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1. Introduction

Let G be any finite abelian group of order v. Let D = {x1, . . . , xk} be a
multiset of elements from G (not all elements distinct). A difference of these
elements is called non-trivial if and only if it is of the form xi − xj, for i 6= j,
otherwise trivial. In particular the identity element 0 occurs exactly k times
as a trivial difference but it can also be a non-trivial difference, if some of the
elements of D are equal.

Definition 1.1. A multiset D = {x1, . . . , xk} is called a regular difference
cover with parameters (v, k, λ) if and only if every element z ∈ G (including
the identity element) appears exactly λ times as a non-trivial difference, i.e.,
z = xi − xj, i 6= j, of elements of D.

It may be observed that if the requirement “non-trivial” is omitted in the
above definition, i.e., if every element z ∈ G appears exactly λ times as a
difference, i.e., z = xi−xj for any i and j, of elements of G, then it follows from
the orthogonality relations of characters of the group G that D must necessarily
be a union (as multiset) of the whole group G a certain number of times. The
above notion of regular difference covers differ from that of difference sets or
difference lists in the requirement that the non-trivial differences cover all the
non-identity elements of G a constant number of times in the difference sets or
difference lists. However, in regular difference covers they cover all elements
of G including the identity a constant number of times. For instance, for
G = Z7 =< g >, the list (multiset) {e, e, g, g2, g4} can easily be checked to be
a difference list but is not a regular difference cover. See, for example, [4] for
difference sets and [1] for difference lists.

In the literature, difference covers have been studied in a more general
context, where the list of differences is simply required to cover all elements of
G (not necessarily with constant number of times) and the main object was
to find minimal size of D covering all of G as a list of differences. See, for
example, [6], [15], [8], [11], [10], [7], [12].

This work is motivated by the work of T. Bier [5] and [3], in which the
regularity condition was introduced, (i.e., the parameter λ was introduced. In
[3], the approach of using group rings and characters was followed and some
basic properties of regular difference covers were established. In this paper we
study multiplier theorems for regular difference covers, give their applications,
characterize all possible regular difference covers with λ = 2 and also construct
several new infinite families of regular difference covers.

We shall now give some preliminaries and also fix notations.
Let R be a commutative ring with unity 1 and let G be a group. We let RG

denote the group ring of G over R. We identify each multiset S of elements
of G with the group ring element

∑
g∈G sgg, where sg denotes the multiplicity
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(possibly zero) with which the element g appears in S.
The homomorphism ε : RG → R , given by ε(

∑
g∈G agg) =

∑
g∈G ag is

called the augmentation mapping of RG and its kernel, denoted by ∆R(G) ,
is called the augmentation ideal of RG. By [14, Proposition 3.2.10], the set
{g − 1|g ∈ G, g 6= e} is a basis of ∆R(G) over R.

For A =
∑

g∈G agg ∈ RG and for any integer t, we define A(t) =
∑

g∈G agg
(t).

With these notations, it follows that a multiset D of G is a regular difference
cover with parameters (v, k, λ) if and only if

DD(−1) = ke + λG (1.1)

in ZG.
Let G be a finite abelian group of exponent m. A character χ of G is a

homomorphism of G into the multiplicative group of complex m th roots of
unity. It is well known that the characters of G form a group G ∗ that is
isomorphic to G. The identity element of G ∗ is the principal character χ0 that
maps each element of G to 1. The characters of G can be extended by linearity
to the group ring ZG. Thus each character of G yields a ring homomorphism
from ZG into the ring of algebraic integers in the cyclotomic field obtained by
adjoining a primitive m th root of unity to the field Q of rational numbers. We
let ζm denote the complex m th root of unity e2πi/m.

It is easy to see that D is a (v, k, λ) regular difference cover in an abelian
group G if and only if

|χ(D)| 2 =

{
k2 = k + λv , if χ = χ0

k , if χ 6= χ0,

and that if D is a (v, k, λ) regular difference cover, then k(k − 1) = λ v.
Let G be a finite abelian group and let N be a normal subgroup of order

n of G. Let σ : G → G/N be the natural homomorphism. Then applying σ
on both sides of equation 1.1, we obtain the following Proposition, which will
be used often.

Proposition 1.2. Let D be a (v, k, λ) regular difference cover in an abelian
group G. Then σ(D) is a (v/n, k, nλ) regular difference cover in G/N .

Remark 1.3. Let D =
∑v

i=1 si g i, si ≥ 0, be a regular difference cover
with parameters (v, k, λ) in an abelian group G = {g1 = e, g2, . . . , gv}. Then∑v

i=1 si = k. Also, the identity element e is represented as a non-trivial dif-
ference exactly

∑v
i=1 si(si − 1) times. It follows that

∑v
i=1 si(si − 1) = λ and

hence
∑v

i=1 s2
i = k + λ. These conditions will be used later.

2. Multiplier Theorems

3



Multipliers for regular difference covers can be defined as in the case of
difference sets, namely:

Definition 2.1. Let D be a (v, k, λ) regular difference cover in an abelian
group G. An automorphism σ of G is said to be a multiplier of D if σ(D) =
D +g, for some g ∈ G. An integer t, relatively prime to the order of G , is said
to be a numerical multiplier, if the automorphism σ : x 7→ tx is a multiplier of
D.

We now prove a multiplier theorem for regular difference covers. The proof
is similar to the proof of Theorem VI.4.6 of [4], which we give below for the
sake of completeness.

Theorem 2.2. Let D be a (v, k, λ) regular difference cover in an abelian group
G such that (v, k) = 1. Let t be an integer such that t ≡ pf (mod v∗) for some
f , for every prime divisor p of k, where v∗ is the exponent of G. Then t is a
numerical multiplier for D (it follows that (t, v) = 1).

Proof. We first claim that D(t)D(−1) ≡ λG (mod k). For this, it is sufficient
to show that D(t).D(−1) ≡ λG (mod qa), for every prime divisor q of k such
that k = qak

′
, (k

′
, q) = 1. Suppose not; then D(t).D(−1) − λG = qb.B, where

B ∈ ZG, B � 0 (mod q) and b < a. Suppose that e is the smallest positive
integer such that te ≡ 1 (mod v∗). Now D(te) = D and hence

(D(t)D(−1) − λG)(D(t2)D(−t) − λG(t)) · · · (D(te)D(−te−1) − λG(te−1))

≡ (DD(−1))(D(t)D(−t)) · · · (D(te−1)D(−te−1)) (mod G)

≡ ke (mod G) ,

as (D(tr)D(−tr)) = ke+λG , and 0 ≤ r ≤ e−1. Thus (D(t)D(−1)−λG)(D(t2)D(−t)−
λG(t)) · · · (D(te)D(−te−1)−λG(te−1)) = ke+βG = ke+αG, where β ∈ ZG, α ∈ Z.
Also, ε(D(t)D(−1)−λG) = k2−λv = k, Where ε : ZG → Z is the augmentation
homomorphism. Hence, from above, ke = ke + αv, so that α = 0. Thus

(D(t)D(−1) − λG)(D(t2)D(−t) − λG(t)) · · · (D(te)D(−te−1) − λG(te−1)) = ke .

Hence
qebB.B(t) . . . B(te−1) = ke = qea(k

′
)e

implies that B.B(t) . . . B(te−1) ≡ 0 (mod q). But t ≡ qf (mod v∗), implies that
B(tr) = B(qfr) ≡ Bqfr

(mod q), by [4, Lemma VI.3.7]. Thus, B.Bqf
. . . Bqf(e−1) =

B1+qf+···+qf(e−1) ≡ 0 (mod q) and hence B ≡ 0 (mod q), by [4,Lemma 6.3.7],
which is a contradiction. Thus D(t)D(−1) = kQ + λG, Q ∈ ZG. Multiplying
both sides by D, we get D(t)(ke + λG) = kQD + λGD, so that

D(t) = DQ , (2.1)
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as GD = GD(t) = kG. Taking augmentation on both sides, k = ε(D(t)) =
kε(q), so that ε(Q) = 1 and hence Q−1 ∈ ∆Z(G). It follows that (Q−1)G = 0,
i.e., QG = G and also Q−1G = G. By (2.1), D(−t) = D(−1)Q(−1) and on multi-
plying D(t) and D(−t), we get ke+λG = (ke+λG)QQ(−1), i.e., ke = kQQ(−1),
i.e., QQ(−1) = e. If Q =

∑
g∈G qgg, then e = QQ(−1) implies that

∑
g∈G q2

g = 1

and hence Q = g for some g ∈ G. Thus, D(t) = D.g, g ∈ G, so that t is a
multiplier.

Remark 2.3. In fact one can show that if D is a regular difference cover
with parameters (v, k, λ) and if p is a prime divisor of k such that (p, v) = 1
and p > λ, then p is a multiplier for D. However, if k = pak

′
, (p, k

′
) = 1, then

λ = pak
′
(pak

′ − 1)/v and hence λ ≥ pa. Thus, such a p does not exist. Also, it
is possible to prove a multiplier theorem for regular difference covers, similar
to McFarland’s multiplier theorem for difference sets ([4,Theorem VI.4.10]),
but Theorem 2.2 above is most suitable for applications.

Remark 2.4. Let G =< g > be the cyclic group of order 11. Then D =
2e + 2g2 + 2g6 + 2g7 + 2g8 + 2g10 is easily seen to be a regular difference cover
in G with parameters (11, 12, 12). One can check that 3 is a multiplier for D
but the prime 2 is not a multiplier for D. However, (11, 12) = 1 and 2|12.
Thus, every prime divisor of k need not be a multiplier for regular difference
covers with parameters (v, k, λ). Therefore, a conjecture like the “ multiplier
conjecture for difference sets ” is not feasible for regular difference covers.

Let G be a finite abelian group of order v. Recall that G is a basis of ZG
over Z. We enumerate the elements of G in some order : G = {e = g1, . . . , gv}.
The regular representation % : G → GL(ZG) is defined by assigning for every
g ∈ G, the linear mapping %g which acts on the above basis by multiplication,
i.e., %g(gi) = ggi. The matrix corresponding to %g with respect to the above
fixed basis is a permutation matrix and hence the matrix corresponding to %g−1

is the transpose of the matrix corresponding to %g. We thus get a homomor-
phism % : G → GL(v, Z). Extending % by linearity to ZG, we get the regular
representation % : ZG → Mv×v(Z).

Definition 2.5. Let D be a (v, k, λ) regular difference cover in an abelian
group G. Let M be the matrix of the regular representation of D ∈ ZG (hav-
ing fixed the enumeration G = {e = g1, . . . , gv} of elements of G). We shall
call M to be an ”incidence matrix ” of D.

As in the proof of Lemma II.2.3 of [4], it follows that MMT has one eigen-
value k2 and v − 1 eigenvalues k. Thus det MMT = kv+1 and that M is non -
singular.

Let t be a numerical multiplier of a regular (v, k, λ) difference cover D
in an abelian group G. Then D(t) = Dgi for some gi ∈ G and %(D(t)) =
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%(Dgi) = %(D)%(gi) = MQ, where Q the permutation matrix %(gi). On the
other hand, for any gj ∈ G, (Dgj)

(t) = D(t)gt
j = Dgig

t
j. Since g 7→ gt is an

automorphism of G, it follows that this automorphism permutes the translates
D = Dg1, Dg2, . . . , Dgv (as g 7→ gig permutes elements of G). Thus, %(D(t)) =
PM , for some permutation matrix P , and hence M = P−1MQ. The number
of fixed rows (respectively columns) of M , on multiplication by P−1 and Q
respectively is the trace of P−1 (respectively the trace of Q). As M is non -
singular, Q = M−1PM and trace Q = trace P = trace P T = trace P−1.Thus,
the number of elements of G fixed by the automorphism g 7→ gt is same as
the number of translates Dgi of D fixed by g 7→ gt. Since e is fixed, it follows
that there exists at least one translate Dgi which is fixed by the automorphism
g 7→ gt. We have thus proved:

Proposition 2.7. Let t be a numerical multiplier of an abelian (v, k, λ) regular
difference cover D. Then there exists at least one translate Dgi of D which is
fixed by the automorphism g 7→ gt of G, i.e., (Dgi)

(t) = Dgi.

Remark 2.8. Using regular representations, one can prove the analogue of
the result of McFarland and Rice for regular difference covers, on the lines of
the proof of Theorem VI.2.6 of [4].

Remark 2.9. When considering a hypothetical abelian (v, k, λ) - regular
difference cover, Proposition 2.7 and Remark 2.8 allow us to assume that D
is fixed by every numerical multiplier. Hence D must then be the union (as
a multiset) of (several copies of) orbits on G under any group M (usually a
cyclic group) of numerical multipliers.

We shall now give some applications of the multiplier theorem for regular
difference covers. However, we first Characterize all cyclic regular difference
covers with parameters (k(k − 1)/2, k, 2), which, as claimed by Bier [5], exist
if and only if k = 3 or k = 4. We have not been able to verify the details of
his proof.

We first show:
Proposition 2.10. Suppose that D is a cyclic regular difference cover with
parameters (v,k,2). Then k is not divisible by square of any odd prime.

Proof. Suppose that p is an odd prime such that p2|k. As v = k(k−1)
2

, p|v.
Let S be the Sylow p− subgroup of G of order pa. Let G = ST for some
subgroup T of G. By Proposition 1.2, E = σ(D), the image of D under
σ : G → G/T is a (pa, k, 2v/pa) regular difference cover in S. Since p is self
conjugate modulo |S|, by a result similar to Lemma 1.2 of [2], it follows that
χ(E) ≡ 0 mod(p), for every non-principal character χ of S (as p2|k). So, by
Ma’s Lemma, E = pX+ < g > Y , where order of g is p, g ∈ S and X,Y ∈ ZS.
It follows that EE(−1) ≡ 0 (mod p) and as EE(−1) = ke + 2v

pa , p|2v
pa , which is
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not possible. Hence k is not divisible by the square of any odd prime.

If v is even, applying the (real valued) character of order 2 to the equation
DD(−1) = ke+λG, it follows that k = (χ(D))2 must be a perfect square.Thus,
it follows that if D is a regular cyclic difference cover with parameters (v, k, 2)
and if v is odd, then k is a product of distinct primes. Also, in case v is even,
k has to ve a perfect square and Proposition 2.10 implies that k = 22n and
v = 22n−1(22n − 1).

A proof similar to that of Theorem VI.15.11 0f [4] yields the following ex-
ponent bounds.

Theorem 2.11 (Turyn’s Exponent Bound). Assume the existence of a (v, k, λ)-
regular difference cover D =

∑
g∈G sgg in an abelian group G. Suppose that

T = maxg∈G sg. Let p be a prime divisor of v and denote the Sylow p−subgroup
of G by S. Let U be any subgroup of G with U ∩ S = {e} and assume that p2a

divides k for some a ≥ 1. If p is self conjugate modulo the exponent of G/U ,

then exp S ≤ |U |
pa |S|T .

Applying the above result to hypothetical cyclic regular difference cover
with parameters (22n−1(22n−1), 22n, 2), one observes that as λ = 2, Remark 1.3
yields that T = 2. Hence, taking U = {e}, 22n−1 ≤ 1

2n .22n−1.2, i.e., 22n−1 ≤ 2n,
so that n ≤ 1. Hence the only difference cover of this type would have param-
eters (6, 4, 2). Combining all the above observations, we have:

Proposition 2.12 If D is a regular difference cover with parameters (v, k, λ),
then either v = 6, k = 4 or k is a product of different primes.

In order to characterize all regular difference covers with parameters (v, k, 2),
we first prove:

Lemma 2.13. Let G = P × H be an abelian group of order v = pw, where
P = 〈α〉, o(α) = p, |H| = w, p is a prime and w is a positive integer rela-
tively prime to p. Let t be an integer such that t ≡ 1 mod w and t ≡ 0 mod p.
Suppose there exists D ∈ ZG such that

DD(−1) = n + λG

with p|n and p|ε(D). Then

D(t)D(−1) = pX

where X ∈ ZG satisfies PX = n
p
P + λG.

Proof: Note that t ≡ pj mod pw for some positive integer j. So

D(t)D(−1) ≡ Dpj

D(−1) ≡ nDpj−1 + λχ0(D)pj−1G ≡ 0 mod p,

i.e. D(t)D(−1) = pX for some X ∈ ZG.
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Let ρ : G → H be the projection such that ρ(α) = 1 and ρ(h) = h for all
h ∈ H. Since ρ(D) = D(t) = ρ(D(t)),

n + λpH = ρ(D)ρ(D)(−1) = ρ(D(t)D(−1)) = pρ(X).

Thus PX = n
p
P + λG.

Lemma 2.14 With the notation and conditions of Lemma 2.13 above, suppose
in addition that 0 < λ < p. Then

v ≤ (n2 + λnp)(p− 1)

λp(p− λ)
+ p.

Proof: Let X =
∑p−1

i=0

∑
g∈H aαigα

ig where aαig are integers. Since

p2XX(−1) = D(t)D(−t)DD(−1) = (n+λpH)(n+λG) = n2+λnpH+(λn+λ2v)G,

we have
p−1∑
i=0

∑
g∈H

a2
αig =

n2 + λnp + λn + λ2v

p2
.

By PX = n
p
P + λG, we have

p−1∑
i=0

aαig =

{
λ if g 6= 1
n+λp

p
if g = 1.

Note that
p−1∑
i=0

a2
αi ≥

(
n + λp

p2

)2

p =
n2 + 2λnp + λ2p2

p3

and since 0 < λ < p, for g 6= 1,

p−1∑
i=0

a2
αig ≥ λ.

So

λ

(
v

p
− 1

)
+

n2 + 2λnp + λ2p2

p3
≤ n2 + λnp + λn + λ2v

p2
.

and the lemma follows.

We are now ready to show :

Theorem 2.15. Cyclic (v, k, 2) regular difference covers exist if and only if
(v, k) = (3, 3) or (6, 4).
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Proof. By Proposition 2.12, either v = 6, k = 4 or k is a product of distinct
primes. Suppose there exists a cyclic (v, k, 2) difference cover with k ≥ 10.
Then v = (k2− k)/2. Let p be the largest prime divisor of k. Note that p ≥ 5.
By Lemma 2.14,

k2 − k

2
≤ (k2 + 2kp)(p− 1)

2p(p− 2)
+ p (*)

<
k2 + 2kp

2(p− 2)
+ p.

This implies that

k <
3p− 2

p− 3
+

2p(p− 2)

k(p− 3)
≤ 3p− 2

p− 3
+

2(p− 2)

p− 3
= 5 +

9

p− 3
≤ 9.5 ,

which contradicts the assumption k ≥ 10.
However, if (v, k, 2) regular difference cover exists, then k ≤ 9. Now, regu-

lar difference covers with parameters (10, 5, 2) does not exist (5 is not a square)
and one with parameters (15, 6, 2) does not exist because the one with param-
eters (3, 6, 10) does not exist (not possible to find si’s with s1 + s2 + s3 = 6,
s2
1 + s2

2 + s2
3 = 16). Also, k = p = 7, does not satisfy the inequality (*) above.

Regular difference covers with parameters (28, 8, 2) and (36, 9, 2) do not exist
as 8 is not a square and by Proposition 2.11 respectively. Thus, only choices
left are (3, 3, 2) and (6, 4, 2) and one checks easily that regular difference covers
with these parameters exist (D = 1 + 2g for (3, 3, 2) and D + 2 + h + h4 for
(6, 4, 2)). This completes the proof of Theorem 2.15.

Having investigated regular difference covers with parameters (k(k−1)/2, k, 2),
we now turn to regular difference covers with parameters ((k−1)/2, k, 2k) and
apply multiplier theorem. The multiplier Theorem 2.2 does not yield any
any significant information about regular difference covers with parameters
((p − 1)/2, p, 2p), where p is a prime; as even though p is a multiplier for the
regular difference cover with parameters ((p − 1)/2, p, 2p), but p ≡ 1 (mod
(p−1)/2) and hence orbits on G by the automorphism group generated by the
mulpilier p are of length 1. We thus investigate the regular difference covers
with parameters ((pq − 1)/2, pq, 2pq), where p and q are distinct primes.

If D is a regular difference cover with parameters (v, k, λ) and if M =
%(D) is the matrix of D in the regular representation, then as observed earlier
MMT = kIv×v + λJv×v. Working exactly as in the proof of Lemma II.4.5 of
[4], it follows that Bruck-Ryser-Chowla type result holds for regular difference
covers. Namely, if there exists a regular difference cover with parameters
(v, k, λ), with v odd, then the Diophantine equation

x2 = ky2 + (−1)
v−1
2 λz2
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has a non-trivial solution in integers.
For distinct primes p and q, if a cyclic regular difference cover with param-

eters (pq−1
2

, pq, 2pq) exists then a simple application of the above result yields
that in case p and q are odd, then either p ≡ 1 (mod 8), q ≡ 3 (mod 8) or
p ≡ 1 (mod 8), q ≡ 7 (mod 8) and in both cases p is a square modulo q. For
instance p = 73, q = 23 is one such pair. We show:

Example 2.16. The regular difference cover with parameters (839, 73 ×
23, 2 × 73 × 23)does not exist. From Theorem 2.2, it follows that both 73
and 23 are multipliers for D and hence D must be a union of orbits of the
automorphism induced by either 23 or 73 in the cyclic group of order 839. The
order of either of 23 or 73 modulo 839 is 419. There is one orbit of length 1
and two of length 419, say, C1 and C2 for the automorphism induced by the
prime 23 in the group of order 839. Suppose that D = a.e+ b.C1 + c.C2, where
a, b ≥ 0. Then by Remark 1.3,

a + 419b + 419c = 73× 23 = 1679

a2 + 419b2 + 419c2 = 73× 23 + 2× 73× 23 = 3× 1679 .

One checks easily that as 0 ≤ b ≤ 3 and 0 ≤ c ≤ 3, there is no solution to the
above equations. Thus regular difference covers with parameters (839, 73 ×
23, 2× 23× 73) does not exist.

Example 2.17. The regular difference covers with parameters (33, 34, 34) do
not exist. As, by Theorem 2.2, 17 is a multiplier. The order of 17 modulo 33
is 10. There are one orbit of size 1, one orbit of size 2 and three orbits of size
10. Since the hypothetical difference cover has to be a union of orbits, there
must exist non-negative integers a, b, c, d, e satisfying

a + 2b + 10c + 10d + 10e = 17× 2 = 34

a2 + 2b2 + 10c2 + 10d2 + 10e2 = 34 + 34 = 68

or, after setting a = 2a1

a1 + b + 5c + 5d + 5e = 17

2a2
1 + b2 + 5c2 + 5d2 + 5e2 = 34 .

It follows that 0 ≤ c, d, e ≤ 2 and a1 + b ≡ 2 (mod 5) and 2a2
1 + b2 ≡ 4 (mod

5). Thus either a1 ≡ 0 (mod 5) and b ≡ 2 (mod 5) or a1 ≡ 3 (mod 5) and
b ≡ 4 (mod 5). For a1 = 3 and b = 4 and also for a1 = 0 and b = 2, one checks
easily that the above equations have no solutions. Hence the required regular
difference covers do not exist.
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Example 2.18. Regular difference covers with parameters (81, 82, 82) does
not exist. As before, 41 is a multiplier. The orbit lengths are 1, 2, 6, 18 and
54. If the hypothetical regular difference cover exists, there should exist non-
negative integers a, b, c, d, e such that

a + 2b + 6c + 18d + 54e = 82

a2 + 2b2 + 6c2 + 18d2 + 54e2 = 164 .

The above two equations have a unique solution a = 6, b = 5, c = 2, d = 0, e =
1. Thus D should be

D = 6e + 5(g27 + g54) + 2(g9 + g18 + g36 + g72 + g63 + g45) + (g + g2 + · · · )

Checking the character values using Mathematika on the computer shows that
D is not a regular difference cover. Hence regular difference covers with pa-
rameters (81, 82, 82) do not exist.

In a similar manner, Theorem 2.2 can be used to show the non-existence
of regular difference covers with parameters (109, 73× 3, 2× 73× 3) and many
more.

3. Constructions of new regular difference covers

In this section we shall construct several new families of regular difference
covers. In [3], regular difference covers with parameters (m(m−1), m2, m(m+
1)) and regular difference covers with parameters (pn, pn, pn−1) (p an odd
prime) of the form E = e+2D were constructed, where for pn ≡ 3 (mod 4), D
is a difference set with parameters (pn, (pn − 1)/2, (pn − 3)/4) and for pn ≡ 1
(mod 4), D is a partial difference set with parameters (pn, (pn − 1)/2, (pn −
5)/4, (pn − 1)/4).

For several families of difference sets D, it is possible (though not easy) to
choose positive integers a and b such that E = aD+b(G−D) is a regular differ-
ence cover with suitable parameters. A significant feature of this construction
is that for a chosen abelian group G, it is possible to construct infinitely many
regular difference covers in G with size and regularity parameter (i.e., the
number of times it covers G) as large as desired.

Suppose that D is a difference set in a group G with parameters (v, k, λ)
and let E = aD + b(G−D), where a and b are positive integers. Then for any
non-principal character χ of G, χ(E) = aχ(D) + bχ(G − D) = (a − b)χ(D)
and hence

χ(E)χ(E) = (a− b)χ(D)χ(D) = (a− b)2(k − λ) .
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Thus E will be a regular difference cover in G if and only if (a− b)2(k − λ) =
χ(E)χ(E) = |E| = ak + b(v − k). For further use we record this observation
as:

Lemma 3.1 Let D be a difference set with parameters (v, k, λ) in an abelian
group G. Then, for positive integers a and b, E = aD + b(G−D) is a regular
difference cover in G with parameters (v, ak + b(v − k), (ak + b(v − k))(ak +
b(v − k)− 1)/v) if and only if (a− b)2(k − λ) = ak + b(v − k).

We now have:

Theorem 3.2.(a) (Planar Regular Difference Covers) Let D be a planar
difference set with parameters (n2 + n + 1, n + 1, 1). Then

E = (4n3 + 6n2 + 4n)D + (4n3 + 8n2 + 7n + 2)(G−D)

is a regular difference cover with parameters (n2 + n + 1, 4n5 + 12n4 + 17n3 +
12n2 + 4n, (4n5 + 12n4 + 17n3 + 12n2 + 4n)(4n3 + 8n2 + 5n− 1)).
(b) (Paley Regular Difference Covers) Let D be a Paley difference set
with parameters (q, (q−1)/2, (q−3)/4), where q is a prime power, q ≡ 3 (mod
4). Then

E = (16q2 + 12q − 4)D + (16q2 + 20q − 4)(G−D)

is a regular difference cover with parameters (q, 16q2(q + 1), 16q(q + 1)(16q3 +
16q2 − 1)).
(c) (Menon - Hadamard Regular Difference Covers) Let D be a Menon
- Hadamard difference set with parameters (4u2, 2u2 − u, u2 − u). Then

E = (4u2 − 2u− 1)D + (4u2 + 2u− 1)(G−D)

is a regular difference cover with parameters (4u2, 16u4, 4u2(4u− 1)(4u + 1)).
(d) (Singer Regular Difference Covers) Let D be a Singer difference set

with parameters
(

qd+1−1
q−1

, qd−1
q−1

, qd−1−1
q−1

)
, d ≥ 2, q a prime power. Then

E =

(
2qd + 4qd−1.

qd+1 − 1

q − 1

)
D+

(
q(1 + 2qd−1) + (2 + 4qd−1)

(
qd+1 − 1

q − 1

))
(G−D)

is a regular difference cover with parameters
(

qd+1−1
q−1

, K, K(K−1)(q−1)
qd+1−1

)
, where

K = qd−1[4q2d+2 + 4qd+3 − 4qd+2 − 8qd+1 + q4 − 2q3 − 3q2 + 4q + 4]/(q − 1)2.
(e) (McFarland Regular Difference Covers) Let D be a McFarland differ-

ence set with parameters
(
qd+1

(
1 + qd+1−1

q−1

)
, qd

(
qd+1−1

q−1

)
, qd

(
qd−1
q−1

))
, where q

is a prime power and d is a positive integer. Then

E = (4qd(2q + q2 + · · ·+ qd+1) + 2(qd+1 + q − 1))D

+ (4qd(2q + q2 + · · ·+ qd+1)− 2(1 + q + · · · qd))(G−D)

12



is a regular difference cover with parameters
(
v = qd+1

(
1 + qd+1−1

q−1

)
, K, K(K−1)

v

)
,

where K = 4q2d(2q + q2 + · · ·+ qd+1)2.

Proof. For each of the families in (a), (b), (c), (d) and (e), using Lemma 3.1,
it is enough to check that for the given choice of ‘ a ’ and ‘ b ’, (a− b)2(k−λ) =
ak+b(v−k), where D is the difference set under consideration with parameters
(v, k, λ).

Example 3.3 Let D = g + g2 + g4 be the (7, 3, 1) difference set in the cyclic
group G =< g > of order 7. Then E = 64(g + g2 + g4) + 80(e + g3 + g5 + g6)
is a (7, 512, 37376) regular difference cover. Also, let D = g + g3 + g4 + g5 + g9

be the difference set with parameters (11, 5, 2) in the cyclic group G =< g >
of order 11. Then E = (16× 112 + 12× 11− 4)(g + g3 + g4 + g5 + g9) + (16×
112 +20× 11− 4)(e+ g2 + g6 + g7 + g8 + g10) is a (11, 23232, 49063872) regular
difference cover.

Remark 3.4. Usually, for a (v, k, λ) difference set D in an abelian group G,
there are infinitely many choices for a and b such that E = aD + b(G−D) is a
regular difference cover. In fact, if a and b are such that E = aD+ b(G−D) is
a regular difference cover with parameters (v, ak+b(v−k), (ak+b(v−k))(ak+
b(v − k)− 1)/v), then for

c = (4(k − λ) + 2)v + 4(a− b)(k − λ)− 2k

d = 4(k − λ)v + 4(a− b)(k − λ)− 2k ,

E
′
= (a + c)D + (b + d)(G − D) is also a regular difference cover in G with

parameters (v, (a + c)k + (b + d)(v − k), ((a + c)k + (b + d)(v − k))((a + c)k +
(b + d)(v − k)− 1)/v). Indeed, one checks that

χ(E
′
)χ(E ′) = ((a− b) + (c− d))2(k − λ)

= ak + b(v − k) + 4v2(k − λ) + 4(a− b)v(k − λ)

= (a + c)k + (b + d)(v − k)

Remark 3.5. In general, for a partial difference set D with parameters
(v, k, λ, µ), it is not possible to choose positive integers a and b such that
E = aD + b(G − D) is a regular difference cover. Indeed, proceeding as in
Lemma 3.1, E will be a regular difference cover if and only if for any non-
principal character χ of G,

χ(E)χ(E) = (a− b)2χ(D)χ(D) = ak + b(v − k)

i.e., if and only if

|χ(D)|2 =
ak + b(v − k)

(a− b)2
.
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The right hand side of the above is a fixed number, whereas, usualy, for partial

difference sets, non-principal characters take two different values
λ−µ±

√
(λ−µ)2+4γ

2
,

where γ = k − µ, if e /∈ D and γ = k − λ if e ∈ D (see [9] or [13]).
As partial difference sets D do not yield regular difference covers of type

E = aD+b(G−D), we now examine whether it is possible to construct regular
difference covers of type ae + bD from partial difference sets. We observe:

Lemma 3.6. Let D be a (v, k, λ, µ) partial difference set with D = D(−1) and
e /∈ D. Then E = ae + bD will be a (v, a + bk, b2µ) regular difference cover if
and only if µ − λ > 0, and either b(µ − λ) = 2a and a2 + b2(k − µ) = a + bk
or µ− λ = 2ab and a2 + k − µ = a + bk.

Proof. Using properties of partial difference sets, as given in [9] or [13], it
follows that

EE(−1) = a2 + 2abD + b2D2

= a2 + 2abD + b2(λD + µ(G−D) + (k − µ)e)

= (a2 + (k − µ)b2)e + (2ab + b2λ)D + b2µ(G−D) .

Hence EE(−1) = (a + bk)e + αG, for some positive integer α if and only if
2ab + b2λ = b2µ and a2 + (k − µ)b2 = a + bk.

Also, writing EE(−1) differently, we get

EE(−1) = a2 + 2abD + b2(µG + (λ− µ)D + (k − µ)e)

= (a2 + k − µ) + b2µG + (2ab + (λ− µ))D .

Thus, EE(−1) = (a + bk)e + αG if and only if a2 + k − µ = a + bk and
2ab + (λ− µ) = 0.

J. Davis in [9] has constructed partial difference sets in Z2
p2 with parameters

(p4, (t + fp)(p2 − 1), p2 + (t + fp)2 − 3(t + fp), (t + fp)2 − (t + fp)), 3 ≤ t ≤
p + 1, 1 ≤ f ≤ p− 1 (Theorem 3.3 of [9]). Using these partial difference sets,
we observe:

Proposition 3.7. Let D be the partial difference set as above. Then E =
ae + bD is a regular difference cover if and only if t = p+1

2
, f = p−1

2
and hence

D is a partial difference set with Paley parameters (p4, p4−1
2

, p4−5
4

, p4−1
4

).

proof. For the above partial difference set v = p4, k = (t + fp)(p2 − 1),
λ = p2+(t+fp)2−3(t+fp), µ = (t+fp)2−(t+fp). Hence µ−λ = 2(t+fp)−p2.
As µ− λ is odd, we will never get µ− λ = 2ab, for any a, b. Thus, we have to
find positive integers a and b such that

b(µ− λ) = 2a and a2 + b2(k − µ) = a + bk .
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Substituting the values of k, µ− λ and b− µ and eliminating a, we get

b =
2[(µ− λ) + 2k]

(µ− λ)2 + 4(k − µ)
=

2(2t + 2fp− 1)

p2
.

Thus, p2|2t + 2fp − 1, where 3 ≤ t ≤ p + 1 and 1 ≤ f ≤ p − 1. So
2t + 2fp− 1 ≡ 0 (mod p) implies that 2t ≡ 1 (mod p) and hence t = (p + 1)/2
and f = (p − 1)/2. Thus D is the partial difference set with parameters
(p4, (p4 − 1)/2, (p4 − 5)/4, (p4 − 1)/4) and b = 2, a = 1 is the only solution,
i.e., D = e + 2D is the only regular difference cover of this type.

Using Theorem 3.4 and Corollary 3.2 of [9], we immediately get:

Corollary 3.8. Let D be either the partial difference set in Zr
p2 with parameters

(p2r, (p2r−1)/2, (p2r−5)/4, (p2r−1)/4) or the partial difference set in Z4a
p2×Z4b

p ,

with a + b a power of 2 and with parameters (p4a+4b, (p4a+4b − 1)/2, (p4a+4b −
5)/4, (p4a+4b − 1)/4). Then E = e + 2D is a regular difference cover with pa-
rameters (p2r, p2r, p2r − 1) in Zr

p2 or with parameters (p4a+4b, p4a+4b, p4a+4b− 1)

in Z4a
p2 × Z4b

p .

Remark 3.9. We finally note that it is not possible either to construct regu-
lar difference covers of the form E = ae + bD from the partial difference sets
D, constructed in [13] with parameters (p2t, r2(p

t − 1), pt + r2
2 − 3r2, r

2
2 − r2),

r2 = lpt−s, 1 ≤ l ≤ ps, s is a positive divisor of t, s < t, for any prime p > 2.
Indeed, using Lemma 3.6, we need to find positive integers a and b such that
b(µ−λ) = 2a and a2 + b2(k−µ) = a+ bk. It follows that b = 2(2lpt−s− 1)/pt.
As s|t and 1 ≤ s ≤ t, it is not possible to choose any integer b satisfying the
above requirements, for any odd prime p.
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