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Abstract

Let I = [a, b] with −∞ < a < b < ∞ and 1 < p < ∞. Let

Tf(x) =

∫ x

a

f(t)dt, with a ≤ x ≤ b

be the Hardy operator on interval I and let we have the following Sobolev
Embeddings on interval I and on unit circle T:

E0 : W 1,p
0 (I) → Lp(I)

Ea : W 1,p
a (I) → Lp(I)

Emid : W 1,p
mid(I) → Lp(I)

E1 : W 1,p(I) → Lp(I)

E2 : W 1,p(T) → Lp(T)

E3 : W 1,p(I)/ span{1} → Lp(I)/ span{1}
E4 : W 1,p(T)/ span{1} → Lp(T)/ span{1}.

Exact values of the Approximation numbers and n-widths for the
Hardy operator and these Sobolev embeddings are shown.

We also show the optimal n-dimensional linear map for approximation
of the Hardy operator and the Sobolev embeddings and the optimal n-
dimensional subspace for approximation of the Hardy operator and the
Sobolev spaces in Lp, together with corresponding extremal functions.

Keyword: Approximation numbers, Sobolev Embedding, Hardy-type
operators, Kolmogorov width, Gel’fand width, Bernstein width, linear
width, Integral operators, MSC 47G10, 47B10

1 Introduction.

Let in this paper I = [a, b] be an interval with −∞ < a < b <∞ and T be the
unit circle realized as the interval [−π, π] with identified points −π and π. We
also assume that 1 < p < ∞ and denote p′ = p

p−1 and by ‖.‖p,T and ‖.‖p,I the
usual norm on the Lebesque space Lp(T) and on Lp(I).
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1.1 Definitions of spaces and embeddings

Let we define on bounded interval I = [a, b] the Hardy operator Tc by

Tcf(x) =
∫ x

c

f(t)dt, where a ≤ x, c ≤ b.

In the case when c = a we can shortly use the notation T instead Ta. By
BLp(I) = {f ; f ∈ Lp(I) and ‖f‖p,I ≤ 1} we shall mean the unit ball in Lp(I)
space and by TcBL

p(I) = {Tcf ; f ∈ BLp(I)} image of BLp(I) under Tc. It is
well-known that for bounded interval I the operator Tc : Lp(I) → Lp(I) is a
compact bounded operator.

By W 1,p(T) (or respectively by W 1,p(I)) we understand the Sobolev space of
functions on T (or on I) (i.e. the set of all absolutely continuous functions on T
with ‖f ′‖p,T <∞, or respectively on I with ‖f ′‖p,I <∞). Let we remind that
‖f ′‖p,T and ‖f ′‖p,I are pseudonorms on W 1,p(T) or respectively on W 1,p(I).

By W 1,p
0 (I) we understand, as usual, the space of all absolutely continuous

functions on I with finite norm ‖f ′‖p,I and 0 boundary value at a and b.
By W 1,p

a (I) we mean the space of all absolutely continuous functions on I
with finite norm ‖f ′‖p,I and 0 boundary value at a.

And by W 1,p
mid(I) we mean the space of all absolutely continuous functions

on I with finite norm ‖f ′‖p,I and 0 value at the middle of interval I.
Let we define unit balls on our Sobolev spaces:

BW 1,p
0 (I) = {f ; f ∈W 1,p

0 (I) and ‖f ′‖p,I ≤ 1},

BW 1,p
mid(I) = {f ; f ∈W 1,p

mid(I) and ‖f ′‖p,I ≤ 1},

BW 1,p
a (I) = {f ; f ∈W 1,p

a (I) and ‖f ′‖p,I ≤ 1},

BW 1,p(I) = {f ; f ∈W 1,p(I) and ‖f ′‖p,I ≤ 1},

BW 1,p(T) = {f ; f ∈W 1,p(T) and ‖f ′‖p,T ≤ 1}.

Since each function g ∈ BW 1,p(I) can be express as g(x) =
∫ x

a
f(t)dt + c,

where c is a constant then we have

BW 1,p(I) = TBLp(I) + const., (1)

and also we can see that

BW 1,p(T) = BW 1,p
0 ([−π, π]) + const., (2)

BW 1,p(I) = BW 1,p
0 (I) + const.+ x ∗ const., (3)

BW 1,p
a (I) = TBLp(I), (4)

BW 1,p
mid(I) = TcBL

p(I) where c = (b+ a)/2, (5)

here “=” is used as equation for sets.
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For 1 < p <∞ we shall consider in this paper the following Sobolev embed-
dings

E0 : W 1,p
0 (I) → Lp(I),

Ea : W 1,p
a (I) → Lp(I),

Emid : W 1,p
mid(I) → Lp(I),

and also these unbounded Sobolev embeddings:

E1 : W 1,p(I) → Lp(I),

E2 : W 1,p(T) → Lp(T),

and their variations:

E3 : W 1,p(I)/ span{1} → Lp(I)/ span{1},

E4 : W 1,p(T)/ span{1} → Lp(T)/ span{1}.
By W 1,p(I)/ span{1} we mean the factorization of the space W 1,p(I) with

respect to constant functions equipped with norm ‖f ′‖p. Then we have f ∈
W 1,p(I)/ span{1} if and only if ‖f‖p,I = infc∈R ‖f − c‖p,I and ‖f ′‖p,I <∞. In
a similar way we define Lp(I)/ span{1}, W 1,p(T)/ span{1} and Lp(T)/ span{1}.

The norms of E0, Ea and Emid are defined by

‖E0‖ = sup
‖f ′‖p,I>0,f(a)=f(b)=0

‖f‖p,I

‖f ′‖p,I
,

‖Ea‖ = sup
‖f ′‖p,I>0,f(a)=0

‖f‖p,I

‖f ′‖p,I
,

‖Emid‖ = sup
‖f ′‖p,I>0,f((b+a)/2)=0

‖f‖p,I

‖f ′‖p,I
.

For unbounded E1, E2 we have

‖E1‖ = sup
‖f ′‖p,I 6=0

‖f‖p,I

‖f ′‖p,I
= ∞,

‖E2‖ = sup
‖f ′‖p,T 6=0

‖f‖p,T

‖f ′‖p,T
= ∞,

and next we shall study approximation of these unbounded embeddings by linear
maps and by linear subspaces.

The norms of E3 and E4 are defined by:

‖E3‖ = sup
f∈W 1,p(I)/ span{1}

‖f‖p,I

‖f ′‖p,I
,

‖E4‖ = sup
f∈W 1,p(T)/ span{1}

‖f‖p,T

‖f ′‖p,T
.

Since |I| < ∞ it is well-known that all these embeddings are compact (see
for example, [EE], Theorem V.4.18).
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1.2 Definitions of widths and approximation numbers

Let we recall the definitions of n-widths and the approximation numbers (for
more see [PI], [EE], [ET] and [T]).

Definition 1.1 Let X be a normed linear space with norm ‖.‖X and let A be
a central symmetric set in X.

The linear n-width of A with respect to X is given by

δn(A,X) = inf
Pn

sup
x∈A

‖x− Pn(x)‖X

where the infimum is taken over all continuous linear operators Pn of X into
X of rank n (i.e. range of Pn is of dimension n). Continuous linear operator
Pn of rank at most n, for which δn(A,X) = supx∈A ‖x − Pn(x)‖X is called an
optimal linear operator for δn(A,X).

The Kolmogorov n-width of A with respect to X is given by

dn(A,X) = inf
Xn

sup
x∈A

inf
y∈Xn

‖x− y‖X

where the infimum is taken over all n-dimensional subspaces Xn of X. Subspace
Xn of X with dimension at most n, for which dn(A,X) = supx∈A infy∈Xn

‖x−
y‖X is called an optimal subspace for dn(A,X).

The Gel’fand n-width of A with respect to X is given by

dn(A,X) = inf
Ln

sup
x∈A∩Ln

‖x‖

where the infimum is taken over all closed subspaces Ln of X of codimension at
most n. Subspace Ln of X with codimension at most n, for which dn(A,X) =
sup{‖x‖;x ∈ A ∩ Ln} is called an optimal subspace for dn(A,X).

The Bernstein n-width of A with respect to X is defined by

bn(A,X) = sup
Xn+1

sup{λ ≥ 0;Xn+1 ∩ (λ BX) ⊂ A}

where BX is the unit ball of X and the outer supremum is taken over all sub-
spaces Xn+1 ⊂ X such that dimXn+1 = n + 1. Subspace Xn+1 ⊂ X with
dimension n + 1 for which Xn+1 ∩ (bn(A,X) BX) ⊂ A is called an optimal
subspace for bn(A,X).

Definition 1.2 Let X and Y be normed linear spaces with norms ‖.‖X and
‖.‖Y and T be a linear operator (possibly unbounded) from X to Y . The nth-
approximation number of T is defined

an(T ) = inf sup
‖f‖X≤1

‖Tf − Pf‖Y

where the infimum is taken over all bounded linear maps P : X → Y with rank
less that n. Bounded linear operator P from X to Y of rank at most n − 1
for which an(T ) = sup‖f‖X≤1 ‖Tf − Pf‖Y is called optimal linear operator for
an(T ).
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In this definition of approximation numbers we allow an unbounded linear op-
erator, this helps us to deal with unbounded embeddings E1 and E2. For more
about approximation numbers see [EE].

Let we state the relation between n-widths and the approximation numbers

Observation 1.3 Let Y , X be linear spaces such that Y ⊂ X and let BY =
{y; y ∈ Y, ‖y‖Y ≤ 1} and T : Y → X be a linear operator (possibly unbounded),
then

an+1(T ) = δn(TBY,X) ≥ dn(TBY,X), dn(TBY,X) ≥ bn(TBY,X)

where TBY is the image of unit ball in Y under T .

Proof: For proof see [PI]. �

1.3 Known results

Let we recall some known results about extremal problems for the Hardy oper-
ator and n-width and the approximation numbers. From papers [Le], [S], [BS]
or [EL] we have the following lemma about extremal problem for the Hardy
operator.

Lemma 1.4 Let Tf(x) =
∫ x

0
f(t)dt be the Volterra operator and let T : Lp(0, l) →

Lp(0, l) where p ≥ 1 and 0 < l <∞. Then

‖T‖ := sup
‖f‖p,(0,l)>0

‖Tf‖p,(0,l)

‖f‖p,(0,l)
= 2C(p)l

where C(p) = 1
2

p′1/pp1/p′

B(1/p′,1/p) = 1
2p

′1/p
p1/p′ sin(π/p)

π , where p′ is the dual exponent
of p and B is the classical beta function. Extremals are all non-zero multiples
of cosp(

πpx
l ), where πp = B(1/p, 1/p′) = π

sin(π/p) and T (cosp)(x) = sinp(x).

(Historical remark: As far as we can find, this lemma was the first time
proved by V.I. Levin [Le] and then in more general form by E. Schmidt [S].
Recently the lemma was independently proved again in [BS] and in [EL].)

In this lemma cosp and sinp are the p-goniometric functions which are gen-
eralizations of the usual sin and cos functions (see [Li2] and [DM] for more).
sinp(.) is defined as the unique (global) solution to the initial–value problem

(|u′|p−2u′)′ +
2p

p′pp−1
|u|p−2u = 0

u(0) = 0, u′(0) = 1.

Or can be defined by using the following inverse functions.
For s ∈ [0, p/2] we have

arcsinp(s) =
p

2

∫ 2s
p

0

dt

(1− tp)1/p
,
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(note that this integral converges for all s ∈ [0, p/2] ).
Note that as arcsinp : [0, p/2] → [0, πp/2] is strictly increasing then its inverse

function sinp : [0, πp/2] → [0, p/2] is also strictly increasing.
We extended sinp from [0, πp/2] to R as a 2πp periodic function by the usual

way as in the p = 2 case.
We define cosp as cosp(t) := d

dt sinp(t).
And then we have that(p

2

)p

| cosp(t)|p + | sinp(t)|p =
(p

2

)p

for all t ∈ R,

and
πp = πp′ .

We note that in this paper we are using the definition of πp, sinp and cosp

functions from the paper [DM] which is slightly different from the definition of
πp and the sinp function used in [Li1] and in [Li2].

We can learn more about these functions from historical paper [Lu] or from
more recent paper [Li2] or [DM].

sinp function plays important rules also in characterization of eigenvalues for
p-Laplacian eigenvalue problem as we shall see.

Let us recall the definition of the p-Laplacian eigenvalue problem with Dirich-
let and Neumann boundary conditions and results about characterization of
their eigenfunctions and eigenvalues.

Definition 1.5 For 1 < p < ∞, λ > 0 and T > 0 we define the p-Laplacian
eigenvalue problem by this equation:

(|u′|p−2u′)′ + λ|u|p−2u = 0, on (0, T ), (6)

with Neumann boundary condition:

u′(0) = 0, u′(T ) = 0, (7)

or with Dirichlet boundary condition:

u(0) = 0, u(T ) = 0. (8)

The set of eigenvalues for p-Laplacian eigenvalue problem with Neumann
boundary condition is given by λ0(T ) = λ0 = 0 and

λn(T ) = λn =
(

2nπp

T

)p 1
p′pp−1

for each n ∈ N.

The corresponding eigenfunctions are u0(t) = c, c ∈ R and

un(t) =
T

nπp
sinp

(
nπp

T

(
t− T

2n

))
for each n ∈ N.
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The set of eigenvalues for p-Laplacian eigenvalue problem with Dirichlet
boundary condition is the same as it is for the problem with Neumann boundary
condition:

λn(T ) = λn =
(

2nπp

T

)p 1
p′pp−1

for each n ∈ N.

And the corresponding eigenfunctions for for p-Laplacian eigenvalue problem
with Neumann boundary condition are:

vn(t) =
T

nπp
sinp

(nπp

T
t
)

for each n ∈ N.

(for more see [Li1] and [DM])
The following lemma and remark will play important role in next.

Lemma 1.6 Suppose the same condition as in Lemma 1.4 then

sup
‖f‖p,(0,l)>0

inf
c∈R

‖Tf − c‖p,(0,l)

‖f‖p,(0,l)
= C(p)l = sup

‖f‖p,(0,l)>0

‖Tf − Tdf‖p,(0,l)

‖f‖p,(0,l)

where C(p) is as in Lemma 1.4, d = l/2 and supremum is reached for f(x) =
cosp

(πp

l (x− l
2 )
)

with c = sinp

(πp

2

)
.

Proof: The first identity can be obtained from Lemma 1.4, see [BS] and [EL]
for the exact proof. The proof of the second identity can be found in [EHL]. �

The following remark is obvious consequence of Lemma 1.6.

Remark 1.7 Let I = [a, b], −∞ < a < b < ∞ and 1 < p < ∞ then for
φ(x) = sin

(
x−a
b−a

)
we have

‖φ‖p,I

‖φ′‖p,I
= C(p)|I|,

where C(p) is as in Lemma 1.4.

In paper [TB] we have the following lemma about exact value of the Kol-
mogorov n-width,

Lemma 1.8 Let 1 ≤ p <∞, then

dn(BW 1,p(0, 1), Lp(0, 1)) = C(p)
1
n
,

where C(p) is as in Lemma 1.4.
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Let us introduce different partitions of the interval [a, b] into subintervals for
our next use.

I(n) =
{
Ii; I0 =

[
a, a+

b− a

2n

]
, In =

[
b− b− a

2n
, b

]
, (9)

Ii =
[
a+

(b− a)
2n

(2i− 1), a+
(b− a)

2n
(2i+ 1)

]
for 0 < i < n

}
J(n) =

{
Ji; J0 =

[
a, a+

b− a

2n+ 1

]
,

Ji =
[
a+

(2i− 1)(b− a)
2n+ 1

, a+
(2i+ 1)(b− a)

2n+ 1

]
for 0 < i ≤ n

}
S(n) =

{
Si;Si =

[
a+

(i− 1)(b− a)
n

, a+
i(b− a)

n

]
for 1 ≤ i ≤ n

}
K(n) =

{
Ki;Kn =

[
b− b− a

2n+ 1
, b

]
,

Ki =
[
a+

2i(b− a)
2n+ 1

, a+
2(i+ 1)(b− a)

2n+ 1

]
for 0 ≤ i ≤ n− 1

}
From the main theorem of [EL] or from combination of papers [EHS] and

[BS] we have the following lemma about precise behaviour of approximation
numbers for embeddings E0, E1 and E3.

Lemma 1.9 Let I = [a, b] be an bounded interval, n ∈ N.

(i) Then

an(E0) =
|I|
n

. C(p) =
|I|
n

. p′
1/p
p1/p′ .

sin(π/p)
2π

=
1

λ
1/p
n

.

Moreover, the bounded linear operator

P0f(x) =
n−1∑
i=1

f(ci)χIi
(x) + 0χI0∪In

(x), (10)

where {Ii}n
i=0 = I(n) (see (9)) and ci is the middle point of Ii, is the

optimal linear operator for an(E0).

(ii) Then

an+1(E1) =
|I|
n

. C(p) =
|I|
n

. p′
1/p
p1/p′ .

sin(π/p)
2π

=
1

λ
1/p
n

.

Moreover, the bounded linear operator

P1f(x) =
n∑

i=1

f(di)χSi
(x), (11)

where {Si}n
i=1 = S(n) (see (9)) and di is the middle point of Si, is the

optimal linear operator for an+1(E1).
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(iii) Then

an(E3) =
|I|
n

. C(p) =
|I|
n

. p′
1/p
p1/p′ .

sin(π/p)
2π

=
1

λ
1/p
n

.

Moreover, the bounded linear operator

P1f(x) =
n∑

i=1

f(di)χSi
(x), (12)

where {Si}n
i=1 = S(n) (see (9)) and di is the middle point of Si, is the

optimal linear operator for an(E3).

Here λn corresponds to n-th eigenvalue of p-Laplacian problem (6) on interval
I and C(p) is as in Lemma 1.4.

In [BMN] we can find the following result about partial characterization of
the Bernstein n-widths for E2 (see the Main Theorem in [BMN] for p = q).

Lemma 1.10 Let n ∈ N and 1 < p <∞. Then

b2n−1(BW 1,p(T), Lp(T)) =
ν(p)
n

where ν(p) =
(

2
π

)
λ(p) and λ(p) is the value of the extremal problem

‖x(.)‖p,(0,1) → sup x(.) ∈ BW 1,p([0, 1]) x(
1
2
) = 0.

(From Lemma 1.6 or from [S] we have that λ(p) = C(p), where C(p) is as in
Lemma 1.4.)

And in [DJ] we can find the next statement about partial characterization
of the Kolmogorov, Gel’fand and Linear n-widths for E2 (see Theorem 4.1 in
[DJ] with Q(x) = x and with corresponding G(x) = χR−(x)).

Lemma 1.11 Let n ∈ N. Then for 1 < p <∞

d2n(BW 1,p(T), Lp(T)) = d2n(BW 1,p(T), Lp(T)) =

= δ2n(BW 1,p(T), Lp(T)) = λn(p,G) ≤ b2n−1(BW 1,p(T), Lp(T)).

Where G(x) = χR−(x) and λn(p,G) := sup{‖G ∗ h‖p,T;h ∈ Dn,p}, where Dn,p

is the class of functions h(x) such that ‖h‖p,T ≤ 1 and

h(x+
π

n
) = −h(x), for x ∈ T

h(x) ≥ 0, for x ∈
[
−π, π

n
− π

)
.
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2 Preparation.

2.1 Approximation numbers

In this section we shall extend results from [EL] and [EHS] for the Approxi-
mation numbers. At first we shall look at approximation numbers (or linear
widths) of the Hardy operator and the Sobolev embedding Ea.

Lemma 2.1 Let n ∈ N and I = [a, b] be an bounded interval. Then

an+1(Ta) = an+1(Ea) = C(p)
|I|

n+ 1/2
,

where C(p) is as in Lemma 1.4. Moreover, bounded linear operators

PT f(x) =
n∑

i=1

(
∫ ei

a

f(t)dt)χJi
(x) + 0χJ0(x), (13)

or

Paf(x) =
n∑

i=1

f(ei)χJi
(x) + 0χJ0(x), (14)

where {Ji}n
0 = J(n) is a partition of I (see (9)) and ei is the middle point of

Ji, are optimal linear operators for the Hardy operator Ta or respectively for the
Sobolev embedding Ea.

Proof: In this proof we shall write T instead Ta. From the definition of T and
W 1,p

a (I) we can see that an+1(T ) = an+1(Ea) (see (4)), then to finish the proof
is enough to study an(T ).

Let us mention that rank of PT is equal to n. Take J(n) = {Ji}n
i=0 partition

of interval I (see (9)) and denote [ai, bi] = Ji, then |[ai, ei]| = |[ei, bi]| = b−a
2n+1

for i > 0. Let f ∈ Lp(I) by Lemma 1.4 we have:

‖Tf(.)‖p,(a0,b0) ≤
(
b− a

2n+ 1

)
2C(p)‖f‖p,(a0,b0),

‖Tf(.)− Tf(ei)‖p,(ai,ei) ≤
(
b− a

2n+ 1

)
2C(p)‖f‖p,(ai,ei)

and

‖Tf(.)− Tf(ei)‖p,(ei,bi) ≤
(
b− a

2n+ 1

)
2C(p)‖f‖p,(ei,bi)
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for 0 < i ≤ n. From this we obtain

‖Tf − PT f‖p
p,I =

n∑
i=1

‖f − (P1f)(ei)‖p
p,Ji

=
n∑

i=1

(
‖Tf(.)− Tf(ei)‖p

p,(ai,ei)
+ ‖Tf(.)− Tf(ei)‖p

p,(ei,bi)

)
+‖Tf‖p

p,(a0,b0)

≤
[(

(b− a)
2n+ 1

)
2C(p)

]p
[

n∑
i=1

(
‖f‖p

p,(ai,ei)
+ ‖f‖p

p,(ei,bi)

)
+ ‖f‖p

p,(a0,b0)

]

≤
[(

(b− a)
2n+ 1

)
2C(p)

]p

‖f‖p
p,I .

Then an+1(T ) ≤ supf∈Lp(I)(‖Tf − PT f‖p,I/‖f‖p,I) ≤ b−a
n+1/2C(p).

Let us prove the other inequality for an+1. Let us have a partition of I,
{Ji}n

i=0 = J(n) where Ji = [ai, bi] and bi − ai = (b− a)/(n+ 1/2) for 1 < i ≤ n
and b0 − a0 = (b − a)/(2n + 1). Take 0 < γ < 1, then from Lemma 1.4 and
Lemma 1.6 there exist functions φi(x), only non-zero on Ji, such that:

infc∈R ‖Tφi − c‖p,Ji

‖φi‖p,Ji

≥ γC(p)|Ji| for 1 < i ≤ n

and
‖Tφ0‖p,J0

‖φ0‖p,J0

≥ γ2C(p)|J0|.

Let Pn be a bounded linear operator mapping Lp(I) onto with rank equal to
n, then there exist constants {λi}n

i=0, not all equal zero, such that for g =∑n
i=0 λiφi we have Png = 0. Then we have:

‖Tg − Png‖p
p,I = ‖Tg‖p

p,I

=
n∑

i=0

‖Tg‖p
p,Ji

= ‖
∫ .

a

λ0φ0‖p
p,J0

+
n∑

i=1

‖
∫ .

ai

λiφi(t)dt+
∫ ai

a

g(t)dt‖p
p,Ji

≥ ‖
∫ .

a

λ0φ0‖p
p,J0

+
n∑

i=1

inf
c∈R

‖
∫ .

ai

λiφi(t)dt− c‖p
p,Ji

≥ γp2pC(p)p

(
|I|

2n+ 1

)p

|λ0|p‖φ0‖p
p,J0

+
n∑

i=1

γpC(p)p

(
|I|

n+ 1/2

)p

|λi|p‖φi‖p
p,Ji

= γpC(p)p

(
|I|

n+ 1/2

)p

‖g‖p
p,I .

From this we obtain that an+1(T ) ≥ b−a
n+1/2C(p). And by this we prove the

theorem. �
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Now we shall prove a version of the previous lemma for the Sobolev embed-
ding Emid.

Lemma 2.2 Let n be an odd integer, I = [a, b] be an bounded interval and let
c = (b+ a)/2. Then

an+1(Tc) = an+1(Emid) = an(Tc) = an(Emid) = C(p)
|I|
n
,

where C(p) is as in Lemma 1.4. Moreover, for n odd, the bounded linear operator

PTc
f(x) =

n∑
i=1;i 6= n+1

2

(∫ di

c

f(t)dt

)
χSi

(x) + 0χS(n+1)/2(x), (15)

or

Pcf(x) =
n∑

i=1;i 6= n+1
2

f(di)χSi(x) + 0χS n+1
2

(x), (16)

where {Si}n
1 = S(n) is a partition of I (see (9)) and di is the middle point of

Si, are optimal linear operators for the Hardy operator Tc or respectively for the
Sobolev embedding Emid between all n and n− 1 dimensional linear operators.

Proof: From the definition of Tc and W 1,p
mid(I) we have that an+1(Tc) =

an+1(Emid) (see 5). Then it is enough to study only an(Tc).
Let n be odd. Take a partition of I, S(n) = {Si}n

i=1 (see (9)) and denote
[ai, bi] = Si and di = (ai + bi)/2 (note that |Si| = |I|

n ) . Define

PTc
f(x) =

n∑
i=1;i 6= n+1

2

(∫ di

c

f(t)dt

)
χSi

(x) + 0χS(n+1
2 )

(x).

Rank of PTc is equal n − 1. Let f ∈ Lp(I) and by Lemma 1.4 we have for
i 6= (n+ 1)/2:

‖
∫ .

di

f(t)dt‖p,(di,bi) ≤
(
b− a

n

)
C(p)‖f‖p,(di,bi),

‖
∫ .

di

f(t)dt‖p,(ai,di) ≤
(
b− a

n

)
C(p)‖f‖p,(ai,di),

and for i = (n+ 1)/2:

‖Tcf(.)‖p,(di,bi) ≤
(
b− a

n

)
C(p)‖f‖p,(di,bi),

‖Tcf(.)‖p,(ai,di) ≤
(
b− a

n

)
C(p)‖f‖p,(ai,di).

12



From this we obtain as in the previous lemma:

‖Tcf − PTc
f‖p

p,I =
n∑

i=1

‖
∫ .

di

f(t)dt‖p
p,Si

=
n∑

i=1;i 6= n+1
2

(
‖
∫ .

di

f(t)dt‖p
p,(ai,di)

+ ‖
∫ .

di

f(t)dt‖p
p,(di,bi)

)
+‖Tcf‖p

p,

(
a n+1

2
,b n+1

2

)

≤
[(

(b− a)
n

)
C(p)

]p
[

n∑
i=1

(
‖f‖p

p,(ai,di)
+ ‖f‖p

p,(di,bi)

)]

≤
[(

(b− a)
n

)
C(p)

]p

‖f‖p
p,I .

Then for odd n we have an(Tc) ≤ C(p) |I|n .
Now we shall prove the other inequality for the approximation numbers. Let

n be odd. Let us have a partition of I, {Si}n
i=1 = S(n) where Si = [ai, bi],

bi − ai = |I|/n and di is the middle point of Si, for 1 ≤ i ≤ n, and dn+1
2

= c.
Take 0 < γ < 1, then from Lemma 1.4 and Lemma 1.6 for each i = 1, ..., n;
i 6= (n + 1)/2, there exist functions φi(x) ∈ Lp(I), only non-zero on Si, such
that:

infα∈R ‖Tcφi − α‖p,Si

‖φi‖p,Si

≥ γC(p)|Si|

and there exist functions φ−(x), φ+(x) ∈ Lp(I) non-zero on (an+1
2
, c) and on

(c, bn+1
2

) respectively such that:

‖Tcφ−‖p,(a n+1
2

,c)

‖φ−‖p,(a n+1
2

,c)
≥ γC(p)|Si|

and
‖Tcφ+‖p,(c,b n+1

2
)

‖φ+‖p,(c,b n+1
2

)
≥ γC(p)|Si|.

Let Pn be a bounded linear operator mapping Lp(I) onto with rank equal to n,
then there exist constants, not all zero, {λi}i 6=(n+1)/2 and λ−, λ+ such that for
g =

∑
i 6=(n+1)/2 λiφi + λ−φ− + λ+φ+ we have Png = 0.

13



Then we have:

‖Tcg − Png‖p
p,I = ‖Tcg‖p

p,I

=
n∑

i=1;i 6= n+1
2

‖Tcg‖p
p,Ji

+ ‖Tcg‖p
p,(a n+1

2
,c) + ‖Tcg‖p

p,(c,b n+1
2

)

=
n∑

i=1;i 6= n+1
2

‖
∫ .

ai

λiφi(t)dt+
∫ ai

c

g(t)dt‖p
p,Ji

+‖
∫ .

c

λ−φ−‖p
p,(a n+1

2
,c) + ‖

∫ .

c

λ+φ+‖p
p,(c,b n+1

2
)

≥
n∑

i=1;i 6= n+1
2

inf
α∈R

‖
∫ .

ai

λiφi(t)dt+ α‖p
p,Ji

+‖
∫ .

c

λ−φ−‖p
p,(a n+1

2
,c) + ‖

∫ .

c

λ+φ+‖p
p,(c,b n+1

2
)

≥
n∑

i=1;i 6= n+1
2

γpC(p)p

(
|I|
n

)p

|λi|p‖φi‖p
p,Si

+γpC(p)p

(
|I|
n

)p

|λ−|p‖φ−‖p
p,(a n+1

2
,c)

+γpC(p)p

(
|I|
n

)p

|λ+|p‖φ+‖p
p,(c,b n+1

2
)

= γpC(p)p

(
|I|
n

)p

‖g‖p
p,I .

From this we obtain that for odd n we have an+1(Tc) ≥ |I|
n C(p). Then we have

from monotonicity of an that for odd n: C(p) |I|n ≤ an+1(Tc) ≤ an(Tc) ≤ C(p) |I|n
and by this theorem is proved. �

Next we shall focus our interest on the Approximation numbers for the
Sobolev embeddings on T.

Lemma 2.3 Let n be an odd integer, then

an+1(E2) = C(p)
2π
n+ 1

,

where C(p) is as in Lemma 1.4. Moreover, for given odd n, the bounded linear
operator

PTf(x) =
n∑

i=1

[f(ai) + f(bi)]
2

χSi
(x)+

[
n∑

i=1

[f(ai) + f(bi)](−1)i 1
2

]
χSn

(x), (17)

where {Si}n+1
1 = S(n+1) be a partition of I = [a, b] = T = [−π, π] (see (9) with

Si = [ai, bi] with a0 = bn, and ai+1 = bi) is an optimal linear operator for the
Sobolev embedding E2 between all n dimensional linear operators with rank ≤ n.

14



Proof: Let n be an odd integer. Take {Si}n+1
1 = S(n + 1) as a partition of

[−π, π] = T = I = [a, b] and denote [ai, bi] = Si. Since f ∈ W 1,p(T) then
f(a1) = f(bn+1).

We can see that rankPT = n. Since n is odd then we have
n∑

i=1

[f(ai) + f(bi)](−1)i+1 = f(an+1) + f(bn+1)

and we can rewrite PT in the following form:

PTf(x) =
n+1∑
i=1

f(ai) + f(bi)
2

χSi(x). (18)

Let f ∈W 1,p(T) then

‖f − PTf‖p
p,T =

n+1∑
i=1

‖f − PTf‖p
p,Si

=
n+1∑
i=1

‖f − f(ai) + f(bi)
2

‖p
p,Si

.

From [S] we have

‖f − f(ai) + f(bi)
2

‖p
p,Si

≤ (C(p))p|Ii|p‖f ′‖p
p,Si

for 1 ≤ i ≤ n+ 1.

Then from (18) follows:

‖f − PTf‖p
p,T ≤ (C(p))p

(
2π
n+ 1

)p

‖f ′‖p
p,T

which means
an+1(E2) ≤ C(p)

2π
n+ 1

.

As in the first part of this proof n is an odd integer and we have partition
{Si}n+1

1 = S(n + 1) of [−π, π]. From Lemma 1.4 follows that for any fix 0 <
γ < 1 there exist functions φi, i = 1, ..., n + 1 such that φi(ai) = φi(bi) = 0,
φi(x) ≥ 0 for x ∈ Si and φi(x) = 0 for x 6∈ Si and

‖φi‖p
p,T ≥

(
γC(p)

2π
n+ 1

)p

‖φ′i‖
p
p,T.

Let P : W 1,p(T) → Lp(T) be a linear operator of rankn. Then there exist
g =

∑n+1
i=1 λiφi where λi are constants, not all equal to 0, such that P (g) = 0.

Then:

‖g − Pg‖p
p,T = ‖

n+1∑
i=1

λiφi‖p
p,T =

n+1∑
i=1

‖λiφi‖p
p,Si

≥
n+1∑
i=1

(
γ|λi|C(p)

2π
n+ 1

)p

‖φ′i‖
p
p,Si

=
(
γC(p)

2π
n+ 1

)p n+1∑
i=1

‖λiφ
′
i‖

p
p,Si

=
(
γC(p)

2π
n+ 1

)p

‖g′‖p
p,T

15



which give us

C(p)
2π
n+ 1

≤ an+1(E2).

�

Lemma 2.4 Let n be an odd integer, then

an(E4) = C(p)
2π
n+ 1

,

where C(p) is as in Lemma 1.4. Moreover, for given odd n, the bounded linear
operator PT : W 1,p(T)/ span{1} → Lp(T)/ span{1} defined by as in Lemma 2.3
is an optimal operator for the Sobolev embedding E3, among all linear operators
with rank ≤ n− 1.

Proof: Let n be an odd integer and {Si}n+1
i=1 = S(n + 1) be a partition of

[−π, π] = T = I = [a, b] as in the proof of Lemma 2.3. We can rewrite PT
operator from Lemma 2.3 in the following way:

PTf(x) =
f(a1) + f(b1)

2
χT(x)

+
n∑

i=2

(
[f(ai) + f(bi)]

2
− [f(a1) + f(b1)]

2

)
χSi(x)

+

([
n∑

i=1

[f(ai) + f(bi)](−1)i 1
2

]
− f(a1) + f(b1)

2

)
χSn+1(x).

From this we can see that rank of PT as an linear operator fromW 1,p(T)/ span{1}
into Lp(T)/ span{1} is equal n− 1. Let f ∈W 1,p(T)/ span{1} then

inf
c∈R

‖f − PTf − c‖p
p,T ≤ ‖f − PTf‖p

p,T =
n+1∑
i=1

‖f − f(ai) + f(bi)
2

‖p
p,Si

.

From [S] and Lemma 1.6 we have for any 1 ≤ i ≤ n+ 1:

sup
‖f‖W1,p(Si)

≤1

‖f − f(ai) + f(bi)
2

‖p
p,Si

= sup
‖f‖W1,p(Si)≤1

inf
c∈R

‖f − c‖p
p,Si

= sup
‖f‖W1,p(Si)

≤1

inf
c∈R

‖f − f(ai) + f(bi)
2

− c‖p
p,Si

= sup
‖f‖W1,p(Si)

≤1

(C(p)|Si|)p ‖f ′‖p
p,Si

and then

‖f − PTf‖Lp(T)/ span{1} ≤ C(p)
(

2π
n+ 1

)
‖f ′‖p,T.
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And we have
an(E3) ≤ C(p)

2π
n+ 1

.

Now we shall prove the other inequality for approximation numbers. From
Lemma 1.4 follows for any 1 > γ > 0 existence of functions φi, i = 1, ..., n+ 1;
such that φi(ai) = φi(bi) = 0, φi(x) ≥ 0 for x ∈ Si and φi(x) = 0 for x 6∈ Si and

‖φi‖p
p,T =

(
γC(p)

2π
n+ 1

)p

‖φ′i‖
p
p,T.

Let us define functions ψi, i = 1, ..., n; by ψi(x) = φi(x) + αiφn(x) such that
infc∈R ‖ψi(x)− c‖p,T = ‖ψi(x)‖p,T.

Let P : W 1,p(T)/ span{1} → Lp(T)/ span{1} be a linear operator of rank
equal n−1. Then there exists g(x) =

∑n−1
i=0 λiψi(x) ∈ Lp(T)/ span{1} with not

all λi equal to 0, such that P (g) = 0. Then

‖g − Pg‖p
p,T = ‖

n∑
i=1

λiψi(x)‖p
p,T

=
n∑

i=1

‖λiφi‖p
p,Si

+ ‖
n∑

i=1

λiαiφn(x)‖p
p,Sn+1

=
[
γC(p)

2π
n+ 1

]p n∑
i=1

|λi|p‖φ′i‖
p
p,Si

+
[
γC(p)

2π
n+ 1

]p

‖
n∑

i=1

λiαiφ
′
i(x)‖

p
p,Sn+1

=
[
γC(p)

2π
n+ 1

]p

‖g′‖p
p,T

which gives us

C(p)
2π
n+ 1

≤ an(E3).

�

2.2 n-widths

In this section we shall obtain lower bound for n-widths. We start with the
Hardy operator and then with Sobolev spaces on intervals.

Lemma 2.5 Let n ∈ N, I = [a, b] and 1 < p <∞ then

bn(TaBL
p(I), Lp(I)) = bn(BW 1,p

a (I), Lp(I)) ≥ C(p)
|I|

n+ 1/2
,

where C(p) is as in Lemma 1.4.
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Proof: The first equation follows from (4). Next we shall prove the right-
hand inequality. Let n ∈ N and let us have for interval I = [a, b] partition
K(n) = {Ki}n

i=0 with [ai, bi] = Ki (see (9)). Define on Ki functions φi(x) =
sinp( x−ai

bi−ai
πp).χ[ai,bi](x) for 0 ≤ i ≤ n−1 and φn(x) = sinp( x−ai

2bi−2ai
πp).χ[an,bn](x).

Put
Xn+1 = span{φi, 0 ≤ i ≤ n} (19)

then we have Xn+1 ⊂W 1,p
a (I).

Let f ∈ Xn+1 then f(x) =
∑n

i=0 λiφi(x). From Remark 1.7 we have

‖f‖p
p,I =

n∑
i=0

|λi|p‖φi‖p
p,Ki

=
(
C(p)|I|
n+ 1/2

)p n∑
i=0

|λi|p‖φ′i‖
p
p,Ki

=

=
(
C(p)|I|
n+ 1/2

)p

‖f ′‖p
p,I .

Let f ∈ Xn+1 ⊂ W 1,p
a (I) and ‖f ′‖p,I ≤ 1 then ‖f‖p,I ≤ C(p) |I|

n+1/2 . From that
we have

Xn+1 ∩
( (

C(p)
|I|

n+ 1/2

)
. BX

)
⊂ BW 1,p

a

and then bn(BW 1,p
a (I), Lp(I)) ≥ C(p) |I|

n+1/2 .�

Lemma 2.6 Let n be an odd number, I = [a, b], c = a+b
2 and 1 < p <∞ then

bn(TcBL
p(I), Lp(I)) = bn(BW 1,p

mid(I), L
p(I)) ≥ C(p)

|I|
n
,

where C(p) is as in Lemma 1.4.

Proof: Let n be an odd integer and {Ii}n
i=0 = I(n) be a partition of the

interval I (see (9)) with [ai, bi] = Ii (we can see that b(n+1)/2 = a(n+1)/2+1 = c).

Define on Ii functions φi(x) = sinp

(
x−ai

bi−ai
πp

)
.χ[ai,bi](x) for 1 ≤ i ≤ n − 1.

For i = 0 we put φ0(x) = sinp

(
x−2a0+b0
2b0−2a0

πp

)
.χ[a0,b0](x) and for i = n we put

φn(x) = sinp

(
x−an

2bn−2an
πp

)
.χ[an,bn](x). Put

Xn+1 = span{φi; 0 ≤ i ≤ n} ⊂W 1,p
mid(I). (20)

Then for f ∈ Xn+1 we have f(x) =
∑n

i=0 λiψi(x) and from Remark 1.7 and
Lemma 1.4 we have:

‖f‖p
p,I =

n∑
i=0

|λi|p‖φi‖p
p,Ii

= |λ0|p‖φ0‖p
p,I0

+ |λn|p‖φn‖p
p,In

+
n−1∑
i=1

|λi|p‖φi‖p
p,Ii

=

=
(
C(p)|I|
n

)p n∑
i=0

|λi|p‖φ′i‖
p
p,Ii

=
(
C(p)|I|
n

)p

‖f ′‖p
p,I .
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Then as in proof of Lemma 2.5 we have:

bn(BW 1,p
mid(I), L

p(I)) = bn(Emid) ≥ C(p)
|I|
n

for n-odd.

�
Now we shall focus on Sobolev spaces W 1,p

0 (I) and W 1,p(I).

Lemma 2.7 Let n ∈ N, I = [a, b] and 1 < p <∞ then

bn(BW 1,p
0 (I), Lp(I)) ≥ |I|

n+ 1
.C(p) =

1

λ
1/p
n+1

,

where C(p) is as in Lemma 1.4 and λn is n-th eigenvalue of p-Laplacian on I
with Dirichlet or Neumann boundary condition.

Proof: Let n be an integer and I = [a, b] with partition S(n + 1) = {Si}n+1
i=1

(see (9)). Denote Si = [ai, bi] for 1 ≤ i ≤ n + 1 and then define functions
φi(x) = sinp

(
x−ai

bi−ai
πp

)
χ[ai,bi](x). Let us denote

Xn+1 = span{φi; 1 ≤ i ≤ n+ 1} (21)

then we have Xn+1 ⊂W 1,p
0 (I) and dimXn+1 = n+ 1.

Let us have f ∈ Xn+1 then f(x) =
∑n+1

i=1 λiφi(x) where λi ∈ R. According
Remark 1.7 we have:

‖f‖p
p,I =

n+1∑
i=1

|λi|p‖φi‖p
p,Si

=
(
C(p)|I|
n+ 1

)p n+1∑
i=1

|λi|p‖φ′i‖
p
p,Si

=
(
C(p)|I|
n+ 1

)p

‖f ′‖p
p,I .

From this and the definition of bn follows that bn(BW 1,p
0 (I), Lp(I)) ≥ |I|

n+1 .
C(p)

2 .
�

Lemma 2.8 Let n ∈ N, I = [a, b] and 1 < p <∞ then

bn(BW 1,p(I), Lp(I)) ≥ |I|
n
C(p) =

1

λ
1/p
n

,

where C(p) is as in Lemma 1.4 and λn is n-th eigenvalue of p-Laplacian on I
with Dirichlet or Neumann boundary condition.

Proof: Let n ≥ 1 be an integer and I = [a, b] with partition I(n) = {Ii}n
i=0

(see 9). Denote Ii = [ai, bi] for 0 ≤ i ≤ n and define functions

φi(x) = sinp

(
x− ai

bi − ai
πp

)
χ[ai,bi](x) for 1 ≤ i ≤ n− 1,

φ0(x) = sinp

(
x− 2a0 + b0
2b0 − 2a0

πp

)
.χ[a0,b0](x)
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and

φn(x) = sinp

(
x− an

2bn − 2an
πp

)
.χ[an,bn](x).

Let us define
Xn+1 = span{φi; 0 ≤ i ≤ n} ⊂W 1,p(I). (22)

Then for f ∈ Xn+1 we have f(x) =
∑n

i=0 λiφi(x) ,where λi ∈ R. From Lemma
1.4 and Remark 1.7 we have:

‖f‖p
p,I =

n∑
i=0

|λi|p‖φi‖p
p,Ii

=
(
C(p)|I|
n

)p n∑
i=0

|λi|p‖φ′i‖
p
p,Ii

=
(
C(p)|I|
n

)p

‖f ′‖p
p,I .

According the definition of bn we have bn(BW 1,p(I), Lp(I)) ≥ C(p)|I|
n . �

Lemma 2.9 Let n ∈ N and 1 < p <∞ then

bn(BW 1,p(I)/ span{1}, Lp(I)/ span{1}) ≥ C(p)
|I|
n+ 1

=
1

λ
1/p
n+1

,

where C(p) is as in Lemma 1.4 and λn is n-th eigenvalue of p-Laplacian on I
with Dirichlet or Neumann boundary condition.

Proof: Let n ≥ 1 be an integer and I = [a, b] with partition I(n) = {Ii}n
i=0

(see (9)). Denote Ii = [ai, bi] for 0 ≤ i ≤ n and define functions

φi(x) = sinp

(
x− ai

bi − ai
πp

)
χ[ai,bi](x) for 1 ≤ i ≤ n− 1

φ0(x) = sinp

(
x− 2a0 + b0
2b0 − 2a0

πp

)
χ[a0,b0](x)

and

φn(x) = sinp

(
x− an

2bn − 2an
πp

)
χ[an,bn](x).

For 0 ≤ i ≤ n − 1 let us define functions ψi(x) = φi(x) + βiφn(x) with βi ∈ R
taken such that ‖ψi‖p,I = infc∈R ‖ψi − c‖p,I . Let us define

Xn = span{ψi; 0 ≤ i ≤ n− 1} ⊂W 1,p(I)/ span{1}. (23)

Then for f ∈ Xn ⊂ W 1,p(I)/ span{1} we have f(x) =
∑n−1

i=0 λiψi(x) ,where
λi ∈ R. According Lemma 1.4 and Remark 1.7 we have:

‖f‖p
p,I =

n−1∑
i=0

|λi|p‖ψi‖p
p,Ii

=
n−1∑
i=0

|λi|p‖φi‖p
p,Ii

+
n−1∑
i=0

|λi|p|βi|p‖φn‖p
p,I

=
(
C(p)|I|
n

)p
(

n−1∑
i=0

|λi|p‖φ′i‖
p
p,Ii

+
n−1∑
i=0

|λi|p|βi|p‖φ′n‖
p
p,I

)

=
(
C(p)|I|
n

)p

‖f ′‖p
p,I .
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And then from the definition of bn we have

bn−1(BW 1,p(I)/ span{1}, Lp(I)/ span{1}) ≥ C(p)
|I|
n
.

�
Next we shall focus on Sobolev spaces on T.

Lemma 2.10 Let n be an integer and 1 < p <∞ then

bn(BW 1,p(T), Lp(T)) ≥ C(p)
2π
n+ 1

,

where C(p) is as in Lemma 1.4.

Proof: Let n be an integer and T = [−π, π] is an interval with partition S(n+
1) = {Si}n+1

i=1 with Si = [ai, bi] (see (9)). Let us define functions φi(x) =
sinp(x+π

2π )χ[ai,bi](x), i = 1, ..., n+ 1. We define

Xn+1 = span{φi; 1 ≤ i ≤ n+ 1} (24)

and then we have Xn+1 ⊂W 1,p(T) and dimXn+1 = n+ 1.
Let f ∈ Xn+1 then f(x) =

∑n+1
i=1 λiφi(x) where λi ∈ R. Then from Remark

1.7 we have

‖f‖p
p,I =

n+1∑
i=1

|λi|p‖φi‖p
p,Si

=
(
C(p)2π
n+ 1

)p n+1∑
i=1

|λi|p‖φ′i‖
p
p,Si

=
(
C(p)2π
n+ 1

)p

‖f ′‖p
p,T.

From this follows the lemma. �

Lemma 2.11 Let n be an integer and 1 < p <∞ then

bn−1(BW 1,p(T)/ span{1}, Lp(T)/ span{1}) ≥ C(p)
2π
n+ 1

,

where C(p) is as in Lemma 1.4.

Proof: Let n be an integer and T = [−π, π] is an interval with partition S(n+
1) = {Si}n+1

i=1 with Si = [ai, bi] (see (9)). Let us define functions φi(x) =
sinp(x+π

2π )χ[ai,bi](x), i = 1, ..., n + 1. We introduce functions ψi(x) = φi(x) +
βiφn+1(x) for 1 ≤ i ≤ n, take βi such that ‖ψi‖p,T = infc∈R ‖ψi − c‖p,T. Let us
define

Xn = span{ψi; 1 ≤ i ≤ n} (25)

and then we can see that Xn ⊂W 1,p(T) and dimXn = n.
Let f ∈ Xn then f(x) =

∑n+1
i=1 λiψi(x) where λi ∈ R. Then from Remark

1.7 we have

‖f‖p
p,I =

n∑
i=1

|λi|p‖ψi‖p
p,Si∪Sn+1

=
(
C(p)2π
n+ 1

)p n∑
i=1

|λi|p‖ψ′i‖
p
p,Si∪Sn+1

=

=
(
C(p)2π
n+ 1

)p

‖f ′‖p
p,T.

From this follows the lemma. �
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3 Main results

In this section we shall use results from previous sections to formulate our main
results about approximation numbers and n-widths for our embeddings and
Sobolev spaces.

At first we shall provide results for embeddings and Sobolev spaces on in-
terval I = [a, b] and then on unit circle T.

Theorem 3.1 Let I = [a, b] be a bounded interval, 1 < p <∞ and let us denote
by σn any of the following n-widths dn, d

n, δn, bn, then we have:

(1) For every n ∈ N:

an+1(E0) = σn(BW 1,p
0 (I), Lp(I)) = C(p)

|I|
n+ 1

=
1

λ
1/p
n+1

- the operator P0 (see (10)) is the optimal operator for an,

- the Range of the operator P0, (see (10)) is the optimal subspace for
dn−1,

- the space Xn+1 (see (21)) is the optimal subspace for bn.

(2) For every n ∈ N:

an+1(E1) = σn(BW 1,p(I), Lp(I)) = C(p)
|I|
n

=
1

λ
1/p
n

.

- the operator P1 (see (11)) is the optimal operator for an+1,

- the Range of the operator P1, (see (11)) is the optimal subspace for
dn,

- the space Xn+1 (see (22)) is the optimal subspace for bn.

(3) For every n ∈ N:

an+1(E3) = σn(BW 1,p(I)/ span{1}, Lp(I)/ span{1}) = C(p)
|I|
n+ 1

=
1

λ
1/p
n+1

.

- the operator P1 (see (12)) is the optimal operator for an,

- the Range of the operator P1, (see (11)) is the optimal subspace for
dn−1,

- the space Xn+1 (see (23)) is the optimal subspace for bn.

(4) For every n ∈ N:

an+1(Ea) = an+1(Ta) = σn(BW 1,p
a (I), Lp(I)) =

= σn(TaBL
p(I), Lp(I)) = C(p)

|I|
n+ 1/2

.
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- the operator PT (see (13)) is the optimal operator for an+1(Ta) and
the operator Pa (see (14)) is the optimal operator for an+1(Ea),

- the Range of the operator PT (see (13)) is the optimal subspace for
dn(TaBL

p(I), Lp(I)) and the Range of the operator Pa (see (14)) is
the optimal subspace for dn(BW p

a (I), Lp(I)),

- the space Xn+1 (see (19)) is the optimal subspace for bn(BW p
a (I), Lp(I))

(see (4)).

(5) For n odd and c = (a+ b)/2:

an+1(Emid) = an+1(Tc) = an(Emid) = an(Tc) =

= σn(BW 1,p
mid(I), L

p(I)) = σn(TcBL
p(I), Lp(I)) =

= σn−1(BW
1,p
mid(I), L

p(I)) = σn−1(TcBL
p(I), Lp(I)) = C(p)

|I|
n

- the operator PTc
(see (15)) is the optimal operator for an(Tc) and

an+1(Tc) and the operator Pc (see (16)) is the optimal operator for
an(Emid) and an+1(Emid)

- the Range of the operator PTc (see (15)) is the optimal subspace for
dn(TcBL

p(I), Lp(I)) and dn−1(TcBL
p(I), Lp(I)) and the Range of

the operator Pc (see (16)) is the optimal subspace for dn(BW p
mid(I), L

p(I))
and dn−1(BW

p
mid(I), L

p(I)),

- the space Xn+1 (see (20)) is the optimal subspace for bn(BW p
mid(I), L

p(I))
and for bn−1(BW

p
mid(I), L

p(I)) (see (5)).

Proof: Part (1) follows from Lemma 1.9 (i), Lemma 2.7 and Observation 1.3.
Part (2) can be obtained from combination of Lemma 1.9 (ii), Lemma 2.8

and Observation 1.3.
Part (3) is consequence of Lemma 1.9 (iii), Lemma 2.9 and Observation 1.3.
Part (4) follows from Lemma 2.1, Lemma 2.5 and Observation 1.3.
Part (5) turn to be consequence of Lemma 2.2, Lemma 2.6 and Observation

1.3. �
Let us state our results on the unit circle T.

Theorem 3.2 Let T be the unit circle, 1 < p <∞ and let us denote by σn any
of the following n-widths dn, d

n, δn, bn, then we have:

(1) For every n ∈ N:

σn(BW 1,p(T), Lp(T)) ≥ C(p)
2π
n+ 1

For every odd n:

an+1(E2) = σn(BW 1,p(T), Lp(T)) = C(p)
2π
n+ 1
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For every even n:

an+1(E2) = δn(BW 1,p(T), Lp(T)) = dn(BW 1,p(T), Lp(T)) =

= dn(BW 1,p(T), Lp(T)) = C(p)
2π
n

- for n even the operator PT (see (17)) is the optimal operator for
an(E2) and when n odd then the operator PT (see (18)) is the optimal
operator for an(E2).

- for n even the range of the operator PT (see (18)) is the optimal
subspace for dn(BW 1,p(T), Lp(T)) and dn(BW 1,p(T), Lp(T)), for n
odd the range of the operator PT (see (17))

- for n even the space Xn+1 (see 24) is the optimal subspace for bn(BW 1,p(T), Lp(T).

(2) For every n ∈ N:

σn−1(BW 1,p(T)/ span{1}, Lp(T)/ span{1}) ≥ C(p)
2π
n+ 1

For every even n:

an+1(E4) = σn(BW 1,p(T)/ span{1}, Lp(T)/ span{1}) = C(p)
2π
n+ 2

For every odd n:

an+1(E4) = δn(BW 1,p(T)/ span{1}, Lp(T)/ span{1}) =

= dn(BW 1,p(T)/ span{1}, Lp(T)/ span{1}) =

= dn(BW 1,p(T)/ span{1}, Lp(T)/ span{1}) = C(p)
2π
n+ 1

Proof: Proof of the part (1) of the Theorem: The first inequality follows from
Lemma 2.10. The first equation is consequence of Lemma 2.10, Lemma 2.3 and
Observation 1.3.

For the second equation: From Lemma 1.11 we have that the right-hand side
is equal to λn/2(p,G) which is defined by: λn(p,G) := sup{‖G∗h‖p,T : h ∈ Dn,p}
where Dn,p is the class of functions h(x) such that ‖h‖p,T ≤ 1 and

h(x+
π

n
) = −h(x), for x ∈ T

h(x) ≥ 0, for x ∈
[
−π, π

n
− π

)
,

and G(x) = χR− . Since G ∗ f corresponds to the Hardy operator then from
Lemma 1.4 follows that

λn(p,G) = C(p)
π

n

and then the second equation is proved.
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Proof of the part (2) of the Theorem: The first inequality follows from
Lemma 2.11. The first equation is consequence of Lemma 2.11, Lemma 2.4
and Observation 1.3. The second equation can be obtained from the second
equation of the part (1) via techniques and modifications used in Lemma 2.11
and Lemma 2.4. �

Remark 3.3 We can see that for the full description of n-widths for periodic
functions (i.e. for E2 and E4 embeddings) only information about exact values
of bn for even n in the case E2 and odd n in the case E4 are missing. We only
have:

C(p)
n+ 1

≤ bn(BW 1,p(T), Lp(T)) ≤ C(p)
n

for n even

and

C(p)
n+ 2

≤ bn(BW 1,p(T)/ span{1}, Lp(T)/ span{1}) ≤ C(p)
n+ 1

for n odd.

Only for p = 2 can be shown that bn are equal to the upper bound.

The last note in our paper corresponds to relation of our results for the
Sobolev embedding E2 with Lemma 1.10 (i.e. with the Main theorem from
[BMN]).

From Lemma 1.6 we can see that λ(p) from Lemma 1.10 is equal to C(p)
from Lemma 1.4. Then Lemma 1.10 is giving us that

b2n−1(BW 1,p(T), Lp(T)) =
2
π

C(p)
n

,

which is in contradiction with our Theorem 3.2 and showing us that the Main
theorem from [BMN] is not correct.
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