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Abstract

Given a Coxeter system (W, S) and a positive real multiparameter
q, we study the “weighted L?-cohomology groups,” of a certain sim-
plicial complex ¥ associated to (W, S). These cohomology groups are
Hilbert spaces, as well as modules over the Hecke algebra associated to
(W, S) and the multiparameter q. They have a “von Neumann dimen-
sion” with respect to the associated “Hecke - von Neumann algebra,”
Ng. The dimension of the ith cohomology group is denoted ba(z). It
is a nonnegative real number which varies continuously with q. When
q is integral, the bfl(Z) are the usual L2-Betti numbers of buildings
of type (W,S) and thickness q. For a certain range of q, we calcu-
late these cohomology groups as modules over Ng and obtain explicit
formulas for the bg(Z). The range of q for which our calculations are
valid depends on the region of convergence of the growth series of W.
Within this range, we also prove a Decomposition Theorem for N,
analogous to a theorem of L. Solomon on the decomposition of the
group algebra of a finite Coxeter group.

1 Introduction

Suppose (W, .S) is a Coxeter system. (The precise definition will be given in
Section 2. For now, it suffices to say that W is a group and S is a set of
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involutions which generate W.) Associated to (W,.S) there is a certain con-
tractible simplicial complex > on which W acts properly and cocompactly.
(The definition of ¥ can be found in [12, 14, 16, 18, 34], as well as in Sec-
tion 6 below.) Let ¢ : S — I be a function to some index set I so that
i(s) = i(s’) whenever s and s" are conjugate. Given an I-tuple q = (¢;)ier
of positive real numbers, the second author [25] defined certain “weighted
L?-cohomology spaces, ” here denoted LZH*(X). The weighted L?-cochain
complex, LgC*(E), is a subcomplex of the complex C*(3;R) of ordinary
cellular cochains. It consists of those cochains which are square summable
with respect to an inner product defined via a weight function depending
on the multiparameter q. As we explain in Sections 5 and 7, to each of the
Hilbert spaces LaHi(E) one can attach a “von Neumann dimension.” It is a
nonnegative real number, denoted bfl(Z) and called the 7" Lg—Bettz’ number
of 2.

Our principal interest in the weighted L2-cohomology of X lies in the fact
that it computes the L?-cohomology of buildings of type (W, S). Here q is
an [-tuple of positive integers called the “thickness vector” of the building.
(So, for buildings, only q with integral components can occur.)

The theory of the weighted L?-cohomology of ¥ is closely tied to several
other topics, for example, growth series of Coxeter groups, decompositions
of “Hecke - von Neumann algebras” and the Singer Conjecture. Moreover,
as |q| goes from 0 to oo, LaH*(Z) interpolates between ordinary cohomology
and cohomology with compact supports. For these reasons, we believe that
the study of weighted L2-cohomology of Coxeter groups has intrinsic interest,
independent of its connection to buildings.

Let t := (t;);e; be an I-tuple of indeterminates. Write ¢, instead of Li(s)-
If s1--- s, is a reduced expression for an element w € W, then the monomial
tw :=ts, - - - ts, is independent of the choice of reduced expression for w. The
growth series for W is the power series in t defined by

W)= t.

weWw

It is a rational function of t ([5, 37]). We give several explicit formulas for
it in Lemma 3.3 of Section 3. (In the case where I is a singleton, so that t
is a single indeterminate ¢, we have t,, = t*), where I(w) denotes the word
length of w. So, in the case of a single indeterminate, W (t) = > #(®) is the
usual growth series.)



Let R™) denote the vector space of finitely supported, real-valued func-
tions on W and let (e,),ew be its standard basis.

As we explain in Section 4, associated to each multiparameter q, there
is a deformation of the group algebra of W called the “Hecke algebra” (or
sometimes the “Iwahori-Hecke algebra”) of W. We denote it by Rq[W].
When q = 1 (the I-tuple with all components equal to 1), Rq[WW] is the
group algebra of W. (No matter what q is, the underlying vector space of
Rq[W] is always RW).)

Also associated to q, there is an inner product ( , )q on RM) defined
by (€w,€w)q = GuOww, Where 0, is the Kronecker delta. The comple-
tion of RM) with respect to this inner product is denoted Lg(W) or simply
L? when W is understood. L2 is an Rq[W]-bimodule. There is an anti-
involution on Rq[W], denoted by x — z* and defined by (e,)* = e,-1.
Moreover, (yz,z)q = (y, 22%)q, i.€., right translation by z* is the adjoint of
right translation by xz. As is explained in [25] and Proposition 5.1 below,
this makes Rq[W] into a “Hilbert algebra” in the sense of Dixmier [22]. It
follows that there is an associated von Neumann algebra N acting on La
from the right. It can be defined as the algebra of bounded linear operators
on L7 which commute with the left Rq[IW]-action. Ny is the Hecke - von
Neumann algebra associated to q. (Ng is a completion of R[] acting from
the right on La.) As in the case of a von Neumann algebra associated to a
group algebra, Ny is equipped with a trace which one can use to define the
“dimension” of any Rq[WW]-stable closed subspace V' of a finite direct sum of
copies of L.

Suppose W acts as a reflection group on a CW complex U with a strict
fundamental domain Z. Assume further that for each s € S there is a
subcomplex Z; C Z, called a “mirror” of Z, so that s acts on U as a reflection
across Zs. Then U is formed by gluing together copies of Z, one for each
element of W. In other words, U = (W x Z)/ ~, where the equivalence
relation ~ is defined in an obvious fashion. (See Section 6.) The complex %
can be described in this manner: the fundamental chamber for W on ¥ is
denoted by K instead of Z.

C'(U) is the space of finitely supported, real-valued, cellular i-cochains
on U. For each oriented i-cell o of U, let e, be its characteristic function. So,
{es}oeficensy is a basis for C(U). As in [25], there is a definition of an inner
product on C!(U) similar to the definition of { , )q on R™). The e, form an
orthogonal basis; however, the norm of e, need not be 1. Instead, one uses
q to weight the inner product so that (e,, €,)q = Gu, where w is the shortest
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element of W such that ¢ C wZ. Let LéC’i(L{) denote the completion of
C!(U) with respect to this inner product.

As explained in [25], as well as in Section 7, L2C*(U) can be identified
with a Rgq[W]-stable subspace of @L2. The coboundary maps are Rq[W]-
equivariant. So, the (reduced) cohomology group LZH'(U) is a closed Rq[WW]-
stable subspace of @LE1 and therefore, has a well-defined von Neumann di-
mension, b, (U). The alternating sum of the b, (/) is denoted x4 () and called
the LZ-Euler characteristic of Y. It is proved in [25] (and in Proposition 7.4)
that xq(X) = 1/W(q). (Recall W(t) is a rational function.) Moreover, the
Betti numbers b}, (i) are continuous functions of q (Theorem 7.7).

Let R denote the region of convergence of W(t) and let

R ':={q|q ' eR},

where g~ := (¢; *)iesr. The closures of these regions are denoted R and R,
respectively. (When [ is a singleton, we write ¢ instead of q and ¢ instead
of t. In this case, W (t) is a power series in one variable. As such, it has a
radius of convergence p and R = {q € C| |q| < p}.)

The main result of this paper, Theorem 10.3, is a calculation of L2H"(U)
(as a Ng-module) for g € RURT. It also gives a formula for the b, (1) in
this range of q. Roughly speaking, the answer is that for q € R, LIH(U)
looks like ordinary cohomology while for q € R=1, it looks like cohomology
with compact supports. Before stating the result precisely, we need to set up
some notation and recall some background.

Given T' C S, the subgroup Wr generated by T is called a special sub-
group. It is also a Coxeter group. The subset T is spherical if Wr is finite.
Let S denote the poset of spherical subsets of S. Given an element w € W,
set In(w) = {s € S | l(ws) < l(w)}, ie., In(w) is the set of letters in
S with which a reduced expression for w can end. It turns out that for
any w € W, In(w) is always a spherical subset of S. For each T' € S, let
WT = {we W | In(w) =T} and let Z(WT) denote the free abelian group
of finitely supported functions on W7, For any U C S, ZY denotes the union
of those mirrors Z,, with s € U.

(a) The homology of U is computed in [13]. The answer is

HWU)=PH(2.2") 2 Z(W").

TeS



(This implies, in particular, that X is acyclic.) The answer for coho-
mology is similar, except that it is necessary to replace Z(W7) by the
abelian group of all functions W1 — Z.

(b) The cohomology with compact supports of U can be computed as in [14].
The answer is

H;U) =P H(Z,25T)2Z(W").

Actually, in [14] this formula is only stated for the case U = 3, i.e.,

H(S) = P H (KK @ Z(WT).

TeS

Given U C S, in Section 5, we define idempotents a;; and hy in Ny by

where €, := (—1)®). These idempotents are defined provided q € Ry in
the case of ay and provided q € Ry in the case of hy. (Ry denotes the
region of convergence for Wy (t).) Let Ay C LZ stand for Imay if q € Ry
and for the O-space, otherwise. Ay is a closed Rq[W]-stable subspace of LZ.
Another closed Rq[WW]-stable subspace is defined by

Dy = Ag_p N ( 3 Asv>l.

vcUu

(Throughout this paper we will denote inclusion of a subset by C and use C
for inclusion of a proper subset.)

Here is the precise statement of our calculation of Li-cohomology. (Com-
pare it with statements (a) and (b) above.)

The Main Theorem. (Theorem 10.3 in Section 10).
(a) If q € R, then

L2HU) =@ H(2,2") ® Dr.
TeS



(b) If q € R, then

LH U) =@ H(2,2°") @ Ds_r.

TeS

(To compare this with the previous answers for ordinary cohomology and
cohomology with compact supports, we note that, by Theorem 11.2, for
q € R, {ewhras_1}eewr spans a dense subspace of Dy; while for q € R™!,
{ewhs_rar)},ewr spans a dense subspace of Dg_r.)

The proof of the Main Theorem depends on the following result.

The Decomposition Theorem. (Theorem 9.11 in Section 9).

(a) Ifq € R, then

b

TeS

is a direct sum decomposition and a dense subspace of L(Ql.

(b) If q € R71, then

Z Ds_r

is a direct sum decomposition and a dense subspace of Lfl.

In the case when W is finite and q = 1 (i.e., when the Hecke algebra
is the group algebra) a similar result was proved by Solomon [38] in 1968.
In Section 11 we give a version of the Decomposition Theorem (namely,
Theorem 11.1) which is more transparently a generalization of Solomon’s
Theorem than the version stated above. The Decomposition Theorem is also
compatible with the theory of representations of Hecke algebras developed
by Kazhdan-Lusztig in [17].

Although the Main Theorem is a consequence of the Decomposition The-
orem, our proof of the Decomposition Theorem ultimately is based on a
special case of the Main Theorem from [25]. The result of [25] states that,
for q € R, the La—homology of ¥ vanishes except in dimension 0. (N.B.
To calculate homology, LZH.(X), from L2C,(3X) one does not use the usual
boundary map but rather, the adjoint of the usual coboundary map.) In
Section 8 we apply this vanishing result to show that, for q € R, the rela-
tive La—homology of certain pairs of subcomplexes of ¥ vanishes except in



the bottom dimension. (These pairs of subcomplexes are dubbed “ruins” in
Section 6.) For q € R, these vanishing results are essentially an equivalent
version of the Decomposition Theorem. One then uses a certain isomor-
phism j : Ny — Ng-1 to convert the statement of Decomposition Theorem
for g € R into its statement for q € R

The key role played by the case q € R in this sketch of the proof is
probably the most compelling reason for studying weighted L2-cohomology
with q an /-tuple of arbitrary positive real numbers. When W is infinite, the
vector q € R never has all its components equal to positive integers. So, on
the face of it, the case q € R of the Main Theorem would never seem to be
applicable to nonspherical buildings. However, because of various dualities
(such as the j-isomorphism) which switch q with q=*, the results for q € R
are equivalent to results for q € R~! and these are applicable to buildings.

For q € R UR-L, the Main Theorem (in particular, its version as The-
orem 10.4) gives a complete calculation of LZH*(X). On the other hand,

our knowledge about what happens for q ¢ R U R is fragmentary. For
example, suppose ¥ is an n-manifold. By the Main Theorem, LaH*(Z) is
concentrated in dimension 0 for g € R and in dimension n for q € R-1. We
note that when ¥ is a manifold (without boundary), W is infinite and so,
1¢ RUR™L. When q = 1, a version of the Singer Conjecture asserts that
the weighted L?-cohomology of Y vanishes except in dimension 5. (When
n is odd, this is to be interpreted as meaning that L2H*(X) vanishes in all
dimensions.) In [19] the first and fourth authors explained some evidence
for this conjecture. For a general q, in the case where ¥ is a n-manifold,
there is a version of Poincaré duality which exchanges q with g~ (as well as
dimension k& with dimension n — k); see [24] or Proposition 14.1 below. So,
when X is a manifold, knowledge of LZH*(X) for q < 1 also determines it for
q > 1. In Section 14 we explain that the right generalization of this version
of the Singer Conjecture for q = 1 is the following.

Conjecture. (Conjecture 14.7). Suppose ¥ is an n-manifold. Then
29 k(v _ n
L{HA(X) =0 fork:>§ and q < 1.

In Section 16, by modifying the arguments of [19], we prove it in the
case where W is right-angled and n < 4. In the same section, we give
examples where ¥ is a 4-manifold and where for certain q ¢ R U R, the
La—cohomology fails to be concentrated in a single dimension (it is nonzero
in both dimension 2 and 3.)



Next, we make a few remarks concerning buildings. Buildings come in
different flavors or “types,” where the “type” of a building means a Coxeter
system (W, S). In the case of a classical building associated to an algebraic
group, its type is always a spherical or Euclidean reflection group. The
simplest example of a Euclidean reflection group is when W is the infinite
dihedral group acting on the real line and S consists of the two reflections
about the endpoints of a fundamental interval. A building of this type is a
tree. (See Example 13.1 for more details.) Many other types for buildings
are possible. Most of our interest in this paper lies with these nonclassical
types.

Roughly speaking, a building of type (W, .S) consists of a set ® of “cham-
bers” and a family, indexed by S, of “adjacency relations” on ®. An example
of a building is W itself — the adjacency relation corresponding to s € S is
defined by calling two distinct elements of W s-adjacent if they form to the
same coset of Wy,.

To define the “geometric realization” X of a building, one first declares
the geometric realization of any chamber to be isomorphic to the fundamental
chamber K of ¥. One then amalgamates copies of K, one for each element
of ®, by gluing together chambers corresponding to s-adjacent elements of
® along the mirror corresponding to s. Details of this construction can be
found in [15], as well as in Section 13. (N.B. When W is an irreducible
Euclidean reflection group, K is a simplex and X has the structure of a
simplicial complex in which the top-dimensional simplices are the chambers;
however, in the general case, this is not the correct picture of the geometric
realization of a building.)

A group G of automorphisms of a building is chamber transitive if it acts
transitively on ®. If the building admits a chamber transitive automorphism
group, then, for any given ¢y € ®, the number of chambers which are s-
adjacent to g is independent of the choice of ¢y. We denote this number by

gs, 1.€.,
qs = Card{p € @ | ¢ is s-adjacent to ¢q and ¢ # @ }.

Moreover, if s and s" are conjugate in W, then ¢, = ¢q». We assume through-
out that the building has finite thickness, i.e., that each ¢, is finite. We
then get a well-defined I-tuple of integers q := (¢;)ics, called the thickness
vector of the building, where [ is the set of conjugacy classes in S and where
¢; ‘= qs for any representative s for . For example, the thickness vector of
W (considered as a building) is 1.



How do Hecke algebras arise in the theory of buildings? Let & be a
building of finite thickness with a chamber transitive automorphism group
G and with thickness vector q. Fix a base chamber ¢, € ®. Using the “W-
distance” from g, one gets a retraction r : & — W. Let C.(®) denote the
space of finitely supported, real-valued functions on ®. It is an algebra with
product given by convolution. Consider the subspace J C C.(®) consisting
of those functions which are constant on the fibers of r. It is a subalgebra.
As a vector space, J can be identified with R™W); however, the product is
not the usual one for the group algebra. As the reader has probably guessed,
J is identified with the Hecke algebra Rq[W], where the multiparameter g
is the thickness vector of .

Let X denote the geometric realization of the building ®. The retraction
r : ® — W induces a topological retraction X — >, which we continue to
denote by the letter r. This induces an inclusion r* : C¥(X) — C(X) of
(finitely supported) cellular cochains. The standard inner product on C¥(X)
restricts to the inner product (, )q on Cf(X). In this way, L2H*(X) becomes
identified with a subspace of L*H*(X), the ordinary L?-cohomology of X.

Since ® has finite thickness, G is locally compact and hence, has a Haar
measure p, which we normalize by the condition, p(B) = 1, where B denotes
the stabilizer of a chamber. Given p, we have the Hilbert space L?(G, i) of
square integrable functions on G and a von Neumann algebra N'(G). Since
L*HY(X) is an N(G)-module, it has a “dimension” with respect to N'(G).
This number is called the i*" L2-Betti number and denoted b'(X;G). It is
proved in [25] (under slightly stronger hypotheses), as well as in Theorem 13.8
of Section 13, that b'(X; G) = b}, (X).

In [26] the second and third authors calculated L*H*(X) under the as-
sumption that the thickness vector q is very large. The result of [26] is similar
to statement (b) of our Main Theorem: it says that for q >> 1,

LPHA(X @H* K, KST ®Ds .
Tes

where Dg_r is a specific subrepresentation of L*(G/B) analogous to the
subspace Dg_p C LZ. (The notation in [26] is different.) In Theorem 13.11
of Section 13 we use our Main Theorem to show that, in fact, this formula
is valid for all q € R-1.

If W is a Euclidean reflection group, then the radius of convergence of
W (t) is 1 (cf. Proposition 3.10). It follows that q € R~1 whenever q > 1.
From this we deduce the following (known) result.
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Theorem. (Corollary 14.6 in Section 14).  Suppose X is an affine build-
ing (i.e., of Euclidean type) and that its automorphism group is chamber
transitive. Then L*H*(X) is concentrated in the top dimension.

The results of this paper raise more questions than they answer. Here
are two such:

e [s there a version of this theory for weighted differential forms?

e [s there a version of this for groups other than Coxeter groups?

4

The short answer to both is “yes.” In both cases a good deal of foundational
work remains to be done.

As for the first question, there exists a literature on weighted L? de Rham
cohomology on a Riemannian manifold M, for example, [4]. The inner prod-
uct on the vector space of compactly supported, smooth forms on M is
modified via a weight function of the form x — ¢%®), where ¢ € (0, 00),
x € M and d(z) is the distance from a basepoint. As one would expect,
when M = R", the weighted L?-cohomology is concentrated in dimension 0
if ¢ < 1 and in dimension n if ¢ > 1. In Section 16, we use a version of this
weighted de Rham theory on hyperbolic space equipped with an isometric
action of a group W generated by reflections across the faces of a fundamen-
tal polytope K. This time the weight function is a step function of the form
r — ¢, where w € W is such that z € wK. In this case, the de Rham
version and the cellular version of weighted L2-cohomology are canonically
isomorphic.

As for the second question, given a discrete group I', a CW complex
X equipped with a cellular I'-action and a positive real number ¢, one can
deform the standard inner product on C!(X) via a weight function of the
form v — ¢! and then define the weighted L? (cellular) cohomology groups
of X. As before, as ¢ varies from 0 to oo, these groups interpolate between
ordinary cohomology and cohomology with compact supports. The missing
feature for a general group I' (as opposed to a Coxeter group) is that we do
not have a deformation of the group algebra analogous to the Hecke algebra.
We will say more about this question in Section 18. We believe that this
topic also has an intrinsic interest and we hope to write more about it in the
future.
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2 Coxeter systems

A Cozxeter matriz on a set S is an S x S symmetric matrix M = (my) with
entries in N U {oo} such that each diagonal entry is 1 and each off-diagonal
entry is > 2. The matrix M gives a presentation for an associated Coxeter
group W: the set of generators is S and there is a relation

(st)™ =1,

for each pair (s,t) of elements in S with mg # oco. The purpose of this
section is to recall some standard facts about such groups. Proofs of most of
these facts can be found in [5].

The natural map S — W is injective and henceforth, we identify S with
its image in W. Moreover, each element of S has order 2 in W and the order
of st in W is mg. The pair (W, S) is a Cozeter system.

Given an element w € W, [(w) denotes its word length. An expression
for w as a word in S, w = sy -+ s, is a reduced expression if | = l(w).

Given T' C S, Wr denotes the subgroup generated by 7. Such a Wy
is a special subgroup of W. The pair (Wy,T) is the Coxeter system whose
Coxeter matrix is given by the restriction of M to T' ([5, Theorem 2 (i), p.
12]). The subset 7" is spherical if Wy is finite.

For T C S and w € W, the coset wWr contains a unique element of
minimum length. This element is said to be (0, T)-reduced. Moreover, an
element w is (), T)-reduced if and only if I(wt) > I(w) for all ¢t € T'. (See [5,
Ex. 3, pp. 31-32].) Let X7 denote the set of (0, T')-reduced elements of W.

If Wr is finite, then it contains a unique element w; of maximum length,
called the element of longest length. 1t is characterized by the property that
l(wrt) < l(wr) for all t € T ([5, Ex. 22, p. 40]).

Given w € W, set Inw := {s € S| l(ws) < l(w)}. It follows from the
“Exchange Condition” (cf. [5, p. 7]) that s € Inw if and only if w has a
reduced expression with final letter s. Thus, Inw is the set of letters with
which a reduced expression for w can end. A key fact ([12, Lemma 7.12]) is
that Inw is always a spherical subset of S.

For any spherical subset T' C S, define

Wh={weW |nhw=T} (2.1)
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The simplicial complex >. Given a poset P and an element p € P,
define P, := {x € P | x > p}. Subposets P.,, P>, and P, are defined
similarly. Associated to any poset P there is a simplicial complex |P|, called
its geometric realization; its vertex set is P and a nonempty finite subset of
P spans a simplex if and only if it is totally ordered.
Let § denote the set of spherical subsets of S, partially ordered by inclu-
sion and let
SO ={T €S8 |Cad(T) =i} (2.2)

S has a minimum element, namely, ). S-p is the poset of simplices of a
simplicial complex denoted by L(W,S) (or L for short) and called the nerve
of (W,S). (In other words, the vertex set of L is S and a nonempty subset
T C S spans a simplex if and only if it is spherical.) S@ is the set of
(¢ — 1)-simplices in L.

We are also interested in WS, the poset of spherical cosets. It is defined
as the disjoint union of the sets W/Wr, T' € §. Thus, a typical element of
WS is a coset wWr for some T' € §. The partial order is inclusion.

The geometric realization of S is denoted K and the geometric realization
of WS by ¥. The group W acts properly on the simplicial complex ¥3; the
orbit space is the finite complex K. The most important property of ¥ is
that it is contractible ([12, Theorem 10.3 and Section 14]).

3 Growth series

Suppose we are given a Coxeter system (V) S), an index set I and a function
i8S — I so that i(s) = i(s’) whenever s and s’ are conjugate in W. (The
largest possible choice for Im i is the set of conjugacy classes of elements in .S
and the smallest possible choice is a singleton.) Let t = (¢;);e; stand for an
I-tuple of indeterminates. Write ¢ for ¢;5). If s1 - - s; is a reduced expression
for w, then define ¢,, to be the monomial ¢,, := t4, - - - t5,. It follows from Tits’
solution of the word problem for Coxeter groups (see [40] or [8]) that t,, is
independent of the choice of reduced expression for w.
For any subset X of W, define a power series in t

X(t) =)t (3.1)

weX

W (t) is the growth series of W and, for any subset T" of S, Wr(t) is the
growth series of the special subgroup Wr.
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Notation. The region of convergence of Wr(t) in C! is denoted Ry. Write
R instead of Rg. Put R;' := {z € C! | z7! € Ry}. Denote the closure
of the region of convergence by R and put 9R := R — R. Define R—! and
OR~! similarly.

From the fact that all the coefficients in W (t) are nonnegative real num-
bers, we immediately get the following lemmas.

Lemma 3.1. [fU CT CS, then R C Rr C Ry.
Lemma 3.2. Suppose q € (0,00)".

equivalent:

(a) q € OR,

Then the following two conditions are

(b) 1/W(q) =0 and 1/W(Aq) > 0 for all A € (0,1).

Note that if T is spherical, then W7 (t) is a polynomial in t and so Ry =
C!. If, for each i € I, |t;| > 1, then t ¢ Ry whenever Wy is infinite.
Define &(T) := (—1)“2d(®),

Lemma 3.3. ([5, Ex. 26, pp. 42-43], [37, Prop. 26], [39].)

(i) Suppose W (= Ws) is finite and let ts = t,, be the monomial corre-
sponding to the element of longest length in W. Then

(a) W(t) =tsW(t™).
(b)

ts e(T)
Wﬁt) P Wr(t)

TCS

(ii) As in Section 2, for each T C S, suppose Xt denotes the set of (0, T)-
reduced elements in W. Then

W(t) = Xz (t)Wr(t).

(iii) As in (2.1), for each spherical subset T of S, suppose WT denotes the
set of w € W with In(w) =T. Then

(a)

WT(t T-T
5= 2 e



(iv)

Corollary 3.4.

where f, g € Z[t] are polynomials with integral coefficients.
The next lemma follows immediately from the definitions.

Lemma 3.5. Suppose (W,S) decomposes as a product (W7 x Wy, S U Ss).
Then W (ty,ty) = Wi(t1)Wa(ts). Moreover, R = Ry X Ro, where R, R4
and Ry are the regions of convergence for W(ty,ts), Wi(ty) and Wa(ts),
respectively.

Example 3.6. (The infinite dihedral group). Suppose S = {si,s2} and
Ms,s, = 00, so that W is the infinite dihedral group D.,. Its nerve is the
O-sphere. Also, suppose I = {1,2} and that S — I sends s; to j. Using
Lemma 3.3(iv), we compute:

1 1 — 11t

Wit) (1+t)(1+t)

So, R = {(z1, 22) | |z1]]22] < 1}. In particular, (0,1)* C R.

Example 3.7. Suppose W = (D))", the n-fold product of infinite dihedral
groups. Its nerve L is then the n-fold join of copies of S, i.e., it is the
boundary complex of an n-octahedron. By Lemma 3.5 and Example 3.6,

0,1)! cR.

The case of a single indeterminate. Suppose [ is a singleton. Then t is
a single indeterminate, call it ¢, the monomial ¢, is just () and W (t) is the
usual growth series. Let p denote its radius of convergence. An immediate
corollary to Lemma 3.2 is the following.
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Corollary 3.8. 1/W(p) =0 and p = min{|t| | t € C and 1/W(t) = 0}.
A corollary to Lemma 3.5 is the following.

Corollary 3.9. Suppose (W, S) decomposes as a product (W x Wa, S1US,).
Then W (t) = Wi(t)Wa(t) and p = min(py, p2), where p, py and py are the
radii of convergence for W (t), Wi(t) and Ws(t), respectively.

In the next proposition we list six other conditions which are equivalent
to the condition that the radius of convergence of W (t) be 1.

Proposition 3.10. The following conditions on a Coxeter system (W, S) are
equivalent.

(i) W is amenable.
(ii) W does not contain a free group on two generators.

(iii) W does not virtually map onto the free group on two generators Fy (i.e.,
W does not have a finite index subgroup I' which maps onto F3).

(iv) W is virtually abelian.

(v) (W,S) decomposes as (Wy x Wy, So U Sy) where Wy is finite and Wy is
a cocompact Euclidean reflection group.

(vi) p=1.
(vil) W has subexponential growth.

Proof. then the (i) = (ii) is a standard fact.

(ii) = (iii). Suppose for some subgroup I' of W we have a surjection
f: T — F, where F; is the free group on {z;,79}. Choose v, € f~(zy),
Yo € fH(x2). Then (v1,7) is a free subgroup of W.

(ili) = (iv). It is proved in [33] (and independently in [29]) that when
W is not virtually abelian there is a subgroup I' of finite index in W which
maps onto a nonabelian free group.

(iv) = (v). Moussong [34] proved ¥ has a CAT(0) metric (so W is a
“CAT(0) group”). This implies that any abelian subgroup of W is finitely
generated. So, if W is virtually abelian, then it is virtually free abelian. We
suppose that has W has a rank n free abelian subgroup of finite index. Then
W is a virtual PD"-group. By [13, Theorem B], W decomposes as in (v),
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where the complex ¥, for (W, Sy) is a CAT(0) homology n-manifold. By
the Flat Torus Theorem ([6]), the “min set ” of the free abelian subgroup on
Yo is isometric to R™. Hence, ¥y = R™ and W, acts as an isometric reflection
group on it.

(v) = (vi). Since a Euclidean reflection group is virtually free abelian, it
has polynomial growth and therefore, the radius of convergence of its growth
series is 1. (In fact, the poles of its growth series are all roots of unity; see
Remark 3.11 below.)

(vi) = (vii) is obvious.

(vii) = (i) by the Fglner condition for amenability. O

Remark 3.11. Suppose W is a (cocompact) Euclidean reflection group.
First consider the case where (W, S) is irreducible. Let W’ be the finite
linear reflection group obtained by quotienting out the translation subgroup
of W and let my, ..., m, be the exponents of W’. According to [5, Ex. 10,
p. 245], the growth series of W is given by the following formula of Bott:

14t tm
wt) =] .

, 1—tm
=1

In particular, all the poles of W (t) are roots of unity. We can reach the same
conclusion without the assumption of irreducibility, since the growth series
of (W, S) is the product of the growth series of its irreducible factors.

Note. In the case where t is a single indeterminate, most of the results of
this section come from [5, Ex. 26, pp. 42-43]. The idea of extending the
results from this exercise to an I-tuple of indeterminates comes from [37].
Lemma 3.3(iii)(a) is from [5, Ex. 26 d), p. 43|, while (iii)(b) is due to
Steinberg [39].

4 Hecke algebras

Let A be a commutative ring with unit. Denote by A™) the free A-module
on W consisting of all finitely supported functions W — A and denote by
A[W] this A-module equipped with its structure as the group ring of W. Let
(€w)wew be the standard basis for A"W). We are primarily interested in the
case where A = R, the field of real numbers.
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As in the previous section, i : S — [ is a function such that i(s) = i(s)
whenever s and s’ are conjugate. Let q = (¢;)ic; € A be a fixed I-tuple.
As before, write ¢ for g;5). By [5, Exercise 23, p. 57], there is a unique ring
structure on AM) such that

A {esw, if I(sw) > l(w); (4.1)

Gssw + (@s — Ve, if l(sw) < l(w),

for all w € W. We will use the notation A4[WW] to denote A" with this
ring structure. Note that if q is the constant I-tuple 1 := (1,...,1), then
A W] = A[W]. So, Aq[W] is a deformation of the group ring. It is called
the Hecke algebra of W associated to the multiparameter q.

From (4.1) it follows that

€u€y = €yp, for all u,v € W with [(uv) = l(u) + l(v), and
6? = (QS - ]->es + qs-

The function e, — e,-1 induces a linear involution * of AM) i.e.,

(Z awew>* = Zawqew. (4.2)

Lemma 4.1. Formula (4.2) defines an anti-involution of the ring Aq[W].
In other words, for all z,y € Aq[W], (xy)* = y*z*.

Proof. For each w € W, let L,, (resp. R,) denote left (resp. right) transla-
tion by e,, defined by L, (z) = e,z (resp. Ry, (x) = ze,). A quick calculation
using (4.1) gives: R; = Ly, for all s € S. If s;---5 is a reduced ex-
pression for w, then R, = Ry, -+ Rs, = *Lg, -+ Lg% = xL,-1x. Therefore,
xey = Ry(x) = xLy-1 % (x) = (e,—12")*. Hence, R, = *L,-1%, for all
w € W. So, (xey)" = (ep-12*)"* = e,—12* = el x*. The lemma follows. [

Using the involution *, we deduce the following right hand version of
(4.1):

ooen — {ews, if [(ws) > l(w); (4.3)

Isews + (qs — 1)ey, if l(ws) < l(w).
Proof of (4.3). Apply *, to get

(ewes)” = €51



Hence,
ewes = (epes)™
B {ews, if I(sw) > l(w);
GsCws + (s — D)ey, if I(sw) < l(w).
O

For each w € W, define ¢, by the same formula used to define t,, , i.e., if
$1---5; is a reduced expression for w, then

Guw = (gs; """ (G- (44)
Also, set

£ 1= (—1)!W), (4.5)
The maps e, — ¢, and e,, — ¢, extend linearly to ring homomorphisms
Aq[W] — A.

Following Kazhdan-Lusztig [30], define an isomorphism jq : Aq[W] —
Aq-1[W] by the formula:

Ja(€w) = EwluCuw. (4.6)

It is easily checked that jq is an algebra homomorphism and that (jq) ™' =

Jq-1- Hence, jq is an isomorphism of Hecke algebras. It is called the j-
1somorphism and denoted simply by j when there is no ambiguity.

Note. Most of the material in this section is taken from [5, Exercise 23, p.
57].

5 Hecke — von Neumann algebras

From now on A is the field of real numbers R and q = (¢;):es is an I-tuple
of positive reals. Define an inner product ( , )q on RM™) (= Rq[W]) by

<Z awew,waew>q = Zawbwqw, (5.1)

where ¢, was defined by (4.4). As in [32], sometimes it is convenient to
normalize (e, )yew to an orthonormal basis for Rq[W] by setting

Ew = gy ey (5.2)
The completion of R with respect to the inner product ( , )q is denoted

L?I(W), or simply Lfl, when there is no ambiguity.
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Proposition 5.1. (|25, Proposition 2.1]). The inner product defined by (5.1),
multiplication defined by equations (4.1) and the anti-involution * defined by
(4.2), give Rq[W] a Hilbert algebra structure in the sense of [21, A.54]. This
means, in particular, that

(i

) (wy)" =ya”,
(il) (z,y)q = (¥ 2")q
iii)
iv) fo

<(L’y, > <y,[E Z>q>
or any x € Rq[W], left translation by x, L, : Rq[W] — Rq[W], defined

by L.(y) = xy, is continuous,
(v) the products xy over all x,y € Ryq[W] are dense in Rq[W].

Since the action of Rq[W] on itself by multiplication is continuous, Lzl is
a Rq[W]-bimodule.

An element x € Lfl is bounded if right multiplication by z is bounded on
Rq[W] (or equivalently, if left multiplication by « is bounded). Let R%[WW]
be the set of all bounded elements.

As in [21] there are two von Neumann algebras associated with this sit-
uation. They are denoted by Ng[W] and N/[W] or simply by Ny and N
when there is no ambiguity. Ng acts from the right on L? and N, from the
left. Here are two equivalent definitions of Ny:

(i) Ng is the algebra of all bounded linear endomorphisms of L7 which
commute with the left Rq[IV]-action.

(ii) Ng is the weak closure of R[] acting from the right on L.

If we interchange the roles of left and right in the above, we get the two
equivalent definitions of N .

Lemma 5.2. IfT C S, then the inclusion Rq[Wr| — Rq[W] induces inclu-
sions R [Wr| — RL[W] and Ng[Wr| — Nj.

Proof. Let LZ(wWr) C LZ(W) denote the subspace of functions which are
supported on the coset wWr. Then Li(W) decomposes as an orthogonal
direct sum of spaces of the form LZ(wWr). Suppose A € Ng[Wr). Right
multiplication by A preserves the summands, and acts on each summand
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in the same way. The norm in the space L?(wWr) is the norm in LZ(Wr)

rescaled by a factor of q;l/ ? so that the operator norms of right multiplication
by A on each of these subspaces is bounded hence, A € Nj. n

The j-isomorphism. It follows from the definitions that the isomorphism
J : Rg[W] — Rgy-1[W] defined by (4.6) takes the orthonormal basis (&,) for
L3, defined by (5.2), to the orthonormal basis (é,) for L? i. So, it is an
isometry. Therefore, it extends to an isometry of Hilbert spaces j : L(Qjl —
Lfrl. From this, it is obvious that j takes a bounded element of LZ to
a bounded element of L?_,. Hence, it extends to an isomorphism of von
Neumann algebras j : Ny — Ng-1.

The von Neumann trace. Define the trace of an element ¢ € Ny by

tr/\fq<90) = <€190>€1>q>

where e; denotes the basis element of LZ corresponding to the identity el-
ement of W. If ® : @ L2 — @;_, L? is a bounded linear map of left
R [W]-modules, then we can represent ¢ as right multiplication by an n x n
matrix (¢;;) with entries in Ngy. Define

trag (@) =) trag (pi)-
=1

Hilbert Nq-modules and von Neumann dimension.

Definition 5.3. A subspace V' of a finite orthogonal direct sum of copies of
L? is called a Hilbert Ny-module if it is a closed subspace and if it is stable
under the diagonal left action of Rq[WV].

A map of Hilbert N-modules means a bounded linear map of left R [WW]-
modules. A map is weakly surjective if it has dense image; it is a weak
1somorphism if it is injective and weakly surjective.

Let V. C @, L? be a Hilbert Ng-module and let py : @}, L —
e, LZ be the orthogonal projection onto V. The von Neumann dimension
of V' is the nonnegative real number defined by

dimp, V' = tra, (pv). (5.3)
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As usual, one shows that dimy;, V' doesn’t depend on the choice of embedding
of V into a finite direct sum of copies of Lfl. If a subspace V C EBLZ is

Ry[W]-stable but not necessarily closed, one defines dimy, V' := dimy, V'

This dimension function satisfies the usual list of properties:

(i)
(i)

(i)
(iv)

(v)

dimy, V' = 0 if and only if V' = 0.
For any two Hilbert Ng-modules V and V",
dimp, (V @ V') = dimpy, V' + dimyy, V.

dimyy, L(21 =1.

If f:V — V'is a weak isomorphism of Hilbert Mg-modules, then
dimy, V' = dimy, V'

Suppose that (W', S") and (W”,S") are Coxeter systems, that S" — I’
and S” — [" are indexing functions, that ¢ and q” are multiparam-
eters, S = S"US" and I = I’ U I” are disjoint unions that (W,S) =
(W' x W" S"US") and that q is the multiparameter for (W, S) formed
by combining q' and q”. Let V' (resp. V") be a Hilbert Ny [W']-
module (resp. Ngv[W”]-module). Then the completed tensor product
V :=V'® V" is naturally a Hilbert Ng-module and

dim/\[q[w] (V/ & V”) = (dim/\/q, W V/) (diqu,, (W] V”).
Suppose that 7' C S and that Vi is a Hilbert Ng[Wr]-module. The
induced Hilbert Ng-module V is defined to be the completed tensor

product
V.= Li(W) ®Rq[WT} VT.

Its dimension is given by

diqu V= diqu[WT] VT-

Idempotents in N, and growth series. Given a subset T of S, recall Ry
denotes the region of convergence for Wr(t).

Lemma 5.4. Given T C S and q € Rr, there is an idempotent ar € Ny
defined by

1
ar :m Z Cw-

weWrp
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Proof. Define
dT = Cw- (54)

Then (ar,ar)q = Y. qw = Wr(q), so ar € LZ(Wr) if and only if q € Ry.
Assume this. Recall that for each s € S, X, denotes the set of (0, {s})-
reduced elements in W. Using (4.3), we calculate that for each s € T,

dTes - E EwEs + Eys€s

weXNWrp
- Zews + 4s€w + (QS - 1)ews
= QSdT
Hence, for w € W,
N . -~ 1/2-~
arey = quar and aré, = q ar (5.5)
Therefore,
(ar)* = Wr(q)ar. (5.6)

We claim ar is a bounded element of LZ(Wr) (hence, by Lemma 5.2, it lies
in Ny). To see this, note that if + = 3 2,6, € Rq[Wr], then (5.5) can be

rewritten as
ELT Z CUuzéw - (Z xw%lu/2) aT

and hence, ||arz||q < ||ar|qllz|lq. So, we get an idempotent defined by

(5.7)

]

Lemma 5.5. Given a subset T of S and an I-tuple q € R;', there is an
idempotent hy € Ny defined by

1
hp = ——— 6wq1;1€w
Wita ) 2

(where q,, and €,, are defined by (4.4) and (4.5), respectively).
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Proof. The proof is similar to the previous one. Define

hp == Z Ewly Cw- (5.8)

weWr

Then (hp, hr)q = S q;" = Wr(q ™), so hy € LZ(Wr) if and only if 7' €
Rr. Assume this. For s € T', we calculate

7 —1 —1
hTes = E Ewqy Cwbs + EwsGys Cws€s
weXsNWrp

= Zgwqalews + gwsq;lqs_l(QSGw + (QS - 1)61118)
= - Zgwq;lew + gwsq;1QQlews
.

Therefore, for w € Wr,

ETew = €wl~lT and (59)
(hr)? = > ewty hrew = Wr(q hr. (5.10)
weWr

As before, it follows that hy € R?[Wr] and hence, that hy € Ny. So, by
(5.10), we get an idempotent defined by

hr

hr = —.
T Wr(g )

(5.11)

]

Using (4.3) we get the following right hand versions of (5.5) and (5.9) for
T CS and w e Wy:

ewdr = quar and (5.12)
eth = Eth. (513)

What is the effect of the j-isomorphism on these idempotents? It follows
immediately from definitions (4.6), (5.4) and (5.8) that

](CZT) = iLT and j(&T) = ilT.
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Hence, by the definitions in Lemmas 5.4 and 5.5,
jlar) = hr and j(hr) = ar. (5.14)

Using (5.5), (5.9), (5.12) and (5.13), we easily calculate that for any
UCTCS:

ayar = ar = aray whenever q € Ry, (5.15)
hyhr = hy = hphy  whenever q € Rl}l. (5.16)

If s1---s;is a reduced expression for w, then s; - - - s; is a reduced expres-
sion for w!. It follows that

Gu-1 = ¢ and  e,-1 = £,.
So,
apr =ar and hp=hp,

whenever the idempotents a; and hr make sense. In other words, the maps
r — zap and * — xhp are orthogonal projections from L<211 onto Hilbert
submodules.

Remark. The “a” in ar is for “average,” while the “h” in hp is for “har-
monic.”

Definition 5.6. Foreach T' C S, let ap : R[Wy| — R and 87 : Rq[Wr] = R
be the algebra homomorphisms defined by e, — ¢, and e, — &, respec-
tively. ar is the symmetric character and Bt is the alternating character.

The next lemma follows immediately from equations (5.5) and (5.9).
Lemma 5.7.

(i) Supposing q € Ry, the action of Rq[Wr] on Liar by right multiplica-
tion is via the character ag.

(ii) Supposing q~' € Ry, the action of Ryq[Wr] on LihT by right multipli-
cation is via the character Pr.

Some Hilbert AN -submodules of L¢21~ To simplify notation, for each
s € S, write a, and h, for the idempotents ayy and hy,y. Let A, = Laas and
H, = L7hs be the corresponding Hilbert Ng-submodules of L7.
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Lemma 5.8. For each s € S, the subspaces A, and H, are the orthogonal
complements of each other in Lfl.

Proof.

a's+hs = (1—(]5_165)

I+ qs
= 1.

(1+es)+

1+q;!

So, as and h, are orthogonal projections onto complementary subspaces. [J

For each T' C S, set

Ap = () As and Hp:=[)H, (5.17)

seT seT

For any subspace £ C L2, let E* denote its orthogonal complement.
Since L takes sums to intersections and intersections to closures of sums:

(;TASY — Hy, (Z HS)L — Ap, (5.18)

ZAS - (HT)Lu ZHS = (AT)J_' (519>

Lemma 5.9. Let Ag be the subspace of Lg defined in (5.17).
(i) For allx € Ag and w € W, xe, = qu,T.
(ii) Ifq ¢ R, then As = 0.
(i) If q € R, then Ag is the line spanned by as and L(Zlas = Ag. Hence,

1

diqu AS = W

There is also a version of this lemma for Hg.
Lemma 5.10. Let Hg be the subspace of L defined in (5.17).
(i) For allx € Hg and w € W, xe, = €,.

(i) Ifq ' ¢ R, then Hg = 0.

25



(iii) If g~ € R, then Hg is the line spanned by hs and Lflhg = Hg. Hence,

diqu HS = m

We prove only the first version, the proof of the second version being
entirely similar.

Proof of Lemma 5.9. (i) As in Definition 5.6, ap : R[Wr] — R denotes the
symmetric character. The ayg)-eigenspace of Rq[Wg] on L2 is Ker(gs—e,) =
Ker hy, = L?las = A,. Since the subalgebras Rq[Wys| generate Rq[W], the
intersection of the A, s € S, is the ag-eigenspace for Rqy[W].

(ii) If x = > e, € Ag, then

QuTy = (ew, T)q = (1, z€),)q = (1, zey-1)q = (1, quT)q = qu1.

In other words, the coefficients z,, are all equal. Hence, (z,z)q = 23W(q).
So,ifq¢ R,z ¢ Lfl unless = 0 and if q € R, x must be a scalar multiple
of as.

(ii) By Lemma 5.7, if g € R, then L2ag C As. Since ag # 0 and
dimg Ag = 1, the inclusion is an equality. Hence,

. . 2
dimp, As = dimyy, Lyas = try, as = ——.

W(q)

Corollary 5.11. For any T'C S
(i) Ap :LaaT ifq € Ry and Ar =0 if q ¢ Rr.
(i) Hy = LghT ifq '€ Ry and Hy =0 if q* ¢ Rr.

Proof. Since Ar and Hrp are induced from Hilbert Rq[Wr|-modules, this
follows from Lemmas 5.9 and 5.10. ]
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6 Some cell complexes

The basic construction. Suppose we are given the following data:
e a Coxeter system (W, 5),
e a CW complex Z and
e a family of subcomplexes (Zs)ses.

The Z, are called the mirrors of Z. Given these data there is a classical
construction of a CW complex U = U(W, Z) with a W-action so that Z is a
strict fundamental domain. We recall the construction.

For each subset T" of .S, set

Zy =20 Z,
seT
A U L. (6.1)
seT

For each cell ¢ of Z and each point z € Z, set

S(z) :={seS|ze€Zs}, (6.2)
S(c):={seS|cC Z}. (6.3)

Define U(W, Z) := (W x Z)/ ~ where ~ is the equivalence relation defined
by: (w,z) ~ (v, 2) if and only if z = 2’ and the cosets wWg(.) and w'Wg.
are equal. Write [w, z] for the image of (w,z) in Y. The group W acts on
U via w - [w',z] = [ww', z]. The orbit space is Z. Identifying Z with the
image of 1 X Z in U, we see that Z is a strict fundamental domain. wZ, the
translate of Z by w, is identified with the image of w x Z. The CW structure
on U is defined by declaring the family (wc), with w € W and c a cell of Z,
to be the set of cells in ¢. (Note that we is the image of w x ¢ in U.)

The setwise stabilizer of a cell ¢ of Z is the special subgroup Wg(). More-
over, W) fixes each point of c.

The family (Zy)ses is W-finite if Zp = () whenever Wr is infinite. This
condition insures that each isotropy subgroup is finite. It is equivalent to the
condition that W act properly on &. We shall assume it throughout.

The complex Y. The complex ¥ can be described in terms of the basic
construction. As in Section 2, denote the geometric realization of the poset
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S by K and the geometric realization of WS by . For each s € S, let K be
the geometric realization of the subposet S- ;. It is a subcomplex of K. The
space U (W, K) is naturally a simplicial complex. The natural map W xS —
WS, defined by (w,T) — wWy, induces a map of geometric realizations
W x K — ¥ and this descends to W-equivariant map U(W, K) — X. As in
[12], it is easily seen that this map is a simplicial isomorphism, i.e.,

S = UY(W, K). (6.4)

Cellulation of ¥ by Coxeter cells. As is explained in [34, 15, 16] and
below, > has another cell structure: its cellulation by “Coxeter cells.”

Suppose, for the moment, that W is finite and Card(S) = n. Associated
to (W, S) there is a n-dimensional convex polytope P called the Coxeter
cell of type W. P is defined as the convex hull of a generic W-orbit in the
canonical representation of W on R". W acts simply transitively on the
vertex set of P; moreover, a subset of vertices spans a face if and only if
it has the form wWrv, for some special coset wWr and for a given choice
of base vertex vy in the interior of the fundamental simplicial cone. This
identifies the face poset of P with WS. In other words, it gives a simplicial
isomorphism between > and the barycentric subdivision of P.

Returning to the case where (W, S) is arbitrary, note that for any element
wWyp € WS, the poset WS<,w, is identified with the face poset of Pr, the
Coxeter cell of type Wr. So, the subcomplex |WS<,w,.| of ¥ is identified
with the barycentric subdivision of Pr. This defines the cell structure on
¥ each simplicial subcomplex |WS<,w,| is identified with a Coxeter cell of
type Wr. So, the vertex set of ¥ is W and a subset of W is the vertex set of
a cell if and only if it is a coset wWr for some w € W and T' € §. We shall
use the notation Y. to denote X equipped with this cell structure, where the
subscript cc stands for “Coxeter cell.” (In [25] this cell structure is denoted
Y4, where the subscript d stood for “dual cell.”) The poset of cells of ¥ is
WS.

Suppose U C S. Let S(U) :={T'€ S | T C U}. Define £(U) to be the
subcomplex of Y. consisting of all Coxeter cells of type T, with T" € S(U).
If K(U):=X(U)N K, then it is not difficult to see that

N(U) =UW, KU)) =W xw, UWy, K(U)). (6.5)
Moreover, U(Wy, K (U)) equivariantly deformation retracts onto the complex

Yy, associated to (Wy,U).
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Ruins. Given U C § and T' € S(U), define three subcomplexes of X(U):

Q(U,T) : the union of closed cells of type 7", with 7" € S(U)>r,
Q(U,T) : the union of closed cells of type T”, T" € S(U), T" ¢ S(U)sr,
OQUU,T) : the cells of QU,T) of type T”, with T" ¢ S(U)>r

Q(U,T) is the union of all cells of type 7", where T" < T" for some T" €
S(U)ZT- So,

oQ(U, T) = QU,T) N
S(U) = QU,T) U

NQU,T) and
uQ(U,T).
The pair (Q(U,T),0Q(U,T)) is called the (U, T)-ruin. For example, for T =
0, we have Q(U, () = X(U) and 9Q(U, ) = (). The key step in our proofs of
the main results in Sections 9 and 10 is the computation of certain homology
groups of (U, T')-ruins.

Similarly, define

K(U,T):
OK(U,T) :
K(U,T) :

QU,T)NK,
NNU,T)NK,
QU,T)NK.

So, that

QU,T)
o0(U, T)
T

U, T)

UW,K(U,T)),
UW,0K(U,T)),
UW,K(U,T)).

U,
U,

o)

7 Weighted L*-(co)homology

Notation is as in the previous section: Z is a CW complex, (Zs)ses is a
W-finite family of subcomplexes and U = U(W, Z).

We begin by defining a chain complex of Hilbert Ng-modules for the CW
complex Y. In this case, each orbit of cells contributes an NMg-module of the
form Az for some T' € S. Next we define chain complexes of Nj-modules in
the cases of the cellulation of ¥ (and its subcomplexes of ruins) by Coxeter
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cells. In these cases each orbit of cells contributes a Nq-module of the form
Hp, T e€S.

Weighted (co)chain complexes for U(W, Z). Orient the cells of Z arbi-
trarily and then orient the remaining cells of U so that for each positively
oriented cell ¢ of Z and each w € W, wc is positively oriented.

As usual, q is an I-tuple of positive real numbers. Given a cell ¢ of Z
define a measure jiq on its orbit We by

fiq(We) = Gu, (7.1)

where v is the shortest element in the coset wWg() (i.e., u is the (0, S(c))-
reduced element in this coset). This extends in a natural way to a measure,
also denoted by pq, on U @) (where 4 denotes the entire set of i-cells in U).
As in [25], define the q-weighted L*-(co)chains on U (in dimension i) to be
the Hilbert space

LICi(U) = LIC'(U) = L*(UY, ug). (7.2)

We have coboundary and boundary maps, ¢’ : L2C*(U) — LZC*'(U) and
0; : LflC'i Uu) — LflCi_l(Z/{ ) defined by the usual formulas:

S ) =D 181N (7.3)

where the first sum is over all i-cells 3 incident to the (i + 1)-cell v while the
second is over all # whose boundary contains the (i —1)-cell a. In contrast to
the standard situation (where q = 1), the maps ¢° and 9;;; are not adjoint

to one another. Define 9} : LZCy(U) — LZCi_1(U) by

OM(f)(@) =D o Blug(B)pqla) " £(B). (7.5)

A quick calculation (cf. [25, Section 1]) then shows that 6* = 99. Since
6% = 0, taking adjoints, we get (0%)> = 0. Hence, (L2C,(U),09) is also a
chain complex.
One defines the q-weighted L*-(co)homology of U in dimension i by
2 77i (10 o FFI((T2 _ i i—1
LXH'U) = H'((LAC*(U), 5)) = Ker &'/ Tm 6",

q

LaHi(U) = H;((LaCi(U),07)) = Ker 0F/ Im 9, ,.

q
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Notice that while we are using the ordinary coboundary map J, the boundary
map 09 is not the usual one: it is modified by coefficients depending on q.
There is a standard problem with these (co)homology groups: the quotients
need not be Hilbert spaces. To remedy this, define reduced weighted L>-
(co)homology by

L2H'(U) == Ker §' /Im 61,
LIHi(U) := Ker 97 /Tm 9.

Since ¢* = 0% and (0%)* = ¢, we have the Hodge decomposition:

L:C'(U) = (Ker 6" NKer 8) & Im 61 & Im 6, ;.

It follows that both LZH'(U) and L2H;(U) can be identified with the space
Ker 0* N Ker 0! of harmonic cochains. In particular, L2H"(U) = LZH;(U).

Lemma 7.1. The chain compleves (LZC.(U),09) and (L2 C.(U),0) are
1somorphic.

Proof. Given a chain f on U, define another chain 6(f) by 6(f)(3) :=
tq(B)f(B) and note that 6(f) is g-square summable if and only if f is

q '-square summable. Hence, it defines a linear isomorphism 6 = 6 :
L2 .C.(U) — LZC.(U). Using (7.4) and (7.5), computation shows that
fod=0% 6. So, 0 is a chain isomorphism. n

Remark 7.2. We have canonical inclusions of chain complexes:
C.(U;R) — (L2C.(U),0) — CY(U;R). (7.6)
So, using the isomorphism 641 of Lemma 7.1 we get inclusions:
C.(U;R) — L2, C.(U) — CY(U;R). (7.7)
Similarly, we have inclusions of cochain complexes:
CHU;R) — LzC’*(Z/{) — C*(U;R). (7.8)

(Here CY( ) and C?( ) stand for, respectively, infinite cellular chains and
finitely supported cellular cochains.) The second map in (7.6) (or the second
map in (7.7)) is obtained by dualizing the first map in (7.8). Similarly, the
second map in (7.8) is obtained by dualizing the first map in (7.6).

31



As was indicated in the Introduction and as will be explained further in
Section 12, for q € R, the first maps in (7.6) and (7.7) induce monomor-
phisms with dense image

H,(U;R) — Hi(LfrlC*(u)v 9)
H;(U; R) — LEH(U).

(The first monomorphism agrees with one’s intuition.) Similarly, for q €
R~!, the first map in (7.8) induces a monomorphism with dense image

can : H(U;R) — LIH'(U).

Dualizing we get isomorphisms:

o

L}H'(U)—H'(U;R) for q € R and
L2H(U)—HI U;R) forqe R

All this is reminiscent of a well-known result of Cheeger-Gromov [11] that if
a discrete amenable group A acts properly on a CW complex X, then the
canonical map L*H*(X) — H*(X;R) is injective. So, for q € R, weighted
L2-cohomology behaves as if W were amenable.

The Hilbert Ng-module structure on L?C*(U). Following [25], realize
L7 as L*(W, vq), where vq is the measure on W defined by vq(w) = g, For
each subset T' of S, the Hilbert Nj-submodule Ay C La, defined by (5.17),
is then identified with L?(W, v4)"7, the subspace of L? functions which are
constant on each right coset wWWy.

Since each cell of U has the form wc for some cell ¢ of Z and some w € W,
we have

L2C'U) = @ L*(We, pg),
cez()

where the sum ranges over all i-cells ¢ of Z. Moreover, L*(We, uq) can be
identified with Ag( via the isometry ¢. : L*(We, puq) — Ag(e) defined by

¢e(f) = \/WS(C)(Q)< > f(uc)euaS(c))7

uGXS(C>
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where the summation is over all (0, S(c))-reduced elements u and where
as(y € Ny is the idempotent defined in Lemma 5.4. So, we get an isom-

etry
L2C'U) = P LA(We, pg)— P Aso.
cez() cez®)
Since each Ag(, is a left Rq[IW]-submodule of L7, this gives LZC"(U) the
structure of a Hilbert Ng-module as in Definition 5.3 (provided we assume,
as we shall, that Z is a finite complex). It also gives an isometric embedding

LU — P LL=C(2)® L2 (7.9)

ceZ ()

It is shown in [25, Lemma 3.2] that § and 99 are maps of Hilbert Ng-
modules. (It is not true that §q, and 9 are maps of Hilbert NMg-modules;
however, it is possible to give L2C*(U) and L2C.(U) the structure of Hilbert
R-:[W]-modules so that they are maps of Hilbert Rqy-1[W]-modules. To do
this, one transports the Rq-1[W]-module structure from L2 ,C,(U) via the

isomorphism 6 of Lemma 7.1.) It follows that Kerd, Ker 9%, Im § and Im 04
are Hilbert Ng-modules. Hence, LZH'(U) (or L7H;(U)) is also a Hilbert
Ng-module.

Weighted (co)chain complexes for cellulations by Coxeter cells. Let
(T') denote the Coxeter cell in 3 corresponding to Wy € WS (the W-coset
of the identity element). Then W(T'), the W-orbit of (T'), is the set of all
Coxeter cells in X of type Wr. Define a measure pq on >0 by pg(w(T)) = qu,
where u = pr(w) is the shortest element in wWr. Define the q-weighted L*-
(co)chains on ¥ (in dimension 7) to be the Hilbert space

chz(zcc) = L<2;102<EC ) = Lz(zgc)v :UQ)

= @D LWT), )
Tes®
Choose arbitrarily a orientations for cells of the form (T), T'€ S. We
use the following orientation convention for the remaining cells in W(T'): if
u € Xr (ie., if uis (0, T)-reduced as defined in Section 2), then orient u(T)
so that left translation by w is an orientation-preserving map (T') — u(T').
Asin (7.3), 6 : L2C*(Xe) — LZC™ (Xe) is the usual coboundary map.
Its adjoint 09 : L2Ci11(Xe) — LICi(Eee) is defined similarly to (7.5).

We have
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Next, we determine the formula for the restriction of 94 to the summand
L2(W(U), pq), where U € S“1. Any w € W can be uniquely decomposed
as w = uv with u € Xy and v € Wy. Suppose T € S@ is obtained by
deleting one element of U and w € Xp. If w € X, then v € Wy N Xp. For
any f € L*(W(U), uuq), we have the following formula for 99:

0 f(w(T)) = euqy f(w(U)), (7.10)

where w = uv as above.

The group Wr acts nontrivially on the cell (T'). In fact, v € Wy is g,
orientation-preserving. Hence, the right Rq[Wr]-action on L2(W(T), j1q) is
via the alternating character Br of Definition 5.6. Therefore, L*(W(T'), jiq)
can be identified with Hy. A specific isometry ¢ : L*(W(T), uq) — Hr can
be defined by

vr(f) = VWrla (Y FulD)es)hr, (7.11)

ueXr

where hp is the idempotent of Ny defined in Lemma 5.5. So, we have an

isometry:
L2Ci(Se) = @ L*(W(T), ng)— € Hr. (7.12)
TeS® TecS®
Since each Hy is a left Rq[WW]-submodule of L2, this gives L2C*(X..) the
structure of a Hilbert Ng-module. It also gives an isometric embedding

v LAC ED L% = ) ® L2.
ceS®

We use the isomorphism in (7.12) to transport the Hilbert Ny -module
structure from the right hand side of (7.12) to LZC;(Xc.). It is proved in [25,
Lemma 4.3] that ¢ and 0% are maps of Hilbert N -modules. We shall give
the argument in Lemma 8.1 below. Hence, we get reduced L?-(co)homology
groups:

LIH'(3e) = Ker0'/Im6i-1  and  LIH;(X..) = Ker 9% /Tm &2

7

which are also Hilbert Ng-modules. It is proved in [25, Section 5] that the
(co)homology groups of L2C,(X.) are the same as those of L2C,(X), i.e.,
LIH.(Se) = LZH.(X), LZH*(Xe.) = LZH*(X) and LIH* (X)) = LI7HA(X).
(The point is that the simplicial structure on X is a subdivision of ¥...)

34



The chain complex (L2C. (), 09) looks like this:

Lz <—@HS — @ Hp «— ---

seS TeS(2)

(We shall describe the boundary maps explicitly in Lemma 8.1 in the next
section.)

L?l-Betti numbers and the LZ-Euler characteristic. Define

ci(U) == dimy, LZC'(U),
where dimy; denotes the von Neumann dimension defined by (5.3). For
any cell ¢ C Z, its stabilizer is the special subgroup Wy, ), where as before
S(o) ={s€S|o C Z}. So, the summand of LZC*(U) corresponding to the
orbit of an i-cell o is isomorphic to Ag(). Its dimension is 1/Ws(,. Hence,

du =S (7.13)

vezn V5@
The i L2-Betti number of U is defined by
bl (U) == dimy, LZH'(U). (7.14)
A standard argument (cf., [27, Theorem 3.6.1, p. 205]) gives:
D (1)) = (1), W) (7.15)

(This is a version of Atiyah’s Formula.) We denote either side of (7.15) by
Xq(U) and call it the L2-Euler characteristic of U.

Proposition 7.3. (Rationality of Euler characteristics) xq(U) = f(q)/g(q)
where f and g are polynomials in q with integral coefficients.

Proof. For each T' € S, we have the subcomplex Zr (resp. 0Zr) defined as
the union of those cells o such that 7" C S(o) (resp. T' C S(o)). By (7.13)

and (7.15),
TeS Wr(a)
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Proposition 7.4. ([25, Corollary 3.4]).

1
Y)= ——.
Proof. We use the cellulation of ¥ by Coxeter cells. If T" € S, then
1
dimy;, L*(W(T = dimy, Hy = ———.
A/ ( < >7 ,uq) mag A1 WT(q_l)
Hence,
A 1
Cq(Bee) = Z ——— and
TeS® WT(q )
e(T) 1
Xq(X) = = ,
4 TXE;WT(q ) Wia)
where the last equality is by Lemma 3.3(iv). O

Remark. The relationship between Euler characteristics (of groups acting on
buildings) and growth series of Coxeter groups was first pointed out by Serre
[37] (in the case where with fundamental chamber K is a simplex). Serre
showed that the “Euler-Poincaré” measure on the automorphism group of
the building is (suitably normalized) Haar measure multiplied by 1/W(q),
where, as in Section 13, q is the “thickness vector” of the building.

Cohomology in dimension 0. The vertex set of X, with its cellulation by
Coxeter cells, can be identified with W. So, LZC°(X..) = L2. A 0-cochain
is a cocycle if and only if it is the constant function on W. If ¢ denotes the
constant, then its norm, with respect to the inner product (, )q is |¢| > qu
and this is < oo if and only if q € R or ¢ = 0. This proves the following
result of [25].

Proposition 7.5. ([25]) L2 H°(X) is nonzero if and only if € R. Moreover,
when q € R, b3(X) = 1/W(q).

Remark 7.6. It is easy to see that the space U (= U(W, 7)) is connected
if and only if Z is connected and Zg # () for each s € S. (This also follows
from [13, Theorem A] or [12, Theorem 10.1].) Suppose these conditions
hold. An argument similar to the one in the previous paragraph then shows
that LiH %(U) is nonzero if and only if @ € R and when this is the case,
) = 1/W(a).

36



The continuity of Betti numbers.

Theorem 7.7. Suppose (W,S) is a Cozxeter system and that U = U(W, Z)
1s as above. Then for each integer i, the function q — bfl(L{) 1S continuous.

For the proof we will need the next two lemmas.

Lemma 7.8. Let Y be a Hilbert space, X a closed subspace of Y, Px the
orthogonal projection onto X and y € Y a unit vector. Set

A(y) == nf {|[z[| | z € X, (z,y) = 1}.
Then {Px(y),y) = A(y)~2. (By convention, (+00)™2 = 0.)

Proof. Put a := (Px(y),y). Since (Px(y),y) = ||[Px(y)||?, we see that a > 0
with equality if and only if X | y. Suppose first that a = 0. Then the
left hand side of the formula in the lemma is 0. Since X L y, {||z|| | = €
X, (x,y) =1} =0, so A(y) = 400 and hence, the right hand side is also 0.

Suppose a > 0. Every z € X can be written as bPx(y) + 2, where
2 L Px(y). Then (z,y) = b(Px(y),y) + (z',y) = ba. (Notice that for
2’ € X, 2’ L Px(y) if and only if 2/ L y.) So, (z,y) = 1 implies b = 2.
Therefore,

Aly) = inf{|[z[| | z € X, (z,y) =1}
1
=inf {||-Px(y) +2'| | 2" € X, 2" L Px(y)}

— 2Pl = SIPx)] = 4 =

So, A(y)™? = a. O

Notation. Given [-tuples q and q’ of real numbers, write q < ¢’ if ¢; < ¢/
for each ¢ € I. Write 1 for the I-tuple with each component equal to 1.

For example, g < 1 means each ¢; < 1.

Definition 7.9. A function f : R! — R is increasing (resp. decreasing) if
q < q' implies f(q) < f(q') (resp. f(q) > f(q)).

Let | | denote the “maximum norm” on R! defined by |q| := max{|¢|}.
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Definition 7.10. A function f : R! — R is left continuous at qg if for
any positive number e, there is a positive number ¢ so that if q < q¢ and
lao — q| < 6, then |f(qo) — f(q)| < e. Right continuity is similarly defined.

Lemma 7.11. If a decreasing function f : RT — R is both left and right
continuous, then it is continuous (and similarly, if f is increasing).

Proof. Given a point qo € R’ and a number € > 0, choose ¢ small enough to
work in the definitions of both left and right continuous at qg. Let d denote
the I-tuple with each component equal to . Assuming f is decreasing, for
any q in a é-neighborhood of qg, we have

flao) —e < flao+d) < f(q) < flqo—d) < f(qo) +e
]

Proof of Theorem 7.7. We have spaces of cochains, cocycles and cobound-
aries:

i T2 i 720 i . 72 pi
Cq =L C'U), Zy:=LZ'(U), Bg:= L B"U),
as well as, spaces of chains, cycles and boundaries:
. T2 72
Cl.= Cy» Z3 = LyZ:iU), Bl = LyBi(U),

(Zf1 and Bfl are defined using the coboundary map ¢, while Z;* and B are
defined using its adjoint 09.) We also have their von Neumann dimensions:

=dim 7', a

Qa

=dimC’, 2z

where, to simplify notation, we are writing dim( ) instead of dim, ().
We note that by formula (7.13), q — cfl is a continuous decreasing func-
tion (since each Wg(»)(q) is a polynomial with nonnegative coefficients).

Claim 1. The function q — zé is left continuous and decreasing.

Proof of Claim 1. In (7.9) we defined an isometric embedding ® of C’fl into
@D, 0 L. Let e be the element of @, ., L2 with o-component equal to
ey and all other components equal 0. Then

=) (Pagz(ef) e )q.

oeZ(®)

38



Since ®(Z() € ®(C;), we have

(Po(zi)(€]), €7)a = (Pa(zi) Pacciy(€7), Pacyy(€7))q-

However, all components of the vector Pyci) (e9) are 0, except the o-component,
which is equal to Pag, (1) = as0) = P(Ws(0)(q))~"/?0,), where 6, € CL is
the function which is 1 on ¢ and 0 on all other cells. Thus,

- 1
2= S (P (6.).6.)a
q U;j) WS(0)<q)< Zq( ) >q

Since 1/Ws(,)(q) is continuous, we need to concentrate on (Py; (05), 0p)q- Set
27(q) == inf {|Jullq | u € Z, (u,0,)q = 1}. By Lemma 7.8, it suffices to prove
that each of the functions z7(q) is left continuous and increasing. Notice that
if ¢ < q, then Z, D Z.,. Moreover, if u € Z{,, then [Julq < [lully, While
(U, 0,)q = (U, 65)q (because both are equal to u(o)). It follows that 27 is an
increasing function.

Now suppose that (q,) is a sequence in R’ converging to q from below
(that is, each g, < q) and that u,, € Zén is a sequence such that, (u,, dy)q, =
1 (i.e., uy(0) = 1). Further suppose that lim ||u,|q, = & We will show
that £ > 279(q). (This implies that z7 is left continuous at q.) Write U as
U =, Ky, where the K}, are finite subcomplexes. Assume that £ < +o00
(otherwise there is nothing to prove). This implies that for every k, the
restrictions wu, |k, are uniformly bounded. Hence, by a diagonal argument,
one can choose a subsequence (u,,) such that the u,,|x, converge pointwise
for each k. Let u be the pointwise limit of wu,,. Then wu is a cocycle and
u(o) =1 (because all u,, satisfy these conditions). Also, for each k we have
lulilla = lim|ltmlic, la, < € Therefore, ullq < € So, 27(q) < [lully <
€. O

Claim 2. q — af, is left continuous and so, q — 2] is left continuous.

Proof of Claim 2. Since ¢, " is continuous and since af, = ¢ ' — 2!, Claim
1 implies that aﬁl is left continuous. We have the Hodge decomposition:
Ci = Z3} @ Bi. So, z}! = cl, — a};, which is left continuous. O

Claim 3. q — z{ is right continuous and decreasing.
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Proof of Claim 3. This is a version of Claim 1 using cycles instead of cocy-
cles. Basically, the argument in Claim 1 works provided we use the usual
boundary map 0 instead of 09. To transfer this back into information about
Z, we need to use the isometry 6 from the proof of Lemma 7.1. Set

~

Z} = Ker(9; : C} — C1)).

As before, €9, Z% and Z? can be embedded into D, ez LL(W), and 2! =
> oez0(Paza)(€9), €7)q. Next, apply the isometry 6 : € Lg (W) — D L1 (W)
(given by 0(f)(w) = quf(w) on each component). By Lemma 7.1, 6 re-
stricts to a map C? — o/ 9 which intertwines 99 and 0. Therefore,

Q(Z;l) = 2@'1/(1‘ AISO, 9(6c1r) = eclf7 S0 6<P¢(Zf)(€if)) = P@(Z‘il/q)(eg)a and

(Po(zay(€9),€9)q = (P(b(éil/q)(e‘l’),e‘l’h/q. (Note that the map ® depends on
q; thus, the maps on the left hand sides correspond to q, while those on the
right hand sides correspond to 1/q.) Now, the argument from Claim 1 can
be repeated. We get that (P @ /q)(e‘{ ) €9)1/q is left continuous and increas-
ing in 1/q. This implies that q — (Pyza)(e]), €7)q is right continuous and
decreasing. O

q

%

%

Claim 4. q — a q

is right continuous and so, q — 2! is right continuous.

Proof of Claim 4. This follows from Claim 3 in the same way Claim 2 fol-
lowed from Claim 1. O]

Claim 5. 2, 2!, a}, and a; are continuous in q

Proof of Claim 5. The functions zfl and z are decreasing and left and right
continuous; hence, by Lemma 7.11, continuous. Since ¢! is continuous, a’

q q
and af are also continuous. O

To finish the proof of Theorem 7.7 simply note that b (U) = 2z} — al,
which, by Claim 5, is continuous. O

In view of Proposition 7.3 and Atiyah’s Conjecture (cf. [27, Section 3.10]
or [31, Chapter 10]), it is natural to ask the following.

Question. Is q — bfl(U) a piecewise rational function?
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8 Weighted L?-homology of ruins

Cosheaves. Suppose A is a simplicial complex with vertex set V' and that
S(A) is its face poset (including the empty face). We regard the poset S(A)
as a category in the usual way: if 7 is a face of o, then there is a unique
morphism ¢ from 7 to o (which we can think of as being the inclusion of
vertex sets).

A cosheaf on A with values in a category C is a contravariant functor F
from S(A) to C. In the case of interest to us, C will be the category of Hilbert
Ng-modules.

Now suppose that the simplicial complex A is ordered (in other words,
suppose that its vertex set is totally ordered). Then for any n > 0, the
vertices of an n-simplex form an ordered set isomorphic to {0, 1,...,n} with
its usual order. For 0 < i < n and any n-simplex o, the i*" face of o is
defined to be the (n — 1)-simplex spanned by all vertices of o except the i'P.
If one writes 0; for «7, where 7 is the i*! face of o, then the relations between
the morphisms become the familiar “simplicial identities” as in [41, 8.1].

A cosheaf F' of abelian groups on an ordered simplicial complex A gives
rise to a chain complex C,(S(A); F') defined as follows: C,, = 0 for n < 0,
and for n > 0,

oeSM(A)

where the indexing set is the set of (n —1)-simplices of A. (The indices on C,
have been shifted up by one from the conventions in [17].) Under the natural
isomorphism

Hom(C,,, Cp_y) = & Hom(F (o), F(7)),
€S (A), TeS(n=1)(A)

the boundary map 0 : C,, — C,_; corresponds to the matrix (J,,), where
D57 = 0 unless 7 is a face of o, and is equal to (—1)*F(¢7) if 7 is the ith face
of 0.

Ruined chain complexes. We return to the situation where (W, S) is a
Coxeter system, L is its nerve and S is the poset of spherical subsets of S. Let
T € S and let Lk(T, L) denote the link of T'in L. (It T =0, Lk((, L) := L.)
We note that the face poset of Lk(7, L) is isomorphic to Ssr.
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Define a cosheaf Hy of Hilbert Ng-modules on Lk(T', L) as the contravari-
ant functor on S>p defined on objects by U — Hy where Hyy is defined by
(5.17). f U <V € Ssr, then the morphism H(:) : Hy — Hy is the natural
inclusion. Define the ruined chain complex LZC.(Hr) by

It looks like this:

0 +— HT — @ HTU{s} e (81)
(TU{s})€E(S>r) R+

where k& = Card(T). Similarly, by using the family of Hilbert Ny -modules
(Av)ves.,, we get a cosheaf A on Lk(T, L) and a chain complex L2C,(Ar).

We denote the homology of L2C.(Hr) and L2C,(Ar) by LZH.(Hr) and
LZH.(Ar), respectively.

The relationship between ruins and ruined chain complexes. Re-
call that for any U C S and T' € S(U), Q(U,T) is the subcomplex of ¥,
consisting of all closed Coxeter cells of type 77, with 7" € S(U)>r.

To simplify notation, the chain complex LZC.(QU,T), 0(Q(U, T')) will be
denoted LZC.(QU, T),d) and similarly for its homology.

Since the cell structure always will be given by Coxeter cells, we will omit
the subscript cc from our notation. We say a Coxeter cell is type T, T € S,
as a shorthand for type Wr.

It follows from (6.5) and the fact that U(Wy, K(U)) deformation retracts
onto Xy that the Ng[W]-modules L2C,(3(U)) and LZH.(X(U)) are induced
from the Ng[Wy]-modules L2C, (3w, ) and LZH.(Xw,), respectively. So,
we can calculate von Neumann dimensions over Ng[W] by calculating with
respect to Ng[Wy].

Lemma 8.1. (i) There is a isomorphism of chain complexes of Ny-modules:
V' L2C(Se.) — LEC.(Hy),

where LgC*(H@) is the ruined chain complex associated to the cosheaf
Hy on L.

(ii) Suppose T € S®). Then V' induces an isomorphism of chain complezes

of Ny-modules:

L:C.(Hp)—L:C.11x(AS,T), 0).
In particular, L2Cn (S, T),0) = 0 for m < k.
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Proof. (i) For each T' € S modify the isometry 17 of (7.11) to another Hilbert
Ng-module isomorphism, ¢4 : L*(W(T), iq) — Hr as follows:

() = VWrlg Den(f) = Welg D) ( X e )hr.  (82)

ueXy

U’ is defined to be the direct sum of the ¥}.. Suppose U € Sy and T' C U is
obtained by deleting one element from U. Statement (i) follows immediately
from the next claim.

Claim. The following diagram commutes:

where 07 denotes the L*(W(T), j1q)-component of 9% and i is the natural
inclusion.

Proof of Claim. Using (8.2) and (7.10), we get

U = Wr(a ™) (D (RN (w())ew ) hr

weXy

=wela (Y Y e fU)ee,)hr

ueXy veEWynXyr

=wr(@)( Y f@Oe)( D earte)hr

= Wula)( Y FulU)en)ho
= (v (f):

where the next to last equality is from the following formula for hy, valid
whenever T'C U and q € R(_Jl.

hU:< Z 5qu’16@)hT.

’UEWUQXT
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(This formula holds since WyN X7 is a set of coset representatives for Wy /W
and since for any v € Wy N Xy and w € Wy, we have eye,, = €4, and
Guduw = Q’UUJ')

(ii) Part (ii) of the lemma essentially follows from part (i). Write €2 for
Q(S,T). The point is that the cells of the W(T"), T' € (S>7)* V), are a basis
for L2 C*(2, 09). Hence,

L2C(Q,00) = @ L*W(T), ne) = Hr

T’E(SZT)”‘H)

and (i) shows that the 09 maps are induced by the inclusions Hy» < Hrp,
with 77 C T". [

Remark. The cochain complex LZC*(Q(S,T),d) is obtained by dualizing
(8.1):
0 — Hpr — @ Hropey — -0,
(TU{sHe(S>r)+1)

where the coboundary maps are induced by the orthogonal projections Hy —
Hpn, with 7" C T”, and k = Card(T).

The main result of this section as well as the results of Sections 9 through
12 ultimately are based on the following key theorem from [25].

Theorem 8.2. ([25, Theorem 10.3]) If q € R, then L2 H.(X) is concentrated
in dimension 0.

While the proof of this in [25] is straightforward, some technical estimates
are involved. In outline the argument goes as follows.

(a) Using the CAT(0)-metric of [34] it is proved, in [25, Theorem 9.1], that
there is a chain contraction H : C,(X) — C,41(X) and constants C' and
R such that for any simplex o C X, (i) the L*®-norm of H(o) is < C and
(ii) H(o) is supported in an R-neighborhood of the geodesic connecting
the central vertex of K with o.

(b) Tt follows ([25, Theorem 10.1]) that for ¢ € R, H extends to a bounded
linear map H : LZC.(X) — L2C.41(¥). (Actually, in [25], this is only
proved for a single parameter, but the proof goes through without change
in the case of a multiparameter q.) Hence, for q € R™!, H is a chain
contraction of L?]C* (o) with respect to the usual boundary map 0.
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(c) Finally, one uses the isometry 6 of Lemma 7.1 to transport H to a chain
contraction of (L2C.(0),09) for q € R.

The main result of this section is the following generalization of Theo-
rem 8.2.

Theorem 8.3. Suppose T € S®. If q € R, then LaH*(Q(S, T),d) is con-
centrated in dimension k. If q € OR, the same holds for L2H.(Q(S,T),0).

Note that the third sentence of the theorem follows from the second one
and the continuity of the b}, (Theorem 7.7).

In the special case T' = (), we have Q(S,T) = ¥ and so, Theorem 8.3
is Theorem 8.2. We shall use Theorem 8.2 as the first step in an inductive
proof.

Before beginning the proof, note that we have an excision isomorphism:

LIC.(QU,T),0) = LC.(S(U), U, T)). (8.3)
Also, for any s € T'and 1" := T — s, we have an excision isomorphism:
LIC.(2(U = 5),QU —s,T)) = L2C.(QU,T),Q(U, T")). (8.4)

Proof of Theorem 8.3. Suppose U C S and T € S®(U). We shall prove,
by induction on k (= Card(T)), that L2H.(Q(U,T),d) is concentrated in
dimension k. When k£ = 0 this holds by Theorem 8.2 (and the fact that
LZC.(X(U)) is induced from L7C.(Xwy)). Assume by induction, that our
assertion holds for k— 1, with k —1 > 0. By (8.3), the assertion is equivalent
to showing that L2 H,(X(U), Q(U, T)) is concentrated in dimension k. Choose
an element s € T and set T" := T—s, Q0 := Q(U,T), & := Q(U, T’). Consider
the long exact sequence of the triple (X(U), Q, (AZ’):

LAHY(S(U), Q) — LAH*(S(U),Q) — L2H Y9, Q)

By (8.4), the right hand term excises to the homology of the (U — s, T")-ruin,
while the middle term is that of the (U,T)-ruin and the left hand term is
that of the (U, T")-ruin. By induction, the left hand and right hand terms are
concentrated in dimension & — 1. So, the middle term can only be nonzero
in dimensions £ —1 and k. On the other hand, by Lemma 8.1(ii), the middle
term vanishes in dimensions < k. O
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Combining this theorem with Lemma 8.1, we get the following.

Corollary 8.4. For any q € R and any spherical subset T', L(QlH*(HT) is

concentrated in dimension 0. Therefore, for any q € R, the reduced homology
LgH*(HT) is also concentrated in dimension 0.

The meaning of this corollary is that, for q € R, the family of subspaces
(H7)res is “in general position” in Lfl.

9 The Decomposition Theorem

Lemma 9.1. (Compare Lemma 1 in [38].) Suppose we are given subsets
U,V of S and an I-tuple q € RVﬂRl}l (so that hy and ay are both defined).
IfvnuU #0, then hyay = 0.

Proof. Let s € V NU. Then hyay = hyhsasay = 0. ]
We define some more subspaces of L<2:1:

Dy = Agyv N ( Z AS—U>J_>

vcv

Gy = Hy N ( Z HU>L.

Uov

Y Gu=Hy,

Uov

Z Dy = Ag_yr.

VCcU

Lemma 9.2.

Proof. By definition of Gy, we have

Hy =Gy + Z Hy,
UoVv

and the first formula follows by induction on the size of S — V. Similarly,

As_yv = Dy + Z As_u,

vcv

and the second formula follows by induction on the size of V. O
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Lemma 9.3. Suppose q € R and U € V. Then
GUCZS_V = 0.
Proof. Since G+ C Hr the assertion follows from Lemma 9.1. O

If g € R, then Hy = 0 for all nonspherical V' (because V' is spherical
whenever Ry NRy # 0). So, for V¢ S, Gy =0, and for V=T €S, Gr
is the orthogonal complement of the image of 0 : LC1(Hy) — LZCo(Hy) =
Hyp; hence, L2Ho(Hr) = Gr.

Denote by R(Ng) the Grothendieck group of Hilbert Mg-modules. If F' is
such a Hilbert module, [F] denotes its class in R(Ng). It follows from addi-
tivity of dimension that the function F' — dimy,, F’ induces a homomorphism
dimy, : R(NVg) — R.

Corollary 9.4. Forq € R and T € S, the following formulas hold in the
representation group R(./\/q).'

(Grl= ) e(U~T)[Hy]

UESZT

[Hr]= ) [Gu).

UGSET

Proof. Note that in L2C,(Hr) the boundary maps are maps of Hilbert Ng-
modules. Hence, the first formula follows from Theorem 8.4 by taking the
Euler characteristics. The second formula follows from this and the Mobius
Inversion Formula. ]

Corollary 9.5. Supposeq € R andT € S. Then dimy, Gr = W (q)/W(q).
Proof. By Lemma 5.10 (iii), dimy;, Hy = 1/Wy(q™'). So,

eU-T) _ W'(a)
Wy(q™)  W(q)’

dim/\/q GT = Z

UESET

where the first equality is by Corollary 9.4 and the second by Lemma 3.3 (iii) (b).
[
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Lemma 9.6. I[fq€ R and U C S, then

is a dense subspace of As_y and a direct sum decomposition. Moreover, if
T € S, then the right multiplication by as_7 induces a weak isomorphism
GT — GT(ZS—T-

Proof. As in Section 3, Xg_y denotes the set of (), S — U)-reduced elements.
As in [5, Ex. 26], Xg_p is the disjoint union of the WT T C U. Hence,
Xs-v(a) = > pcy W' (q). Dividing this by W(q) and using Lemma 3.3 (ii),

we get
1 Wi
Ws_u(q) Z Wi(a)

TCU

By Lemma 9.2,

Ly=) Gr.

TeS

Multiplying on the right by ags_y and using Lemma 9.3 we obtain:

As_y = Z Gras_y = Z Gras_y.

Tes TCU
By Lemma 5.9 (iii),

. 1 W'(q)
dlm A — = — = .
M T Wy u(a) TZC;] W(a)

On the other hand,

o W'(q)
dimy,, Gras_y < dimpy, Gr =
Ny Gras—u < Ng GT W(q)
It follows that each of the above inequalities is an equality and hence, that
Gr is weakly isomorphic to Gras_7 and the sum is direct. O

Remark. In what follows we will use the symbol |4 to denote the sum of
submodules of LZ? once we have proved that the sum is direct.
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Since Gy = 0 for nonspherical V and q € R, we can restate Lemma 9.6
as follows:

As-v = 4] Gvas_v.

VCcU

Letting U = S, we get the following corollary.
Corollary 9.7. Ifq € R, then

>

vcs
1 a dense subspace of L<21 and a direct sum decomposition.
The fact that the sum of Gy is direct has the following two corollaries.

Corollary 9.8. Let A and B be collections of subsets of S. If q € R, then

L+JGUmL+JGU: L+J Gy

UeA veB UeAnB

Corollary 9.9. Ifq€ R and V C S, then

Hy = Er) Gy.

UV
Lemma 9.10. Ifq € R and V C S, then
DV = Gvagfv.

In particular, Dy =0 if V & S.

N

Proof. Since, by definition, Dy C Ag_y, Dy = Dyags_y and since Dy,
1
(ZUCv AS_U) , we have:

L
Dy C <Z Asw) as-v-

Ucv

Using equations (5.19), we compute:

(T aso) =N ae= X M

ucv vcv UCV seS-U
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By Corollary 9.9, Hy = [H v, Gx. Therefore,

(X as0) =N X W= Yo

Ucv UCV se(S—U) X3s UCV xqu

Using Corollary 9.8 we obtain:

<ZAS_U>L: H ax= ax

ucv X¢U vucv Xgv

Thus,

Dy C ( L"_'J GX) ag_y = Z Gxas_vy.

XgVv XgVv
By Lemma 9.3, the only nonzero term in the last sum is when X = V.
Therefore, Dy C Gyag_y .

To prove the opposite inclusion, note that, by Lemma 9.3, for U C V,
Gvas_vas_y = Gyas_y = 0. Therefore, since Keras_y = A$_;, we have
Gyas_yv C A, for all U C V. Since Gyas_y C Ag_v, it follows from the
definition of Dy that Gyags_y C Dy . O

We shall need the following Decomposition Theorem. (Of course, there
is also a corresponding version with the Dy replaced by Gy .)

Theorem 9.11. (The Decomposition Theorem). If ¢ € R UR1, then
> Dv
Vs

1s direct and a dense subspace of Lfl. Moreover, if @ € R, then the only

nonzero terms in the sum are those with V- € S, and if @ € R, then the
only nonzero terms in the sum are those with S —V € S.

Proof. If q € R, then we let U = S in Lemma 9.2 to obtain:

L2=) Dy.

vCcs

The assertion follows, since by Lemma 9.10, all nonspherical V' have 0 con-
tributions, and by Lemmas 9.10, 9.6 and Corollary 9.7, the dimensions of the
nontrivial terms add up to 1.

If @ € R-L, then the result follows from Corollary 9.7 by applying the
j-homomorphism. ]
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Corollary 9.12. Let A be a collection of subsets of S and let U C S.
Ifqe RURL, then

Dyn |4 Dy =
UcA

0 if Ué&A,
Dy if UeA.

Corollary 9.13. fq€e RUR"! and U C S, then
VCs—U
Corollary 9.14. (Compare Lemma 3.3 and Corollary 9.5.) Suppose T € S.
(i) Forqe R, dimy, Dr = W' (q)/W(q).
(ii) Forq € R7', dimy, Dg_r = WT(q')/W(q™).

Proof. (i) By Lemma 9.10, ag_r maps Gp monomorphically onto a dense
subspace of Dr. So, dimy, Dr = dimy, Gr = W7 (q)/W(q), where the
second equality is by Corollary 9.5.

(ii) For g € R, the following formulas hold in the representation ring

R(Ng),
[Ar] = ) [Ds-u]

UGSZT

[Ds_r] = Y =(U-"T)[Ay].

UESZT

where the first formula is from Corollary 9.13 and the second follows from
the first by the Md&bius Inversion Formula. So, as in Corollary 9.5,

eU-T) _ W'(a™)
Wu(q) Wi(q™?)’

dimy, Ds_r = »
UGSZT

where the second equality is Lemma 3.3 (iii)(b). O

In Section 11 we will need the following version of Lemmas 9.6 and 9.10.
Its proof is essentially the same as the proofs of these lemmas, except that we
use Theorem 9.11 and its corollaries instead of the corresponding statements
involving the Gy .
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Lemma 9.15. (Compare Lemmas 9.6 and 9.10.)  Suppose q € R and
UCS. Then

(i)

15 a dense subspace of Hy and a direct sum decomposition. Moreover, if
T €S, then the right multiplication by hy induces a weak 1somorphism
DT — DThT-

(11) GU = DUhU-

10 Decoupling cohomology

We retain notation from Sections 6 and 7, e.g., Z is a finite CW complex,
(Zs)ses is a family of subcomplexes and U = (W x Z)/ ~. Asin (6.1), given
U C S, ZY denotes the union of mirrors Z,, s € U.

For any Hilbert Ng-submodule E of L2, define

L:C'UE) =~ (C'(2) ® E),

where @ : LZC*(U) — C(Z) ® LZ is the monomorphism defined in (7.9). In
other words,

LU E) = @D (6) (As) N E), (10.1)

ceZ ()

where S(c) is the subset of S defined in (6.3) and ¢, : L*(We, pg) — As(e) is
the isomorphism defined in (7).

Proposition 10.1. Suppose q € RUR™L. Then the map ® restricts to an
1somorphism of cochain complexes:

L2C*(U; Dy)—C*(Z,2) @ Dy.

Proof. (Compare [13, the proof of Theorem B]|.) Let ¢ € Z be an i-cell. By
Corollary 9.13,

Aso= | Dv.
VCS—-5S(e)
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If ¢ ¢ ZY, then S(c) C S — U and therefore, by Corollary 9.12, Ag,) N Dy =
Dy and so, by (10.1), ¢. : LZCi(Wc; Dy) — Dy is an isomorphism. If
¢ C ZY, then S(c) € S — U and therefore, Ag() N Dy = 0 and so, by (10.1),
L{C*(We; Dy) = 0. Hence, a cochain in C*(Z) ® Dy is in the image of the
restriction of ® if and only if it evaluates to 0 on the orbit of every i-cell
cC 7Y, O

Suppose q € RUR™. Let Oy : C*(Z,ZY) ® Dy — LLC*(U; Dy) —
C*(U) be the inverse of the isomorphism of Proposition 10.1. Define

0: P (2.2%) @ Dy—LIC*U)
Ucs
to be the sum of the Oy.
Proposition 10.2. Ifq € RUR™!, then
0: P (2 2") © Dy—LLC*U)
UcCs
is a weak isomorphism of cochain complezes of Hilbert Ny-modules.
Proof. We have:
& Lic*u; Dy) = L2C(U; @D Du).
Ucs Ucs

By the Decomposition Theorem (Theorem 9.11), we have a weak isomor-
phism, L2C*(U; @ Dy) — LZC*(U). Combining this with the isomorphism
of Proposition 10.1, the proposition follows. m

A weak isomorphism of chain complexes of Hilbert modules induces a
weak isomorphism on the level of reduced cohomology ([17, Lemma 5]). Fur-
thermore, if two Hilbert Ny -modules are weakly isomorphic, then they are
isometric ([27, Lemma 2.5.3]). So, we have the following corollary to Propo-
sition 10.2.

Theorem 10.3. (Compare [13], [14, Theorem Al).
(i) Ifq e R, then

LH WU) =@ H(2,2") @ Dr.
TeS
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(i) Ifq € R, then
LiH* @H* ZS T ®DS’ T
TeS

The special case U = X is the following.

Theorem 10.4. (i) (Theorem 8.2 or [25, Cor. 10.4]). If q € R, then
LZH*(X) is concentrated in dimension 0 and

L7HO(X) = LZHO(S) = As.
S0, by(X) = xq(X) = 1/W(a) = dimp, As.
(i) Ifq € R, then
LQH* @H* KS’ T ®DS T
TeS

So,
by () = Z—W )i 157,

i Wia)
where b'(K, K5~T) = dimg H'(K, K°~T; R).

(In the formula for b} (X) in Theorem 10.4 (ii) we have used the formula for
dimp;, Ds_r from Corollary 9.14.)

11 A generalization of a theorem of Solomon

When W is finite and q = 1, L. Solomon [38] proved some results very
similar to the Decomposition Theorem (Theorem 9.11). In this special case,
formulas (5.7) and (5.11) for the idempotents ar and hr become

ar = Card( Zew and

UJEWT

hr =
T Card(WT D Euew

weWrp

and we recognize ar and hp as the familiar elements of “symmetrization”
and “alternation” in the group algebra R[Wry].
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Solomon’s Theorem. ([38]). Suppose W is finite. Then there are direct
sum decompositions of the reqular representation:

L*(W) =Y L*(W)arhs_r,
TCS

L*(W) =Y L*(W)hs_rar.
TCS

Our generalization of Solomon’s Theorem is the following.

Theorem 11.1. (i) Ifq € R, then

Z LahTaS—T and Z L%ag_ThT

TeS TeS
are direct sum decompositions and dense subspaces of L?l.

(i) Ifq € R™', then

> L2hs_rar and Y LZarhg_r
TeS Tes

are direct sum decompositions and dense subspaces of Lfl.

This is an immediate consequence of Corollary 9.7, Theorem 9.11 and the
following theorem.

Theorem 11.2. Suppose T' € S.
(i) Ifq € R, then Lias_rhy = Gr and Lihras_r = Dr.
(ii) If q € R7Y, then Liarhs_r = Gs_r and L:hs_rar = Dg_g.

Proof. (i) Suppose q € R. By Lemma 9.6, right multiplication by ag_r is
a weak isomorphism from G to Gras_r. So, by Lemma 9.10, L2hras 1 =
Gras_p = Dr. Similarly, by Lemma 9.15, L2as_rhr = Gr.

(ii) Applying the j-isomorphism to the two equations in (i), we get the
two equations in (ii). O

Remark. It seems probable that L2as yhy = Gy and L2hyas—y = Dy
whenever q € Rs_y N Ry (so that hy and ag_p are both defined).
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12 Relationship with ordinary homology and
cohomology with compact supports

As in Section 6, Z is a CW complex which is a strict fundamental domain

for a W-action on U (= U(W, Z)).

Theorem 12.1. (i) For q € R, the canonical map, can : H,(U;R) —
LzH*(U), s an injection with dense image.

(ii) For q € R™, the canonical map, can : Hi(U;R) — LEH*(U), is an
imjection with dense image.

Proof. First, using [14], we prove statement (ii) for cohomology with com-
pact supports. Given w € W, let In(w) € § be as in Section 2 and let
Q. be the “positive” fundamental domain for W) on U, containing the
chamber Z. (So, Qu = U/Wiyw).) Let ¢, : U — w@Q, denote the com-
position of projection onto (), with translation by w. The composition of
the map induced by ¢, with the excision isomorphism C,(wQy, wQ.,, — Z) =
C.(wZ,wz5~w)) = C,(Z, 75 ™) induces a chain map p, : C,(U) —
C.(Z,z5 @) For each T € S, define pi : C*(Z,2°57) @ RW" —
Cx(U; R) by ¢ ® e, — pi(c) and extending linearly. In other words, pi(c ®
ew) = eywar(c), where ar is defined by (5.4) (and where e,,ar acts on C*(U; R)
as an element of the group algebra R[W], not as an element of the Hecke
algebra). pk will also denote the induced map on cohomology. It is proved
in [14] that @ph : ®@H*(Z,2°7) @ RW") — H*U) is an isomorphism.
Computations similar to those in Section 10 give an isomorphism ¢g_ 1 :
L2H*(U; Gs—r) — H*(Z,Z5 ") @ Gs_r. It follows that we have a commu-
tative diagram:

@ H*(2,25T) o RV T, H*(U;R)
lcan
lg L2H(U)

l@ﬂsz

DH (2,25 TV 0 Gs v 25 @ LEH (U; Gs 1)

Here mg_7 is the coefficient homomorphism induced by orthogonal projec-
tion Lg — Gg_7 and g := Dgr, where gp : RWY Gs_r is induced by
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ew — eywarhs_r. In other words, up to weak isomorphisms of NMg-modules,
the canonical map H*(U;R) — LZH*(U) is identified with g. By Theo-
rem 11.2 (ii), for q € R}, {ewarhs 1} wewr spans a dense subspace of
Gs_r. Hence, each gr is injective with dense image. This proves (ii).

The canonical map in (i) is induced by the composition of chain maps:

(CLU;R), ) — (L3 ,4C.(U),0)—L2(C.(U), ),

where the second map is the isomorphism of Lemma 7.1. For each T' € S,

let
iLT = Z EwCw

weWr

and let by : C,.(Z, ZT)@RW") — C,(U; R) be defined by 2® e, — ephp(z).
The element Ay defined in (5.8)) differs from Ay by inserting a ¢, in front
of each e,. By [13], the induced map in homology @(hr), : H.(Z,Z7)
RW") — H,(U;R) is an isomorphism. Hence, the map induced by @(hr),
is also an isomorphism. We have a commutative diagram:

@(iLT)*
—_—

P H.(Z2,Z") o RWD H.(U:R)
ld LIH.(U)

[
PB(OT)x

@ H.(Z,2")® Dy ——— @ LIH.(U; Dr)

Here 7/, is the coefficient homomorphism induced by orthogonal projection
L?l — D7 and O is the isomorphism of Section 10. Also, d := @dr, where
dr : RWY — Dr is induced by e, — ewﬁTag_T. In other words, up to
weak isomorphisms of Ng-modules, the canonical map H*(U; R) — LZH*(U)
is identified with d. By Theorem 11.2 (i), each dr is injective with dense
image. [

13 L?-cohomology of buildings

As in [36], a building consists of the following data:

e aset P,
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e a Coxeter system (W, .5),
e a collection of equivalence relations on ® indexed by S.
e a function 6 : & x & — W.

This data must satisfy certain additional conditions which we will explain
below. One condition is that for s € S, each s-equivalence class contains at
least two elements.

The elements of ® are called chambers. Given s € S, two chambers
¢ and ¢’ are s-equivalent if they are equivalent via the equivalence relation
corresponding to s. If; in addition, ¢ # ¢/, they are s-adjacent. A gallery is a
sequence (o, - - - , pn) of adjacent chambers; its type is the word (sq, ..., s,)in
the letters of S, where ¢;_; and ¢; are s;-adjacent. Given T' C S, (o, - - ., ¢n)
is a T'-gallery if each s; € T. The gallery is reduced if w = s1---5s, is a
reduced expression.

Another condition for ® to be a building is that there exist a W -valued
distance function ¢ : ® x & — W. This means that there is a reduced gallery
of type (s1,...,$,) from ¢ to ¢ if and only if s; - - - 5, is a reduced expression
for 6(¢p, ¢").

The s-mirror (or “s-panel”) of a chamber ¢ is the s-equivalence class
containing . More generally, given a subset T' C S, the T-residue of ¢ is
the T-gallery connected component containing ¢. Each such T-residue is
naturally a building with associated Coxeter system (Wp,T'). The residue is
spherical if T is a spherical.

Example 13.1. (Trees). Suppose W is the infinite dihedral group (so that
Card(S) = 2). Any tree is bipartite, i.e., its vertices can be labeled by
the two elements of S so that the vertices of any edge have distinct labels.
Suppose T is a tree with such a labeling and suppose no vertex of T is of
valence 1. Let ® be its set of edges. Given s € S, call two edges s-equivalent
if they meet at a vertex of type s. An {s}-residue is the set of edges in
the star of a vertex of type s. A gallery in ® corresponds to an edge path
in T. The type of the gallery is the word obtained by taking the types of
the vertices crossed by the corresponding edge path. This word is reduced
if and only if the edge path does not backtrack. Given two edges , ¢ of
T, there is a (unique) minimal gallery connecting them. The corresponding
word represents an element of w € W and d(p, ¢’) := w. Thus, every such
tree T defines a building of type (W, S). Not surprisingly, we will define the
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“geometric realization of a building” so that for the building ® corresponding
to T', its geometric realization will be T'.

A building ® of type (W, S) has finite thickness if for each s € S, each
s-equivalence class is finite. If ® has finite thickness, then it follows from the
existence of a W-distance function that each of its spherical residues is finite.

Let us say that ® is regular if for each s € S, the s-equivalence classes
have constant cardinality. When finite, we denote this number by ¢s + 1. It
is known ([36]) that if s and s’ are conjugate in W, then ¢s = gy. Let I be
the set of conjugacy classes of elements in S. Then for any regular building
®, the integers ¢, define an I-tuple q called the thickness vector of ®.

A group G of automorphisms of a building is chamber transitive if it acts
transitively on ®. When this is the case, we have ® = /B, where B denotes
the stabilizer of some given chamber (. If G4 denotes the stabilizer of the
s-mirror containing ¢, then the chambers g¢ and ¢’( are s-equivalent if and
only if g and ¢’ belong to the same coset of GG,. Obviously, if G is chamber
transitive, then the building is regular. For the remainder of this section, we
suppose that ® has finite thickness and that G is chamber transitive.

Given a subset T of S, denote the stabilizer of the T-residue containing
¢ by Gr. Thus, Gy = B and Gy, = G,. If @ has finite thickness and T" € S,
then the number of elements in a T-residue is Card(Gr/B). (This number
is known to be Wr(q).)

Fix a chamber ¢ € ® and let r (or r¢) denote the function & — W defined
by ¢ — (¢, ). Since ® = G/ B, we can regard r as a function from G/B to
W. Since B fixes (, r : G/B — W is B-invariant. In other words, r induces
amap7: B\G/B — W.

A Tits system is a quadruple (G, B, N, S), where G is a group, B and
N are subgroups of G, W := N/N N B, S is a subset of W and where
the conditions listed in [5, pp. 15-26] are satisfied. Given w € W, put
C(w) := BwB. The conditions imply that

e For each s € S, G5 := BUC(s) is a subgroup of G.
o (W,S) is a Coxeter system.

e There is a building with set of chambers GG/B such that two chambers
gB and ¢'B are s-equivalent if and only if ¢G, = ¢'G,.

e Suppose 7 : G/B — W is defined by ¢B — (B, gB) where § is W-
distance in the building. Then the induced map 7 : B\G/B — W is a
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bijection.
One says that the building comes from a BN -pair.

Definition 13.2. The Coxeter system (W,.S) is right-angled if mg = 2 or
oo for each pair s,t of distinct elements in S.

Example 13.3. (Regular right-angled buildings, [15, pp. 112-113]). For any
right-angled Coxeter system (W,S) (cf. Definition 13.2) and any S-tuple
q = (gs)ses of positive integers, there is a regular building ® of type (W, 5)
with thickness vector q. In the case where W is the infinite dihedral group
this is well-known: as in Example 13.1, the building is a (bipartite) tree with
edge set @, it is “regular” in the sense that for each s € S there are exactly
qs + 1 edges meeting at each vertex of type s.

In the general case, the construction goes as follows. For each s € S,
choose a finite group I'y with Card(I's) = ¢s + 1 and let I" be the “graph
product” of the (I'y)ses where the graph is the 1-skeleton of L. In other
words, I' is the quotient of the free product of the (I'y)ses by the normal
subgroup generated by all commutators [gs, g;] with g, € T's, ¢, € Ty and
mg = 2. As in [15], we get a building with ® = I" and with two elements
9,9 € T' in an s-equivalence class if and only if they determine same coset
in ['/T's. We leave the following two facts as exercises for the reader:

e Two regular right-angled buildings of a given type (W, S) are isomor-
phic if and only if they have the same thickness vector.

e Any regular right-angled building comes from a BN-pair. In other
words, its full automorphism group G is chamber transitive and if B
denotes the stabilizer of a given chamber and N the stabilizer of some
apartment containing that chamber, then there is a set of generators S
for W := N/N N B so that (G, B, N, S) is a Tits system.

Hecke algebras and functions on B\G/B. This paragraph is taken from
[5, Ex. 22, pp. 56-57].

Suppose G is a topological group and B is a compact open subgroup.
Let C(G) denote the vector space of continuous real-valued functions on G.
Let « : G — G/B and # : G — B\G/B be the natural projections. Define
subspaces H C L C C(G) by

L:=a'RED and H:.=pREGE,
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where, as in Section 4, for any set X, R®X) denotes the vector space of finitely
supported functions on X.

For each ¢B € G/B, let a,p € L be defined by a,p(x) = 1 for x € gB
and agp(z) = 0 for x ¢ gB. Since (a,p) is a basis for L, there is a unique
linear form on L such that a,p — 1 for all gB € G/B. We denote this form
by ¢ — [ (since it coincides with the Haar integral normalized by the
condition that [ap =1).

If p € L and ¥ € H, then for each x € G, the function 6, : G — R,
deﬁned by 0.(y) = p(y)v(y '), belongs to L. The function ¢ * 1 : x —
[ o) (y~'x)dy also belongs to L. Moreover, if ¢ € H, then p*i¢ € H. The
map (go 1) — @ * 1 makes H into an algebra and L into a right H-module.
H is called the Hecke algebra of G with respect to B.

Next, suppose that G is a chamber transitive automorphism group on
a building and that r : G/B — W is defined by taking the W-distance
from the chamber corresponding to B. Let v := roa : G — W and
J =y RWM) CH.

Remark. If (G, B, N, S) is a Tits system, then 7 : B\G/B — W is a bijec-
tion and hence, J = H.

Lemma 13.4. Suppose, as above, that a given building admits a chamber
transitive automorphism group G (so G/B is the set of chambers). Let q be
the thickness vector. Then

(i) J is a subalgebra of H and
(ii) J = Rq4[W], the Hecke algebra of Section 4.

Proof. Since G is chamber transitive, v* : R") — J is an isomorphism of
vector spaces. So, we only need to check that v* is an algebra homomorphism
from Rq[W] to H. Let f, = v*(ey). Then f, is the characteristic function
of {g € G| r(¢B) = w}. In particular, for each s € S, f; is the characteristic
function of Gy — B. We want to see that

o f {fws, if Lws) > 1(w);
Qs fws + (g5 — 1) fur if U(ws) < I(w).

By definition of convolution,

(fu* 12)(g / Ful@) (e g)dr = / fulgu) fulu /G  Sulomyin



which is equal to the Haar measure of the set
Uy ={ueGs;— B|r(guB) =w}.

Let Cy := goB be the chamber which is s-adjacent to gB and which is
closest to B. There are gs other chambers adjacent to gB. We list them
as: Cy = ¢1B,...,Cy, = g,.B. So, for i > 0, r(C;) = r(Cy)s. Notice that
it u € Gy — B, then guB is s-adjacent to gB and therefore, guB is equal
to some C;. So, if r(guB) = w, then r(¢gB) = w or ws. In other words, if
r(gB) ¢ {w,ws}, then (f, * fs)(g) = 0. We now consider two cases. Each
case further divides into two subcases depending on whether r(gB) = w or
ws.

Case 1. l(w) < l(ws). In this case r(Cy) = w and r(C;) = ws for i > 0.

a) Suppose r(¢gB) = w. Then ¢B = Cj and guB = C; for i > 0, so that
r(guB) = ws. Thus, U, =0 and (f, * fs)(g) = 0.

b) Suppose r(gB) = ws. Then gB = CY, for some k > 0, and
U,={u€Gs—B|guB=Cy} =(Gs—B)Ng 'gB.

Since gB and goB are s-adjacent and not equal, g~'goB C G, — B, so that
U, = g 'goB has measure 1. Therefore, (f, * f5)(g) = 1. So, in Case 1,

fw * fs = fws-

Case 2. [(w) > l(ws). In this case r(Cy) = ws and r(C;) = w for i > 0.
a) Suppose r(gB) = w. Then gB = C}, for some k > 0. So, the set

Ug=U{u€ Gs— B |guB=C;} = U g 'g;B

0<i 0<istk

has measure ¢, — 1.

b) Suppose r(gB) = ws. Then gB = Cj, and the set

Uy=|J{ueG.—B|lguB=C} =g '9:B

0<1 0<s

has measure ¢s. So, in Case 2, f, * fs = @sfuws + (¢s — 1) fu- n

The geometric realization of a building. Suppose @ is a building with
associated Coxeter system (W, S). As in Section 2, let K be the geometric
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realization of & and ¥ the geometric realization of WS. By (6.4), ¥ =
UW, K), where UW,K) = (W x K)/ ~ and where ~ is the equivalence
relation defined in the beginning of Section 6. Following [15, pp. 117-118],
define the geometric realization of ® to be

U, K) = (D x K)/ ~, (13.1)

where (p,x) ~ (¢',2') if and only if x = 2’/ and ¢, ¢’ belong to the same
S(x)-residue. (S(z) is defined in (6.2).)

Since K only involves the spherical subsets of S, U(®, K) only involves
the spherical residues of ®. It follows that if ® has finite thickness, then
U(P, K) locally finite.

We often write X as a shorthand for U(®, K).

The von Neumann algebra of G. Next suppose G is a chamber transitive
group of automorphisms of ® and that B is the stabilizer of some fixed
chamber (. G acts as a group of homeomorphisms of X, so give it the
compact-open topology. Then B is a compact open subgroup. Let p be
Haar measure on G, normalized by the condition that u(B) = 1.

We have the left regular representation of G on L*(G). The von Neumann
algebra N'(G) consists of all G-equivariant bounded linear endomorphisms of
L*(G).

Any a € N(G) is represented by convolution with some distribution f,,.
This distribution need not be a function. For example, if « is the identity
map on L*(G), then f, = §; (the Dirac delta). One would like to define
the “trace” of a to be f,(1) whenever f, is a function. However, since f,, is
well-defined only up to sets of measure 0, we must proceed slightly differently.

Suppose « is a nonnegative self-adjoint element of N(G). Let 3 be its
square root. If f5 is a L? function, then put

1/2
ey o 1= 1] = ( / fﬂ(ff)QdM) |

This extends in the usual fashion to give a “trace” on (n x n)-matrices
with coefficients in N'(G). If V is a closed G-stable subspace of @@ L*(G) and
vy @ L*(G) — @ L*(G) is orthogonal projection, then the von Neumann
dimension of V' is defined by

dim/\/(G) V.= trar ) v -
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We identify L?(®) = L*(G/B) with the subspace of L*(G) consisting of
the functions which are constant on each right coset ¢B, g € GG. Orthogo-
nal projection from L?*(G) onto L?(G/B) is given by convolution with the
characteristic function of B. In view of the assumption that u(B) = 1,

dimy e L*(G/B) = 1.

The map r : G/B — W defined by the W-distance from the base chamber
induces a bounded linear map L? (W) — L*(G/B) which we shall also denote
by r. Since this map takes bounded elements of La(W) to bounded elements
of L*(G/B), we get the following version of Lemma 13.4.

Lemma 13.5. The map r : LZ(W) — L*(G/B) induces a monomorphism
of von Neumann algebras r : Ny — N(G). (In particular, r commutes with
the % anti-involutions on Ny and N'(G).)

L2C*(X) denotes the Hilbert space of square summable simplicial cochains
on X and H*(X) denotes the subspace of harmonic cocycles. (Of course, the
H*(X) are isomorphic to reduced cohomology groups of the cochain complex
L?C*(X).) Supposing G is a chamber transitive automorphism group, we

have
L’c(X)= @ 1*(G/G,) c @ L*(G),
oeK ) oeK®
where G, := Gg(o) is the stabilizer of the i-simplex o. (S(o) is the spherical
subset defined in (6.3).) One then defines the L2-Betti numbers of X with
respect to G by
b'(X;G) = dimye) H'(X),

The map r : X — X induces a map on cochains which we denote by the
same letter, i.e., r is a cochain map from L2C*(X) to L*C*(X). We also have
“transfer maps” on chains and cochains. On the level of chains, the transfer
map sends a cell ¢ of X to r~(¢)/ Card(r~!(c)). On the level of cochains, the
transfer map ¢ : L*C*(X) — L2 C*(E) is defined by

1) = gy 2 /)

where the sum is over all ¢ € r~1(c). (The orientations on the ¢ are induced
from the orientation of ¢.) Note that Card(r~'(c)) = pq(c), where pq is the
measure on We defined in (7.1) (i.e., if ¢ = wo with w (0, S(0))-reduced,

then jrq(c) = ¢.).
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Remark. Suppose X is the geometric realization of a building associated
to a Tits system (G, B, N,S). Then LaC*(E) can be identified with the B-
invariant cochains L*C*(X)” and the map r : L2C*(X) — L*C*(X) with
the inclusion of the B-invariant cochains. The map ¢ : L*C*(X) — L2C*(X)
is then identified with averaging over B. In other words, if ¥ is identified
with a subspace of X via some section of r : X — X, then

- / _ Sae)dn

Lemma 13.6. (i) tor =id: L2C'(X) — L2CY(X).
(ii) The maps r and t are adjoint to each other.
(iii) These maps take harmonic cocycles to harmonic cocycles.

Proof. Statement (i) is obvious.
(ii) For f € L2C*(X) and f" € L*C*(X), we have

(r(f). fy= > [rh => Y fr

dex@ cex(@® cer—1(c)

=3 flo > fle
cex(® der- 1(c

= Y Card(r () F I = D palOf (ONE)()]
cex () cex(®)

= (f.t(f")-

(iii) Since r : LZC*(X) — L?C*(X) is induced by the simplicial map
r: X — X, it takes cocycles to cocycles. We must show it also takes cycles
to cycles. If ¢ € X(~Y and d’ € X@ and if the incidence number [¢’ : d] is
nonzero, then it is equal to [r(¢') : r(d')]. Hence,

fe) = 0%(f)(e),

)
—~
3
~—
~
SN—
S~—
~—
Q\
SN~—
Il
S
~
—~
3
~—
SN~—
S~—
Il
o
=
=
Q
~
SHK)
N~—

where ¢ = r(c), d = r(d') and the last equality comes from the definition
given in equation (7.5). So, 99(f) = 0 implies that O(r(f)) = 0. Since t is the
adjoint of r, it also must take cocycles to cocycles and cycles to cycles. [
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Consider the diagram:
L?JC’*(Z) L L2CH(X)
| |7
L(QIH*(E) L HA(X)
where p and P denote the projections onto harmonic cocycles.
Lemma 13.7. Por =rop.

Proof. Let x € L2C*(X). It is enough to show that P o r(z) — r o p(z) is
orthogonal to any harmonic cocycle h € H*(X). We have: (P or(x),h) =
(r(x), P(h)) = (r(x), h). Hence,

(Por(z) —rop(x),h) = (r(x —p(x)), h) = (x = p(z),h) =0,

where the second and third equalities follow, respectively, from parts (ii) and
(iii) of Lemma 13.6. O

Theorem 13.8. Suppose ® is a building with a chamber transitive automor-
phism group G and with thickness vector q. Then the L?-Betti numbers of
X (=U(P,K)) equal the LZ-Betti numbers of ¥, i.c.,

V(X;G) = b (D).

Remark. This theorem is proved in [25, Fact 3.5] in the case where the
building comes from an BN-pair. Here we use Lemma 13.7 to weaken the
hypothesis to the case of an arbitrary chamber transitive group G. The key
technique of [25] of integrating over B is replaced by the use of the transfer
map t.

Proof of Theorem 13.8. For each simplex ¢ in the fundamental chamber K,
consider the commutative diagram:

2wy I L¥G/B)

| |

LEW/Ws(o)) — L*(G/Gss))
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where S(0) := {s € S | 0 C K.}, where Wg(,) and Gg(, are the isotropy
subgroups of ¢ in W and G, respectively, where the vertical maps are orthog-
onal projections and where r (= 7*) is the map induced by r : G/B — W.
Let e € L*(G/B) denote the characteristic function of B and let e, be its
orthogonal projection in L*(G/Gg)). (€, is the characteristic function of
G's(s) renormalized to have norm 1.) We note that ep is the image of the
basis vector e; € LZ(W) under r and e, is the image of ag,). We have the
commutative diagram:

D Ly(W) - D L(G)

| |

D LW/ Wsi) — LCH(S) L I2CUX) — @ LA(G/Gsw)
| |7
LgHi(Z) 5 HI(X),
where the sums are over all 0 € K. Let e € @ L*(G/Gs(y)) denote the
vector (e, ),ex and let a € @ LL(W/W(y)) be the vector (agq))sexm- (So,
r(a) = e.) Using Lemma 13.6, we get
bi(X; G) = dimN(G) Hl(X)

= (P(e),e) = (Pr(a),r(a)) = (rp(a),r(a))

= (p(a),tr(a)) = (p(a), a) = dimy, LgH'(X)

= bf](E).

O
The Decomposition Theorem for L*(G/B). As above, G is a chamber
transitive automorphism group of a building ®. For each T' € S, let
Ap = L*(G/Gr) = L*(G)C7

be the subspace of L?*(G/B) consisting of the square summable functions on
GG which are constant on each coset gGr. Set

~ ~ A\ L
DS—T = ATﬂ ( Z AU> .
UeSsr
ﬁS_T is a closed G-stable subspace in the regular representation. (It corre-

sponds to the Ng-module Dg_7 defined in Section 9.)
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Theorem 13.9. (The Decomposition Theorem for L?*(G/B)). Suppose G
s a chamber transitive automorphism group of a building ® and B is the
stabilizer of a chamber. If the thickness vector q lies in R, then

S ber

is a dense subspace of L?*(G/B) and a direct sum decomposition.

Given a module M and a collection of submodules (M,)ac4, the state-
ment that (M, )aea gives a direct sum decomposition of M can be interpreted
as a statement about chain complexes as follows. Set

c, ::@Ma and Cy:= M
acA

where @ means external direct sum. Let 0 : C; — Cj be the natural map.
This gives a chain complex, C, := {Cy, C1}, with nonzero terms only in
degrees 0 and 1. The statement that the internal sum ) M, is direct is
equivalent to the statement that O is injective, i.e., that H,.(C,) vanishes
in dimension 1. The statement that the M, span M is equivalent to the
statement that 0 is onto, i.e., that H,(C,) vanishes in dimension 0. Similarly,
if M and the M, are Hilbert spaces, then the statement that M, is dense in
M is equivalent to the statement that the reduced homology H.,(C,) vanishes
in dimension 0.

Proof of Theorem 13.9. The map r from Lemma 13.5 takes Ar to Ar and
Ds_ 7 to Dg_r. Define chain complexes C, = {C’O,C'l} and C, = {Cy,C—}
by

61 = @ZA)S,T and 50 = L*(G/B)
TeS

Cl = @ DS—T and CO = Li(W),
TeS

where the boundary maps 61 — 60 and | — Cj are the natural maps.
By the Decomposition Theorem for L7 (Theorem 9.11), H,(C.) vanishes

identically. So, by the proof of Theorem 13.8, H*(@) has dimension 0 with
respect to N(G) and hence, also vanishes identically. The theorem then
follows from the previous paragraph. ]
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Decoupling cohomology. As in Section 6, suppose we are given a finite
CW complex Z and a family of subcomplexes (Zs)scs. As in (13.1), given a
building ®, define its Z-realization to be

UP,Z) = (2 x Z)/ ~,

where (p,x) ~ (¢',2') if and only if x = 2’ and ¢, ¢’ belong to the same
S(x)-residue.
The proof of Theorem 10.3 goes through to give the following two results.

Theorem 13.10. Suppose @ is a building with a chamber transitive auto-
morphism group G and that its thickness vector q lies in R™'. Then there is
an isomorphism of orthogonal G-representations:

H (U, 2) = P H (2,257 ® Ds_r.

TeS

Corollary 13.11. (Compare [18] and [26, Cor. 8.2 and Prop. 8.5]). Suppose
® is a building with a chamber transitive automorphism group G and that
its thickness vector q lies in R™*. Then, for X = U(®, K), there is an
isomorphism of orthogonal G-representations:

M (X) = P H (K, K57) @ Ds_r.

TeS

14 The case where L is a sphere

A simplicial complex A is a generalized homology m-sphere (for short, a
GHS™) if it is a homology m-manifold having the same homology as S™.
This is equivalent to the condition that, for each T € S(A), Lk(7, A) has the
same homology as S~ Card(T),

Similarly, a pair(A,JA) is a generalized homology m-disk (for short, a
GHD™) if it is an acyclic homology m-manifold with boundary.

From now on, when we say that a complex is a generalized homology
sphere or disk or that it is a homology manifold, we only require that it be
one with respect to homology with real coefficients. (This is all that is needed
to insure that Poincaré duality holds for the (weighted) L2-cohomology of
various related complexes.)

If the nerve L of (W, S) is homeomorphic to S"~!, then ¥ is a contractible
n-manifold. If L is PL-homeomorphic to S"°!, then each face K of the
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fundamental chamber K is a PL-disk of codimension Card(7"). Similarly, if
Lis a GHS™ !, then ¥ is a contractible homology n-manifold and each K
is a contractible G H D"~ Cd(T) (See [15, 16].)

For the remainder of this section suppose that L is a GHS™!.

Poincaré duality. It is proved in [25] that L2H.(X) satisfies Poincaré
duality, where the duality changes q to q~'. We repeat the argument below.

For each T € § and w € W, the subcomplex wKp is the “dual cell”
to the Coxeter cell w(T") (defined in Sections 6 and 7). (Strictly speaking,
wKr is not a cell unless Lk(7T, L) is a PL-sphere; however, since (K7, 0Kr)
is a GHD"Cd(T) the wKy behave homologically as if they were dual
cells.) The chain complex obtained by partitioning 3 into these “dual cells”
is denoted LZC.(Xgnqa) in [25]. It is naturally identified with the cochain
complex LfIC’”**(A@) associated to the cosheaf A on L, defined in Sec-
tion 8. By Lemma 8.1 (ii), L2C\(X.) is identified with the chain com-
plex L2C,(Hyp) associated to the cosheaf H on L. It is proved in [25] that
the chain complexes L2C,(¥grq) and L2C,(X.) are both chain homotopy
equivalent to LgC’*(E), the chain complex defined via the standard simpli-
cial structure on . (This simplicial structure is a common subdivision of
Ygna and X..) Hence, all three complexes have the same homology. The
map LZC”_*(Eth) — LZ_IC*(ZCC), induced by wKy — w(T') is a chain iso-
morphism. (When viewed as a map L3C.(Ap) — L2 C.(Hy), it is induced
by the j-isomorphism of Section 5.) So, we have proved the following.

Proposition 14.1. ([25, Theorem 6.1]). Suppose the nerve L of (W,S) is
a GHS™'. Then there is j-equivariant isomorphism from the Hilbert Ny-
module LYH(X) to the Hilbert Ny-1-module Lz,lHn_k(Z) (where j is the

isomorphism of Section 5). Hence, bE(%) = befC(Z).

Remark. The same type of Poincaré duality (exchanging q with q~!) holds
for U(W, Z), whenever Z is compact and U (W, Z) is a homology manifold. In
other words, it holds provided that, for each T' € S, (Z7,0Zr) is a compact
homology manifold with boundary (see [12, 14]).

Corollary 14.2. ([9]). Suppose the nerve L of (W,S) is a GHS™'. Then
the growth series of W is (—1)"-reciprocal, i.e.,
L =)
W(t) W)
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Proof. Take the alternating sums of the dimensions on both sides of the
equation of Proposition 14.1. By Proposition 7.4, the left hand side gives
Xq(X) and the right hand side (—1)"xq-1(2). Replacing q by t we get the
result. O

The next result is proved in [25] as a corollary of Proposition 14.1. (It is
also a consequence of Theorem 10.4.)

Corollary 14.3. ([25, Cor. 10.4]). Suppose the nerve L of (W,S) is a
GHS™ 1.

(i) Ifq € R, then LIH.(X) is concentrated in dimension 0; moreover,
LiHo(X) = As,

where Ag is the representation of Rq[W] on R via the symmetric char-
acter ag of Definition 5.6.

(i) If g € R71, then LYH.(X) is concentrated in dimension n and
L2H,(¥) = H,

where Hg 1is the representation of Rq[W] on R via the alternating char-
acter Bs of Definition 5.6.

Remark. If L is a GHS™ !, then (K,0K) is a GHD" where 0K := K®.
Since H'(K;Z/2) = 0, K is orientable. So, we can choose orientations for the
n-simplices of K so that their sum is a relative cycle, {x. Its homology class
[K] € H,(K,0K) is the fundamental class of K. By Theorem 10.4, L2 H,, (%)
is spanned by [K]hg. (This was proved in [24].) A representative for this
class is obtained by taking the fundamental cycle £ and then harmonizing
it to ths.

Example 14.4. (dim L = 1.) Suppose L is a k-gon. In other words, suppose
we are given a Coxeter matrix on a set S, so that its nerve L is a circle and
so that Card(S) = k. This means, first of all, that the 1-skeleton of L is a
k-gon. When k = 3, for L to be equal to its 1-skeleton, a further condition
is needed. Suppose S = {s1, 52,53}, my; := My, and oy = 7/m,;, where
{i,j,k} = {1,2,3}. The condition is that as + ags + a3 < . When this
holds, the W-action on ¥ is isomorphic to the action of a group of isometries
on the Euclidean or hyperbolic plane generated by the reflections across the
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edges of a k-gon. (The Euclidean case occurs only when k£ = 4 and W is
right-angled or when k = 3 and s + ags + a3 = 7.)

If g € R, then LSH*(Z) is concentrated in dimension 0; if q € R7!,
it is concentrated in dimension 2; if q ¢ R UR™!, then it is concentrated
in dimension 1 (since it vanishes in dimensions 0 and 2). In each case, the
nonzero Betti number is given by fxq.

Notation. Write 1 for the I-tuple (1,...,1) and write g > 1 (resp. q < 1)
to mean that each ¢; > 1 (resp. each ¢; < 1).

Corollary 14.5. Suppose that W is a Fuclidean reflection group, i.e., that
it can be represented as a cocompact group generated by isometric reflections
on R"™. Suppose further that q > 1. Then LzH*(E) is concentrated in the
top dimension, x =n. (It is0ifq=1.)

Proof. By Proposition 3.10 (or Remark 3.11), when ¢ is a single indetermi-
nate, the reciprocal of the radius of convergence of W (t) is 1. It follows that
{q]lgq>1}C R

Since ¥ = R", it follows from [14, Theorem B] that L is a GHS™!. In
fact, L is a triangulation of S"~'. (When (W, S) is irreducible, L is isomorphic
to boundary complex of an n-simplex, by [5, Prop. 8, p. 90]; when it is not
irreducible it is a join of such complexes.) So, the result is a consequence of
the previous proposition. O

Combining this with Corollary 13.11, we get the following (known) result.

Corollary 14.6. Suppose that X is a Fuclidean building with a chamber
transitive automorphism group. Then its reduced L?-cohomology is concen-
trated in the top dimension.

A generalization of the Singer Conjecture. Proposition 14.3 states that
when L is a GHS™ ', LZH.(X) is concentrated in dimension 0 for q € R and

in dimension n for q € R=!. What about the intermediate range, q ¢ RU
R-1? By Remark 7.6, in this range, LiHO(E) = 0 and by Poincaré duality,
LIH,(¥) = 0. For q = 1, LZH.(X) is the ordinary reduced L*-homology
H.(X). In this case, the Singer Conjecture predicts that H.(X) vanishes
except in dimension 5. There is considerable evidence for this version of
the Singer Conjecture, at least in the case where (W, S) is right-angled. For
example, it holds for n = dim ¥ < 4 as well as for arbitrary even n when L

is a barycentric subdivision. (See [19, 20, 35].)
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This suggests that the following generalization of the Singer Conjecture
for Coxeter groups should hold for weighted L2-homology.

Conjecture 14.7. (The Generalized Singer Conjecture). Suppose L is a
GHS"'. Ifq <1 and k> %, then L7H,(X) = 0.

2

By Poincaré duality, this is equivalent to the conjecture that if @ > 1 and
k <%, then L2H.(X) = 0.

In Section 16 we prove Conjecture 14.7 (as Theorem 16.13) in the case
where W is right-angled and n < 4. In [35] the fourth author proves this con-
jecture in the case where W is right-angled, n is even and L is the barycentric
subdivision of a simplicial GHS™ .

To further simplify the discussion, suppose q = ¢, a single indeterminate.
By Corollary 14.2, the roots of x, (= 1/W(q)) are symmetric about 1, i.e.,
if ¢ is a root, then so is ¢~'.

At one point, the following scenario (which is stronger than Conjec-
ture 14.7) seemed plausible:

(a) x4 has exactly n positive real roots (counted with multiplicity) and

(b) L¥H.(X) is always concentrated in a single dimension. The dimension
jumps each time g passes a root of x, and the size of the jump is the
multiplicity of the root.

In fact, both (a) and (b) are false. Gal [28] has given counterexamples to
(a) in dimensions > 6. We shall explain why (b) is false in dimensions n > 4
in Section 17 below.

15 Properties of weighted L>-homology in the
right-angled case

The usual L*-cohomology of ¥ is the case ¢ = 1. In [19] the first and
fourth authors studied this case when (W, S) was right-angled. (Recall Def-
inition 13.2: (W, S) is right-angled if mg = 2 or oo for all pairs {s,t} of
distinct elements in S.) Much of [19] extends in a straightforward fashion
from q = 1 to the case of a general q. The purpose of this section is to
rewrite parts of [19] in the general case.

If (W, .S) is right-angled, then its nerve L is a flag complex. (A simplicial
complex A is a flag complez if any finite set of vertices in A which are pairwise
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connected by edges span a simplex of A.) Conversely, given any finite flag
complex L, there is a right-angled Coxeter group Wy with nerve L. (The set
of generators S for Wy, is the vertex set of L and mg = 2 if and only if {s, ¢}
spans an edge of L.) For further explanations, see [12, 16, 19].

In this section, as well as in Sections 16 and 17, all simplicial complezes
will be flag complexes and all subcomplexes will be full subcomplexes. Given
a finite flag complex L, let 31 be the complex on which W}, acts. As usual,
q is an I-tuple of positive real numbers. For each 7 € N, we have a Hilbert
Ng-module, L(QlHZ-(EL). Similarly, to each pair (L, A), we can associate the
Hilbert Ng-module, LZH;(X,, WrX4).

We introduce some useful notation which reflects this situation.

Notation
ML) = LaHi(BL)  bo(L) == LgH' (1) (15.1)
b(A) :== LZH:{(WX4) (15.2)
(L, A) == L2H(3, Wi Ea) (15.3)
by (A) := dimy, (h(A)) (15.4)
by (L, A) := dimyg, (bi(L, A)) (15.5)
Xa(L) =) (=1)b,(A). (15.6)

The notation in (15.2) and (15.4) will not lead to confusion, since L2 H;(W,¥4)
is the induced representation from L2H;(34) and therefore, b} (WpX4) =
b, (X4), where the left hand side of this equation denotes a dimension cal-
culated with respect to Ng(W,) while the right hand side is with respect to
N q(WA>-

Basic algebraic topology. The next theorem is a compilation of properties
of hA(L, A) which were proved in [19] for the case q = 1.

Theorem 15.1. (Compare [19, Section 7.2].)
(a) (Exact sequence of the pair). The sequence
— b(A) = b(L) — b(L, A) —
18 weakly exact.

(b) (Excision). Let T be a set of vertices of A such that the open star of any
vertex in T is contained in the interior of A. Then
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(¢) (Mayer-Vietoris sequence). Suppose L = Ly ULy and A = LyN Ly, where
Ly and Ly (and therefore, A) are full subcomplezes of L. Then

— b(A) = b (L1) @ b7 (L2) — b7(L) —
is weakly ezact.
(d) With Ly, Ly and A as in (c),
b (L, A) = b (L1, A) @ b7l (La, A).

(e) (The Kiinneth Formula: the Betti numbers of a join).

B(Ly* Ly) = Z b (L

i+j=k

(f) (Atiyah’s Formula).

Sl

TeS seT q)

(g) (0-dimensional homology, [25]).

0 ' R
W(a) ZfQER.

and

by(L) =0 fori>0,q€R.

(h) (Pseudomanifolds, [24, Theorem 10.3]). Suppose L is a (n—1)-dimensional
pseudomanifold. Then X is an n-dimensional pseudomanifold and,
since the 1-skeleton of ¥ s the Cayley graph of Wy, each component
of the complement of codimension 2 skeleton of X1, s infinite. So, if
a ¢ R, then b3(L) = 0. (If @ € R™" and in addition, L is ori-
entable and the complement of its codimension 2-skeleton is connected,
then b3(L) = 1/W(q™").

(i) (The empty set). Since ¥y is a point,

coa 1 dfi=o,
bq(m_{o if i # 0.
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(j) (A k-simplex). Given a k-simplex o, Wg(y) = (Z3)F*' and I, =
[—1,1]*L. Hence, for q = q, a single indeterminate:

bl (o) = (1%1)“1 ifi=0,
0 ifi 40,

(k) (The Betti numbers of a disjoint union). Suppose L is the disjoint union
of L1 and Ly. Then, fori > 2,

b (L) = b (Ly) + b, (Lo).
Forq¢ Rp, URL,,

bL(L) = BL(Ly) + bl (L) + 1.

Proof. Properties (a) through (e) follow from general principles as in [19].
Property (f) is Proposition 7.4; (g) is proved in Section 7 as Proposition 7.5;
(h) is proved in [24] (it also follows from Theorem 10.4); properties (i) and
(j) are special cases of (g). Property (k) follows from (c) (the Mayer-Vietoris
sequence); the last sentence of (k) follows after noting that Ly N Ly = ) has
nonzero Betti number, b (@) = 1 and that, by (g) bg(L1) = by(Ly) =0. [

In the next proposition we assume that [ is a singleton so that q is a
single parameter q. We extend some simple calculations of [19] from ¢ = 1
to the case where ¢ is arbitrary.

Proposition 15.2. (Compare [19, Section 7.3].) Suppose q = q, a positive
real number.

(a) (The Betti numbers of k points). Let Py, denote the disjoint union of k
points. If k > 2, then

1—(k—1)q qu

ba(Py) = {0 tra

0 if g < —
bl(‘Pk;) = { k-1’

(k—1)g—1 . 1
! 1+Z ifq= k—1°
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In particular,

9(S°) = by(Py) = {0

if g >1,

0 fqg <1
baS%__ban__{ql #q:>£
g Yozl

(b) (The Betti numbers of a suspension). The “suspension” of L is defined
by SL := S % L. Then

, i) difg<1
R

mbq (L) ifq>1,
for all 1.

(¢) (The boundary complex of an n-octahedron). Let

Opi=8%--%5°.

Then "
1—
bO(On) — <m3> qu < 1;
! 0 ifqg>1,
b,(On) =0, for 1 <i<n—1and forallq,

0 if g <1,
(0 =4 7o\
a(On) {<_(11+;) if ¢ > 1.

(d) (The Betti numbers of a cone).

) 1 )
b (CL)=——=0b'(L
(CL) = =)
b (CL, L) = ——b (L),
e = )
Moreover, the sequence of the pair (CL, L) breaks up into short exact

sequences:
0 — b7, (CL, L) = bi(L) = b;(CL) — 0.
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Proof. Since ¥p, is 1-dimensional, b}, () = 0 for i > 1. By Theorem 15.1(g),

1—(k—1)q
e the calcu-

hit(Py) is concentrated in one dimension. Since x,(P;) =
lation in (a) follows.

The calculations of Betti numbers in (b), (¢) and (d) follows immediately
from part (a) and Theorem 15.1(e). The proof of the last sentence of (d) is
similar to [19, Lemma 7.3.3]. b7(L) means LYH;(XL X Zs) (= L¥H;(XL) ®
L2(Z)). b!(CL) can be identified with the subspace L2H;(¥.) ® A, where s
is the generator corresponding to the cone point. The map h?(L) — bh?(CL)

is then identified with orthogonal projection onto this subspace. O

16 WV is right-angled and L is a sphere

In the right-angled case, Conjecture 14.7 can be attacked using the techniques
of [19]. In this case, the arguments of [19] are sufficient to prove the conjecture
for n < 4. We give the details below.

Poincaré duality. If a pair (D,0D) of flag complexes is a generalized
homology disk, then ¥p is a polyhedral homology manifold with boundary
(its boundary being Wp3gp). Hence, it satisfies a relative version of Poincaré
duality.

Proposition 16.1. (Compare [19, Section 7.4].)
(i) If L is a GHS™ ", then bi(L) = b2~{(L).

q

(i) If (D,0D) is a GHD"™", then bl,(D,dD) = b:={(D).

(iii) If (D,0D) is a GHD" !, then the homology and cohomology sequences
of the pair (D,0D) are isomorphic under Poincaré duality in the sense
that the following diagram commutes up to sign,

— b(D,0D) — b#0OD) — h(D) — bh}(D,0D) —

Ig Ig Ig Ig

— b2 N(D) — piY0D) — §iZi(D,0D) — bTi(D) —

qfl

where the vertical isomorphisms are given by Poincaré duality.
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Suppose that L = Dy U Dy and M = Dy N Dy. Also suppose that L is a
GHS™ ! and that (Dy, M) and (Dy, M) are GH D" V’s. By Theorem 15.1(d),
b1 (L, M) = b+ (D1, M) @bl (D2, M). Similarly to Proposition 16.1(iii),
the homology Mayer-Vietoris sequence of L = D; U D, is isomorphic, via
Poincaré duality, to the exact sequence of the pair (L, M) in cohomology. In
other words, the following diagram commutes up to sign,

— bi(L) — biM) — b (D1) @ bi'(D2) -

[+ 1= !

— b (L) — pTi N (M) — bsz(Dl,M)@bZ:f(DQ’M) -

q! q

I

where the first row is the Mayer-Vietoris sequence, the second is the exact
sequence of the pair and the vertical isomorphisms are given by Poincaré
duality. We record the special case of this where n = 2k + 1 and 7 = k as the
following lemma.

Lemma 16.2. (Compare [19, Lemma 7.4.6].) With hypotheses as above,
suppose n = 2k + 1. Then the map i,: bgfl(]\/[) — hzfl(L) induced by the
inclusion is dual (under Poincaré duality) to the connecting homomorphism
Ot bt (L) — (M) in the Mayer-Vietoris sequence.

Proof. In this special case, the previous diagram becomes the following:

bl (L) —2— pAM) —— b (D1) ® b (D)

=T !

5k

hg-1(L) —— bga(M) —— bFi(Di, M) @ bgti(De, M)

q~! q-!

I

[]

Vanishing Conjectures. We consider several conjectures, I(n), III(n),
IIT'(n) and V(n), concerning the reduced LZ-homology of ¥, where L is
a generalized homology sphere. (The notation I(n), III(n), V(n), is taken
from [19]; the “n” refers to the dimension of ¥, so that dim L =n — 1.)

I(n). If L is a GHS™ ' and q < 1, then bl(L) = 0 for i > n/2.

Given (D,0D), a generalized homology disk, denote by D (or L) the
GHS formed by gluing on C(9D) (the cone on D) to D along 0D. If v
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denotes the cone point, then 9D = L, (the link of v in D) and C(8D) = CL,.
Conversely, given a GH S, call it L, and a vertex v, we obtain a GH D, with
D = L — v (the full subcomplex of L spanned by the vertices # v) and with
0D = L,.

Next we consider a seemingly weaker version of I(2k + 1).

II1(2k + 1). Suppose (D, L,) is a GHD* and D = D U CL, as above. If
q < 1, then, in the Mayer-Vietoris sequence, the map

Je @ hot b (Ly) — bi(D) @ b (CLy)
18 a monomorphism.
By Lemma 16.2, III(2k + 1) is equivalent to the following.

IIT (2k + 1). Suppose (D, Ly) is a GHD* and D = D U CL, as above. If
q > 1, then the map i.: b (L,) — b}(L), induced by the inclusion, is the
zero homomorphism.

The following is a stronger version of I(n).

V(n). Suppose L is a GHS™ and A is any full subcompler.
o Ifn =2k is even and q < 1, then bl (L, A) =0 for all i > k.
o Ifn=2k+1is odd and q < 1, then b,(A) =0 for alli > k.
By [24], I(1) and I(2) hold.

Next we list some obvious implications among these conjectures.
Lemma 16.3. (Compare [19, Section §].)
(a) I(2k+1) = III(2k+1).
(b) V(n) = I(n)
(c) V(2k) implies that for any full subcomplex A of L (a GHS?**7!), we have

by(A) =0 foralli>k andq<1.
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Proof. (a) is obvious: if I(2k + 1) holds, then the h3(L) terms in the Mayer-
Vietoris sequence all vanish, so the map j. @& h, in III(2k 4 1) is a weak
isomorphism.

(b) If n = 2k, take A = () to get b’ (L) = 0 for i > k. If n = 2k + 1, take
A =L, to get b (L) =0 fori > k.

(¢) Assume V(2k) holds. By (b), b, (L) = 0 for i > k. Hence, in the exact
sequence of the pair,

the first and third terms vanish for all 7 > k. O
Lemma 16.4. ITI(2k + 1) = III(20+ 1) for all | < k.

Proof. The proof is the same as in [19, 8.8.1 on p. 41]. Suppose (D, L,) is
a GHDY, with | < k. Let A be the join of k — [ copies of an m-gon, m > 5
and assign to A a thickness vector q = 1. If ITI(2] 4 1) fails for D, then
ITI(2k + 1) fails for D * A (the join of D and A). O

Inductive Arguments. We describe the program of [19] for proving Con-
jecture V(n). The idea is to use a double induction: first, induction on the
dimension n and second, depending on the parity of n, induction either on
the number of vertices of A or on the number of vertices in L — A. In this
section we always assume q < 1.

As in [19], we set up some notation for the induction on the number of
vertices. Suppose A and B are full subcomplexes of L, the vertex sets of
which differ by only one element, say v. In other words, B = A — v, for some
v € SW(A). Let A, and L, denote the link of v in A and L, respectively.
Thus, A= BUCA, and CA, N B = A,. We note that L, is a GHS of one
less dimension than L and that A, is a full subcomplex of L,.

Lemma 16.5. (Compare [19, Lemma 9.2.1].) V(2k — 1) = V(2k).

Proof. Suppose V(2k—1) holds. Let (L, A) be as in V(2k) and let B = A—v.
Assume, by induction on the number of vertices in L — A, that V(2k) holds
for (L, A). (The case A = L being trivial.) We want to prove it also holds
for (L, B), i.e., that b} (L, B) = 0 for i > k. Consider the exact sequence of
the triple (L, A, B):

— bil(4, B) = b(L, B) — bi'(L, A) — .
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Suppose i > k. By inductive hypothesis, bfq(L,A) = 0. By excision (Theo-
rem 15.1(b)), b, (A, B) = b, (CA,, A,). By Theorem 15.1(e),

i Qv i1
Ay, Ay) = ——— b (Ay).
by(C Ay, Ay) ot 1bq (A,)
Since V(2k — 1) holds for (L,, A,) and since i —1 > k — 1, bi;l(Av) — 0. So,
0= b} (CA,, Ay) = b, (A, B). Consequently, b} (L, B) = 0. 0

Essentially the same argument proves the following lemma.

Lemma 16.6. (Compare [19, Lemma 9.2.2].) Assume that V(2k) holds.
Suppose that a flag complex L is a polyhedral homology manifold of dimension
2k and that A is a full subcomplex. Then bfl(L, A) =0 fori>k+landq < 1.

Proof. We proceed as in the previous proof. If B = A — v, then

i i Qv i1
bq<A, B) == bq(CAv,Av) - mbq (Av)
Since we are assuming V(2k) holds, Lemma 16.3(c) implies that b, '(A4,) = 0

for ¢ > k + 1. Hence, if we assume by induction that the lemma holds for
(L, A), then it also holds for (L, B). O

Lemma 16.7. (Compare [19, Lemma 9.2.3].) [V(2k) and III(2k +1)] =
V(2k +1).

Proof. Assume V(2k) and ITI(2k + 1) hold. Let (L, A) be as in V(2k + 1)
and let B = A — v. Assume, by induction on the number of vertices in B,
that V(2k + 1) holds for B. (The case B = () being trivial.) We want to
prove that it also holds for A, i.e., that b}(A) = 0 for i > k.

First suppose that ¢+ > k + 1. Consider the Mayer-Vietoris sequence for

A=BUCA,:
b (B) @ b (CA,) — b (A) — by (Ao).
By V(2k) and Lemma 16.3(c), b '(A,) = 0 (since i — 1 > k) and hence,

b,(CA,) = 0 (by Theorem 15.1(c)). By inductive hypothesis, b,(B) = 0,
and consequently, b (A) = 0.
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For i = k + 1, we compare the Mayer-Vietoris sequence of A = BU CA,
with that of L = DU CL, (where D = L —v):

Bri1 (Lo Av)

JL®hl

0 —— b (4) ——  b(A) = bi(B) @ b (CA)

l |

*@h*
hi(Lo) = (D) & bi(CLy)
By V(2k), b5 (Ly, Ay) = 0; hence, f, is injective. By III(2k 4 1), j, @ h, is
injective. Hence, j, & h/, is injective and therefore, b5 (A) = 0. O

One of the main results of [19] has the following analog.

Theorem 16.8. (Compare [19, Theorem 9.3.1]). Statement III(2k — 1)
implies that V(n) holds for all n < 2k.

Proof. By Lemma 16.4, ITI(2k —1) implies ITI(2/—1), for all [ < k. Suppose,
by induction on n, that V(n — 1) holds for some n < 2k. If n—1 is odd, then
by Lemma 16.5, V(n—1) implies V(n). If n—1 is even, then by Lemma 16.7,
V(n —1) and III(n) imply V(n). O

The conjecture in dimension 3. We begin with a discussion of triangu-
lations of S?. (Details can be found in [19, Section 10.2].)

For j = 1,2, suppose that L; is a flag triangulation of S? and that s; is
a vertex of valence 4 in L;. Choose an identification of the link of s; with
that of so. (They are both 4-gons.) Define a new triangulation L;[1Ly of S?
by gluing together the 2-disks L, — s; and Ly — s9 along their boundaries.

Conversely, suppose C' is an empty 4-circuit in L. Then C separates L
into two 2-disks, Dy and D,. Let L; and L, denote the result of capping off
Dy and Ds, respectively (where “capping off” means adjoining a cone on the
boundary). Then L = L;0Ls.

Lemma 16.9. (Compare [19, Lemma 10.2.7].) For q < 1, b2(L,0L,) =
b (Ly) + 0%(La).

Proof. This follows from the Mayer-Vietoris sequence and Proposition 15.2(c).
[
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Andreev [1, 2] determined the possible fundamental polytopes for any
reflection group on H? of cofinite volume. The right-angled case of the An-
dreev’s Theorem is the following.

Theorem 16.10. (Andreev’s Theorem). Suppose that L is a flag triangula-
tion of S? and that

(i) L has no empty 4-circuits, and
(11) L is not the suspension of a 4- or 5-gon.

Let T' denote the set of valence 4 vertices of L and let Kig_p) be the dual
of the cellulation [S — T of S? obtained by replacing stars of vertices of T
by square cells. Then Kig_7) can be realized as an ideal, right-angled convex
polytope in H3. (The ideal vertices correspond to the square faces of [S —T),
i.e., to the vertices of valence 4 in S.) The resulting hyperbolic reflection
group 1s the right-angled Coxeter group Ws_r.

Next we show that IIT'(3) is true for right-angled reflection groups on
H3.

Equidistant hypersurfaces. Suppose a Coxeter group W acts by reflec-
tions on hyperbolic (2k + 1)-space H**! with a fundamental polytope K of
finite volume.

Let H?* be a wall. We claim that the map L2 H(H**) — LZH(H?**'),
induced by inclusion, is the zero map for q > 1.

Our argument uses weighted L?-de Rham cohomology theory. We will
show that the map LZH*(H?**!) — L2HF(H?*), induced by restriction of
forms, is the zero map. To define these terms we first need a “weight function”
on H?**1 which we can then use to define a new inner product on the vector
space C™ j-forms on H?*+!,

Given any measurable nonnegative function f : H2**! — [0, cc0), one can
modify the volume form on H?**! by multiplying by f and then define a new
norm on C'*° j-forms w by

Jwll? = / I £(p) V.
H2k+1

where [|wl], denotes the pointwise norm. ||lwl|; is called the L7-norm of w.
Let K be a fundamental polytope for W on H**!. As usual, q is an I-
tuple of positive real numbers. For any point p in H?*** put f(p) = ¢, when
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p € wK. Of course, this expression is ambiguous for p € w JK. Nevertheless,
choose some convention to remove the ambiguity, for example, that w is the
element of minimum word length with p € wK. Then f is the word length
weight function on H**!. Tt is a sort of step function in that it is constant
on the interior of each chamber.

When K is compact, the arguments of [23] go through to show that the
cellular weighted L2-cohomology of ¥ can be calculated using weighted de
Rham cohomology, i.e.,

LXHY (D) = LYHE(HP),

where the right hand side is defined using Lfc forms with f the word length
weight function defined above. When K is not compact but has finite volume
we can reach the same conclusion by using [10].

Next let H* be a supporting wall of K (i.e., H* is a wall determined
by a codimension one face of K). Put coordinates (z,y) on H?**! by letting
y € R be the oriented distance from p to the nearest point x € H?**. Let N,
be the hypersurface in H?**1 consisting of the points of (oriented) distance
y from H?*. Let p,: N, — H?* be the projection which takes a point in N,
to the closest point in H?*. Then p, is a homothety. Let ¢,: H* — N, be
its inverse. Also, let i: H** — H?**! and i,: N, — H?**! be the inclusions.
Thus, 7 and 4, o ¢, are properly homotopic.

Let g(x,y) = f(x,0). Note that f(z,y) > g(x,y).

Let w be a closed L3-k-form on H***!. We claim that the restriction i*(w)
of w to H?* represents the zero class in reduced L?—Cohomology. Suppose,
to the contrary, that [i*(w)] # 0. Then ||i*(w)|ly > ||[i*(w)]]lg > 0, where
|I[#*(w)]||; denotes the norm of the harmonic representative of the cohomol-
ogy class [i*(w)]. Since ¢, is a conformal diffeomorphism, it follows that it
preserves norms of middle-dimensional forms: [|¢; (i) (w)ly = [|7; (w)]|g- Since
i and i, o ¢, are properly homotopic, [¢;(i;(w)] = [i*(w)], so it follows that
3 (W)llg > [|[*(w)]|lg- Now, since i;(w) is just a restriction of w, we have a
pointwise inequality [|w||l, > [|iy(w)|[. Therefore, using Fubini’s Theorem,
we obtain

HWIIE:/ lelig(:c,y)dv:/ w2 g(z,y) dA dy >
H2k+1 RJN,

/R |5 o) dd dy = /R i3 ()12 dy > /R i ()12 ds = oo.

85



Since [|w||; > ||lwlly, this contradicts our assumption that the Lj-norm of w
is finite and thereby completes the proof.
In dimension 3 we get the following.

Theorem 16.11. Suppose that L is a flag triangulation of S? satisfying the
conditions of the Andreev’s Theorem. Then IIT'(3) is true for L.

Proof. If v € T, then, by Proposition 15.2(c), by(L,) = 0 so IIT'(3) is auto-
matic. If v € T, then the result follows from the Andreev’s Theorem and the
previous paragraphs. ]

Theorem 16.12. I(3) is true: if L is a triangulation of the 2-sphere as a
flag complex, then

by(L) =0 fori>1andq<1.

Proof. 1f L is the suspension of a 4- or 5-gon, then the theorem follows from
Proposition 15.2(b). If L is not the suspension of a 4-gon or a 5-gon and
if it has no empty 4-circuits, then the theorem follows from Theorem 16.11,
Lemma 16.7 and the fact that I(2) holds (][24]).

In every other case, L has an empty 4-circuit which we can use to decom-
pose it as, L = Ly[1Ls, as before. Since L; and Ly each have fewer vertices
than does L, this process must eventually terminate. So, the theorem follows
from Lemma 16.9. O

Since I(3) is true, Theorem 16.8 (together with Lemma 16.3(a)) yields
the following.

Theorem 16.13. (Compare [19, Theorem 11.1.1].) V(n) is true for n < 4.

If L is a flag triangulation of S%, then V(4), Poincaré duality and [25]
imply:

for g € R, h%(L) is concentrated in dimension 0,
for q <1and q ¢ R, h3(L) is concentrated in dimensions 1 and 2,
forq>1and q ¢ R, h3(L) is concentrated in dimensions 2 and 3,

for g € R, h(L) is concentrated in dimension 4.
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17 Failure of concentration in the intermedi-
ate range

In this section [ is a singleton (so that ¢ is a single parameter) and W is

right-angled. We retain the notation and conventions of Section 15.

The h-polynomial. Combinatorialists have associated two polynomials
to a finite simplicial complex L: its “f-polynomial,” f(t), and its “h-
polynomial,” hp(t). The first is defined by

fL(t) — Z tCard(T) — Zfifltiy (171>
TeS(L) 1=0

where f,, is the number of m-simplices of L, f 1 = 1 and dimL = n — 1.
The second one is defined by

ho(t) = (1 — 6" fy (L> . (17.2)

1—-1¢

If a Coxeter system (W, S) is right-angled, then for each spherical subset
T, Wy 22 (Z/2)C4T)  So, Wi(t) = (1 + )41, Hence,

1 1 Card(T) 1 ¢ Card(T)
_ d = . 17.3
Wi l(t) (1 n t) M W) (1 n t) (17:3)

Proposition 17.1. Suppose (W, S) is a right-angled Cozeter system and that
its nerve L is (n — 1)-dimensional. Then

1 (1)

W) (14t

Proof. By Lemma 3.3 (iv) and (17.3),

87



In the next proposition we record some properties of hr(t).

Proposition 17.2. Suppose L is a GHS™ . Let hp(t) = > hit" be its
h-polynomial. Then

(i) hr is a polynomial of degree n. The constant term hg is 1.

(ii) hr(t) =t"hp(t7Y). (This means that the coefficient sequence (hg, . .., hy,)
is palindromic. It also implies that t — t~! is a symmetry of the set of
roots of hr.)

(iii) Each h; > 0.

(iv) If L is also assumed to be 3-dimensional and a flag complez, then all
four roots of hy(t) are real.

Statements (i),(ii) and (iii) are well-known; proofs can be found in [7].
Statement (iv) is proved in [3]. We give a simple argument for it below.

Proof of (iv). Put h(t) = hy(—t). By Proposition 17.1, 1/W(t) = h(t)/(1+
t)". The Flag Complex Conjecture is that for n—1 = 2k—1, (—=1)k/W(1) >
0, i.e., (=1)*A(1) > 0. (See [19], [16].) Let p be the radius of convergence of
Wy (t). By Lemma 3.8, p is a root of h and it is the smallest root in absolute
value. By (ii), p~! is also a root of h and it is the largest in absolute value.
Now suppose dim L = 3. To prove (iv), it suffices to show the four roots
of h are positive reals. The Flag Complex Conjecture is known to hold in
this dimension (by [19]), i.e., A(1) > 0. We know that p and p~' are roots
and also that h(t) > 0 for t € [0, p) or t € (p~!, 00). If the other two roots of
h don’t lie in [p, p~1], then h must be negative on that interval, contradicting
the fact that h(1) > 0. O

For any full subcomplex A of L, set 74 := p', where, as before, p4 is
the radius of convergence of W4 (t). Since Wy is a subgroup of Wp,, pa > pr;
hence, ry < rp.

Next, suppose that M is a GHS" 2 and a full subcomplex of L (so, M is
a homology submanifold of codimension one in L). Then M separates L into
two generalized homology (n — 1)-disks, say, A and B. Thus, 0A =90B = M
and L = AUB. Let CM denote the cone on M. Let A (resp. B) denote the
result of gluing CM onto A (resp. B) along M.
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Lemma 17.3. With hypotheses as above, suppose ¢ < min{ry,rz,r5} and
q>ry. Then

(L) > b”lM .

Proof. Since ¢ > 1, by Proposition 15.2(d), we have
1
—— b (M). 17.4

By Remark 7.6, since ¢ < rr, hi(L) = bI(L) = 0. By Proposition 14.3,
since ¢ > 7y, h(M) = 0 for k # n — 1. Hence, the Mayer-Vietoris sequence
(Theorem 15.1(c)) for L = AU B gives a weakly exact sequence:

0— b} _((M)— b _(A)® by (B)— b} (L)— 0.

b’;(CM) = bg(point)b];(]\/[) =

So,
b N (L) = b N (A) + 0N (B) — b (M), (17.5)

A similar Mayer-Vietoris sequence for A=AUuCM gives
n—1/ 4 _ 1n—1 n—1 n—1
by (A) = b (A) + b (CM) — b~ (M),
which we rewrite as

brH(A) = 0N (A) - bn—l((JM)+bg—1(M)

-~

= b ——b (M 17.6
)+ b o), (176
where the second equality is from (17.4). Similarly,
b Y(B) = b" (B bt (M 17.7
2 B) = by B) b 0, (17.7)

Combining (17.5), (17.6) and (17.7), we get

b (L) = b (A) + b (M) + 0 (B) Tl D =47 ()

1+q1 1+
- —1
:bn—lA bn—lB q_bn—lM
() +5,7(B) + {7 ()
b” (M) >0,

_1+q

where the last inequality holds because ¢ > 1 and bgil(M ) > 0 (since q >
M) [
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Lemma 17.4. (Failure of concentration in dimension 4). Suppose that L is a
triangulation of S* as a flag complex, that a full subcomplex M is isomorphic
to the boundary complexr of an octahedron and that M divides L into two
3-disks A and B nontrivially, i.e., neither A nor B is a cone on M. Suppose
further that x1(L) # 0. Let p be the second largest root of hy(—t), and let
r=min{p,r3,75}. Thenr > 1 and for 1 < q <r, b2(L) and b}(L) are both
nonzero.

Proof. We want to use Lemma 17.3 for n = 4. Since W)}, is the product of 3
copies of the infinite dihedral group, its growth series is given by

1+t)°
So, py =1 =ry.

Suppose r; = 1. Then r4 = 1 and by Proposition 3.10, Wy splits as W x
W1, where Wy is a Euclidean reflection group and W7 is finite. Since M = 0A,
the only possibility is Wy = Wy, and Wy = Z/2, i.e., A = CM, which we
have ruled out by hypothesis. Similarly, for B. Thus, min{r 3,75} > 1. Since
x1(L) # 0, p # 1 and by [19], x1(L) > 0. So, x,(L) is positive on the interval
(p~t, p) and therefore, also on the subinterval (1,7).

By Lemma 17.3, for 1 < ¢ < min{rz, 75,75}, b3(L) > 0. On the interval
(p~',p) we have by(L) = 0 = b)(L) as well as x4(L) > 0 and this forces
b2(L) > 0. Therefore, for 1 < ¢ < r, h?(L) is nonzero in dimensions 2 and
3. O

Example 17.5. (Ezistence). Here we show that there is a flag triangulation
L of S3 together with a full subcomplex M C L so that the conditions of
Lemma 17.4 are satisfied. Let P,, denote an m-gon (i.e., a triangulation of S*
with m vertices). Let I; denote the triangulation of an interval with [ vertices.
Let Ay, denote a triangulation of the annulus S* x [0, 1] such that its two
boundary components are P, and P,, and such that there are no interior
vertices. (This does not determine the triangulation, but it does determine
the number of i-simplices in A, for ¢ = 0,1,2.) Form the suspension
SAgm = S%x Ag,n. Tt has two boundary components: SP, and SPB,,. Fill
in SP,, with I, *x P,, to get a triangulation A of D3, i.e.,

A= SAk,m ngm (I4 * Pm).
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If £ = 4, then 0A = S Py, which is the boundary complex M of an octahedron.
Hence, we can double A along its boundary to get a triangulation L of S®
(so, B=A).

By Theorem 15.1 (f),

1 —q
= — = _
where f;, was defined in (17.1). This formula is the basic method used for
computing Euler characteristics. It gives

2 2
mq mq 1—(m—2)q+¢q
Xszl— —|— g s
(P (1+q)  (1+¢)? (1+q)?
4 3> 1 -2
Xgll) =1 — =t 2L o = 2T

(I+q) (1+9?2 (1A+9?*

We compute the number of simplices in Ay,,. Each triangle of Aj,, has
exactly one of its edges on the boundary and each interior edge is on the
boundary of two triangles. Hence, there are k+m triangles in Ay, and k+m
interior edges. So, fo(Axm) =k+m, fi(Arm) =2(k+m), fo(Arm) =k+m
and

(k+m)q 2(k+m)¢> (k+m)¢®

Apm) =1— + -
Xa(Axn) G+e " (Gra?  (+op
=(1-(k+m-— 3)q+3q2 +q3)/(1 —I—q)3.
Therefore,
1 _
Xa(SAkm) = Xa(S")Xa(Akm) = ——xg(Apm)

1+q

=1~ (k+m=2)q+ (k+m)¢* —2¢°—¢")/(1+q)",

Xq(La * Pr) = Xq(14)Xq(Fin)
= (1 —mg+ (2m —3)¢* - 2¢°) /(1 + q)*,

Xq(SPn) = Xq(SO)Xq(Pm)
= (1= (m—2)g+(m—2)¢*~q")/(1+q)"
So,
Xq(A) = Xq(SAkm) + Xq(Ls * Prn) — Xq(SPn)
=(1—(k+m)g+ (kE+3m—3)¢—(m+2)q¢*)/(1+q)*
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Taking k = 4, x4(A) = (1 = (m +4)g+ 3m + 1)¢*> — (m +2)¢*) /(1 + ¢)*
hence,

Xa(A) = X4(A4) — (ﬁ) Xag(M) = Xq(4) = (11(1) (112)3

= (1= (m+5)g+Bm+49)¢ - (m+5)¢ +q)/(1+ )

When m = 10, the numerator is
hi(—q) =1 —15q + 34¢* — 15¢° + ¢*,

which has roots .08, .48, 2.10 and 12.34 (rounded off to two decimal places).
Similarly,

Xq(L) = 2x4(A) = xg(M) = (1 = 26¢ + 62¢* — 26¢" + ¢*) /(1 + q)*,

which has roots .04, .48, 2.08 and 23.40. So, the numbers in Lemma 17.4 are
ry =rg = 1234 and r = p = 2.08. In particular, since r > 2, the right-
angled building with ¢ = 2 has nonvanishing L?*-homology in dimensions 2
and 3.

18 Remarks about other groups

Suppose I is a countable discrete group and | | is a “norm” on it, i.e., | | is a
function from I to [0, co) such that |af| < |a|+|3|. For example, | | might be
defined by |y| = () where [ : I' — Z is word length with respect to a finite
set of generators S. Suppose further that I acts properly and cellularly on a
CW complex X and that a subcomplex D C X is a “fundamental domain” in
the sense that it contains at least one cell from each I'-orbit of cells. Given a
cell 0 C X, define d(0), its distance from D, by d(o) := min{l(v) | ¢ C vD}.

As before, given a positive real number ¢, define an inner product ( , ),
on R® by (e, ey)q == ¢"6,,. Let LXT,| |) be its completion. Simi-
larly, define an inner product on compactly supported cellular i-cochains,
CHX), by (€q,€0)q = ¢"704sr and let L2C*(X) be its completion. Using
the usual coboundary operator §, we get the weighted L?-cohomology spaces,
L2H*(X). Let 07 denote the adjoint of ¢ : L?C*'(X) — L2C"(X). The 0]
give us a chain complex and allow us to define the weighted L?-homology,
LgH LX),
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The infinite sum

D(t) =Y thl.

vyel

converges for ¢ in a some neighorhood of 0 in [0,00). I'(¢) is the growth
function of (T',| |). It is a power series if | | is integer-valued (e.g., if it is
given by a word length). Let R be the region of convergence of I'(¢). Suppose
X is connected. The argument in the proof of Proposition 7.5 shows that
any 0-cocycle is constant and that if ¢ € R, the only constant which is square
summable is 0. Hence, LZH°(X) 2R if ¢ € R and is 0 if ¢ ¢ R.

I' acts on these vector spaces; however, it does not act via isometries.

The usual boundary map 0 gives us a different chain complex structure
(on the same underlying Hilbert spaces L;C*(X)).

As in Lemma 7.1, the isometry 6 : L2C;(X) — Lf/qC’i(X) defined by
e, — ¢%%e, intertwines 97 with 0. Hence, it induces an isomorphism 6, :
H,(L2C\(X),0) — L%/qH*(X).

As in Remark 7.2, we have natural inclusions of cochain complexes:
Ci(X) — L2CY(X) — C'(X).

There is also a version for chain complexes (using ordinary boundary map,
d):
Cy(X) — L2Ci(X) — CY(X),

where C’ilf (X) denotes the infinite cellular chains on X. Using the isometry
0, we get a monomorphism of chain complexes

Ci(X) = L2, C(X) -5 L2Ci(X), (18.1)

where the boundary maps in the first two terms are the usual ones and where
the boundary map in the third term is 9?. We then have the following version
of Theorem 12.1.

Conjecture 18.1. (i) Forq € R, the canonical map L2H'(X) — H'(X;R)
is a monomorphism. Moreover, the map H;(X;R) — L2H;(X), in-
duced by (18.1), is a monomorphism with dense image.

(ii) For ¢~' € R, the canonical map H)(X;R) — L;H*(X) is a monomor-
phism with dense image.
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Quite possibly it will be necessary to add more hypotheses for this con-
jecture to be true. For example, we might need to assume that the I'-action
is cocompact and that the norm is given by a word length with respect to a
set of generators induced by the choice of fundamental domain D.

The missing feature from this picture is that for a general group I there
is no analog of the Hecke algebra and no analog of the Hecke - von Neumann
algebra Ny. So, in the general situation we don’t know how to define “di-
mension” and we don’t have weighted L2-Betti numbers. Nevertheless, in
some situations it is still possible to assign a “dimension” to these weighted
L?-cohomology spaces and obtain weighted L?-Betti numbers. The condition
that is needed for these numbers to be well-defined is that the I'-action on
X has a strict fundamental domain.
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