Proposition 18.5: First note that if X is k-large then sys,(X) > k and
sysp(Xy) > k for all links X, of X. It follows then from Proposition 18.2 that girth(X) >
77/2 and girth(X,) > 7n/2 for all links X,. Moreover, by acute angleness, diameters of
all simplices in X and in all links X, are less than 7/2, so if § is as in Corollary 17.3 for
X or for X, respectively, we get

T

girth(X) > %T >m+56 and girth(X,) > -5 >+ 5.
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Now, using induction with respect to the dimension of complexes, based on Corollaries
17.2, 17.3 and on the above inequalities, we get that all links X, in X are CAT(1) and
all small balls in them are m-convex. In the end of this inductive proof we get that X is
CAT(1), hence the proposition.

In the next serie of preparatory results we study piecewise spherical complexes com-
posed of regular simplices with fixed side lengths. Such complexes occur as links in com-
plexes with standard piecewise euclidean metrics. We define and study some functions on
the regular spherical simplices. These functions allow to construct appropriate distance-
like functions on the complexes as above and to calculate explicitely the constants Mg as
in Lemma 18.3 in the situations under our interest.

Let ¥7 be the n-dimensional spherical (with constant curvature 1) regular simplex
with side lengths L. This makes sense for 0 < L < 27/3, but we will be interested in
the cases when 7/3 < L < 7/2. Let S™ be the sphere of radius 1 canonically embedded
in the euclidean space E™"T! and suppose that X7 is embedded in S™. Denote by A7
the simplex in E"*! affinely spanned by the vertices vy, ..., v,41 of X7, with the induced
regular euclidean metric in which the sides of A} have lengths 2sin(L/2). Consider also
the radial projection P : ¥7 — A7, in the direction of the center of S™, which is clearly a
diffeomorphism. For j =0,1,...,n let A7 j be the linear function on the simplex A} with
values 1 at the vertices vy,...,v; and 0 at the remaining vertices. Finally, define functions
¢y ;X7 — R by putting ¢} ; := AT ;o Pr.

18.7 Lemma. For j =1,...,n let H} ; be the distance in A7 between the barycenters
of opposite faces of dimensions j — 1 and n — j. Denote also by 3} the distance in the
simplex ¥’ between its barycenter and any of its vertices. Then

1

ma{ [V (@)l o € Vi) < g

forj=1,...,n.

Proof: Note that, since the function A} is linear and takes the values 0 and 1 at the
opposite faces of dimensions 7 — 1 and n — j respectively, we have

1
HE

(18.7.1) VAL (W)l = for each y € A7.

Since o7 ; = A} ; o Pi’, we may use the following estimate for gradient length of a pulled
back function, which we recall without proof.

Fact. Let M;, M5 be riemannian manifolds, f : M; — R a smooth function and q : My —
M; a smooth map. Then for any x € M5 we have

(18.7.2) IV(feq) @)l < IV F(g(@)I] - [ldgel;

where ||dq.|| is the norm of the differential dg, : T;; My — T, M with respect to rieman-
nian norms at tangent spaces.
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To apply the above fact in our proof we need to estimate the norms ||(d¢? ;).|| for
r € ¥%. View again X7 as embedded in S™ C E"*!) and A7 as affinely spanned in
E™! by the vertices of 7. The riemannian lengths of vectors tangent to X7 and A7
coincide then with the ordinary euclidean lengths of these vectors in E"*!. Fix any z € X7
and any vector V tangent to o} at z. Put y = P/*(x) € A} and note that the differential
(dPL )z« T X} — Ty AT ; is the restriction of the differential dP; : T,E"t — T, A™ of the
radial projection in E"*! (with respect to the center of S™) from an open neighbourhood
U of ¥7 to the hyperplane containing A%}. Let V = V,. + V,, where V, is the radial
component of V in E"T1 (parallel to the radius of S™ through z) and V), is its component
parallel to A}. Since clearly dP,(V;) = 0 and dP,(V,) = a-V,, where a < 1 is the
ratio of the distances from the center of S™ of the points y and x respectively, we get
(dP}")z(V) = a-V,. To estimate the length of the component V,,, denote by c, the angle
between the radii in S™ through the barycenter of ¢} and through x. Since o is also the
dihedral angle between the hyperplane tangent to X7 at x and the hyperplane containing
A7, we get |[V,]] < ||V]|/cosa,. But in our case we have o, < [} and we obtain an

estimate
a 1

VIl <
osﬁﬁ“ < cos 3}

(dPE)e(V)[| = [la- Vo[ < V-

This shows that
[[(dP)z]] <

for each =z € X7.
cos P

By combining this with (18.7.1) and (18.7.2) the lemma follows.
18.8 Corollary. If 7/3 < L < 7/2 then

(n+1)v2

max{||Vep ()] :x € X7} < 5

forj=1,...,n.

Proof: Note that the size of the simplex A} increases with the increase of L and hence
for L > m/3 we have H ; > H}!,; ;. A direct computation in the simplex A7, (which has

side lengths 1) shows that

V2
vn+1

for any 1 < j < n. On the othr hand, if L < 7/2, we clearly have g7 < ﬁ:m. By a direct

computation in the right-angled spherical simplex X7 /2 We get that cos 8 /2= 1/v/n+1
which implies that

(18.8.1) Yrag >

1

18.8.2 cos B3} > )
( ) ﬂL— \/n—_’_1

Combining the inequalities (18.8.1) and (18.8.2) with the inequality from Lemma 18.7
finishes the proof.
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Proof of Theorem 18.1: Note that, due to the definition of the functions ¢7 ; in terms
of linear functions and radial projections, the restriction of any such function to a face
E%/ in ¥7 is either constant equal to 1 or coincides with the appropriate function go’Ll/ i
Thus, the functions obtained from the functions ¢7 ; (for all n and j) by adding natural
constants are sufficient to construct distance-like functions as in the proof of Lemma 18.4
for metric complexes with all simplices spherical regular of side length L. Denoting by
S7 the set of (isometry classes of) the simplices ZiL with 0 < ¢ < n, and assuming that
m/3 < L < m/2, we get from Corollary 18.8 that Msy = (n + 1)v/2/2 works in Lemma
18.4 for S = S}

Let 7 be the set of isometry classes of the standard regular euclidean simplices of
dimensions < n. Then the set S, as in Corollary 18.8, of isometry classes of links at all
faces for all simplices in 7 can be expressed as the union

_ym—2cn—1—

where each of the sets SZ:I_i consists of links at i-dimensional faces and the numbers
L; = arccos(1/(k + 2)) are the side lengths in such links, as a direct calculation shows.
Since 7/3 < L; < 7/2, the argument above shows that we can take Ms = nv/2/2 in the
conclusion of Lemma 18.4 for § as above. Consequently, by referring to the end of proof
of Proposition 18.2, we can take Ds = 1/Ms = v/2/n in the conclusion of Corollary 18.6,
for 7 and S as above, hence the theorem.

19. Locally 6-large simplices of groups

In this section we recall and adapt to our needs some notions and facts related to
simplices of groups and simple complexes of groups. We will use them in the construction
described in Section 20. Since both simplices of groups and simple complexes of groups
are special cases of complexes of groups, some parts of this section repeat the exposition
of Section 5 in these special cases. However, the exposition here is more complete and
selfcontained, and free from several technicalities which do not play any role in the con-
sidered cases. For example, we do not mention twisting elements g,,, since they are all
assumed to be trivial, i.e. equal to the units in the corresponding groups. On the other
hand, we discuss explicitely the notions related to developability. We also change slightly
the notation to make it more convenient for our purposes. The reader is advised to consult
Section 12 in Part IT of [BH] as a standard reference.

For a simplex A, denote by Pa the poset of all nonemty faces of A, including A itself,
and denote by < the relation of being a proper (sub)face. A simplex of groups G over A is
a family G, : 0 € Pa of groups, together with a family of homomorphisms ¢, : G, — G,
for any pair o < 7, such that ¢, 0 9, = 1,5, whenever 0 < 7 < p. We will call groups
G local groups of G and homomorphisms 1., structure homomorphisms of G.

A morphism m : G — F from a simplex of groups G over A to a group F' is a
family m, : ¢ € Pa of homomorphisms m, : G, — F which agree with the structure
homomorphisms of G in the sense that m., = m, o ¢,, whenever o < 7. Given a simplex
of groups G, denote by G the direct limit of g, i.e. the quotient group of the free product
of the groups G, : ¢ € Pa by the normal subgroup generated by relations of form g =
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Yor(g) for all structure homomorphisms 1,, and all ¢ € G,. Denote by ig : G — G the
canonical morphism to the direct limit. This morphism has (or can be characterized by) a
universal property saying that any morphism m : G — F' factors through ig, i.e. there is
a homomorphism m : G — F such that m = m o tg. Homomorphism 7 is unique and we
call it the homomorphism induced by m.

A morphism m : G — F is locally injective if all its homomorphisms m,, are injective.
It is surjective if the target group F' is generated by the union J,cp, ms(Go). A simplex
of groups is developable if it admits an injective morphism (equivalently, if its canonical
morphism to the direct limit is injective). Injective and surjective morphisms can be
characterized in terms of the direct limit as being identical to the compositions ¢ o ig,
where ¢ : @ — Q /N is the quotient homomorhism and N C Q is a normal subgroup such
that N N (ig)s(G,) = {1} for any o € Pa.

Given a locally injective morphism m : G — F of a simplex of groups G over A, we
define the development D(G, m) of G with respect to m as follows. First, identify the local
groups G, with their images m,(G,) C F, and the structure homomorphisms t,, with
the inclusions of the corresponding subgroups of F'. Define an equivalence relation ~ on
the set A x F' by

(z,9) ~ (y,h) if z=ycoandg 'hec G, for some face o of A.
Let [z, g] be the equivalence class of (z,g), [0, 9] := {[z,g] : © € o}, and put
D(G,m)=AXF/~.

We obtain then a multi-simplicial complex with the faces [0, g] (being injective images
of o x {g} through the quotient map of ~). This complex is multi-simplicial (and not
just simplicial) since the intersection of its faces is in general a union of faces (and not
just a single face). The same construction is described as Basic Construction in [BH,
I1.12], except that we insist on using a coarser simplicial structure than [BH| (who use the
barycentric subdivisions of our faces.

Most of the simplices of groups in this paper will satisfy the property that the local
group Ga (where A is the underlying simplex of G) is trivial, i.e. Ga = {1}. We will
call such simplices of groups J-supported. The next proposition gathers general and well
known properties of developments. We present these properties in the restricted context
of 0-supported simplices of groups, which simplifies formulations and is sufficient for the
purposes of this paper. These results (including their proofs) can be found in [BH, I1.12]
(compare also [JS, Proposition 3.2]).

19.1 Proposition. Let G be a 0-supported polytope of groups over a simplex A, and let

m : G — F be an injective morphism.

(1) The formula hl[z,g] = [z, hg] defines an action of the group F' on D(G,m) by au-
tomorphisms. The quotient map of this action is equal to the map induced by the
projection A x F' — A. The action is without inversions, i.e. a face preserved by an
automorphisms is in fact fixed pointwise. The stabilizer of a face [0, g] is a conjugation
GY = gG,g~ " (we still view the local groups of G as subgroups of F, via m).
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(2) D(G,m) is finite (as a complex) iff F' is a finite group.

(3) D(G,m) is locally finite iff the groups G, for all faces o of A are finite. In fact, for
local finiteness it is sufficient to require that the groups G, for all vertices v of A are
finite.

(4) D(G,m) is connected iff the morphism m is surjective.

(5) D(G,m) is a pure complex, i.e. it is the union of its top dimensional faces.

(6) D(G,m) is gallery connected (i.e. for any two top dimensional faces there is a con-
necting them finite sequence of top dimensional faces such that any two consecutive
faces in this sequence share a common face of codimension 1) iff the subgroups G for
all codimension 1 faces s of A generate F.

(7) D(G,m) is a pseudomanifold iff in addition to (3) and (6) the local groups G, of G,
for all codimension 1 faces s of A, are isomorphic to Zs.

(8) D(G,m) is an orientable pseudomanifold iff in addition to (7) there is a homomorphism
p: F — Z5 whose restriction ps : Gg — Z5 is an isomorphism for all codimension 1
faces s of A (equivalently, pomg : Gy — Z3 is an isomorphism for any such s).

The next proposition describes the fundamental group of the development of a sur-
jective morphism, in terms of the direct limit. Recall that we denote by m : G — F the
homomorphism induced by a morphism m : G — F. Here we do not need to assume that
G is O-supported.

19.2 Proposition. Let G be a developable simplex of groups and let m : G — F be
a locally injective and surjective morphism. Then m1(D(G,m)) = ker(h : G — F). In
particular, D(G, m) is simply connected iff F' = G and m = ig.

We will call development D(G,ig) the universal development of a developable simplex
of groups G (or the universal covering of G), and denote it shortly by G.

We now turn to discussion of links in developments. Given a simplex A and its face
o, the link A, of A at o is the spherical simplex composed of the unit vectors tangent to
A and orthogonal to o at a fixed interior point of 0. The face poset Pa_ of A, canonically
identifies with the subposet (Pa), in Pa consisting of all faces 7 such that 7 properly
contains o.

If K is a multi-simplicial complex, and o is its face, then the link K, is a union of the
links 7, for all faces 7 of K that properly contain o, glued together into a multi-simplicial
complex according to the equivalence relation on the disjoint union induced by the natural
inclusions 7, C 7. for all pairs 7 C 7.

Given a simplex of groups G over A and a face o of A, consider its restriction G, :=
G|(pa), and view it as a simplex of groups over the link simplex A,. Put also iy := {1/ :
7 € (Pa)s} and note that i, : G — G, is a morphism. Observe that since the morphism
m is locally injective, all the homomorphisms 1), are injective, and thus i, is a locally
injective morphism.

19.3 Proposition. Let G be a simplex of groups over A and let m : G — F be a
locally injective morphism. Then, given a face [0, ¢] in the development D(G,m), the
link D(G,m)|s,q) is isomorphic to the development D(Gs,i,). Moreover, this isomorphism
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is equivariant with respect to the action of the stabilizing subgroup Stab(F,[o,g]) on
D(G,m)[s,4 and the action of G, on D(Gs,is).

We will call D(Gy,i,) the local development (or the link) of G at o. This coincides
with the notion of the link L(G, o) as defined in Section 5.

Following Definition 5.2, we say that a simplex of groups is locally k-large if all of its
local developments are k-large (in particular truely simplicial, not just multi-simplicial).
Theorem 5.1 implies then the following.

19.4 Corollary. For k > 6, any locally k-large simplex of groups is developable.

19.5 Remark. Note that if the homotopical systole of a development of a locally k-large
simplex of groups is > 3 (which is a nontrivial condition for a multi-simplicial complex),
then it is simplicial. To see this, observe first that a multi-simplicial complex X with
simplicial links, which is not simplicial, must have a double edge (i.e. two edges with
both endpoints coinciding). Second, note that the cycle consisting of these two edges is
homotopically nontrivial in X. This follows from the fact that the universal covering of X
is simplicial since, being locally 6-large, it can be obtained as the union of a sequence of
small extensions (see Section 4), starting from a single simplex, and all these extensions
together with their union are simplicial. This implies that the homotopical systole of X is
2, justifying the initial statement.

Our last goal in this section is to recall terminology related to the so called simple
complexes of groups (examples of which are simplices of groups), and to formulate some
results which extend the already mentioned results for simplices of groups. We will need
these concepts and facts in the next section, in the proof of Proposition 20.2.

Let X be a simplicial complex and let F' be a group acting on X by automorphisms.
A subcomplex K C X is a strict fundamental domain of this action if the restricted
quotient map K — F\X is an isomorphism of simplicial complexes. Given an action
of F' that admits a strict fundamental domain K, we associate to any face o of K a
group G, := Stab(F, o), the stabilizer of o in F. In fact, due to the existence of a strict
fundamental domain, the stabilizer GG, fixes the simplex o pointwise. We have obtained a
system {G,} of groups with inclusions G, C G, whenever o C 7. We call this system the
simple complex of groups associated to the action of F.

An abstract simple complex of groups G over a simplicial complex @) is a system of
groups G, associated to the faces of (), equipped with a system of injective homomorphisms
Yor 1 G — G4 for all pairs o C 7, such that ¢,; 0 -, = 105, whenever o C 7 C p.

The notions of a morphism to a group, injectivity and surjectivity of a morphism,
developability of G and development D(G,m) associated to an injective morphism m :
G — F have straighforward extensions from the case of G being a simplex of groups to
that of a simple complex of groups. It is then clear that if m : G — F' is an injective
morphism then G is equivalent (isomorphic as a simple complex of groups) to the simple
complex of groups associated to the action of F' on the development D(G,m). Thus,
developability of G can be characterized geometrically by saying that G is isomorphic to
a simple complex of groups associated to an action. Moreover, the obvious analogue of
Proposition 19.2 holds if the underlying complex @ of a simple complex of groups G is
connected.
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Now we extend the notion of the local development, as defined above for simplices of
groups, to arbitrary simple complexes of groups. Let G be a simple complex of groups over
Q@ and let o be a face of ). Consider the link @), of @ at o, and for any face 7 in (), denote
by 7 the corresponding face of () properly containing o. Define then a simple complex of
groups G, = ({G".},{¥7,}) over @, by putting G7. := G> and ¢, , := 1z5. Define also an
injective morphism i, : G, — G, consisting of homomorphisms (i,), : G. — G, given by
(i¢)r := Yy7. The development D(G,,i,), equipped with the action of G, is then called
the local development of G at o (or the link of G at o). If G is developable then the local
developments of G occur as links in the developments of G for all injective morphisms. More
precisely, if m : G — F is an injective morphism, and [o, g] a face in the correspoonding
development D(G, m), then the link D(G, m)(, 4, with the induced action of the stabilizing
subgroup of F, is equivariantly isomorphic to the local development D(G,,i,).

A simple complex of groups over @) is 6-large if all of its local developments are 6-large.
Clearly, by Theorem 5.1, every locally 6-large simple complex of groups is developable.

20. Extra-tilability

In this section we introduce a condition called extra-tilability which allows to con-
struct, inductively with respect to the dimension, simplices of groups admitting finite k-
large developments (for arbitrary & > 6). A construction of such developments is presented
in Section 21. In this section we indicate various useful consequences of the introduced
condition.

20.1 Definition. A simplicial complex X equiped with an action of a group G by simplicial

automorphisms is extra-tilable if the following conditions are satisfied:

(1) the action is simply transitive on top-dimensional simplices of X and its quotient is
a simplex (equivalently, any top-dimensional simplex is a strict fundamental domain
for this action);

(2) X is 6-large;

(3) for any face o of X the ball By (o, X) is a strict fundamental domain for the restricted
action of a subgroup of G on X.

A simplex of groups G is locally extra-tilable if local developments of G equiped with actions

of the corresponding local groups are all extra-tilable.

Ezxzamples.

(1) The Coxeter (or dihedral) group D,, = (s1, 82|53, 53, (s152)") with n = 6k or n = oo,
with its canonical action on the corresponding Coxeter complex (i.e. a division of S*
into 2n segments), is obviously extra-tilable.

(2) Let X be the Coxeter complex of the triangle Coxeter group (6,6,6), which may be
viewed as a triangulation of the hyperbolic plane by regular triangles with angles 7/6.
It follows from Poincare Theorem that the action of this group on X is extra-tilable.

(3) The quotient simplex of groups associated to the action in (2) is locally extra-tilable.

Note that condition (1) in Definition 20.1 implies that the complex of groups asso-
ciated to the action of G on X is a O-supported simplex of groups. Consequently, X is
equivariantly isomorphic to a development of this simplex of groups. For this reason, we
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will often speak of extra-tilable developments of d-supported simplices of groups (rather
than of extra-tilable complexes).

The reader can easily verify that if the pair X, G is extra-tilable then links of X equiped
with the actions of the corresponding stabilizers in G are extra-tilable. Consequently, a
simplex of groups that admits a extra-tilable development is locally extra-tilable. The
next proposition provides the converse of this statement, together with a much stronger
property that will be crucial in our later arguments.

20.2 Proposition. Let G be a locally extra-tilable simplex of groups. Then the action of
the direct limit G on the universal development G = D(G,ig) has the following property:
each n-ball B, (o, G ) in G , for any natural number n, is a strict fundamental domain for the
action of a subgroup of G. In particular, G equiped with the action of G is extra-tilable.

To prove Proposition 20.2 we need the following.

20.3 Lemma. Let G be a 0-supported locally 6-large simplex of groups over a simplex
A, and let m : G — G be a locally injective and surjective morphism. Suppose that for
some simplex o C D(G, m) the ball B := By(o, D(G,m)) is a strict fundamental domain
for the action of a subgroup H < G. Denote by H the simple complex of groups over B
associated to the action of H on D(G,m), and by v : H — H the associated morphism.
Then

(1) v is surjective, i.e. H is generated by the union of the images v,(H,) of the local

groups H, of H;
(2) B determines the subgroup H uniquely.

Proof: To prove part (1), note first that the development D(G, m) is, by surjectivity of m,
connected. Since any simple complex of groups with connected development is surjective,
we get surjectivity of H by the fact that D(H,v) = D(G,m).

The proof of (2) goes by induction on n = dim A. Let H' < G be another subgroup
for which B is a strict fundamental domain. Denote by H’ the simple complex of groups
over B associated to the action of H on D(G, m), and by H. its local groups at simplices
o of B.

Suppose first that dim A = 1. Since G is 0-supported, the local groups of both H and
H' at edges are all trivial. We will show that for every vertex v of B the local groups H,
and H) coincide. By applying (1), this property implies that H = H’, hence (2).

The eqality H, = H, is obvious for vertices v from the interior of B (i.e. vertices of
the central simplex o), since then both groups are trivial. For the remaining vertices v
both these groups coincide with the stabilizer of G' at v, which one easily deduces from the
fact that there is exactly one edge in B adjacent to v (and from simple transitivity of G
on the edges of D(G, m)).

In general case, note that for any simplex o of B both groups H,, H. act on the link
[D(G,m)|e = D(Gy,my) with the strict fundamental domain B,. Inductive assumption
implies that H, = H., and again the proof is concluded by applying (1).

Proof of Proposition 20.2: Note that since G is locally extra-tilable, it is in particular
locally 6-large. Thus, by Corollary 19.4, G is developable and hence it makes sense to speak
of the universal development G = D(G,ig. By Proposition 19.2, G is simply connected,
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and hence it is a systolic complex. For any ball B in G consider a simple complex of
groups H = ({Ho},{¢ro}) over B defined as follows. For any face o of B consider the
link (G), and the action of the stabilizer Stab(G, o) on it. Let o be the image of o under
the quotient map G -G / G = A. Then the action of Stab(gp) on (5)0 is equivariantly
isomorphic to the action of the local group G, of G on the local development D(G,,, iy, )
and hence it is extra-tilable. By strict convex1ty of balls (Corollary 7. 9) the link B, either
coincides with (G), or has a form Bj (7, (G),) for some simplex 7 C (G),. In any case, by
local extra-tilability of G, B, is a strict fundamental domain for the action of a subgroup
of Stab(G,o) on (G)y. Moreover, due to Lemma 20.3, this subgroup is unique, and we
take it as the local group H, in H. Note that if ¢ C 7 then H,. C H,. In fact, H, can
be identified as a subgroup of H, more precisely as follows. Denote by 7’ the face in the
link (G), corresponding to 7. Then, viewing H, as acting on (G), , H, is equal to the
stabilizer of 7/ in this action. We take as the structure homomorphism ¢,, for H the
inclusion homomorphism from H. to H,, for any relevant pair o, 7 of simplices in B.

Consider the morphism j : H — G given by the inclusions of the local groups H, in
G, and denote by j : H — G the corresponding homomorphism between the direct limits.
Since j is locally injective, H is developable and we denote by H the universal development
of H. The ball B, identified with the subcomplex [B, 1] in H, is clearly a strict fundamental
domain for the action of H on H. To prove the proposition, we will show that there is a
] equivariant isomorphism between G and H that is identical on B. If this is the case, B
is a strict fundamental domain for the subgroup j(H) < G.

Let J : H — G be a simplicial map given by J([x,9]) == 7j(g) - x for any = € B (where
x on the right lies in B C G ). From what was said above about local groups of H, it follows
that the local development of H at a face o of B is equivariantly isomorphic to the link
(G). acted upon by the group H,. This implies that the map J induces isomorphisms at
links of all simplices in ﬁ, and hence it is a covering. Since both complexes H and G are
connected and simply connected, it follows that J is an isomorphism as required, hence
the proposition.

In the next corollary only part (2) is important for further applications. We include
part (1) to indicate the relationship of the phenomena that we obtain with residual finite-
ness of involved groups.

20.4 Corollary. Let G be a locally extra-tilable simplex of finite groups. Then

(1) the direct limit group G is residually finite;

(2) for any natural k there is an injective morphism m : G — F into a finite group F' such
that we have sys,[D(G,m)] > k

Proof: Let A be the underlying simplex of G. To prove (1), recall that a group G is
residually finite if for any g € G with g # 1 there is a normal subgroup N < G of finite
index such that g ¢ N. Let g € G, g # 1. Consider a ball B in the universal development
G centered at [A, 1] and containing [A, g]. By Proposition 3.1, there is a subgroup Hp < G
for which B is a strict fundamental domain. Note that g ¢ Hp because each orbit of Hp
intersects B only once. Moreover, since G is locally finite, B is finite (as a complex), and

since G acts simply transitively on top-dimensional faces of g it follows that Hp is a finite
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index subgroup of G. Thus the normalization N = ﬂheg hHph~! has also finite index in
G, and clearly g ¢ N. This finishes the proof of part (1).

To prove (2), consider the face [A,1] in (] and the ball B = By(|A,1],G) centered at
this face. Observe that a polygonal path in G connecting a vertex of [A, 1] with a vertex

outside B has lenght greater than k (i.e. consists of more than k edges). Let Hp be the
subgroup of G for which B is a strict fundamental domain, and let N = nheé hHgh™!.

As before, N is a finite index subgroup in G.

Recall that for each vertex v of A the local group G, is idetified with the stabilizer
of G at [v,1] (in its action on G). Thus, since G is d-supported, we have G, N Hg = {1},
and hence also G, N N = {1}. Tt follows that the composition G — Q Q /N is a locally
injective morphism to a finite group G /N. We take this morphism as m and the quotient
G /N as F.

We now estimate from below the homotopical systole of the development D(G,m).
Since N is a subgroup of Hp, the orbit of a vertex v of [A, 1] under the action of N on G
intersects B only at v. Thus the polygonal distance between v and any other vertex from
this orbit is greater than k (in fact, this distance is even > 2k, but we don’t need this
sharper estimate). It follows that any homotopically nontrivial closed polygonal path in
D(G,m) passing through a vertex of [A, 1] has length > k. On the other hand, D(G,m)
is acted upon by the quotient group G /N and this action is transitive on top-dimensional
faces. Thus any homotopically nontrivial path in D(G, m) can be mapped by an auto-
morphism of D(G,m) to a path that intersects [A,1]. Thus, the homotopical systole of
D(G,m) is greater than k, which finishes the proof of part (2).

We say that a locally injective morphism m : G — F from a simplex of groups G
is extra-tilable if the development D(G,m) acted upon by the group F' is extra-tilable.
Obviously, to have a extra-tilable morphism, a simplex of groups has to be locally extra-
tilable. The next proposition, a culmination of the results in this section, will be the key
technical tool in the arguments involved in the main construction presented in the next
section.

20.5 Proposition. Let G be a locally k-large simlex of finite groups, for some k£ > 6, and
suppose G is locally extra-tilable. Then G admits a extra-tilable morphism p: G — E to
a finite group E such that the development D(G, u) is k-large.

Proof: Since it follows from our assumtions that G is locally 6-large, let m : G — F be a
locally injective morphism to a finite group F' as prescribed by Corollary 20.4(2), i.e. such
that sysp[D(G,m)|] > k. Then D(G, m) is clearly k-large (see Corollary 1.4). Denote by
K = kerm the kernel of the homomorphism m : G — F induced by m, and note that K
has finite index in Q - N

For any face o C G consider the ball B? := Bj(0,G) and the subgroup H? < G
for which B? is a strict fundamental domain. Clearly, H? is a finite index subgroup for
each o. Consider the intersection K N ﬂ (A1] H?, which is still of finite index in g and

normalize it to get a finite index normal subgroup N of G.PutE:=G /N and denote by p
the natural morphism from G to E. Since N C K, the development D(G, ) is a covering
of the development D(G, m) and, since the latter is k-large, the former is k-large too. It
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remains to prove that p is extra-tilable.

By the fact that [A,1] is a fundamental domain for the action of G on G, for any face
o C G there is a face oy C [A,1] and an element g € G such that H, = gHy,g~'. In
particular, since the subgroup N is contained in H,, and normal, it is also contained in
H,. Denote by p : G — D(G, u) the covering map induced by the quotient homomorphism
G—-E=G /N. It follows that the image p(B?) is a strict fundamental domain for the
action of the subgroup H? /N C E on D(G, u). Since the images p(B?) for all simplices o
in G exhaust the balls of radius 1 centered at faces in D(G, u), the action of E on D(G, y)
is extra-tilable, and the proposition follows.

21. Existence of k-large developments.

In this section we give a rather general construction of finite k-large developments of
simplices of groups in arbitrary dimension. This construction allows to get examples of
complexes with various interesting properties. Our main result is the following.

21.1 Proposition. Let A be a simplex and suppose that for any codimension 1 face
s of A we are given a finite group As. Then for any k > 6 there exists a d-supported
simplex of finite groups G = ({Gs}, {¢»+}) and a locally injective and surjective morphism
m : G — F to a finite group F such that Gy = A, for any codimension 1 face s of A and
the development D(G,m) is (finite and) k-large.

Proof: We will construct appropriate groups G, inductively with respect to the codimen-
sion of o in A. Here we will view F as Gy, the group associated to the "face” () of A of
codimension dim(A) + 1.

By the requiremenmts of the proposition, we have to put Ga = {1} and G5 = Ay
for all faces s of codimension 1. This gives the starting point for our induction. Suppose
that finite groups G, are already defined for all faces o of codimension < k, together
with injective homomorphisms 1, as required. Suppose also that for all such o the
following condition (which we will be an additional part of the inductive hypothesis) is
satisfied. The groups G, : ¢ C 7 form a simplex of groups G? over the link A, and the
homomorphisms 1, form a locally injective and surjective morphism m? : G° — G, such
that the development D(G7, m?) is k-large and m? is tesselable. Note that for £ = 1 these
inductive assumptions are fulfilled. For any face p of codimension k£ + 1 in A consider
the simplex of groups G” over the link A, formed of the groups G, : p C o. By the
inductive assumptions, this gives a k-large 0-supported and tesselable simplex of groups.
By Proposition 20.5, there is a surjective tesselable morphism p : G — FE to a finite group
E such that the development D(G”, u) is k-large. By putting G, := E and ¢, := 1, We
get the inductive hypothesis for k£ + 1. This finishes the proof.

21.2 Corollary. For each natural n and each k£ > 6 there exists an n-dimensional compact
simplicial pseudomanifold that is k-large. Moreover, this pseudomanifold can be obtained
to be orientable.

Proof: In view of Proposition 19.1(7), the first statement in the corollary follows from
Proposition 4.1 by putting As = Z5 for all codimension 1 faces s.
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To ensure orientability, we need to modify slightly constructions in the proofs of
Propositions 21.1 and 20.5. Recall from Proposition 19.7(8) that a necessary condition
for the development D(G, m) associated to a morphism m : G — F to be an orientable
pseudomanifold is the existence of a homomorhism r : ' — Z5 such that the composed
morphism r o m maps the local groups G4 at codimension 1 faces s isomorphically to
Zs. Thus, when constructing local groups G,, we need to have additional homorphisms
re : Gy — Zy, forming together a morphism from G to Zs, such that the compositions
re 0 Yys : Gs — Zy are isomorphisms. By the inductive assumption concerning this
property, there is always a homomorphism 7, : G — Z, from the direct limit of the
simplex of groups G, with the desired property. Thus, to have the appropriate r,, it is
necessary that the normal subgroup N giving G, as the quotient Go /N is contained in
the kernel of r,. Since this can be obtained by passing to a finite index subgroup in the
previously chosen N, the corollary follows.

We mention further consequences of Corollary 21.2.

21.3 Corollary.

(1) For each natural n there exists a developable simplex of groups whose fundamental
group is Gromov-hyperbolic, virtually torsion-free, and has cohomological dimension
n.

(2) For each natural n there exists an n-dimensional compact simplicial orientable pseu-
domanifold whose universal cover is CAT(0) with respect to the standard piecewise
euclidean metric.

(3) For each natural n and each real number d > 0 there exists an n-dimensional compact
simplicial orientable pseudomanifold whose universal cover is CAT(—1) with respect
to the piecewise hyporbolic metric for which the simplices are regular hyperbolic with
edge lengths d.

Proof: By Corollary 21.2, for every natural n there exists an n-dimensional compact
simplicial orientable pseudomanifold X which is 7-large. It is obtained as a development
of a certain simplex of finite groups G. The fundamental group I' of X is a subgroup of
finite index in the fundamental group of G, and it is torsion-free. To see this, note that
X is aspherical (Theorem 4.1(1)), and hence it is a classifying space for I'. Since X is
finite dimensional, I' cannot contain a finite subgroup. Moreover, since (being a compact
pseudomanifold of dimension n) X has nontrivial cohomology in dimension n, the group I'
has cohomological dimension equal to n. Finally, by Corollary 2.2, the group I' is Gromov
hyperbolic. This proves (1).
Parts (2) and (3) follow from Corollary 21.2 in view of Theorem 15.1.

Parts (2) and (3) of the above corollary give an affirmative answer, in arbitrary di-
mansion n, to a question raised by D. Burago [Bu, p. 292]. The answer for n = 3 has been
given in [BuFKK].

As one more application we note that Corollary 21.2 allows an alternative approach
to the main result of our paper [JS] stating that for each natural n there exists a Gro-
mov hyperbolic Coxeter group with virtual cohomological dimension n. As we have shown
in [JS], to construct such a group it is sufficient to construct a compact orientable n-
dimensional pseudomanifold which satisfies “flag-no-square” condition (which is equivalent
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to 5-largeness). Since k-largeness for £ > 6 implies 5-largeness, we get such pseudomani-
folds by the construction of Proposition 21.1 (improved as in the proof of orientability in
Corollary 21.2), which is different from the construction in [JS].

22. Non-positively curved branched covers

In this section we use the idea of extra-tilability to show the existence of nonpositively
curved finite branched covers for a class of compact piecewise euclidean pseudomanifolds
that contains all manifolds. This anwers a question of M. Gromov. Using the same
method, we show that any finite complex K is homotopy equivalent to the classifying
space for proper G-bundles of a CAT(—1) (hence Gromov hyperbolic) group G. This
answers a question of I. Leary.

We start with recalling some terminology. A chamber in a simplicial pseudomanifold
is any of its top-dimensional faces. A simplicial pseudomanifold X is gallery-connected if
for any two chambers C7, Cy of X there exists a sequence of chambers in X starting at C
and terminating at Cy such that any two consecutive chambers in this sequence share a
face of codimension 1. A simplicial pseudomanifold is normal if all of its links are gallery-
connected (we borrow the term “normal” from M. Goresky and R. MacPherson [GMcP]).
The property of being normal does not depend on a triangulation of a pseudomanifold.
Moreover, all manifolds are obviously normal.

A branched covering of a simplicial pseudomanifold X is a simplicial pseudomanifold
Y equipped with a nondegenerate simplicial map p : ¥ — X which is a covering map
outside codimension 2 skeleta.

The main results in this section are the following two theorems.

22.1 Theorem. Let X be a compact connected normal simplicial pseudomanifold with
a piecewise euclidean (respectively, piecewise hyperbolic) metric. Then X has a compact
branched covering Y which is nonpositively curved (respectively, has curvature k < —1)
with respect to the induced piecewise constant curvature metric.

22.2 Theorem. For any finite complex K there is a CAT(—1) space X and a group G
acting properly discontinuously and cocompactly by isometries on X, so that the quotient
G\ X is homotopy equivalent to K.

Both theorems above are corollaries to a stronger technical result contained in Propo-
sition 22.3. To formulate this proposition we need more definitions. We say that a simplex
of groups G over a simplex A, with local groups G at all codimension 1 faces s isomorphic
to Zs, is symmetric if it satisfies the following conditions:

(1) the local groups G, are generated by their local subgroups at faces of codimension 1

(i.e. at those codimension 1 faces s which contain o);

(2) any automorphism f of the underlying simplex A extends to an automorphism ¢ of

g.

Note that, due to condition (1), automorphisms ¢ from condition (2) are uniquely deter-
mined by automorphisms f.

A morphism m : G — F' is a symmetric morphism if m is surjective, G is a symmetric

simplex of groups, and for any automorphism ¢ of G as in (2) there is an automorphism
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a, of F' such that m oy = a, om. Note that, due to surjectivity of m, automorphisms a,,
are uniquely determined by automorphisms ¢.
A symmetric development is the development associated to a symmetric morphism.

22.3 Proposition. Given any k& > 6, every finite family of compact connected normal
simplicial pseudomanifolds {X;} of the same dimension has a common compact branched
covering Y which is an extra-tilable symmetric development of a simplex of finite groups,
and which is k-large. Moreover, for each X; there is a group I'; of simplicial automorphisms
of the universal cover Y of Y such that X; is isomorphic to the quotient I'; \Y

Before giving a proof of the proposition, we show how it implies Theorem 22.1. The
proof of Theorem 22.2, together with discussion of its consequences, occupies the last part
of the section (after the proof of Proposition 22.3).

Proof of Theorem 22.1 (using Proposition 22.3): Given a metric pseudomanifold as
in the theorem, denote by II the set of all shapes of simplices of X and note that IT is
finite. Clearly, any branched covering Y of X equipped with the lifted metric satisfies
the condition Shapes(Y') C II. Let k¥ > 6 be a natural number associated to II as in the
assertion of Theorem 15.1. By Proposition 22.3, X has a compact branched covering Y
which is k-large, and hence also locally k-large. By Theorem 15.1, Y is then nonpositively
curved (respectively, has curvature k < —1), as required.

Proof of Proposition 22.3: We use induction with respect to the dimension n of pseu-
domanifolds X;.

For n = 1, each X is a triangulation of the circle, and we denote by [; the number
of edges in X;. Let L be a common multiple of all numbers [; and 12. Put Y to be the
triangulation of the circle consisting of L edges. Then Y is as asserted in the proposition.
To see this, note that due to divisibility of L by 12, Y is an extra-tilable development of
the O-supported edge of groups with groups Z, at vertices. The other assertions of the
proposition are in this case obvious.

We now pass to the case of arbitrary dimension n. Consider the family X of all
links at vertices in all pseudomanifolds X;. Due to compactness of X;’s, this family is
finite. Moreover, since links of normal pseudomanifolds are normal, X consists of compact
connected normal pseudomanifolds of the same dimension n — 1. By applying inductive
hypothesis to the family X', we obtain an extra-tilable symmetric morphism m : G — F
from an (n — 1)-dimensional simplex of finite groups G to a finite group F' such that the
development D(G, m) satisfies all assertions of the proposition relative to X'. Let H be an n-
dimensional simplex of groups described as follows. For local groups at faces of codimension
< n take the local groups of G at faces of the same codimension (which are all isomorphic
due to symmetry of G). For local groups at vertices take the group F. Symmetry of G and
m allows to take as structure homomorphisms for H the homomorphisms occuring in G and
in the morphism m. The so obtained simplex of finite groups H is clearly symmetric, locally
k-large and locally extra-tilable. Sice, being locally k-large, H is developable, consider its
universal development H. Our next aim is to show that H is a common branched covering
of pseudomanifolds X;. However, since H is not compact, this will yet not finish the proof.

Fix one of the pseudomanifolds X;, a chamber C' in it, and any isomorphism py :
Dy — C of some chamber Dy of ‘H with C'. We will show that py can be extended to
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a branched covering p : H — X;. For this, note that any gallery v in H starting at the
chamber D, determines uniquely the map p, : D — X; from the final chamber D in v,

by means of unfolding v on X; starting with pg. Then, since (by Proposition 19.1(6)) H
is gallery connected, we define p separately on each chamber D in H by putting p|p = p,
for some choice of a gallery v connecting Dy to D. To see that p is well defined we need
to show that p, : D — X; does not depend on the choice of 7. Equivalently, we need to
show that for any gallery v starting and terminating at Dy we have p, = po.

Since H is simply connected, v can be expressed, up to cancellation of back and forth
subpaths, as the concatenation of elementary closed galleries started at Dy, i.e. galleries

of form
Do, D1,...,D;, D}, D?, ....D™ Dy, D;_1,..., Do

with chambers Dy, D}, ..., D™ contained in the residue of a single vertex of H. Clearly,
it is then sufficient to show that p, = po for any elementary closed gallery ~ started at
Dgy. This however follows directly from the fact that links of H at vertices, which are all
isomorphic to the development D (G, m), are symmetric branched coverings of the links of
X, at vertices. Thus, the map p is well defined, and the fact that it is a branched covering
follows easily from its definition. B

Denote by Sym(H) the full group of simplicial automorphisms of H. Due to symmetry
of ﬁ, and rigidity implied by the fact that His a pseudomanifold, this group is a semidirect
extension of the direct limit H by the group of automorphisms of the underlying simplex
of H. We will now show that for each X; there exists a subgroup I'; < Sym(H) such that
the quotient I';\'H is isomorphic to X;.

Consider the set p~1(C) of all chambers in H which are mapped through p on C.
Clearly, this set contains our distinguished chamber Dy. For any chamber D € p~!(C)
consider the isomorphism up : Dy — D such that poup = pg. Clearly, up can be
extended uniquely to an automorphism of H, and we denote this automorphism by gp.
Moreover, each automorphism gp obviously commutes with p. Consequently, the set {gp :
D € p~1(C)} coincides with the group of all automorphisms of H that commute with p.
We denote this group by I'; and note that it acts simply transitively on the set p~1(C).
Furthermore, for any chamber C’ adjacent to C' along a codimension 1 face, and for
any chamber D € p~1(C), there is exactly one chamber D’ € p~!(C’) adjacent to C".
Moreover, the assignment D — D’ establishes 1-1 correspondence between the sets of
chambers p~1(C) and p~1(C"). It follows that the group I'; acts simply transitively on the
set p~1(C’). Since X; is gallery connected, the same argument gives the same conclusion
for the set p~1(C"), for any chamber C” of X;. This implies that the induced from p map
I‘z\ﬁ — X, is an isomorphism, as required. It is also important to note that, since each
X; is compact, each of the groups I'; has finite index in Sym(ﬁ).

We want now to find a compact development of H which will be k-large and which will
be still a branched covering of all X;’s. Since H is locally k-large and locally extra-tilable,
by Proposition 20.5 there exists an extra-tilable morphism p : H — E to a finite group
E such that the development D(H, u) is k-large. Denote by K the kernel of the induced
homomorphism 4, : H — E. Take the intersection K N (); T'; and normalize it in Sym(ﬁ)

to get a normal subgroup N in H for which the induced morphism y : ' H — 7:l/N is
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symmetric (due to normalization in Sym(H)), still extra-tilable, and whose development
D(H, ) is still k-large (last two properties due to the inclusion N < K). Since, due to the
inclusions N < I';, D(H, ) is still a common branched covering of X;’s, the proposition
follows.

Proof of Theorem 22.2: Let Z be a compact simplicial manifold with boundary having
the same homotopy type as the complex K. It can be obtained for example by embedding
K in RV, and taking its regular neighbourhood in a sufficiently fine triangulation. Denote
by X the double of Z, i.e. the closed manifold obtained by glueing two copies of Z
by the identity map of their boundaries. It follows from Proposition 22.3 that for any
k > 6 there is a k-systolic pseudomanifold Y and a group I' acting simplicially, properly
discontinuously, and cocompactly on it, such that X is isomorphic to the quotient I'\Y'.
By Theorem 15.1, taking k sufficiently large, we can arrange that Y is CAT(—1) with
respect to some piecewise hyperbolic metric with regular simplices, and then I' acts by
isometries.

Denote by 7 : X — X the involution which exchanges the copies of Z, used in the
construction X, fixing their common boundary. We claim that, if Y is taken to be the
universal development H as in the proof of Proposition 22.3, then ¢ can be lifted to an
isomorphism 7 of Y. To see that, fix a chamber C'in X and consider lifts D and D’ of C' and
i(C) respectively, to H. Now, take as i the isomorphism from the group Sym('H) induced
by the map ig : D — D’ such that ig commutes with i through the covering H — X. Due
to rigidity implied by the fact that we deal with gallery-connected pseudomanifolds, iis
a lift of 7 as required. Using i we get the extension G of T, of index 2, whose action on
H projects to the action of Z; generated by ¢ on X. Consequently, the quotient G\H is
isomorphic to Z = Z5\ X, and the theorem follows.

Theorem 22.2 has interesting corollaries. We refer to [LN] for the background on
Corollary 22.4.

22.4 Corollary. Any finite complex K is homotopy equivalent to the classifying space for
proper G-bundles of a CAT'(—1) (hence Gromov hyperbolic) group G.

22.5 Corollary. Any homotopy type of a finite complex occurs as the quotient G\ R4(G)
of the Rips’ complex R4(G) (with sufficiently large d) of some Gromov hyperbolic group
G.

Corollary 22.5 follows from Proposition 22.3 in view of the following observation.
Given a CAT(—1) space X and a group G acting on X properly discontinuously cocom-
pactly by isometries, for sufficiently large d, the action of G on the Rips’ complex R4(G)
is equivariantly homotopy equivalent to the action on X. This follows from the fact that
if G is Gromov hyperbolic then, for sufficiently large d, the quotient of the Rips’ com-
plex G\R4(G) is the classifying space for proper G-bundles, and the latter is uniquely
determined up to homotopy equivalence (see [MS]).

Corollaries 22.4 and 22.5 give answer to questions of Ian Leary (see [QGGT, Question
1.24] and [L)]).
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