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Abstract

Given a Coxeter system (W,S) and a positive real multiparameter
q, we study the “weighted L2-cohomology groups,” of a certain sim-
plicial complex Σ associated to (W,S). These cohomology groups are
Hilbert spaces, as well as modules over the Hecke algebra associated to
(W,S) and the multiparameter q. They have a “von Neumann dimen-
sion” with respect to the associated “Hecke - von Neumann algebra,”
Nq. The dimension of the ith cohomology group is denoted biq(Σ). It
is a nonnegative real number which varies continuously with q. When
q is integral, the biq(Σ) are the usual L2-Betti numbers of buildings
of type (W,S) and thickness q. For a certain range of q, we calcu-
late these cohomology groups as modules over Nq and obtain explicit
formulas for the biq(Σ). The range of q for which our calculations are
valid depends on the region of convergence of the growth series of W .
Within this range, we also prove a Decomposition Theorem for Nq,
analogous to a theorem of L. Solomon on the decomposition of the
group algebra of a finite Coxeter group.

1 Introduction

Suppose (W,S) is a Coxeter system. (The precise definition will be given in
Section 2. For now, it suffices to say that W is a group and S is a set of
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involutions which generate W .) Associated to (W,S) there is a certain con-
tractible simplicial complex Σ on which W acts properly and cocompactly.
(The definition of Σ can be found in [12, 14, 16, 18, 34], as well as in Sec-
tion 6 below.) Let i : S → I be a function to some index set I so that
i(s) = i(s′) whenever s and s′ are conjugate. Given an I-tuple q = (qi)i∈I
of positive real numbers, the second author [25] defined certain “weighted
L2-cohomology spaces, ” here denoted L2

qHi(Σ). The weighted L2-cochain
complex, L2

qC
∗(Σ), is a subcomplex of the complex C∗(Σ;R) of ordinary

cellular cochains. It consists of those cochains which are square summable
with respect to an inner product defined via a weight function depending
on the multiparameter q. As we explain in Sections 5 and 7, to each of the
Hilbert spaces L2

qHi(Σ) one can attach a “von Neumann dimension.” It is a
nonnegative real number, denoted biq(Σ) and called the ith L2

q-Betti number
of Σ.

Our principal interest in the weighted L2-cohomology of Σ lies in the fact
that it computes the L2-cohomology of buildings of type (W,S). Here q is
an I-tuple of positive integers called the “thickness vector” of the building.
(So, for buildings, only q with integral components can occur.)

The theory of the weighted L2-cohomology of Σ is closely tied to several
other topics, for example, growth series of Coxeter groups, decompositions
of “Hecke - von Neumann algebras” and the Singer Conjecture. Moreover,
as |q| goes from 0 to∞, L2

qH∗(Σ) interpolates between ordinary cohomology
and cohomology with compact supports. For these reasons, we believe that
the study of weighted L2-cohomology of Coxeter groups has intrinsic interest,
independent of its connection to buildings.

Let t := (ti)i∈I be an I-tuple of indeterminates. Write ts instead of ti(s).
If s1 · · · sk is a reduced expression for an element w ∈ W , then the monomial
tw := ts1 · · · tsk

is independent of the choice of reduced expression for w. The
growth series for W is the power series in t defined by

W (t) :=
∑
w∈W

tw.

It is a rational function of t ([5, 37]). We give several explicit formulas for
it in Lemma 3.3 of Section 3. (In the case where I is a singleton, so that t
is a single indeterminate t, we have tw = tl(w), where l(w) denotes the word
length of w. So, in the case of a single indeterminate, W (t) =

∑
tl(w) is the

usual growth series.)
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Let R(W ) denote the vector space of finitely supported, real-valued func-
tions on W and let (ew)w∈W be its standard basis.

As we explain in Section 4, associated to each multiparameter q, there
is a deformation of the group algebra of W called the “Hecke algebra” (or
sometimes the “Iwahori-Hecke algebra”) of W . We denote it by Rq[W ].
When q = 1 (the I-tuple with all components equal to 1), Rq[W ] is the
group algebra of W . (No matter what q is, the underlying vector space of
Rq[W ] is always R(W ).)

Also associated to q, there is an inner product 〈 , 〉q on R(W ) defined
by 〈ew, ew′〉q = qwδww′ , where δww′ is the Kronecker delta. The comple-
tion of R(W ) with respect to this inner product is denoted L2

q(W ) or simply
L2

q when W is understood. L2
q is an Rq[W ]-bimodule. There is an anti-

involution on Rq[W ], denoted by x → x∗ and defined by (ew)∗ := ew−1 .
Moreover, 〈yx, z〉q = 〈y, zx∗〉q, i.e., right translation by x∗ is the adjoint of
right translation by x. As is explained in [25] and Proposition 5.1 below,
this makes Rq[W ] into a “Hilbert algebra” in the sense of Dixmier [22]. It
follows that there is an associated von Neumann algebra Nq acting on L2

q

from the right. It can be defined as the algebra of bounded linear operators
on L2

q which commute with the left Rq[W ]-action. Nq is the Hecke - von
Neumann algebra associated to q. (Nq is a completion of Rq[W ] acting from
the right on L2

q.) As in the case of a von Neumann algebra associated to a
group algebra, Nq is equipped with a trace which one can use to define the
“dimension” of any Rq[W ]-stable closed subspace V of a finite direct sum of
copies of L2

q.
Suppose W acts as a reflection group on a CW complex U with a strict

fundamental domain Z. Assume further that for each s ∈ S there is a
subcomplex Zs ⊆ Z, called a “mirror” of Z, so that s acts on U as a reflection
across Zs. Then U is formed by gluing together copies of Z, one for each
element of W . In other words, U ∼= (W × Z)/ ∼, where the equivalence
relation ∼ is defined in an obvious fashion. (See Section 6.) The complex Σ
can be described in this manner: the fundamental chamber for W on Σ is
denoted by K instead of Z.

Ci
c(U) is the space of finitely supported, real-valued, cellular i-cochains

on U . For each oriented i-cell σ of U , let eσ be its characteristic function. So,
{eσ}σ∈{i-cells} is a basis for Ci

c(U). As in [25], there is a definition of an inner
product on Ci

c(U) similar to the definition of 〈 , 〉q on R(W ). The eσ form an
orthogonal basis; however, the norm of eσ need not be 1. Instead, one uses
q to weight the inner product so that 〈eσ, eσ〉q = qw, where w is the shortest

3



element of W such that σ ⊆ wZ. Let L2
qC

i(U) denote the completion of
Ci
c(U) with respect to this inner product.

As explained in [25], as well as in Section 7, L2
qC

i(U) can be identified
with a Rq[W ]-stable subspace of ⊕L2

q. The coboundary maps are Rq[W ]-
equivariant. So, the (reduced) cohomology group L2

qHi(U) is a closed Rq[W ]-
stable subspace of ⊕L2

q and therefore, has a well-defined von Neumann di-
mension, biq(U). The alternating sum of the biq(U) is denoted χq(U) and called
the L2

q-Euler characteristic of U . It is proved in [25] (and in Proposition 7.4)
that χq(Σ) = 1/W (q). (Recall W (t) is a rational function.) Moreover, the
Betti numbers biq(U) are continuous functions of q (Theorem 7.7).

Let R denote the region of convergence of W (t) and let

R−1 := {q | q−1 ∈ R},

where q−1 := (q−1
i )i∈I . The closures of these regions are denoted R and R−1,

respectively. (When I is a singleton, we write q instead of q and t instead
of t. In this case, W (t) is a power series in one variable. As such, it has a
radius of convergence ρ and R = {q ∈ C | |q| < ρ}.)

The main result of this paper, Theorem 10.3, is a calculation of L2
qHi(U)

(as a Nq-module) for q ∈ R ∪ R−1. It also gives a formula for the biq(U) in

this range of q. Roughly speaking, the answer is that for q ∈ R, L2
qH∗(U)

looks like ordinary cohomology while for q ∈ R−1, it looks like cohomology
with compact supports. Before stating the result precisely, we need to set up
some notation and recall some background.

Given T ⊆ S, the subgroup WT generated by T is called a special sub-
group. It is also a Coxeter group. The subset T is spherical if WT is finite.
Let S denote the poset of spherical subsets of S. Given an element w ∈ W ,
set In(w) := {s ∈ S | l(ws) < l(w)}, i.e., In(w) is the set of letters in
S with which a reduced expression for w can end. It turns out that for
any w ∈ W , In(w) is always a spherical subset of S. For each T ∈ S, let
W T := {w ∈ W | In(w) = T} and let Z(W T ) denote the free abelian group
of finitely supported functions on W T . For any U ⊆ S, ZU denotes the union
of those mirrors Zs, with s ∈ U .

(a) The homology of U is computed in [13]. The answer is

H∗(U) ∼=
⊕
T∈S

H∗(Z,Z
T )⊗ Z(W T ).
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(This implies, in particular, that Σ is acyclic.) The answer for coho-
mology is similar, except that it is necessary to replace Z(W T ) by the
abelian group of all functions W T → Z.

(b) The cohomology with compact supports of U can be computed as in [14].
The answer is

H∗
c (U) ∼=

⊕
T∈S

H∗(Z,ZS−T )⊗ Z(W T ).

Actually, in [14] this formula is only stated for the case U = Σ, i.e.,

H∗
c (Σ) ∼=

⊕
T∈S

H∗(K,KS−T )⊗ Z(W T ).

Given U ⊆ S, in Section 5, we define idempotents aU and hU in Nq by

aU :=
1

WU(q)

∑
w∈WU

ew,

hU :=
1

WU(q−1)

∑
w∈WU

εwq
−1
w ew,

where εw := (−1)l(w). These idempotents are defined provided q ∈ RU in
the case of aU and provided q ∈ R−1

U in the case of hU . (RU denotes the
region of convergence for WU(t).) Let AU ⊆ L2

q stand for Im aU if q ∈ RU

and for the 0-space, otherwise. AU is a closed Rq[W ]-stable subspace of L2
q.

Another closed Rq[W ]-stable subspace is defined by

DU := AS−U ∩
(∑
V⊂U

AS−V

)⊥
.

(Throughout this paper we will denote inclusion of a subset by ⊆ and use ⊂
for inclusion of a proper subset.)

Here is the precise statement of our calculation of L2
q-cohomology. (Com-

pare it with statements (a) and (b) above.)

The Main Theorem. (Theorem 10.3 in Section 10).

(a) If q ∈ R, then

L2
qH∗(U) ∼=

⊕
T∈S

H∗(Z,ZT )⊗DT .
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(b) If q ∈ R−1, then

L2
qH∗(U) ∼=

⊕
T∈S

H∗(Z,ZS−T )⊗DS−T .

(To compare this with the previous answers for ordinary cohomology and
cohomology with compact supports, we note that, by Theorem 11.2, for
q ∈ R, {ewhTaS−T}w∈WT spans a dense subspace of DT ; while for q ∈ R−1,
{ewhS−TaT )}w∈WT spans a dense subspace of DS−T .)

The proof of the Main Theorem depends on the following result.

The Decomposition Theorem. (Theorem 9.11 in Section 9).

(a) If q ∈ R, then ∑
T∈S

DT

is a direct sum decomposition and a dense subspace of L2
q.

(b) If q ∈ R−1, then ∑
T∈S

DS−T

is a direct sum decomposition and a dense subspace of L2
q.

In the case when W is finite and q = 1 (i.e., when the Hecke algebra
is the group algebra) a similar result was proved by Solomon [38] in 1968.
In Section 11 we give a version of the Decomposition Theorem (namely,
Theorem 11.1) which is more transparently a generalization of Solomon’s
Theorem than the version stated above. The Decomposition Theorem is also
compatible with the theory of representations of Hecke algebras developed
by Kazhdan–Lusztig in [17].

Although the Main Theorem is a consequence of the Decomposition The-
orem, our proof of the Decomposition Theorem ultimately is based on a
special case of the Main Theorem from [25]. The result of [25] states that,
for q ∈ R, the L2

q-homology of Σ vanishes except in dimension 0. (N.B.
To calculate homology, L2

qH∗(Σ), from L2
qC∗(Σ) one does not use the usual

boundary map but rather, the adjoint of the usual coboundary map.) In
Section 8 we apply this vanishing result to show that, for q ∈ R, the rela-
tive L2

q-homology of certain pairs of subcomplexes of Σ vanishes except in
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the bottom dimension. (These pairs of subcomplexes are dubbed “ruins” in
Section 6.) For q ∈ R, these vanishing results are essentially an equivalent
version of the Decomposition Theorem. One then uses a certain isomor-
phism j : Nq → Nq−1 to convert the statement of Decomposition Theorem

for q ∈ R into its statement for q ∈ R−1.
The key role played by the case q ∈ R in this sketch of the proof is

probably the most compelling reason for studying weighted L2-cohomology
with q an I-tuple of arbitrary positive real numbers. When W is infinite, the
vector q ∈ R never has all its components equal to positive integers. So, on
the face of it, the case q ∈ R of the Main Theorem would never seem to be
applicable to nonspherical buildings. However, because of various dualities
(such as the j-isomorphism) which switch q with q−1, the results for q ∈ R
are equivalent to results for q ∈ R−1 and these are applicable to buildings.

For q ∈ R ∪ R−1, the Main Theorem (in particular, its version as The-
orem 10.4) gives a complete calculation of L2

qH∗(Σ). On the other hand,

our knowledge about what happens for q /∈ R ∪ R−1 is fragmentary. For
example, suppose Σ is an n-manifold. By the Main Theorem, L2

qH∗(Σ) is

concentrated in dimension 0 for q ∈ R and in dimension n for q ∈ R−1. We
note that when Σ is a manifold (without boundary), W is infinite and so,
1 /∈ R ∪ R−1. When q = 1, a version of the Singer Conjecture asserts that
the weighted L2-cohomology of Σ vanishes except in dimension n

2
. (When

n is odd, this is to be interpreted as meaning that L2
1H∗(Σ) vanishes in all

dimensions.) In [19] the first and fourth authors explained some evidence
for this conjecture. For a general q, in the case where Σ is a n-manifold,
there is a version of Poincaré duality which exchanges q with q−1 (as well as
dimension k with dimension n − k); see [24] or Proposition 14.1 below. So,
when Σ is a manifold, knowledge of L2

qH∗(Σ) for q ≤ 1 also determines it for
q > 1. In Section 14 we explain that the right generalization of this version
of the Singer Conjecture for q = 1 is the following.

Conjecture. (Conjecture 14.7). Suppose Σ is an n-manifold. Then

L2
qHk(Σ) = 0 for k >

n

2
and q ≤ 1.

In Section 16, by modifying the arguments of [19], we prove it in the
case where W is right-angled and n ≤ 4. In the same section, we give
examples where Σ is a 4-manifold and where for certain q /∈ R ∪ R−1, the
L2

q-cohomology fails to be concentrated in a single dimension (it is nonzero
in both dimension 2 and 3.)
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Next, we make a few remarks concerning buildings. Buildings come in
different flavors or “types,” where the “type” of a building means a Coxeter
system (W,S). In the case of a classical building associated to an algebraic
group, its type is always a spherical or Euclidean reflection group. The
simplest example of a Euclidean reflection group is when W is the infinite
dihedral group acting on the real line and S consists of the two reflections
about the endpoints of a fundamental interval. A building of this type is a
tree. (See Example 13.1 for more details.) Many other types for buildings
are possible. Most of our interest in this paper lies with these nonclassical
types.

Roughly speaking, a building of type (W,S) consists of a set Φ of “cham-
bers” and a family, indexed by S, of “adjacency relations” on Φ. An example
of a building is W itself – the adjacency relation corresponding to s ∈ S is
defined by calling two distinct elements of W s-adjacent if they form to the
same coset of W{s}.

To define the “geometric realization” X of a building, one first declares
the geometric realization of any chamber to be isomorphic to the fundamental
chamber K of Σ. One then amalgamates copies of K, one for each element
of Φ, by gluing together chambers corresponding to s-adjacent elements of
Φ along the mirror corresponding to s. Details of this construction can be
found in [15], as well as in Section 13. (N.B. When W is an irreducible
Euclidean reflection group, K is a simplex and X has the structure of a
simplicial complex in which the top-dimensional simplices are the chambers;
however, in the general case, this is not the correct picture of the geometric
realization of a building.)

A group G of automorphisms of a building is chamber transitive if it acts
transitively on Φ. If the building admits a chamber transitive automorphism
group, then, for any given ϕ0 ∈ Φ, the number of chambers which are s-
adjacent to ϕ0 is independent of the choice of ϕ0. We denote this number by
qs, i.e.,

qs = Card{ϕ ∈ Φ | ϕ is s-adjacent to ϕ0 and ϕ 6= ϕ0}.

Moreover, if s and s′ are conjugate in W , then qs = qs′ . We assume through-
out that the building has finite thickness, i.e., that each qs is finite. We
then get a well-defined I-tuple of integers q := (qi)i∈I , called the thickness
vector of the building, where I is the set of conjugacy classes in S and where
qi := qs for any representative s for i. For example, the thickness vector of
W (considered as a building) is 1.
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How do Hecke algebras arise in the theory of buildings? Let Φ be a
building of finite thickness with a chamber transitive automorphism group
G and with thickness vector q. Fix a base chamber ϕ0 ∈ Φ. Using the “W -
distance” from ϕ0, one gets a retraction r : Φ → W . Let Cc(Φ) denote the
space of finitely supported, real-valued functions on Φ. It is an algebra with
product given by convolution. Consider the subspace J ⊆ Cc(Φ) consisting
of those functions which are constant on the fibers of r. It is a subalgebra.
As a vector space, J can be identified with R(W ); however, the product is
not the usual one for the group algebra. As the reader has probably guessed,
J is identified with the Hecke algebra Rq[W ], where the multiparameter q
is the thickness vector of Φ.

Let X denote the geometric realization of the building Φ. The retraction
r : Φ → W induces a topological retraction X → Σ, which we continue to
denote by the letter r. This induces an inclusion r∗ : C∗

c (Σ) → C∗
c (X) of

(finitely supported) cellular cochains. The standard inner product on C∗
c (X)

restricts to the inner product 〈 , 〉q on C∗
c (Σ). In this way, L2

qH∗(Σ) becomes
identified with a subspace of L2H∗(X), the ordinary L2-cohomology of X.

Since Φ has finite thickness, G is locally compact and hence, has a Haar
measure µ, which we normalize by the condition, µ(B) = 1, where B denotes
the stabilizer of a chamber. Given µ, we have the Hilbert space L2(G, µ) of
square integrable functions on G and a von Neumann algebra N (G). Since
L2Hi(X) is an N (G)-module, it has a “dimension” with respect to N (G).
This number is called the ith L2-Betti number and denoted bi(X;G). It is
proved in [25] (under slightly stronger hypotheses), as well as in Theorem 13.8
of Section 13, that bi(X;G) = biq(Σ).

In [26] the second and third authors calculated L2H∗(X) under the as-
sumption that the thickness vector q is very large. The result of [26] is similar
to statement (b) of our Main Theorem: it says that for q >> 1,

L2H∗(X) ∼=
⊕
T∈S

H∗(K,KS−T )⊗ D̂S−T .

where D̂S−T is a specific subrepresentation of L2(G/B) analogous to the
subspace DS−T ⊂ L2

q. (The notation in [26] is different.) In Theorem 13.11
of Section 13 we use our Main Theorem to show that, in fact, this formula
is valid for all q ∈ R−1.

If W is a Euclidean reflection group, then the radius of convergence of
W (t) is 1 (cf. Proposition 3.10). It follows that q ∈ R−1 whenever q ≥ 1.
From this we deduce the following (known) result.
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Theorem. (Corollary 14.6 in Section 14). Suppose X is an affine build-
ing (i.e., of Euclidean type) and that its automorphism group is chamber
transitive. Then L2H∗(X) is concentrated in the top dimension.

The results of this paper raise more questions than they answer. Here
are two such:

• Is there a version of this theory for weighted differential forms?

• Is there a version of this for groups other than Coxeter groups?

The short answer to both is “yes.” In both cases a good deal of foundational
work remains to be done.

As for the first question, there exists a literature on weighted L2 de Rham
cohomology on a Riemannian manifold M , for example, [4]. The inner prod-
uct on the vector space of compactly supported, smooth forms on M is
modified via a weight function of the form x → qd(x), where q ∈ (0,∞),
x ∈ M and d(x) is the distance from a basepoint. As one would expect,
when M = Rn, the weighted L2-cohomology is concentrated in dimension 0
if q < 1 and in dimension n if q > 1. In Section 16, we use a version of this
weighted de Rham theory on hyperbolic space equipped with an isometric
action of a group W generated by reflections across the faces of a fundamen-
tal polytope K. This time the weight function is a step function of the form
x → ql(w), where w ∈ W is such that x ∈ wK. In this case, the de Rham
version and the cellular version of weighted L2-cohomology are canonically
isomorphic.

As for the second question, given a discrete group Γ, a CW complex
X equipped with a cellular Γ-action and a positive real number q, one can
deform the standard inner product on C∗

c (X) via a weight function of the
form γ → ql(γ) and then define the weighted L2 (cellular) cohomology groups
of X. As before, as q varies from 0 to ∞, these groups interpolate between
ordinary cohomology and cohomology with compact supports. The missing
feature for a general group Γ (as opposed to a Coxeter group) is that we do
not have a deformation of the group algebra analogous to the Hecke algebra.
We will say more about this question in Section 18. We believe that this
topic also has an intrinsic interest and we hope to write more about it in the
future.
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2 Coxeter systems

A Coxeter matrix on a set S is an S × S symmetric matrix M = (mst) with
entries in N ∪ {∞} such that each diagonal entry is 1 and each off-diagonal
entry is ≥ 2. The matrix M gives a presentation for an associated Coxeter
group W : the set of generators is S and there is a relation

(st)mst = 1,

for each pair (s, t) of elements in S with mst 6= ∞. The purpose of this
section is to recall some standard facts about such groups. Proofs of most of
these facts can be found in [5].

The natural map S → W is injective and henceforth, we identify S with
its image in W . Moreover, each element of S has order 2 in W and the order
of st in W is mst. The pair (W,S) is a Coxeter system.

Given an element w ∈ W , l(w) denotes its word length. An expression
for w as a word in S, w = s1 · · · sl, is a reduced expression if l = l(w).

Given T ⊆ S, WT denotes the subgroup generated by T . Such a WT

is a special subgroup of W . The pair (WT , T ) is the Coxeter system whose
Coxeter matrix is given by the restriction of M to T ([5, Theorem 2 (i), p.
12]). The subset T is spherical if WT is finite.

For T ⊆ S and w ∈ W , the coset wWT contains a unique element of
minimum length. This element is said to be (∅, T )-reduced. Moreover, an
element w is (∅, T )-reduced if and only if l(wt) > l(w) for all t ∈ T . (See [5,
Ex. 3, pp. 31–32].) Let XT denote the set of (∅, T )-reduced elements of W .

If WT is finite, then it contains a unique element wT of maximum length,
called the element of longest length. It is characterized by the property that
l(wT t) < l(wT ) for all t ∈ T ([5, Ex. 22, p. 40]).

Given w ∈ W , set Inw := {s ∈ S | l(ws) < l(w)}. It follows from the
“Exchange Condition” (cf. [5, p. 7]) that s ∈ Inw if and only if w has a
reduced expression with final letter s. Thus, Inw is the set of letters with
which a reduced expression for w can end. A key fact ([12, Lemma 7.12]) is
that Inw is always a spherical subset of S.

For any spherical subset T ⊆ S, define

W T := {w ∈ W | Inw = T}. (2.1)
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The simplicial complex Σ. Given a poset P and an element p ∈ P ,
define P>p := {x ∈ P | x > p}. Subposets P<p, P≥p and P≤p are defined
similarly. Associated to any poset P there is a simplicial complex |P|, called
its geometric realization; its vertex set is P and a nonempty finite subset of
P spans a simplex if and only if it is totally ordered.

Let S denote the set of spherical subsets of S, partially ordered by inclu-
sion and let

S(i) = {T ∈ S | Card(T ) = i}. (2.2)

S has a minimum element, namely, ∅. S>∅ is the poset of simplices of a
simplicial complex denoted by L(W,S) (or L for short) and called the nerve
of (W,S). (In other words, the vertex set of L is S and a nonempty subset
T ⊆ S spans a simplex if and only if it is spherical.) S(i) is the set of
(i− 1)-simplices in L.

We are also interested in WS, the poset of spherical cosets. It is defined
as the disjoint union of the sets W/WT , T ∈ S. Thus, a typical element of
WS is a coset wWT for some T ∈ S. The partial order is inclusion.

The geometric realization of S is denoted K and the geometric realization
of WS by Σ. The group W acts properly on the simplicial complex Σ; the
orbit space is the finite complex K. The most important property of Σ is
that it is contractible ([12, Theorem 10.3 and Section 14]).

3 Growth series

Suppose we are given a Coxeter system (W,S), an index set I and a function
i : S → I so that i(s) = i(s′) whenever s and s′ are conjugate in W . (The
largest possible choice for Im i is the set of conjugacy classes of elements in S
and the smallest possible choice is a singleton.) Let t = (ti)i∈I stand for an
I-tuple of indeterminates. Write ts for ti(s). If s1 · · · sl is a reduced expression
for w, then define tw to be the monomial tw := ts1 · · · tsl

. It follows from Tits’
solution of the word problem for Coxeter groups (see [40] or [8]) that tw is
independent of the choice of reduced expression for w.

For any subset X of W , define a power series in t

X(t) :=
∑
w∈X

tw. (3.1)

W (t) is the growth series of W and, for any subset T of S, WT (t) is the
growth series of the special subgroup WT .
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Notation. The region of convergence of WT (t) in CI is denoted RT . Write
R instead of RS. Put R−1

T := {z ∈ CI | z−1 ∈ RT}. Denote the closure
of the region of convergence by R and put ∂R := R −R. Define R−1 and
∂R−1 similarly.

From the fact that all the coefficients in W (t) are nonnegative real num-
bers, we immediately get the following lemmas.

Lemma 3.1. If U ⊆ T ⊆ S, then R ⊆ RT ⊆ RU .

Lemma 3.2. Suppose q ∈ (0,∞)I . Then the following two conditions are
equivalent:

(a) q ∈ ∂R,

(b) 1/W (q) = 0 and 1/W (λq) > 0 for all λ ∈ (0, 1).

Note that if T is spherical, then WT (t) is a polynomial in t and so RT =
CI . If, for each i ∈ I, |ti| ≥ 1, then t /∈ RT whenever WT is infinite.

Define ε(T ) := (−1)Card(T ).

Lemma 3.3. ([5, Ex. 26, pp. 42–43], [37, Prop. 26], [39].)

(i) Suppose W (= WS) is finite and let tS = twS
be the monomial corre-

sponding to the element of longest length in W . Then

(a) W (t) = tSW (t−1).

(b)
tS

W (t)
=
∑
T⊆S

ε(T )

WT (t)
.

(ii) As in Section 2, for each T ⊆ S, suppose XT denotes the set of (∅, T )-
reduced elements in W . Then

W (t) = XT (t)WT (t).

(iii) As in (2.1), for each spherical subset T of S, suppose W T denotes the
set of w ∈ W with In(w) = T . Then

(a)
W T (t)

W (t)
=
∑
T ′⊆T

ε(T − T ′)
WS−T ′(t)

.
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(b)
W T (t)

W (t)
=
∑

U∈S≥T

ε(U − T )

WU(t−1)
.

(iv)
1

W (t−1)
=
∑
T∈S

ε(T )

WT (t)
.

Corollary 3.4.

W (t) =
f(t)

g(t)
,

where f, g ∈ Z[t] are polynomials with integral coefficients.

The next lemma follows immediately from the definitions.

Lemma 3.5. Suppose (W,S) decomposes as a product (W1 ×W2, S1 ∪ S2).
Then W (t1, t2) = W1(t1)W2(t2). Moreover, R = R1 × R2, where R, R1

and R2 are the regions of convergence for W (t1, t2), W1(t1) and W2(t2),
respectively.

Example 3.6. (The infinite dihedral group). Suppose S = {s1, s2} and
ms1s2 = ∞, so that W is the infinite dihedral group D∞. Its nerve is the
0-sphere. Also, suppose I = {1, 2} and that S → I sends sj to j. Using
Lemma 3.3(iv), we compute:

1

W (t)
=

1− t1t2
(1 + t1)(1 + t2)

.

So, R = {(z1, z2) | |z1||z2| < 1}. In particular, (0, 1)2 ⊂ R.

Example 3.7. Suppose W = (D∞)n, the n-fold product of infinite dihedral
groups. Its nerve L is then the n-fold join of copies of S0, i.e., it is the
boundary complex of an n-octahedron. By Lemma 3.5 and Example 3.6,
(0, 1)I ⊂ R.

The case of a single indeterminate. Suppose I is a singleton. Then t is
a single indeterminate, call it t, the monomial tw is just tl(w) and W (t) is the
usual growth series. Let ρ denote its radius of convergence. An immediate
corollary to Lemma 3.2 is the following.
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Corollary 3.8. 1/W (ρ) = 0 and ρ = min{|t| | t ∈ C and 1/W (t) = 0}.

A corollary to Lemma 3.5 is the following.

Corollary 3.9. Suppose (W,S) decomposes as a product (W1×W2, S1∪S2).
Then W (t) = W1(t)W2(t) and ρ = min(ρ1, ρ2), where ρ, ρ1 and ρ2 are the
radii of convergence for W (t), W1(t) and W2(t), respectively.

In the next proposition we list six other conditions which are equivalent
to the condition that the radius of convergence of W (t) be 1.

Proposition 3.10. The following conditions on a Coxeter system (W,S) are
equivalent.

(i) W is amenable.

(ii) W does not contain a free group on two generators.

(iii) W does not virtually map onto the free group on two generators F2 (i.e.,
W does not have a finite index subgroup Γ which maps onto F2).

(iv) W is virtually abelian.

(v) (W,S) decomposes as (W0 ×W1, S0 ∪ S1) where W1 is finite and W0 is
a cocompact Euclidean reflection group.

(vi) ρ = 1.

(vii) W has subexponential growth.

Proof. then the (i) =⇒ (ii) is a standard fact.
(ii) =⇒ (iii). Suppose for some subgroup Γ of W we have a surjection

f : Γ → F2 where F2 is the free group on {x1, x2}. Choose γ1 ∈ f−1(x1),
γ2 ∈ f−1(x2). Then 〈γ1, γ2〉 is a free subgroup of W .

(iii) =⇒ (iv). It is proved in [33] (and independently in [29]) that when
W is not virtually abelian there is a subgroup Γ of finite index in W which
maps onto a nonabelian free group.

(iv) =⇒ (v). Moussong [34] proved Σ has a CAT (0) metric (so W is a
“CAT (0) group”). This implies that any abelian subgroup of W is finitely
generated. So, if W is virtually abelian, then it is virtually free abelian. We
suppose that has W has a rank n free abelian subgroup of finite index. Then
W is a virtual PDn-group. By [13, Theorem B], W decomposes as in (v),
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where the complex Σ0 for (W0, S0) is a CAT (0) homology n-manifold. By
the Flat Torus Theorem ([6]), the “min set ” of the free abelian subgroup on
Σ0 is isometric to Rn. Hence, Σ0 = Rn and W0 acts as an isometric reflection
group on it.

(v) =⇒ (vi). Since a Euclidean reflection group is virtually free abelian, it
has polynomial growth and therefore, the radius of convergence of its growth
series is 1. (In fact, the poles of its growth series are all roots of unity; see
Remark 3.11 below.)

(vi) =⇒ (vii) is obvious.
(vii) =⇒ (i) by the Følner condition for amenability.

Remark 3.11. Suppose W is a (cocompact) Euclidean reflection group.
First consider the case where (W,S) is irreducible. Let W ′ be the finite
linear reflection group obtained by quotienting out the translation subgroup
of W and let m1, . . . ,mn be the exponents of W ′. According to [5, Ex. 10,
p. 245], the growth series of W is given by the following formula of Bott:

W (t) =
n∏
i=1

1 + t+ · · ·+ tmi

1− tmi
.

In particular, all the poles of W (t) are roots of unity. We can reach the same
conclusion without the assumption of irreducibility, since the growth series
of (W,S) is the product of the growth series of its irreducible factors.

Note. In the case where t is a single indeterminate, most of the results of
this section come from [5, Ex. 26, pp. 42–43]. The idea of extending the
results from this exercise to an I-tuple of indeterminates comes from [37].
Lemma 3.3(iii)(a) is from [5, Ex. 26 d), p. 43], while (iii)(b) is due to
Steinberg [39].

4 Hecke algebras

Let A be a commutative ring with unit. Denote by A(W ) the free A-module
on W consisting of all finitely supported functions W → A and denote by
A[W ] this A-module equipped with its structure as the group ring of W . Let
(ew)w∈W be the standard basis for A(W ). We are primarily interested in the
case where A = R, the field of real numbers.
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As in the previous section, i : S → I is a function such that i(s) = i(s′)
whenever s and s′ are conjugate. Let q = (qi)i∈I ∈ AI be a fixed I-tuple.
As before, write qs for qi(s). By [5, Exercise 23, p. 57], there is a unique ring
structure on A(W ) such that

esew =

{
esw, if l(sw) > l(w);

qsesw + (qs − 1)ew, if l(sw) < l(w),
(4.1)

for all w ∈ W . We will use the notation Aq[W ] to denote A(W ) with this
ring structure. Note that if q is the constant I-tuple 1 := (1, . . . , 1), then
Aq[W ] = A[W ]. So, Aq[W ] is a deformation of the group ring. It is called
the Hecke algebra of W associated to the multiparameter q.

From (4.1) it follows that

euev = euv, for all u, v ∈ W with l(uv) = l(u) + l(v), and

e2s = (qs − 1)es + qs.

The function ew → ew−1 induces a linear involution ∗ of A(W ), i.e.,(∑
awew

)∗
:=
∑

aw−1ew. (4.2)

Lemma 4.1. Formula (4.2) defines an anti-involution of the ring Aq[W ].
In other words, for all x, y ∈ Aq[W ], (xy)∗ = y∗x∗.

Proof. For each w ∈ W , let Lw (resp. Rw) denote left (resp. right) transla-
tion by ew defined by Lw(x) = ewx (resp. Rw(x) = xew). A quick calculation
using (4.1) gives: Rs = ∗Ls∗, for all s ∈ S. If s1 · · · sl is a reduced ex-
pression for w, then Rw = Rsl

· · ·Rs1 = ∗Lsl
· · ·Ls1∗ = ∗Lw−1∗. Therefore,

xew = Rw(x) = ∗Lw−1 ∗ (x) = (ew−1x∗)∗. Hence, Rw = ∗Lw−1∗, for all
w ∈ W . So, (xew)∗ = (ew−1x∗)∗∗ = ew−1x∗ = e∗wx

∗. The lemma follows.

Using the involution ∗, we deduce the following right hand version of
(4.1):

ewes =

{
ews, if l(ws) > l(w);

qsews + (qs − 1)ew, if l(ws) < l(w).
(4.3)

Proof of (4.3). Apply ∗, to get

(ewes)
∗ = esew−1

=

{
esw−1 , if l(sw−1) > l(w−1);

qsesw−1 + (qs − 1)ew−1 , if l(sw−1) < l(w−1).
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Hence,

ewes = (ewes)
∗∗

=

{
ews, if l(sw) > l(w);

qsews + (qs − 1)ew, if l(sw) < l(w).

For each w ∈ W , define qw by the same formula used to define tw , i.e., if
s1 · · · sl is a reduced expression for w, then

qw := qs1 · · · qsl
. (4.4)

Also, set
εw := (−1)l(w). (4.5)

The maps ew → qw and ew → εw extend linearly to ring homomorphisms
Aq[W ]→ A.

Following Kazhdan–Lusztig [30], define an isomorphism jq : Aq[W ] →
Aq−1 [W ] by the formula:

jq(ew) := εwqwew. (4.6)

It is easily checked that jq is an algebra homomorphism and that (jq)
−1 =

jq−1 . Hence, jq is an isomorphism of Hecke algebras. It is called the j-
isomorphism and denoted simply by j when there is no ambiguity.

Note. Most of the material in this section is taken from [5, Exercise 23, p.
57].

5 Hecke – von Neumann algebras

From now on A is the field of real numbers R and q = (qi)i∈I is an I-tuple
of positive reals. Define an inner product 〈 , 〉q on R(W ) (= Rq[W ]) by

〈
∑

awew,
∑

bwew〉q :=
∑

awbwqw, (5.1)

where qw was defined by (4.4). As in [32], sometimes it is convenient to
normalize (ew)w∈W to an orthonormal basis for Rq[W ] by setting

ẽw := q−1/2
w ew. (5.2)

The completion of R(W ) with respect to the inner product 〈 , 〉q is denoted
L2

q(W ), or simply L2
q, when there is no ambiguity.
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Proposition 5.1. ([25, Proposition 2.1]). The inner product defined by (5.1),
multiplication defined by equations (4.1) and the anti-involution ∗ defined by
(4.2), give Rq[W ] a Hilbert algebra structure in the sense of [21, A.54]. This
means, in particular, that

(i) (xy)∗ = y∗x∗,

(ii) 〈x, y〉q = 〈y∗, x∗〉q,

(iii) 〈xy, z〉q = 〈y, x∗z〉q,

(iv) for any x ∈ Rq[W ], left translation by x, Lx : Rq[W ]→ Rq[W ], defined
by Lx(y) = xy, is continuous,

(v) the products xy over all x, y ∈ Rq[W ] are dense in Rq[W ].

Since the action of Rq[W ] on itself by multiplication is continuous, L2
q is

a Rq[W ]-bimodule.
An element x ∈ L2

q is bounded if right multiplication by x is bounded on
Rq[W ] (or equivalently, if left multiplication by x is bounded). Let Rb

q[W ]
be the set of all bounded elements.

As in [21] there are two von Neumann algebras associated with this sit-
uation. They are denoted by Nq[W ] and N ′

q[W ] or simply by Nq and N ′
q

when there is no ambiguity. Nq acts from the right on L2
q and N ′

q from the
left. Here are two equivalent definitions of Nq:

(i) Nq is the algebra of all bounded linear endomorphisms of L2
q which

commute with the left Rq[W ]-action.

(ii) Nq is the weak closure of Rb
q[W ] acting from the right on L2

q.

If we interchange the roles of left and right in the above, we get the two
equivalent definitions of N ′

q.

Lemma 5.2. If T ⊂ S, then the inclusion Rq[WT ] ↪→ Rq[W ] induces inclu-
sions Rb

q[WT ] ↪→ Rb
q[W ] and Nq[WT ] ↪→ Nq.

Proof. Let L2
q(wWT ) ⊂ L2

q(W ) denote the subspace of functions which are
supported on the coset wWT . Then L2

q(W ) decomposes as an orthogonal
direct sum of spaces of the form L2

q(wWT ). Suppose λ ∈ Nq[WT ). Right
multiplication by λ preserves the summands, and acts on each summand
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in the same way. The norm in the space L2
q(wWT ) is the norm in L2

q(WT )

rescaled by a factor of q
−1/2
w , so that the operator norms of right multiplication

by λ on each of these subspaces is bounded hence, λ ∈ Nq.

The j-isomorphism. It follows from the definitions that the isomorphism
j : Rq[W ]→ Rq−1 [W ] defined by (4.6) takes the orthonormal basis (ẽw) for
L2

q, defined by (5.2), to the orthonormal basis (ẽw) for L2
q−1 . So, it is an

isometry. Therefore, it extends to an isometry of Hilbert spaces j : L2
q →

L2
q−1 . From this, it is obvious that j takes a bounded element of L2

q to

a bounded element of L2
q−1 . Hence, it extends to an isomorphism of von

Neumann algebras j : Nq → Nq−1 .

The von Neumann trace. Define the trace of an element ϕ ∈ Nq by

trNq(ϕ) := 〈e1ϕ, e1〉q,

where e1 denotes the basis element of L2
q corresponding to the identity el-

ement of W . If Φ :
⊕n

i=1 L
2
q →

⊕n
i=1 L

2
q is a bounded linear map of left

Rq[W ]-modules, then we can represent Φ as right multiplication by an n×n
matrix (ϕij) with entries in Nq. Define

trNq(Φ) :=
n∑
i=1

trNq(ϕii).

Hilbert Nq-modules and von Neumann dimension.

Definition 5.3. A subspace V of a finite orthogonal direct sum of copies of
L2

q is called a Hilbert Nq-module if it is a closed subspace and if it is stable
under the diagonal left action of Rq[W ].

A map of Hilbert Nq-modules means a bounded linear map of left Rq[W ]-
modules. A map is weakly surjective if it has dense image; it is a weak
isomorphism if it is injective and weakly surjective.

Let V ⊆
⊕n

i=1 L
2
q be a Hilbert Nq-module and let pV :

⊕n
i=1 L

2
q →⊕n

i=1 L
2
q be the orthogonal projection onto V . The von Neumann dimension

of V is the nonnegative real number defined by

dimNq V = trNq(pV ). (5.3)
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As usual, one shows that dimNq V doesn’t depend on the choice of embedding
of V into a finite direct sum of copies of L2

q. If a subspace V ⊆
⊕

L2
q is

Rq[W ]-stable but not necessarily closed, one defines dimNq V := dimNq V .
This dimension function satisfies the usual list of properties:

(i) dimNq V = 0 if and only if V = 0.

(ii) For any two Hilbert Nq-modules V and V ′,

dimNq(V ⊕ V ′) = dimNq V + dimNq V
′.

(iii) dimNq L
2
q = 1.

(iv) If f : V → V ′ is a weak isomorphism of Hilbert Nq-modules, then
dimNq V = dimNq V

′.

(v) Suppose that (W ′, S ′) and (W ′′, S ′′) are Coxeter systems, that S ′ → I ′

and S ′′ → I ′′ are indexing functions, that q′ and q′′ are multiparam-
eters, S = S ′ ∪ S ′′ and I = I ′ ∪ I ′′ are disjoint unions that (W,S) =
(W ′×W ′′, S ′ ∪S ′′) and that q is the multiparameter for (W,S) formed
by combining q′ and q′′. Let V ′ (resp. V ′′) be a Hilbert Nq′ [W

′]-
module (resp. Nq′′ [W

′′]-module). Then the completed tensor product
V := V ′ ⊗ V ′′ is naturally a Hilbert Nq-module and

dimNq[W ](V
′ ⊗ V ′′) = (dimNq′ [W

′] V
′)(dimNq′′ [W

′′] V
′′).

(vi) Suppose that T ⊂ S and that VT is a Hilbert Nq[WT ]-module. The
induced Hilbert Nq-module V is defined to be the completed tensor
product

V := L2
q(W )⊗Rq[WT ] VT .

Its dimension is given by

dimNq V = dimNq[WT ] VT .

Idempotents in Nq and growth series. Given a subset T of S, recall RT

denotes the region of convergence for WT (t).

Lemma 5.4. Given T ⊆ S and q ∈ RT , there is an idempotent aT ∈ Nq

defined by

aT :=
1

WT (q)

∑
w∈WT

ew.
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Proof. Define

ãT =
∑
w∈WT

ew. (5.4)

Then 〈ãT , ãT 〉q =
∑
qw = WT (q), so ãT ∈ L2

q(WT ) if and only if q ∈ RT .
Assume this. Recall that for each s ∈ S, Xs denotes the set of (∅, {s})-
reduced elements in W . Using (4.3), we calculate that for each s ∈ T ,

ãT es =
∑

w∈Xs∩WT

ewes + ewses

=
∑

ews + qsew + (qs − 1)ews

= qsãT

Hence, for w ∈ WT ,

ãT ew = qwãT and ãT ẽw = q1/2
w ãT (5.5)

Therefore,
(ãT )2 = WT (q)ãT . (5.6)

We claim ãT is a bounded element of L2
q(WT ) (hence, by Lemma 5.2, it lies

in Nq). To see this, note that if x =
∑
xwẽw ∈ Rq[WT ], then (5.5) can be

rewritten as
ãT
∑

xwẽw =
(∑

xwq
1/2
w

)
ãT

and hence, ‖ãTx‖q ≤ ‖ãT‖q‖x‖q. So, we get an idempotent defined by

aT =
ãT

WT (q)
. (5.7)

Lemma 5.5. Given a subset T of S and an I-tuple q ∈ R−1
T , there is an

idempotent hT ∈ Nq defined by

hT :=
1

WT (q−1)

∑
w∈WT

εwq
−1
w ew

(where qw and εw are defined by (4.4) and (4.5), respectively).
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Proof. The proof is similar to the previous one. Define

h̃T :=
∑
w∈WT

εwq
−1
w ew. (5.8)

Then 〈h̃T , h̃T 〉q =
∑
q−1
w = WT (q−1), so h̃T ∈ L2

q(WT ) if and only if q−1 ∈
RT . Assume this. For s ∈ T , we calculate

h̃T es =
∑

w∈Xs∩WT

εwq
−1
w ewes + εwsq

−1
wsewses

=
∑

εwq
−1
w ews + εwsq

−1
w q−1

s (qsew + (qs − 1)ews)

= −
∑

εwq
−1
w ew + εwsq

−1
w q−1

s ews

= −h̃T .

Therefore, for w ∈ WT ,

h̃T ew = εwh̃T and (5.9)

(h̃T )2 =
∑
w∈WT

εwq
−1
w h̃T ew = WT (q−1)h̃T . (5.10)

As before, it follows that h̃T ∈ Rb
q[WT ] and hence, that h̃T ∈ Nq. So, by

(5.10), we get an idempotent defined by

hT :=
h̃T

WT (q−1)
. (5.11)

Using (4.3) we get the following right hand versions of (5.5) and (5.9) for
T ⊆ S and w ∈ WT :

ewaT = qwaT and (5.12)

ewhT = εwhT . (5.13)

What is the effect of the j-isomorphism on these idempotents? It follows
immediately from definitions (4.6), (5.4) and (5.8) that

j(ãT ) = h̃T and j(ãT ) = h̃T .
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Hence, by the definitions in Lemmas 5.4 and 5.5,

j(aT ) = hT and j(hT ) = aT . (5.14)

Using (5.5), (5.9), (5.12) and (5.13), we easily calculate that for any
U ⊆ T ⊆ S:

aUaT = aT = aTaU whenever q ∈ RU , (5.15)

hUhT = hT = hThU whenever q ∈ R−1
U . (5.16)

If s1 · · · sl is a reduced expression for w, then sl · · · s1 is a reduced expres-
sion for w−1. It follows that

qw−1 = qw and εw−1 = εw.

So,
a∗T = aT and h∗T = hT ,

whenever the idempotents aT and hT make sense. In other words, the maps
x → xaT and x → xhT are orthogonal projections from L2

q onto Hilbert
submodules.

Remark. The “a” in aT is for “average,” while the “h” in hT is for “har-
monic.”

Definition 5.6. For each T ⊆ S, let αT : R[WT ]→ R and βT : Rq[WT ]→ R
be the algebra homomorphisms defined by ew → qw and ew → εw, respec-
tively. αT is the symmetric character and βT is the alternating character.

The next lemma follows immediately from equations (5.5) and (5.9).

Lemma 5.7.

(i) Supposing q ∈ RT , the action of Rq[WT ] on L2
qaT by right multiplica-

tion is via the character αT .

(ii) Supposing q−1 ∈ RT , the action of Rq[WT ] on L2
qhT by right multipli-

cation is via the character βT .

Some Hilbert Nq-submodules of L2
q. To simplify notation, for each

s ∈ S, write as and hs for the idempotents a{s} and h{s}. Let As = L2
qas and

Hs = L2
qhs be the corresponding Hilbert Nq-submodules of L2

q.
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Lemma 5.8. For each s ∈ S, the subspaces As and Hs are the orthogonal
complements of each other in L2

q.

Proof.

as + hs =
1

1 + qs
(1 + es) +

1

1 + q−1
s

(1− q−1
s es)

= 1.

So, as and hs are orthogonal projections onto complementary subspaces.

For each T ⊆ S, set

AT :=
⋂
s∈T

As and HT :=
⋂
s∈T

Hs. (5.17)

For any subspace E ⊂ L2
q, let E⊥ denote its orthogonal complement.

Since ⊥ takes sums to intersections and intersections to closures of sums:(∑
s∈T

As

)⊥
= HT ,

(∑
s∈T

Hs

)⊥
= AT , (5.18)

∑
s∈T

As = (HT )⊥,
∑
s∈T

Hs = (AT )⊥. (5.19)

Lemma 5.9. Let AS be the subspace of L2
q defined in (5.17).

(i) For all x ∈ AS and w ∈ W , xew = qwx.

(ii) If q /∈ R, then AS = 0.

(iii) If q ∈ R, then AS is the line spanned by aS and L2
qaS = AS. Hence,

dimNq AS =
1

W (q)
.

There is also a version of this lemma for HS.

Lemma 5.10. Let HS be the subspace of L2
q defined in (5.17).

(i) For all x ∈ HS and w ∈ W , xew = εwx.

(ii) If q−1 /∈ R, then HS = 0.
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(iii) If q−1 ∈ R, then HS is the line spanned by hS and L2
qhS = HS. Hence,

dimNq HS =
1

W (q−1)
.

We prove only the first version, the proof of the second version being
entirely similar.

Proof of Lemma 5.9. (i) As in Definition 5.6, αT : R[WT ] → R denotes the
symmetric character. The α{s}-eigenspace of Rq[W{s}] on L2

q is Ker(qs−es) =
Kerhs = L2

qas = As. Since the subalgebras Rq[W{s}] generate Rq[W ], the
intersection of the As, s ∈ S, is the αS-eigenspace for Rq[W ].

(ii) If x =
∑
xwew ∈ AS, then

qwxw = 〈ew, x〉q = 〈1, xe∗w〉q = 〈1, xew−1〉q = 〈1, qwx〉q = qwx1.

In other words, the coefficients xw are all equal. Hence, 〈x, x〉q = x2
1W (q).

So, if q /∈ R, x /∈ L2
q unless x = 0 and if q ∈ R, x must be a scalar multiple

of aS.
(iii) By Lemma 5.7, if q ∈ R, then L2

qaS ⊆ AS. Since aS 6= 0 and
dimRAS = 1, the inclusion is an equality. Hence,

dimNq AS = dimNq L
2
qaS = trNq aS =

1

W (q)
.

Corollary 5.11. For any T ⊆ S:

(i) AT = L2
qaT if q ∈ RT and AT = 0 if q /∈ RT .

(ii) HT = L2
qhT if q−1 ∈ RT and HT = 0 if q−1 /∈ RT .

Proof. Since AT and HT are induced from Hilbert Rq[WT ]-modules, this
follows from Lemmas 5.9 and 5.10.
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6 Some cell complexes

The basic construction. Suppose we are given the following data:

• a Coxeter system (W,S),

• a CW complex Z and

• a family of subcomplexes (Zs)s∈S.

The Zs are called the mirrors of Z. Given these data there is a classical
construction of a CW complex U = U(W,Z) with a W -action so that Z is a
strict fundamental domain. We recall the construction.

For each subset T of S, set

ZT := Z ∩
⋂
s∈T

Zs,

ZT :=
⋃
s∈T

Zs. (6.1)

For each cell c of Z and each point z ∈ Z, set

S(z) := {s ∈ S | z ∈ Zs}, (6.2)

S(c) := {s ∈ S | c ⊆ Zs}. (6.3)

Define U(W,Z) := (W × Z)/ ∼ where ∼ is the equivalence relation defined
by: (w, z) ∼ (w′, z′) if and only if z = z′ and the cosets wWS(z) and w′WS(z)

are equal. Write [w, z] for the image of (w, z) in U . The group W acts on
U via w · [w′, z] = [ww′, z]. The orbit space is Z. Identifying Z with the
image of 1×Z in U , we see that Z is a strict fundamental domain. wZ, the
translate of Z by w, is identified with the image of w×Z. The CW structure
on U is defined by declaring the family (wc), with w ∈ W and c a cell of Z,
to be the set of cells in U . (Note that wc is the image of w × c in U .)

The setwise stabilizer of a cell c of Z is the special subgroup WS(c). More-
over, WS(c) fixes each point of c.

The family (Zs)s∈S is W -finite if ZT = ∅ whenever WT is infinite. This
condition insures that each isotropy subgroup is finite. It is equivalent to the
condition that W act properly on U . We shall assume it throughout.

The complex Σ. The complex Σ can be described in terms of the basic
construction. As in Section 2, denote the geometric realization of the poset
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S by K and the geometric realization of WS by Σ. For each s ∈ S, let Ks be
the geometric realization of the subposet S≥{s}. It is a subcomplex of K. The
space U(W,K) is naturally a simplicial complex. The natural map W ×S →
WS, defined by (w, T ) → wWT , induces a map of geometric realizations
W ×K → Σ and this descends to W-equivariant map U(W,K)→ Σ. As in
[12], it is easily seen that this map is a simplicial isomorphism, i.e.,

Σ ∼= U(W,K). (6.4)

Cellulation of Σ by Coxeter cells. As is explained in [34, 15, 16] and
below, Σ has another cell structure: its cellulation by “Coxeter cells.”

Suppose, for the moment, that W is finite and Card(S) = n. Associated
to (W,S) there is a n-dimensional convex polytope P called the Coxeter
cell of type W . P is defined as the convex hull of a generic W -orbit in the
canonical representation of W on Rn. W acts simply transitively on the
vertex set of P ; moreover, a subset of vertices spans a face if and only if
it has the form wWTv0 for some special coset wWT and for a given choice
of base vertex v0 in the interior of the fundamental simplicial cone. This
identifies the face poset of P with WS. In other words, it gives a simplicial
isomorphism between Σ and the barycentric subdivision of P .

Returning to the case where (W,S) is arbitrary, note that for any element
wWT ∈ WS, the poset WS≤wWT

is identified with the face poset of PT , the
Coxeter cell of type WT . So, the subcomplex |WS≤wWT

| of Σ is identified
with the barycentric subdivision of PT . This defines the cell structure on
Σ: each simplicial subcomplex |WS≤wWT

| is identified with a Coxeter cell of
type WT . So, the vertex set of Σ is W and a subset of W is the vertex set of
a cell if and only if it is a coset wWT for some w ∈ W and T ∈ S. We shall
use the notation Σcc to denote Σ equipped with this cell structure, where the
subscript cc stands for “Coxeter cell.” (In [25] this cell structure is denoted
Σd, where the subscript d stood for “dual cell.”) The poset of cells of Σcc is
WS.

Suppose U ⊆ S. Let S(U) := {T ∈ S | T ⊆ U}. Define Σ(U) to be the
subcomplex of Σcc consisting of all Coxeter cells of type T , with T ∈ S(U).
If K(U) := Σ(U) ∩K, then it is not difficult to see that

Σ(U) = U(W,K(U)) = W ×WU
U(WU , K(U)). (6.5)

Moreover, U(WU , K(U)) equivariantly deformation retracts onto the complex
ΣWU

associated to (WU , U).
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Ruins. Given U ⊆ S and T ∈ S(U), define three subcomplexes of Σ(U):

Ω(U, T ) : the union of closed cells of type T ′, with T ′ ∈ S(U)≥T ,

Ω̂(U, T ) : the union of closed cells of type T ′′, T ′′ ∈ S(U), T ′′ /∈ S(U)≥T ,

∂Ω(U, T ) : the cells of Ω(U, T ) of type T ′′, with T ′′ /∈ S(U)≥T .

Ω(U, T ) is the union of all cells of type T ′′, where T ′′ ≤ T ′ for some T ′ ∈
S(U)≥T . So,

∂Ω(U, T ) = Ω(U, T ) ∩ Ω̂(U, T ) and

Σ(U) = Ω(U, T ) ∪ Ω̂(U, T ).

The pair (Ω(U, T ), ∂Ω(U, T )) is called the (U, T )-ruin. For example, for T =
∅, we have Ω(U, ∅) = Σ(U) and ∂Ω(U, ∅) = ∅. The key step in our proofs of
the main results in Sections 9 and 10 is the computation of certain homology
groups of (U, T )-ruins.

Similarly, define

K(U, T ) := Ω(U, T ) ∩K,
∂K(U, T ) := ∂Ω(U, T ) ∩K,
K̂(U, T ) := Ω̂(U, T ) ∩K.

So, that

Ω(U, T ) = U(W,K(U, T )),

∂Ω(U, T ) = U(W,∂K(U, T )),

Ω̂(U, T ) = U(W, K̂(U, T )).

7 Weighted L2-(co)homology

Notation is as in the previous section: Z is a CW complex, (Zs)s∈S is a
W -finite family of subcomplexes and U = U(W,Z).

We begin by defining a chain complex of Hilbert Nq-modules for the CW
complex U . In this case, each orbit of cells contributes an Nq-module of the
form AT for some T ∈ S. Next we define chain complexes of Nq-modules in
the cases of the cellulation of Σ (and its subcomplexes of ruins) by Coxeter
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cells. In these cases each orbit of cells contributes a Nq-module of the form
HT , T ∈ S.

Weighted (co)chain complexes for U(W,Z). Orient the cells of Z arbi-
trarily and then orient the remaining cells of U so that for each positively
oriented cell c of Z and each w ∈ W , wc is positively oriented.

As usual, q is an I-tuple of positive real numbers. Given a cell c of Z
define a measure µq on its orbit Wc by

µq(wc) := qu, (7.1)

where u is the shortest element in the coset wWS(c) (i.e., u is the (∅, S(c))-
reduced element in this coset). This extends in a natural way to a measure,
also denoted by µq, on U (i) (where U (i) denotes the entire set of i-cells in U).
As in [25], define the q-weighted L2-(co)chains on U (in dimension i) to be
the Hilbert space

L2
qCi(U) = L2

qC
i(U) := L2(U (i), µq). (7.2)

We have coboundary and boundary maps, δi : L2
qC

i(U) → L2
qC

i+1(U) and
∂i : L2

qCi(U)→ L2
qCi−1(U) defined by the usual formulas:

δi(f)(γ) :=
∑

[β : γ]f(β) (7.3)

∂i(f)(α) :=
∑

[α : β]f(β), (7.4)

where the first sum is over all i-cells β incident to the (i+ 1)-cell γ while the
second is over all β whose boundary contains the (i−1)-cell α. In contrast to
the standard situation (where q = 1), the maps δi and ∂i+1 are not adjoint
to one another. Define ∂q

i : L2
qCi(U)→ L2

qCi−1(U) by

∂q
i (f)(α) :=

∑
[α : β]µq(β)µq(α)−1f(β). (7.5)

A quick calculation (cf. [25, Section 1]) then shows that δ∗ = ∂q. Since
δ2 = 0, taking adjoints, we get (∂q)2 = 0. Hence, (L2

qC∗(U), ∂q) is also a
chain complex.

One defines the q-weighted L2-(co)homology of U in dimension i by

L2
qH

i(U) := H i((L2
qC

∗(U), δ)) = Ker δi/ Im δi−1,

L2
qHi(U) := Hi((L

2
qC∗(U), ∂q)) = Ker ∂q

i / Im ∂q
i+1.
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Notice that while we are using the ordinary coboundary map δ, the boundary
map ∂q is not the usual one: it is modified by coefficients depending on q.
There is a standard problem with these (co)homology groups: the quotients
need not be Hilbert spaces. To remedy this, define reduced weighted L2-
(co)homology by

L2
qHi(U) := Ker δi/Im δi−1,

L2
qHi(U) := Ker ∂q

i /Im ∂q
i .

Since δ∗ = ∂q and (∂q)∗ = δ, we have the Hodge decomposition:

L2
qC

i(U) = (Ker δi ∩Ker ∂q
i )⊕ Im δi−1 ⊕ Im ∂q

i+1.

It follows that both L2
qHi(U) and L2

qHi(U) can be identified with the space
Ker δi ∩Ker ∂q

i of harmonic cochains. In particular, L2
qHi(U) ∼= L2

qHi(U).

Lemma 7.1. The chain complexes (L2
qC∗(U), ∂q) and (L2

q−1C∗(U), ∂) are
isomorphic.

Proof. Given a chain f on U , define another chain θ(f) by θ(f)(β) :=
µq(β)f(β) and note that θ(f) is q-square summable if and only if f is
q−1-square summable. Hence, it defines a linear isomorphism θ = θq :
L2

q−1C∗(U) → L2
qC∗(U). Using (7.4) and (7.5), computation shows that

θ ◦ ∂ = ∂q ◦ θ. So, θ is a chain isomorphism.

Remark 7.2. We have canonical inclusions of chain complexes:

C∗(U ;R) ↪→ (L2
qC∗(U), ∂) ↪→ C lf

∗ (U ;R). (7.6)

So, using the isomorphism θq−1 of Lemma 7.1 we get inclusions:

C∗(U ;R) ↪→ L2
q−1C∗(U) ↪→ C lf

∗ (U ;R). (7.7)

Similarly, we have inclusions of cochain complexes:

C∗
c (U ;R) ↪→ L2

qC
∗(U) ↪→ C∗(U ;R). (7.8)

(Here C lf
∗ ( ) and C∗

c ( ) stand for, respectively, infinite cellular chains and
finitely supported cellular cochains.) The second map in (7.6) (or the second
map in (7.7)) is obtained by dualizing the first map in (7.8). Similarly, the
second map in (7.8) is obtained by dualizing the first map in (7.6).
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As was indicated in the Introduction and as will be explained further in
Section 12, for q ∈ R, the first maps in (7.6) and (7.7) induce monomor-
phisms with dense image

Hi(U ;R) ↪→ Hi(L
2
q−1C∗(U), ∂)

Hi(U ;R) ↪→ L2
qHi(U).

(The first monomorphism agrees with one’s intuition.) Similarly, for q ∈
R−1, the first map in (7.8) induces a monomorphism with dense image

can : H i
c(U ;R) ↪→ L2

qHi(U).

Dualizing we get isomorphisms:

L2
qHi(U)

∼=−→H i(U ;R) for q ∈ R and

L2
qHi(U)

∼=−→H lf
i (U ;R) for q ∈ R−1.

All this is reminiscent of a well-known result of Cheeger-Gromov [11] that if
a discrete amenable group A acts properly on a CW complex X, then the
canonical map L2H∗(X) → H∗(X;R) is injective. So, for q ∈ R, weighted
L2-cohomology behaves as if W were amenable.

The Hilbert Nq-module structure on L2
qC

∗(U). Following [25], realize
L2

q as L2(W, νq), where νq is the measure on W defined by νq(w) = qw. For
each subset T of S, the Hilbert Nq-submodule AT ⊂ L2

q, defined by (5.17),
is then identified with L2(W, νq)

WT , the subspace of L2 functions which are
constant on each right coset wWT .

Since each cell of U has the form wc for some cell c of Z and some w ∈ W ,
we have

L2
qC

i(U) =
⊕
c∈Z(i)

L2(Wc, µq),

where the sum ranges over all i-cells c of Z. Moreover, L2(Wc, µq) can be
identified with AS(c) via the isometry φc : L2(Wc, µq)→ AS(c) defined by

φc(f) =
√
WS(c)(q)

( ∑
u∈XS(c)

f(uc)euaS(c)

)
,
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where the summation is over all (∅, S(c))-reduced elements u and where
aS(c) ∈ Nq is the idempotent defined in Lemma 5.4. So, we get an isom-
etry

L2
qC

i(U) =
⊕
c∈Z(i)

L2(Wc, µq)
∼=−→
⊕
c∈Z(i)

AS(c).

Since each AS(c) is a left Rq[W ]-submodule of L2
q, this gives L2

qC
i(U) the

structure of a Hilbert Nq-module as in Definition 5.3 (provided we assume,
as we shall, that Z is a finite complex). It also gives an isometric embedding

Φ : L2
qC

i(U) ↪→
⊕
c∈Z(i)

L2
q = Ci(Z)⊗ L2

q. (7.9)

It is shown in [25, Lemma 3.2] that δ and ∂q are maps of Hilbert Nq-
modules. (It is not true that δq and ∂ are maps of Hilbert Nq-modules;
however, it is possible to give L2

qC
∗(U) and L2

qC∗(U) the structure of Hilbert
Rq−1 [W ]-modules so that they are maps of Hilbert Rq−1 [W ]-modules. To do
this, one transports the Rq−1 [W ]-module structure from L2

q−1C∗(U) via the

isomorphism θ of Lemma 7.1.) It follows that Ker δ, Ker ∂q, Im δ and Im ∂q

are Hilbert Nq-modules. Hence, L2
qHi(U) (or L2

qHi(U)) is also a Hilbert
Nq-module.

Weighted (co)chain complexes for cellulations by Coxeter cells. Let
〈T 〉 denote the Coxeter cell in Σ corresponding to WT ∈ WS (the WT -coset
of the identity element). Then W 〈T 〉, the W -orbit of 〈T 〉, is the set of all

Coxeter cells in Σ of type WT . Define a measure µq on Σ
(i)
cc by µq(w〈T 〉) = qu,

where u = pT (w) is the shortest element in wWT . Define the q-weighted L2-
(co)chains on Σ (in dimension i) to be the Hilbert space

L2
qCi(Σcc) = L2

qC
i(Σcc) := L2(Σ(i)

cc , µq).

We have
L2

qCi(Σcc) =
⊕
T∈S(i)

L2(W 〈T 〉, µq).

Choose arbitrarily a orientations for cells of the form 〈T 〉, T ∈ S. We
use the following orientation convention for the remaining cells in W 〈T 〉: if
u ∈ XT (i.e., if u is (∅, T )-reduced as defined in Section 2), then orient u〈T 〉
so that left translation by u is an orientation-preserving map 〈T 〉 → u〈T 〉.

As in (7.3), δ : L2
qC

i(Σcc) → L2
qC

i+1(Σcc) is the usual coboundary map.
Its adjoint ∂q : L2

qCi+1(Σcc)→ L2
qCi(Σcc) is defined similarly to (7.5).
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Next, we determine the formula for the restriction of ∂q to the summand
L2(W 〈U〉, µq), where U ∈ S(i+1). Any w ∈ W can be uniquely decomposed
as w = uv with u ∈ XU and v ∈ WU . Suppose T ∈ S(i) is obtained by
deleting one element of U and w ∈ XT . If w ∈ XT , then v ∈ WU ∩XT . For
any f ∈ L2(W 〈U〉, µq), we have the following formula for ∂q:

∂qf(w〈T 〉) = εvq
−1
v f(u〈U〉), (7.10)

where w = uv as above.
The group WT acts nontrivially on the cell 〈T 〉. In fact, v ∈ WT is εv

orientation-preserving. Hence, the right Rq[WT ]-action on L2(W 〈T 〉, µq) is
via the alternating character βT of Definition 5.6. Therefore, L2(W 〈T 〉, µq)
can be identified with HT . A specific isometry ψ : L2(W 〈T 〉, µq) → HT can
be defined by

ψT (f) =
√
WT (q−1)

( ∑
u∈XT

f(u〈T 〉)eu
)
hT , (7.11)

where hT is the idempotent of Nq defined in Lemma 5.5. So, we have an
isometry:

L2
qCi(Σcc) =

⊕
T∈S(i)

L2(W 〈T 〉, µq)
∼=−→

⊕
T∈S(i)

HT . (7.12)

Since each HT is a left Rq[W ]-submodule of L2
q, this gives L2

qC
i(Σcc) the

structure of a Hilbert Nq-module. It also gives an isometric embedding

Ψ : L2
qCi(Σcc) ↪→

⊕
c∈S(i)

L2
q = Ci(K)⊗ L2

q.

We use the isomorphism in (7.12) to transport the Hilbert Nq-module
structure from the right hand side of (7.12) to L2

qCi(Σcc). It is proved in [25,
Lemma 4.3] that δ and ∂q are maps of Hilbert Nq-modules. We shall give
the argument in Lemma 8.1 below. Hence, we get reduced L2-(co)homology
groups:

L2
qHi(Σcc) = Ker δi/Im δi−1 and L2

qHi(Σcc) = Ker ∂q
i /Im ∂q

i ,

which are also Hilbert Nq-modules. It is proved in [25, Section 5] that the
(co)homology groups of L2

qC∗(Σcc) are the same as those of L2
qC∗(Σ), i.e.,

L2
qH∗(Σcc) ∼= L2

qH∗(Σ), L2
qH

∗(Σcc) ∼= L2
qH

∗(Σ) and L2
qH∗(Σcc) ∼= L2

qH∗(Σ).
(The point is that the simplicial structure on Σ is a subdivision of Σcc.)
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The chain complex (L2
qC∗(Σcc), ∂

q) looks like this:

L2
q ←−

⊕
s∈S

Hs ←−
⊕
T∈S(2)

HT ←− · · ·

(We shall describe the boundary maps explicitly in Lemma 8.1 in the next
section.)

L2
q-Betti numbers and the L2

q-Euler characteristic. Define

ciq(U) := dimNq L
2
qC

i(U),

where dimNq denotes the von Neumann dimension defined by (5.3). For
any cell σ ⊂ Z, its stabilizer is the special subgroup WS(σ), where as before
S(σ) = {s ∈ S | σ ⊆ Zs}. So, the summand of L2

qC
i(U) corresponding to the

orbit of an i-cell σ is isomorphic to AS(σ). Its dimension is 1/WS(σ). Hence,

ciq(U) =
∑
σ∈Z(i)

1

WS(σ)

. (7.13)

The ith L2
q-Betti number of U is defined by

biq(U) := dimNq L
2
qHi(U). (7.14)

A standard argument (cf., [27, Theorem 3.6.1, p. 205]) gives:∑
(−1)ibiq(U) =

∑
(−1)iciq(U). (7.15)

(This is a version of Atiyah’s Formula.) We denote either side of (7.15) by
χq(U) and call it the L2

q-Euler characteristic of U .

Proposition 7.3. (Rationality of Euler characteristics) χq(U) = f(q)/g(q)
where f and g are polynomials in q with integral coefficients.

Proof. For each T ∈ S, we have the subcomplex ZT (resp. ∂ZT ) defined as
the union of those cells σ such that T ⊆ S(σ) (resp. T ⊂ S(σ)). By (7.13)
and (7.15),

χq(U) =
∑
T∈S

χ(ZT )− χ(∂ZT )

WT (q)
.
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Proposition 7.4. ([25, Corollary 3.4]).

χq(Σ) =
1

W (q)
.

Proof. We use the cellulation of Σ by Coxeter cells. If T ∈ S, then

dimNq L
2(W 〈T 〉, µq) = dimNq HT =

1

WT (q−1)
.

Hence,

ciq(Σcc) =
∑
T∈S(i)

1

WT (q−1)
and

χq(Σ) =
∑
T∈S

ε(T )

WT (q−1)
=

1

W (q)
,

where the last equality is by Lemma 3.3(iv).

Remark. The relationship between Euler characteristics (of groups acting on
buildings) and growth series of Coxeter groups was first pointed out by Serre
[37] (in the case where with fundamental chamber K is a simplex). Serre
showed that the “Euler-Poincaré” measure on the automorphism group of
the building is (suitably normalized) Haar measure multiplied by 1/W (q),
where, as in Section 13, q is the “thickness vector” of the building.

Cohomology in dimension 0. The vertex set of Σ, with its cellulation by
Coxeter cells, can be identified with W . So, L2

qC
0(Σcc) ∼= L2

q. A 0-cochain
is a cocycle if and only if it is the constant function on W . If c denotes the
constant, then its norm, with respect to the inner product 〈 , 〉q is |c|

∑
qw

and this is < ∞ if and only if q ∈ R or c = 0. This proves the following
result of [25].

Proposition 7.5. ([25]) L2
qH

0(Σ) is nonzero if and only if q ∈ R. Moreover,
when q ∈ R, b0q(Σ) = 1/W (q).

Remark 7.6. It is easy to see that the space U (= U(W,Z)) is connected
if and only if Z is connected and Zs 6= ∅ for each s ∈ S. (This also follows
from [13, Theorem A] or [12, Theorem 10.1].) Suppose these conditions
hold. An argument similar to the one in the previous paragraph then shows
that L2

qH
0(U) is nonzero if and only if q ∈ R and when this is the case,

b0q(U) = 1/W (q).
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The continuity of Betti numbers.

Theorem 7.7. Suppose (W,S) is a Coxeter system and that U = U(W,Z)
is as above. Then for each integer i, the function q→ biq(U) is continuous.

For the proof we will need the next two lemmas.

Lemma 7.8. Let Y be a Hilbert space, X a closed subspace of Y , PX the
orthogonal projection onto X and y ∈ Y a unit vector. Set

A(y) := inf {‖x‖ | x ∈ X, 〈x, y〉 = 1}.

Then 〈PX(y), y〉 = A(y)−2. (By convention, (+∞)−2 = 0.)

Proof. Put a := 〈PX(y), y〉. Since 〈PX(y), y〉 = ‖PX(y)‖2, we see that a ≥ 0
with equality if and only if X ⊥ y. Suppose first that a = 0. Then the
left hand side of the formula in the lemma is 0. Since X ⊥ y, {‖x‖ | x ∈
X, 〈x, y〉 = 1} = ∅, so A(y) = +∞ and hence, the right hand side is also 0.

Suppose a > 0. Every x ∈ X can be written as bPX(y) + x′, where
x′ ⊥ PX(y). Then 〈x, y〉 = b〈PX(y), y〉 + 〈x′, y〉 = ba. (Notice that for
x′ ∈ X, x′ ⊥ PX(y) if and only if x′ ⊥ y.) So, 〈x, y〉 = 1 implies b = 1

a
.

Therefore,

A(y) = inf {‖x‖ | x ∈ X, 〈x, y〉 = 1}

= inf {‖1
a
PX(y) + x′‖ | x′ ∈ X, x′ ⊥ PX(y)}

= ‖1
a
PX(y)‖ =

1

a
‖PX(y)‖ =

√
a

a
=

1√
a
.

So, A(y)−2 = a.

Notation. Given I-tuples q and q′ of real numbers, write q ≤ q′ if qi ≤ q′i
for each i ∈ I. Write 1 for the I-tuple with each component equal to 1.

For example, q ≤ 1 means each qi ≤ 1.

Definition 7.9. A function f : RI → R is increasing (resp. decreasing) if
q ≤ q′ implies f(q) ≤ f(q′) (resp. f(q) ≥ f(q′)).

Let | | denote the “maximum norm” on RI defined by |q| := max{|qi|}.
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Definition 7.10. A function f : RI → R is left continuous at q0 if for
any positive number ε, there is a positive number δ so that if q ≤ q0 and
|q0 − q| < δ, then |f(q0)− f(q)| < ε. Right continuity is similarly defined.

Lemma 7.11. If a decreasing function f : RI → R is both left and right
continuous, then it is continuous (and similarly, if f is increasing).

Proof. Given a point q0 ∈ RI and a number ε > 0, choose δ small enough to
work in the definitions of both left and right continuous at q0. Let d denote
the I-tuple with each component equal to δ. Assuming f is decreasing, for
any q in a δ-neighborhood of q0, we have

f(q0)− ε ≤ f(q0 + d) ≤ f(q) ≤ f(q0 − d) ≤ f(q0) + ε.

Proof of Theorem 7.7. We have spaces of cochains, cocycles and cobound-
aries:

Ci
q := L2

qC
i(U), Zi

q := L2
qZ

i(U), Bi
q := L2

qB
i(U),

as well as, spaces of chains, cycles and boundaries:

Cq
i := Ci

q, Zq
i := L2

qZi(U), Bq
i := L2

qBi(U),

(Zi
q and Bi

q are defined using the coboundary map δ, while Zq
i and Bq

i are
defined using its adjoint ∂q.) We also have their von Neumann dimensions:

ciq := dimCi
q, ziq := dimZi

q, aiq := dimBi
q,

cqi := ciq, zq
i := dimZq

i , aq
i := dimBq

i ,

where, to simplify notation, we are writing dim( ) instead of dimNq( ).
We note that by formula (7.13), q→ ciq is a continuous decreasing func-

tion (since each WS(σ)(q) is a polynomial with nonnegative coefficients).

Claim 1. The function q→ ziq is left continuous and decreasing.

Proof of Claim 1. In (7.9) we defined an isometric embedding Φ of Ci
q into⊕

σ∈Z(i) L2
q. Let eσ1 be the element of

⊕
σ∈Z(i) L2

q with σ-component equal to
e1 and all other components equal 0. Then

ziq =
∑
σ∈Z(i)

〈PΦ(Zi
q)(e

σ
1 ), eσ1〉q.
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Since Φ(Zi
q) ⊆ Φ(Ci

q), we have

〈PΦ(Zi
q)(e

σ
1 ), eσ1〉q = 〈PΦ(Zi

q)PΦ(Ci
q)(e

σ
1 ), PΦ(Ci

q)(e
σ
1 )〉q.

However, all components of the vector PΦ(Ci
q)(e

σ
1 ) are 0, except the σ-component,

which is equal to PAS(σ)
(e1) = aS(σ) = Φ((WS(σ)(q))−1/2δσ), where δσ ∈ Ci

q is
the function which is 1 on σ and 0 on all other cells. Thus,

ziq =
∑
σ∈Z(i)

1

WS(σ)(q)
〈PZi

q
(δσ), δσ〉q.

Since 1/WS(σ)(q) is continuous, we need to concentrate on 〈PZi
q
(δσ), δσ〉q. Set

zσ(q) := inf {‖u‖q | u ∈ Zi
q, 〈u, δσ〉q = 1}. By Lemma 7.8, it suffices to prove

that each of the functions zσ(q) is left continuous and increasing. Notice that
if q ≤ q′, then Zi

q ⊇ Zi
q′ . Moreover, if u ∈ Zi

q′ , then ‖u‖q ≤ ‖u‖q′ , while
〈u, δσ〉q = 〈u, δσ〉q′ (because both are equal to u(σ)). It follows that zσ is an
increasing function.

Now suppose that (qn) is a sequence in RI converging to q from below
(that is, each qn ≤ q) and that un ∈ Zi

qn
is a sequence such that, 〈un, δσ〉qn =

1 (i.e., un(σ) = 1). Further suppose that lim ‖un‖qn = ξ. We will show
that ξ ≥ zσ(q). (This implies that zσ is left continuous at q.) Write U as
U =

⋃∞
k=1Kk, where the Kk are finite subcomplexes. Assume that ξ < +∞

(otherwise there is nothing to prove). This implies that for every k, the
restrictions un|Kk

are uniformly bounded. Hence, by a diagonal argument,
one can choose a subsequence (um) such that the um|Kk

converge pointwise
for each k. Let u be the pointwise limit of um. Then u is a cocycle and
u(σ) = 1 (because all um satisfy these conditions). Also, for each k we have
‖u|Kk

‖q = lim ‖um|Kk
‖qm ≤ ξ. Therefore, ‖u‖q ≤ ξ. So, zσ(q) ≤ ‖u‖q ≤

ξ.

Claim 2. q→ aiq is left continuous and so, q→ zq
i is left continuous.

Proof of Claim 2. Since ci−1
q is continuous and since aiq = ci−1

q − zi−1
q , Claim

1 implies that aiq is left continuous. We have the Hodge decomposition:
Ci

q = Zq
i ⊕Bi

q. So, zq
i = ciq − aiq, which is left continuous.

Claim 3. q→ zq
i is right continuous and decreasing.
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Proof of Claim 3. This is a version of Claim 1 using cycles instead of cocy-
cles. Basically, the argument in Claim 1 works provided we use the usual
boundary map ∂ instead of ∂q. To transfer this back into information about
Zq
i , we need to use the isometry θ from the proof of Lemma 7.1. Set

Ẑq
i := Ker(∂i : Cq

i → Cq
i−1).

As before, Cq
i , Zq

i and Ẑq
i can be embedded into

⊕
σ∈Z(i) L2

q(W ), and zq
i =∑

σ∈Z(i)〈PΦ(Zq
i )(e

σ
1 ), eσ1〉q. Next, apply the isometry θ :

⊕
L2

q(W )→
⊕

L2
1/q(W )

(given by θ(f)(w) = qwf(w) on each component). By Lemma 7.1, θ re-

stricts to a map Cq
∗ → C

1/q
∗ , which intertwines ∂q and ∂. Therefore,

θ(Zq
i ) = Ẑ

1/q
i . Also, θ(eσ1 ) = eσ1 , so θ(PΦ(Zq

i )(e
σ
1 )) = P

Φ( bZ1/q
i )

(eσ1 ), and

〈PΦ(Zq
i )(e

σ
1 ), eσ1〉q = 〈P

Φ( bZ1/q
i )

(eσ1 ), eσ1〉1/q. (Note that the map Φ depends on

q; thus, the maps on the left hand sides correspond to q, while those on the
right hand sides correspond to 1/q.) Now, the argument from Claim 1 can
be repeated. We get that 〈P

Φ( bZ1/q
i )

(eσ1 ), eσ1〉1/q is left continuous and increas-

ing in 1/q. This implies that q → 〈PΦ(Zq
i )(e

σ
1 ), eσ1〉q is right continuous and

decreasing.

Claim 4. q→ aq
i is right continuous and so, q→ ziq is right continuous.

Proof of Claim 4. This follows from Claim 3 in the same way Claim 2 fol-
lowed from Claim 1.

Claim 5. ziq, z
q
i , a

i
q and aq

i are continuous in q

Proof of Claim 5. The functions ziq and zq
i are decreasing and left and right

continuous; hence, by Lemma 7.11, continuous. Since ciq is continuous, aiq
and aq

i are also continuous.

To finish the proof of Theorem 7.7 simply note that biq(U) = ziq − aiq,
which, by Claim 5, is continuous.

In view of Proposition 7.3 and Atiyah’s Conjecture (cf. [27, Section 3.10]
or [31, Chapter 10]), it is natural to ask the following.

Question. Is q→ biq(U) a piecewise rational function?
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8 Weighted L2-homology of ruins

Cosheaves. Suppose Λ is a simplicial complex with vertex set V and that
S(Λ) is its face poset (including the empty face). We regard the poset S(Λ)
as a category in the usual way: if τ is a face of σ, then there is a unique
morphism ιτσ from τ to σ (which we can think of as being the inclusion of
vertex sets).

A cosheaf on Λ with values in a category C is a contravariant functor F
from S(Λ) to C. In the case of interest to us, C will be the category of Hilbert
Nq-modules.

Now suppose that the simplicial complex Λ is ordered (in other words,
suppose that its vertex set is totally ordered). Then for any n ≥ 0, the
vertices of an n-simplex form an ordered set isomorphic to {0, 1, . . . , n} with
its usual order. For 0 ≤ i ≤ n and any n-simplex σ, the ith face of σ is
defined to be the (n− 1)-simplex spanned by all vertices of σ except the ith.
If one writes ∂i for ιτσ, where τ is the ith face of σ, then the relations between
the morphisms become the familiar “simplicial identities” as in [41, 8.1].

A cosheaf F of abelian groups on an ordered simplicial complex Λ gives
rise to a chain complex C∗(S(Λ);F ) defined as follows: Cn = 0 for n < 0,
and for n ≥ 0,

Cn =
⊕

σ∈S(n)(Λ)

F (σ),

where the indexing set is the set of (n−1)-simplices of Λ. (The indices on C∗
have been shifted up by one from the conventions in [17].) Under the natural
isomorphism

Hom(Cn, Cn−1) ∼=
⊕

σ∈S(n)(Λ), τ∈S(n−1)(Λ)

Hom(F (σ), F (τ)),

the boundary map ∂ : Cn → Cn−1 corresponds to the matrix (∂στ ), where
∂στ = 0 unless τ is a face of σ, and is equal to (−1)iF (ιτσ) if τ is the ith face
of σ.

Ruined chain complexes. We return to the situation where (W,S) is a
Coxeter system, L is its nerve and S is the poset of spherical subsets of S. Let
T ∈ S and let Lk(T, L) denote the link of T in L. (If T = ∅, Lk(∅, L) := L.)
We note that the face poset of Lk(T, L) is isomorphic to S≥T .
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Define a cosheaf HT of Hilbert Nq-modules on Lk(T, L) as the contravari-
ant functor on S≥T defined on objects by U → HU where HU is defined by
(5.17). If U ≤ V ∈ S≥T , then the morphism H(ιUV ) : HV → HU is the natural
inclusion. Define the ruined chain complex L2

qC∗(HT ) by

L2
qC∗(HT ) := C∗(S≥T ;H).

It looks like this:

0 ←− HT ←−
⊕

(T∪{s})∈(S≥T )(k+1)

HT∪{s} ←− · · · , (8.1)

where k = Card(T ). Similarly, by using the family of Hilbert Nq-modules
(AU)U∈S≥T

, we get a cosheaf A on Lk(T, L) and a chain complex L2
qC∗(AT ).

We denote the homology of L2
qC∗(HT ) and L2

qC∗(AT ) by L2
qH∗(HT ) and

L2
qH∗(AT ), respectively.

The relationship between ruins and ruined chain complexes. Re-
call that for any U ⊆ S and T ∈ S(U), Ω(U, T ) is the subcomplex of Σcc

consisting of all closed Coxeter cells of type T ′, with T ′ ∈ S(U)≥T .
To simplify notation, the chain complex L2

qC∗(Ω(U, T ), ∂(Ω(U, T )) will be
denoted L2

qC∗(Ω(U, T ), ∂) and similarly for its homology.
Since the cell structure always will be given by Coxeter cells, we will omit

the subscript cc from our notation. We say a Coxeter cell is type T , T ∈ S,
as a shorthand for type WT .

It follows from (6.5) and the fact that U(WU , K(U)) deformation retracts
onto ΣU that the Nq[W ]-modules L2

qC∗(Σ(U)) and L2
qH∗(Σ(U)) are induced

from the Nq[WU ]-modules L2
qC∗(ΣWU

) and L2
qH∗(ΣWU

), respectively. So,
we can calculate von Neumann dimensions over Nq[W ] by calculating with
respect to Nq[WU ].

Lemma 8.1. (i) There is a isomorphism of chain complexes of Nq-modules:

Ψ′ : L2
qC∗(Σcc)→ L2

qC∗(H∅),

where L2
qC∗(H∅) is the ruined chain complex associated to the cosheaf

H∅ on L.

(ii) Suppose T ∈ S(k). Then Ψ′ induces an isomorphism of chain complexes
of Nq-modules:

L2
qC∗(HT )

∼=−→L2
qC∗+k(Ω(S, T ), ∂).

In particular, L2
qCm(Ω(S, T ), ∂) = 0 for m < k.
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Proof. (i) For each T ∈ S modify the isometry ψT of (7.11) to another Hilbert
Nq-module isomorphism, ψ′T : L2(W 〈T 〉, µq)→ HT as follows:

ψ′T (f) :=
√
WT (q−1)ψT (f) = WT (q−1)

( ∑
u∈XT

f(u〈T 〉)eu
)
hT . (8.2)

Ψ′ is defined to be the direct sum of the ψ′T . Suppose U ∈ S>∅ and T ⊂ U is
obtained by deleting one element from U . Statement (i) follows immediately
from the next claim.

Claim. The following diagram commutes:

L2(W 〈U〉, µq)
ψ′U−−−→ HU

∂q
T

y yi
L2(W 〈T 〉, µq)

ψ′T−−−→ HT

where ∂q
T denotes the L2(W 〈T 〉, µq)-component of ∂q and i is the natural

inclusion.

Proof of Claim. Using (8.2) and (7.10), we get

ψ′T (∂q
Tf) = WT (q−1)

( ∑
w∈XT

(∂q
Tf)(w〈T 〉)ew

)
hT

= WT (q−1)
( ∑
u∈XU

∑
v∈WU∩XT

εvq
−1
v f(u〈U〉)euev

)
hT

= WT (q−1)
( ∑
u∈XU

f(u〈U〉)eu
)( ∑

v∈WU∩XT

εvq
−1
v ev

)
hT

= WU(q−1)
( ∑
u∈XU

f(u〈U〉)eu
)
hU

= i(ψ′U(f)),

where the next to last equality is from the following formula for hU , valid
whenever T ⊆ U and q ∈ R−1

U .

hU =
( ∑
v∈WU∩XT

εvq
−1
v ev

)
hT .
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(This formula holds sinceWU∩XT is a set of coset representatives forWU/WT

and since for any v ∈ WU ∩ XT and w ∈ WT , we have evew = evw and
qvqw = qvw.)

(ii) Part (ii) of the lemma essentially follows from part (i). Write Ω for
Ω(S, T ). The point is that the cells of the W 〈T ′〉, T ′ ∈ (S≥T )(i+1), are a basis
for L2

qC
i(Ω, ∂Ω). Hence,

L2
qCi(Ω, ∂Ω) =

⊕
T ′∈(S≥T )(i+1)

L2(W 〈T ′〉, µq) ∼=
⊕

HT ′

and (i) shows that the ∂q maps are induced by the inclusions HT ′′ ↪→ HT ′ ,
with T ′ ⊂ T ′′.

Remark. The cochain complex L2
qC

i(Ω(S, T ), ∂) is obtained by dualizing
(8.1):

0 −→ HT −→
⊕

(T∪{s})∈(S≥T )(k+1)

HT∪{s} −→ · · · ,

where the coboundary maps are induced by the orthogonal projectionsHT ′ →
HT ′′ , with T ′ ⊂ T ′′, and k = Card(T ).

The main result of this section as well as the results of Sections 9 through
12 ultimately are based on the following key theorem from [25].

Theorem 8.2. ([25, Theorem 10.3]) If q ∈ R, then L2
qH∗(Σ) is concentrated

in dimension 0.

While the proof of this in [25] is straightforward, some technical estimates
are involved. In outline the argument goes as follows.

(a) Using the CAT(0)-metric of [34] it is proved, in [25, Theorem 9.1], that
there is a chain contraction H : C∗(Σ)→ C∗+1(Σ) and constants C and
R such that for any simplex σ ⊂ Σ, (i) the L∞-norm of H(σ) is < C and
(ii) H(σ) is supported in an R-neighborhood of the geodesic connecting
the central vertex of K with σ.

(b) It follows ([25, Theorem 10.1]) that for q ∈ R−1, H extends to a bounded
linear map H : L2

qC∗(Σ) → L2
qC∗+1(Σ). (Actually, in [25], this is only

proved for a single parameter, but the proof goes through without change
in the case of a multiparameter q.) Hence, for q ∈ R−1, H is a chain
contraction of L2

qC∗(σ) with respect to the usual boundary map ∂.

44



(c) Finally, one uses the isometry θ of Lemma 7.1 to transport H to a chain
contraction of (L2

qC∗(σ), ∂q) for q ∈ R.

The main result of this section is the following generalization of Theo-
rem 8.2.

Theorem 8.3. Suppose T ∈ S(k). If q ∈ R, then L2
qH∗(Ω(S, T ), ∂) is con-

centrated in dimension k. If q ∈ ∂R, the same holds for L2
qH∗(Ω(S, T ), ∂).

Note that the third sentence of the theorem follows from the second one
and the continuity of the biq (Theorem 7.7).

In the special case T = ∅, we have Ω(S, T ) = Σ and so, Theorem 8.3
is Theorem 8.2. We shall use Theorem 8.2 as the first step in an inductive
proof.

Before beginning the proof, note that we have an excision isomorphism:

L2
qC∗(Ω(U, T ), ∂) ∼= L2

qC∗(Σ(U), Ω̂(U, T )). (8.3)

Also, for any s ∈ T and T ′ := T − s, we have an excision isomorphism:

L2
qC∗(Σ(U − s), Ω̂(U − s, T ′)) ∼= L2

qC∗(Ω̂(U, T ), Ω̂(U, T ′)). (8.4)

Proof of Theorem 8.3. Suppose U ⊆ S and T ∈ S(k)(U). We shall prove,
by induction on k (= Card(T )), that L2

qH∗(Ω(U, T ), ∂) is concentrated in
dimension k. When k = 0 this holds by Theorem 8.2 (and the fact that
L2

qC∗(Σ(U)) is induced from L2
qC∗(ΣWU

)). Assume by induction, that our
assertion holds for k−1, with k−1 ≥ 0. By (8.3), the assertion is equivalent

to showing that L2
qH∗(Σ(U), Ω̂(U, T )) is concentrated in dimension k. Choose

an element s ∈ T and set T ′ := T−s, Ω̂ := Ω̂(U, T ), Ω̂′ := Ω̂(U, T ′). Consider

the long exact sequence of the triple (Σ(U), Ω̂, Ω̂′):

L2
qH

∗(Σ(U), Ω̂′)→ L2
qH

∗(Σ(U), Ω̂)→ L2
qH

∗−1(Ω̂, Ω̂′)

By (8.4), the right hand term excises to the homology of the (U−s, T ′)-ruin,
while the middle term is that of the (U, T )-ruin and the left hand term is
that of the (U, T ′)-ruin. By induction, the left hand and right hand terms are
concentrated in dimension k − 1. So, the middle term can only be nonzero
in dimensions k− 1 and k. On the other hand, by Lemma 8.1(ii), the middle
term vanishes in dimensions < k.
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Combining this theorem with Lemma 8.1, we get the following.

Corollary 8.4. For any q ∈ R and any spherical subset T , L2
qH∗(HT ) is

concentrated in dimension 0. Therefore, for any q ∈ R, the reduced homology
L2

qH∗(HT ) is also concentrated in dimension 0.

The meaning of this corollary is that, for q ∈ R, the family of subspaces
(HT )T∈S is “in general position” in L2

q.

9 The Decomposition Theorem

Lemma 9.1. (Compare Lemma 1 in [38].) Suppose we are given subsets
U, V of S and an I-tuple q ∈ RV ∩R−1

U (so that hU and aV are both defined).
If V ∩ U 6= ∅, then hUaV = 0.

Proof. Let s ∈ V ∩ U . Then hUaV = hUhsasaV = 0.

We define some more subspaces of L2
q:

DV := AS−V ∩
(∑
U⊂V

AS−U

)⊥
,

GV := HV ∩
(∑
U⊃V

HU

)⊥
.

Lemma 9.2. ∑
U⊇V

GU = HV ,

∑
V⊆U

DV = AS−U .

Proof. By definition of GV , we have

HV = GV +
∑
U⊃V

HU ,

and the first formula follows by induction on the size of S − V . Similarly,

AS−V = DV +
∑
U⊂V

AS−U ,

and the second formula follows by induction on the size of V .
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Lemma 9.3. Suppose q ∈ R and U * V . Then

GUaS−V = 0.

Proof. Since GT ⊆ HT the assertion follows from Lemma 9.1.

If q ∈ R, then HV = 0 for all nonspherical V (because V is spherical
whenever RV ∩ R−1

V 6= ∅). So, for V /∈ S, GV = 0, and for V = T ∈ S, GT

is the orthogonal complement of the image of ∂ : L2
qC1(HT )→ L2

qC0(HT ) =
HT ; hence, L2

qH0(HT ) = GT .
Denote by R(Nq) the Grothendieck group of Hilbert Nq-modules. If F is

such a Hilbert module, [F ] denotes its class in R(Nq). It follows from addi-
tivity of dimension that the function F → dimNq F induces a homomorphism
dimNq : R(Nq)→ R.

Corollary 9.4. For q ∈ R and T ∈ S, the following formulas hold in the
representation group R(Nq):

[GT ] =
∑

U∈S≥T

ε(U − T )[HU ]

[HT ] =
∑

U∈S≥T

[GU ].

Proof. Note that in L2
qC∗(HT ) the boundary maps are maps of Hilbert Nq-

modules. Hence, the first formula follows from Theorem 8.4 by taking the
Euler characteristics. The second formula follows from this and the Möbius
Inversion Formula.

Corollary 9.5. Suppose q ∈ R and T ∈ S. Then dimNq GT = W T (q)/W (q).

Proof. By Lemma 5.10 (iii), dimNq HU = 1/WU(q−1). So,

dimNq GT =
∑

U∈S≥T

ε(U − T )

WU(q−1)
=
W T (q)

W (q)
,

where the first equality is by Corollary 9.4 and the second by Lemma 3.3 (iii)(b).
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Lemma 9.6. If q ∈ R and U ⊆ S, then∑
T∈S
T⊆U

GTaS−U

is a dense subspace of AS−U and a direct sum decomposition. Moreover, if
T ∈ S, then the right multiplication by aS−T induces a weak isomorphism
GT → GTaS−T .

Proof. As in Section 3, XS−U denotes the set of (∅, S−U)-reduced elements.
As in [5, Ex. 26], XS−U is the disjoint union of the W T , T ⊆ U . Hence,
XS−U(q) =

∑
T⊆U W

T (q). Dividing this by W (q) and using Lemma 3.3 (ii),
we get

1

WS−U(q)
=
∑
T⊆U

W T (q)

W (q)
.

By Lemma 9.2,

L2
q =

∑
T∈S

GT .

Multiplying on the right by aS−U and using Lemma 9.3 we obtain:

AS−U =
∑
T∈S

GTaS−U =
∑
T⊆U

GTaS−U .

By Lemma 5.9 (iii),

dimNq AS−U =
1

WS−U(q)
=
∑
T⊆U

W T (q)

W (q)
.

On the other hand,

dimNq GTaS−U ≤ dimNq GT =
W T (q)

W (q)
.

It follows that each of the above inequalities is an equality and hence, that
GT is weakly isomorphic to GTaS−T and the sum is direct.

Remark. In what follows we will use the symbol
⊎

to denote the sum of
submodules of L2

q, once we have proved that the sum is direct.
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Since GV = 0 for nonspherical V and q ∈ R, we can restate Lemma 9.6
as follows:

AS−U =
⊎
V⊆U

GV aS−U .

Letting U = S, we get the following corollary.

Corollary 9.7. If q ∈ R, then ∑
V⊂S

GV

is a dense subspace of L2
q and a direct sum decomposition.

The fact that the sum of GV is direct has the following two corollaries.

Corollary 9.8. Let A and B be collections of subsets of S. If q ∈ R, then⊎
U∈A

GU ∩
⊎
U∈B

GU =
⊎

U∈A∩B

GU

Corollary 9.9. If q ∈ R and V ⊆ S, then

HV =
⊎
U⊇V

GU .

Lemma 9.10. If q ∈ R and V ⊆ S, then

DV = GV aS−V .

In particular, DV = 0 if V 6∈ S.

Proof. Since, by definition, DV ⊆ AS−V , DV = DV aS−V and since DV ⊆(∑
U⊂V AS−U

)⊥
, we have:

DV ⊆
(∑
U⊂V

AS−U

)⊥
aS−V .

Using equations (5.19), we compute:(∑
U⊂V

AS−U

)⊥
=
⋂
U⊂V

A⊥S−U =
⋂
U⊂V

∑
s∈S−U

Hs.
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By Corollary 9.9, Hs =
⊎
X3sGX . Therefore,(∑

U⊂V

AS−U

)⊥
=
⋂
U⊂V

∑
s∈(S−U)

⊎
X3s

GX =
⋂
U⊂V

⊎
X*U

GX .

Using Corollary 9.8 we obtain:(∑
U⊂V

AS−U

)⊥
=

⊎
X*U ∀U⊂V

GX =
⊎
X 6⊂V

GX .

Thus,

DV ⊆

( ⊎
X 6⊂V

GX

)
aS−V =

∑
X 6⊂V

GXaS−V .

By Lemma 9.3, the only nonzero term in the last sum is when X = V .
Therefore, DV ⊆ GV aS−V .

To prove the opposite inclusion, note that, by Lemma 9.3, for U ⊂ V ,
GV aS−V aS−U = GV aS−U = 0. Therefore, since Ker aS−U = A⊥S−U , we have
GV aS−V ⊆ A⊥S−U for all U ⊂ V . Since GV aS−V ⊆ AS−V , it follows from the
definition of DV that GV aS−V ⊆ DV .

We shall need the following Decomposition Theorem. (Of course, there
is also a corresponding version with the DV replaced by GV .)

Theorem 9.11. (The Decomposition Theorem). If q ∈ R ∪R−1, then∑
V⊆S

DV

is direct and a dense subspace of L2
q. Moreover, if q ∈ R, then the only

nonzero terms in the sum are those with V ∈ S, and if q ∈ R−1, then the
only nonzero terms in the sum are those with S − V ∈ S.
Proof. If q ∈ R, then we let U = S in Lemma 9.2 to obtain:

L2
q =

∑
V⊆S

DV .

The assertion follows, since by Lemma 9.10, all nonspherical V have 0 con-
tributions, and by Lemmas 9.10, 9.6 and Corollary 9.7, the dimensions of the
nontrivial terms add up to 1.

If q ∈ R−1, then the result follows from Corollary 9.7 by applying the
j-homomorphism.
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Corollary 9.12. Let A be a collection of subsets of S and let U ⊆ S.
If q ∈ R ∪R−1, then

DU ∩
⊎
U∈A

DV =

{
0 if U 6∈ A,
DU if U ∈ A.

Corollary 9.13. If q ∈ R ∪R−1 and U ⊆ S, then

AU =
⊎

V⊆S−U

DV .

Corollary 9.14. (Compare Lemma 3.3 and Corollary 9.5.) Suppose T ∈ S.

(i) For q ∈ R, dimNq DT = W T (q)/W (q).

(ii) For q ∈ R−1, dimNq DS−T = W T (q−1)/W (q−1).

Proof. (i) By Lemma 9.10, aS−T maps GT monomorphically onto a dense
subspace of DT . So, dimNq DT = dimNq GT = W T (q)/W (q), where the
second equality is by Corollary 9.5.

(ii) For q ∈ R−1, the following formulas hold in the representation ring
R(Nq),

[AT ] =
∑

U∈S≥T

[DS−U ]

[DS−T ] =
∑

U∈S≥T

ε(U − T )[AU ].

where the first formula is from Corollary 9.13 and the second follows from
the first by the Möbius Inversion Formula. So, as in Corollary 9.5,

dimNq DS−T =
∑

U∈S≥T

ε(U − T )

WU(q)
=
W T (q−1)

W (q−1)
,

where the second equality is Lemma 3.3 (iii)(b).

In Section 11 we will need the following version of Lemmas 9.6 and 9.10.
Its proof is essentially the same as the proofs of these lemmas, except that we
use Theorem 9.11 and its corollaries instead of the corresponding statements
involving the GU .
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Lemma 9.15. (Compare Lemmas 9.6 and 9.10.) Suppose q ∈ R and
U ⊆ S. Then

(i) ∑
T∈S
T⊆U

DThU

is a dense subspace of HU and a direct sum decomposition. Moreover, if
T ∈ S, then the right multiplication by hT induces a weak isomorphism
DT → DThT .

(ii) GU = DUhU .

10 Decoupling cohomology

We retain notation from Sections 6 and 7, e.g., Z is a finite CW complex,
(Zs)s∈S is a family of subcomplexes and U = (W ×Z)/ ∼. As in (6.1), given
U ⊆ S, ZU denotes the union of mirrors Zs, s ∈ U .

For any Hilbert Nq-submodule E of L2
q, define

L2
qC

i(U ;E) := Φ−1(Ci(Z)⊗ E),

where Φ : L2
qC

i(U) ↪→ Ci(Z)⊗L2
q is the monomorphism defined in (7.9). In

other words,

L2
qC

i(U ;E) =
⊕
c∈Z(i)

(φc)
−1(AS(c) ∩ E), (10.1)

where S(c) is the subset of S defined in (6.3) and φc : L2(Wc, µq)→ AS(c) is
the isomorphism defined in (7).

Proposition 10.1. Suppose q ∈ R ∪R−1. Then the map Φ restricts to an
isomorphism of cochain complexes:

L2
qC

∗(U ;DU)
∼=−→C∗(Z,ZU)⊗DU .

Proof. (Compare [13, the proof of Theorem B].) Let c ∈ Z be an i-cell. By
Corollary 9.13,

AS(c) =
⊎

V⊆S−S(c)

DV .
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If c * ZU , then S(c) ⊆ S−U and therefore, by Corollary 9.12, AS(c) ∩DU =
DU and so, by (10.1), φc : L2

qC
i(Wc;DU) → DU is an isomorphism. If

c ⊆ ZU , then S(c) * S − U and therefore, AS(c) ∩DU = 0 and so, by (10.1),
L2

qC
i(Wc;DU) = 0. Hence, a cochain in Ci(Z) ⊗DU is in the image of the

restriction of Φ if and only if it evaluates to 0 on the orbit of every i-cell
c ⊆ ZU .

Suppose q ∈ R ∪ R−1. Let ΘU : C∗(Z,ZU) ⊗ DU → L2
qC

∗(U ;DU) ↪→
C∗(U) be the inverse of the isomorphism of Proposition 10.1. Define

Θ :
⊕
U⊆S

C∗(Z,ZU)⊗DU−→L2
qC

∗(U)

to be the sum of the ΘU .

Proposition 10.2. If q ∈ R ∪R−1, then

Θ :
⊕
U⊆S

C∗(Z,ZU)⊗DU−→L2
qC

∗(U)

is a weak isomorphism of cochain complexes of Hilbert Nq-modules.

Proof. We have: ⊕
U⊆S

L2
qC

∗(U ;DU) = L2
qC

∗(U ;
⊕
U⊆S

DU).

By the Decomposition Theorem (Theorem 9.11), we have a weak isomor-
phism, L2

qC
∗(U ;

⊕
DU) → L2

qC
∗(U). Combining this with the isomorphism

of Proposition 10.1, the proposition follows.

A weak isomorphism of chain complexes of Hilbert modules induces a
weak isomorphism on the level of reduced cohomology ([17, Lemma 5]). Fur-
thermore, if two Hilbert Nq-modules are weakly isomorphic, then they are
isometric ([27, Lemma 2.5.3]). So, we have the following corollary to Propo-
sition 10.2.

Theorem 10.3. (Compare [13], [14, Theorem A]).

(i) If q ∈ R, then

L2
qH∗(U) ∼=

⊕
T∈S

H∗(Z,ZT )⊗DT .
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(ii) If q ∈ R−1, then

L2
qH∗(U) ∼=

⊕
T∈S

H∗(Z,ZS−T )⊗DS−T .

The special case U = Σ is the following.

Theorem 10.4. (i) (Theorem 8.2 or [25, Cor. 10.4]). If q ∈ R, then
L2

qH
∗(Σ) is concentrated in dimension 0 and

L2
qH

0(Σ) = L2
qH0(Σ) ∼= AS.

So, b0q(Σ) = χq(Σ) = 1/W (q) = dimNqAS.

(ii) If q ∈ R−1, then

L2
qH∗(Σ) ∼=

⊕
T∈S

H∗(K,KS−T )⊗DS−T .

So,

biq(Σ) =
∑
T∈S

W T (q−1)

W (q−1)
bi(K,KS−T ),

where bi(K,KS−T ) = dimRH
i(K,KS−T ;R).

(In the formula for biq(Σ) in Theorem 10.4 (ii) we have used the formula for
dimNq DS−T from Corollary 9.14.)

11 A generalization of a theorem of Solomon

When W is finite and q = 1, L. Solomon [38] proved some results very
similar to the Decomposition Theorem (Theorem 9.11). In this special case,
formulas (5.7) and (5.11) for the idempotents aT and hT become

aT :=
1

Card(WT )

∑
w∈WT

ew and

hT :=
1

Card(WT )

∑
w∈WT

εwew

and we recognize aT and hT as the familiar elements of “symmetrization”
and “alternation” in the group algebra R[WT ].
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Solomon’s Theorem. ([38]). Suppose W is finite. Then there are direct
sum decompositions of the regular representation:

L2(W ) =
∑
T⊆S

L2(W )aThS−T ,

L2(W ) =
∑
T⊆S

L2(W )hS−TaT .

Our generalization of Solomon’s Theorem is the following.

Theorem 11.1. (i) If q ∈ R, then∑
T∈S

L2
qhTaS−T and

∑
T∈S

L2
qaS−ThT

are direct sum decompositions and dense subspaces of L2
q.

(ii) If q ∈ R−1, then∑
T∈S

L2
qhS−TaT and

∑
T∈S

L2
qaThS−T

are direct sum decompositions and dense subspaces of L2
q.

This is an immediate consequence of Corollary 9.7, Theorem 9.11 and the
following theorem.

Theorem 11.2. Suppose T ∈ S.

(i) If q ∈ R, then L2
qaS−ThT = GT and L2

qhTaS−T = DT .

(ii) If q ∈ R−1, then L2
qaThS−T = GS−T and L2

qhS−TaT = DS−T .

Proof. (i) Suppose q ∈ R. By Lemma 9.6, right multiplication by aS−T is
a weak isomorphism from GT to GTaS−T . So, by Lemma 9.10, L2

qhTaS−T =

GTaS−T = DT . Similarly, by Lemma 9.15, L2
qaS−ThT = GT .

(ii) Applying the j-isomorphism to the two equations in (i), we get the
two equations in (ii).

Remark. It seems probable that L2
qaS−UhU = GU and L2

qhUaS−U = DU

whenever q ∈ RS−U ∩R−1
U (so that hU and aS−U are both defined).
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12 Relationship with ordinary homology and

cohomology with compact supports

As in Section 6, Z is a CW complex which is a strict fundamental domain
for a W -action on U (= U(W,Z)).

Theorem 12.1. (i) For q ∈ R, the canonical map, can : H∗(U ;R) →
L2

qH∗(U), is an injection with dense image.

(ii) For q ∈ R−1, the canonical map, can : H∗
c (U ;R) → L2

qH∗(U), is an
injection with dense image.

Proof. First, using [14], we prove statement (ii) for cohomology with com-
pact supports. Given w ∈ W , let In(w) ∈ S be as in Section 2 and let
Qw be the “positive” fundamental domain for WIn(w) on U , containing the
chamber Z. (So, Qw

∼= U/WIn(w).) Let qw : U → wQw denote the com-
position of projection onto Qw with translation by w. The composition of
the map induced by qw with the excision isomorphism C∗(wQw, wQw − Z) ∼=
C∗(wZ,wZ

S−In(w)) ∼= C∗(Z,Z
S−In(w)) induces a chain map pw : C∗(U) →

C∗(Z,Z
S−In(w)). For each T ∈ S, define p∗T : C∗(Z,ZS−T ) ⊗ R(WT ) →

C∗
c (U ;R) by c⊗ ew → p∗w(c) and extending linearly. In other words, p∗T (c⊗

ew) = ewãT (c), where ãT is defined by (5.4) (and where ewãT acts on C∗
c (U ;R)

as an element of the group algebra R[W ], not as an element of the Hecke
algebra). p∗T will also denote the induced map on cohomology. It is proved
in [14] that ⊕p∗T : ⊕H∗(Z,ZS−T ) ⊗ R(WT ) → H∗

c (U) is an isomorphism.
Computations similar to those in Section 10 give an isomorphism ϕS−T :
L2

qH∗(U ;GS−T ) → H∗(Z,ZS−T )⊗ GS−T . It follows that we have a commu-
tative diagram:⊕

H∗(Z,ZS−T )⊗R(WT )
⊕p∗T−−→ H∗

c (U ;R)ycanyg L2
qH∗(U)y⊕πS−T⊕

H∗(Z,ZS−T )⊗GS−T
⊕ϕS−T←−−−−

⊕
L2

qH∗(U ;GS−T )

Here πS−T is the coefficient homomorphism induced by orthogonal projec-
tion L2

q → GS−T and g := ⊕gT , where gT : R(WT ) → GS−T is induced by
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ew → ewãThS−T . In other words, up to weak isomorphisms of Nq-modules,
the canonical map H∗(U ;R) → L2

qH∗(U) is identified with g. By Theo-
rem 11.2 (ii), for q ∈ R−1, {ewãThS−T}w∈WT spans a dense subspace of
GS−T . Hence, each gT is injective with dense image. This proves (ii).

The canonical map in (i) is induced by the composition of chain maps:

(C∗(U ;R), ∂) ↪→ (L2
1/qC∗(U), ∂)

∼=−→L2
q(C∗(U), ∂q),

where the second map is the isomorphism of Lemma 7.1. For each T ∈ S,
let

ĥT :=
∑
w∈WT

εwew

and let ĥT : C∗(Z,Z
T )⊗R(WT ) → C∗(U ;R) be defined by x⊗ew → ewĥT (x).

The element h̃T defined in (5.8)) differs from ĥT by inserting a q−1
w in front

of each ew. By [13], the induced map in homology ⊕(ĥT )∗ : H∗(Z,Z
T ) ⊗

R(WT ) → H∗(U ;R) is an isomorphism. Hence, the map induced by ⊕(ĥT )∗
is also an isomorphism. We have a commutative diagram:⊕

H∗(Z,Z
T )⊗R(WT ) ⊕(h̃T )∗−−−−→ H∗(U ;R)ycanyd L2

qH∗(U)y⊕π′T⊕
H∗(Z,Z

T )⊗DT
⊕(ΘT )∗←−−−−

⊕
L2

qH∗(U ;DT )

Here π′T is the coefficient homomorphism induced by orthogonal projection
L2

q → DT and ΘT is the isomorphism of Section 10. Also, d := ⊕dT , where

dT : R(WT ) → DT is induced by ew → ewh̃TaS−T . In other words, up to
weak isomorphisms of Nq-modules, the canonical map H∗(U ;R)→ L2

qH∗(U)
is identified with d. By Theorem 11.2 (i), each dT is injective with dense
image.

13 L2-cohomology of buildings

As in [36], a building consists of the following data:

• a set Φ,
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• a Coxeter system (W,S),

• a collection of equivalence relations on Φ indexed by S.

• a function δ : Φ× Φ→ W .

This data must satisfy certain additional conditions which we will explain
below. One condition is that for s ∈ S, each s-equivalence class contains at
least two elements.

The elements of Φ are called chambers. Given s ∈ S, two chambers
ϕ and ϕ′ are s-equivalent if they are equivalent via the equivalence relation
corresponding to s. If, in addition, ϕ 6= ϕ′, they are s-adjacent. A gallery is a
sequence (ϕ0, . . . , ϕn) of adjacent chambers; its type is the word (s1, . . . , sn) in
the letters of S, where ϕi−1 and ϕi are si-adjacent. Given T ⊂ S, (ϕ0, . . . , ϕn)
is a T -gallery if each si ∈ T . The gallery is reduced if w = s1 · · · sn is a
reduced expression.

Another condition for Φ to be a building is that there exist a W -valued
distance function δ : Φ×Φ→ W . This means that there is a reduced gallery
of type (s1, . . . , sn) from ϕ to ϕ′ if and only if s1 · · · sn is a reduced expression
for δ(ϕ, ϕ′).

The s-mirror (or “s-panel”) of a chamber ϕ is the s-equivalence class
containing ϕ. More generally, given a subset T ⊂ S, the T -residue of ϕ is
the T -gallery connected component containing ϕ. Each such T -residue is
naturally a building with associated Coxeter system (WT , T ). The residue is
spherical if T is a spherical.

Example 13.1. (Trees). Suppose W is the infinite dihedral group (so that
Card(S) = 2). Any tree is bipartite, i.e., its vertices can be labeled by
the two elements of S so that the vertices of any edge have distinct labels.
Suppose T is a tree with such a labeling and suppose no vertex of T is of
valence 1. Let Φ be its set of edges. Given s ∈ S, call two edges s-equivalent
if they meet at a vertex of type s. An {s}-residue is the set of edges in
the star of a vertex of type s. A gallery in Φ corresponds to an edge path
in T . The type of the gallery is the word obtained by taking the types of
the vertices crossed by the corresponding edge path. This word is reduced
if and only if the edge path does not backtrack. Given two edges ϕ, ϕ′ of
T , there is a (unique) minimal gallery connecting them. The corresponding
word represents an element of w ∈ W and δ(ϕ, ϕ′) := w. Thus, every such
tree T defines a building of type (W,S). Not surprisingly, we will define the
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“geometric realization of a building” so that for the building Φ corresponding
to T , its geometric realization will be T .

A building Φ of type (W,S) has finite thickness if for each s ∈ S, each
s-equivalence class is finite. If Φ has finite thickness, then it follows from the
existence of a W -distance function that each of its spherical residues is finite.

Let us say that Φ is regular if for each s ∈ S, the s-equivalence classes
have constant cardinality. When finite, we denote this number by qs + 1. It
is known ([36]) that if s and s′ are conjugate in W , then qs = qs′ . Let I be
the set of conjugacy classes of elements in S. Then for any regular building
Φ, the integers qs define an I-tuple q called the thickness vector of Φ.

A group G of automorphisms of a building is chamber transitive if it acts
transitively on Φ. When this is the case, we have Φ ∼= G/B, where B denotes
the stabilizer of some given chamber ζ. If Gs denotes the stabilizer of the
s-mirror containing ζ, then the chambers gζ and g′ζ are s-equivalent if and
only if g and g′ belong to the same coset of Gs. Obviously, if G is chamber
transitive, then the building is regular. For the remainder of this section, we
suppose that Φ has finite thickness and that G is chamber transitive.

Given a subset T of S, denote the stabilizer of the T -residue containing
ζ by GT . Thus, G∅ = B and G{s} = Gs. If Φ has finite thickness and T ∈ S,
then the number of elements in a T -residue is Card(GT/B). (This number
is known to be WT (q).)

Fix a chamber ζ ∈ Φ and let r (or rζ) denote the function Φ→ W defined
by ϕ→ δ(ζ, ϕ). Since Φ ∼= G/B, we can regard r as a function from G/B to
W . Since B fixes ζ, r : G/B → W is B-invariant. In other words, r induces
a map r : B\G/B → W .

A Tits system is a quadruple (G,B,N, S), where G is a group, B and
N are subgroups of G, W := N/N ∩ B, S is a subset of W and where
the conditions listed in [5, pp. 15–26] are satisfied. Given w ∈ W , put
C(w) := BwB. The conditions imply that

• For each s ∈ S, Gs := B ∪ C(s) is a subgroup of G.

• (W,S) is a Coxeter system.

• There is a building with set of chambers G/B such that two chambers
gB and g′B are s-equivalent if and only if gGs = g′Gs.

• Suppose r : G/B → W is defined by gB → δ(B, gB) where δ is W -
distance in the building. Then the induced map r : B\G/B → W is a
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bijection.

One says that the building comes from a BN-pair.

Definition 13.2. The Coxeter system (W,S) is right-angled if mst = 2 or
∞ for each pair s, t of distinct elements in S.

Example 13.3. (Regular right-angled buildings, [15, pp. 112–113]). For any
right-angled Coxeter system (W,S) (cf. Definition 13.2) and any S-tuple
q = (qs)s∈S of positive integers, there is a regular building Φ of type (W,S)
with thickness vector q. In the case where W is the infinite dihedral group
this is well-known: as in Example 13.1, the building is a (bipartite) tree with
edge set Φ, it is “regular” in the sense that for each s ∈ S there are exactly
qs + 1 edges meeting at each vertex of type s.

In the general case, the construction goes as follows. For each s ∈ S,
choose a finite group Γs with Card(Γs) = qs + 1 and let Γ be the “graph
product” of the (Γs)s∈S where the graph is the 1-skeleton of L. In other
words, Γ is the quotient of the free product of the (Γs)s∈S by the normal
subgroup generated by all commutators [gs, gt] with gs ∈ Γs, gt ∈ Γt and
mst = 2. As in [15], we get a building with Φ = Γ and with two elements
g, g′ ∈ Γ in an s-equivalence class if and only if they determine same coset
in Γ/Γs. We leave the following two facts as exercises for the reader:

• Two regular right-angled buildings of a given type (W,S) are isomor-
phic if and only if they have the same thickness vector.

• Any regular right-angled building comes from a BN -pair. In other
words, its full automorphism group G is chamber transitive and if B
denotes the stabilizer of a given chamber and N the stabilizer of some
apartment containing that chamber, then there is a set of generators S
for W := N/N ∩B so that (G,B,N, S) is a Tits system.

Hecke algebras and functions on B\G/B. This paragraph is taken from
[5, Ex. 22, pp. 56–57].

Suppose G is a topological group and B is a compact open subgroup.
Let C(G) denote the vector space of continuous real-valued functions on G.
Let α : G → G/B and β : G → B\G/B be the natural projections. Define
subspaces H ⊆ L ⊆ C(G) by

L := α∗R(G/B) and H := β∗R(B\G/B),
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where, as in Section 4, for any set X, R(X) denotes the vector space of finitely
supported functions on X.

For each gB ∈ G/B, let agB ∈ L be defined by agB(x) = 1 for x ∈ gB
and agB(x) = 0 for x /∈ gB. Since (agB) is a basis for L, there is a unique
linear form on L such that agB → 1 for all gB ∈ G/B. We denote this form
by ϕ →

∫
ϕ (since it coincides with the Haar integral normalized by the

condition that
∫
aB = 1).

If ϕ ∈ L and ψ ∈ H, then for each x ∈ G, the function θx : G → R,
defined by θx(y) = ϕ(y)ψ(y−1x), belongs to L. The function ϕ ∗ ψ : x →∫
ϕ(y)ψ(y−1x)dy also belongs to L. Moreover, if ϕ ∈ H, then ϕ∗ψ ∈ H. The

map (ϕ, ψ)→ ϕ ∗ ψ makes H into an algebra and L into a right H-module.
H is called the Hecke algebra of G with respect to B.

Next, suppose that G is a chamber transitive automorphism group on
a building and that r : G/B → W is defined by taking the W -distance
from the chamber corresponding to B. Let γ := r ◦ α : G → W and
J := γ∗(R(W )) ⊆ H.

Remark. If (G,B,N, S) is a Tits system, then r : B\G/B → W is a bijec-
tion and hence, J = H.

Lemma 13.4. Suppose, as above, that a given building admits a chamber
transitive automorphism group G (so G/B is the set of chambers). Let q be
the thickness vector. Then

(i) J is a subalgebra of H and

(ii) J ∼= Rq[W ], the Hecke algebra of Section 4.

Proof. Since G is chamber transitive, γ∗ : R(W ) → J is an isomorphism of
vector spaces. So, we only need to check that γ∗ is an algebra homomorphism
from Rq[W ] to H. Let fw = γ∗(ew). Then fw is the characteristic function
of {g ∈ G | r(gB) = w}. In particular, for each s ∈ S, fs is the characteristic
function of Gs −B. We want to see that

fw ∗ fs =

{
fws, if l(ws) > l(w);

qsfws + (qs − 1)fw, if l(ws) < l(w).

By definition of convolution,

(fw ∗ fs)(g) =

∫
G

fw(x)fs(x
−1g)dx =

∫
G

fw(gu)fs(u
−1)du =

∫
Gs−B

fw(gu)du,

61



which is equal to the Haar measure of the set

Ug := {u ∈ Gs −B | r(guB) = w}.

Let C0 := g0B be the chamber which is s-adjacent to gB and which is
closest to B. There are qs other chambers adjacent to gB. We list them
as: C1 = g1B, . . . , Cqs = gqsB. So, for i > 0, r(Ci) = r(C0)s. Notice that
if u ∈ Gs − B, then guB is s-adjacent to gB and therefore, guB is equal
to some Ci. So, if r(guB) = w, then r(gB) = w or ws. In other words, if
r(gB) 6∈ {w,ws}, then (fw ∗ fs)(g) = 0. We now consider two cases. Each
case further divides into two subcases depending on whether r(gB) = w or
ws.

Case 1. l(w) < l(ws). In this case r(C0) = w and r(Ci) = ws for i > 0.

a) Suppose r(gB) = w. Then gB = C0 and guB = Ci for i > 0, so that
r(guB) = ws. Thus, Ug = ∅ and (fw ∗ fs)(g) = 0.

b) Suppose r(gB) = ws. Then gB = Ck, for some k > 0, and

Ug = {u ∈ Gs −B | guB = C0} = (Gs −B) ∩ g−1g0B.

Since gB and g0B are s-adjacent and not equal, g−1g0B ⊆ Gs − B, so that
Ug = g−1g0B has measure 1. Therefore, (fw ∗ fs)(g) = 1. So, in Case 1,
fw ∗ fs = fws.

Case 2. l(w) > l(ws). In this case r(C0) = ws and r(Ci) = w for i > 0.

a) Suppose r(gB) = w. Then gB = Ck for some k > 0. So, the set

Ug =
⋃
0<i

{u ∈ Gs −B | guB = Ci} =
⋃

0<i 6=k

g−1giB

has measure qs − 1.

b) Suppose r(gB) = ws. Then gB = C0, and the set

Ug =
⋃
0<i

{u ∈ Gs −B | guB = Ci} =
⋃
0<i

g−1giB

has measure qs. So, in Case 2, fw ∗ fs = qsfws + (qs − 1)fw.

The geometric realization of a building. Suppose Φ is a building with
associated Coxeter system (W,S). As in Section 2, let K be the geometric
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realization of S and Σ the geometric realization of WS. By (6.4), Σ =
U(W,K), where U(W,K) = (W × K)/ ∼ and where ∼ is the equivalence
relation defined in the beginning of Section 6. Following [15, pp. 117–118],
define the geometric realization of Φ to be

U(Φ, K) = (Φ×K)/ ∼, (13.1)

where (ϕ, x) ∼ (ϕ′, x′) if and only if x = x′ and ϕ, ϕ′ belong to the same
S(x)-residue. (S(x) is defined in (6.2).)

Since K only involves the spherical subsets of S, U(Φ, K) only involves
the spherical residues of Φ. It follows that if Φ has finite thickness, then
U(Φ, K) locally finite.

We often write X as a shorthand for U(Φ, K).

The von Neumann algebra of G. Next suppose G is a chamber transitive
group of automorphisms of Φ and that B is the stabilizer of some fixed
chamber ζ. G acts as a group of homeomorphisms of X, so give it the
compact-open topology. Then B is a compact open subgroup. Let µ be
Haar measure on G, normalized by the condition that µ(B) = 1.

We have the left regular representation of G on L2(G). The von Neumann
algebra N (G) consists of all G-equivariant bounded linear endomorphisms of
L2(G).

Any α ∈ N (G) is represented by convolution with some distribution fα.
This distribution need not be a function. For example, if α is the identity
map on L2(G), then fα = δ1 (the Dirac delta). One would like to define
the “trace” of α to be fα(1) whenever fα is a function. However, since fα is
well-defined only up to sets of measure 0, we must proceed slightly differently.

Suppose α is a nonnegative self-adjoint element of N (G). Let β be its
square root. If fβ is a L2 function, then put

trN (G) α := ‖fβ‖ :=

(∫
G

fβ(x)
2dµ

)1/2

.

This extends in the usual fashion to give a “trace” on (n × n)-matrices
with coefficients in N (G). If V is a closed G-stable subspace of

⊕
L2(G) and

πV :
⊕

L2(G) →
⊕

L2(G) is orthogonal projection, then the von Neumann
dimension of V is defined by

dimN (G) V := trN (G) πV .

63



We identify L2(Φ) = L2(G/B) with the subspace of L2(G) consisting of
the functions which are constant on each right coset gB, g ∈ G. Orthogo-
nal projection from L2(G) onto L2(G/B) is given by convolution with the
characteristic function of B. In view of the assumption that µ(B) = 1,

dimN (G) L
2(G/B) = 1.

The map r : G/B → W defined by theW -distance from the base chamber
induces a bounded linear map L2

q(W )→ L2(G/B) which we shall also denote
by r. Since this map takes bounded elements of L2

q(W ) to bounded elements
of L2(G/B), we get the following version of Lemma 13.4.

Lemma 13.5. The map r : L2
q(W ) → L2(G/B) induces a monomorphism

of von Neumann algebras r : Nq → N (G). (In particular, r commutes with
the ∗ anti-involutions on Nq and N (G).)

L2C∗(X) denotes the Hilbert space of square summable simplicial cochains
on X and H∗(X) denotes the subspace of harmonic cocycles. (Of course, the
H∗(X) are isomorphic to reduced cohomology groups of the cochain complex
L2C∗(X).) Supposing G is a chamber transitive automorphism group, we
have

L2Ci(X) =
⊕
σ∈K(i)

L2(G/Gσ) ⊂
⊕
σ∈K(i)

L2(G),

where Gσ := GS(σ) is the stabilizer of the i-simplex σ. (S(σ) is the spherical
subset defined in (6.3).) One then defines the L2-Betti numbers of X with
respect to G by

bi(X;G) = dimN (G)Hi(X),

The map r : X → Σ induces a map on cochains which we denote by the
same letter, i.e., r is a cochain map from L2

qC
∗(Σ) to L2C∗(X). We also have

“transfer maps” on chains and cochains. On the level of chains, the transfer
map sends a cell c of Σ to r−1(c)/Card(r−1(c)). On the level of cochains, the
transfer map t : L2C∗(X)→ L2

qC
∗(Σ) is defined by

t(f)(c) :=
1

Card(r−1(c))

∑
f(c′),

where the sum is over all c′ ∈ r−1(c). (The orientations on the c′ are induced
from the orientation of c.) Note that Card(r−1(c)) = µq(c), where µq is the
measure on Wc defined in (7.1) (i.e., if c = wσ with w (∅, S(σ))-reduced,
then µq(c) = qw).
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Remark. Suppose X is the geometric realization of a building associated
to a Tits system (G,B,N, S). Then L2

qC
∗(Σ) can be identified with the B-

invariant cochains L2C∗(X)B and the map r : L2
qC

∗(Σ) → L2C∗(X) with
the inclusion of the B-invariant cochains. The map t : L2C∗(X)→ L2

qC
∗(Σ)

is then identified with averaging over B. In other words, if Σ is identified
with a subspace of X via some section of r : X → Σ, then

t(f)(c) =

∫
x∈B

f(xc)dµ.

Lemma 13.6. (i) t ◦ r = id : L2
qC

i(Σ)→ L2
qC

i(Σ).

(ii) The maps r and t are adjoint to each other.

(iii) These maps take harmonic cocycles to harmonic cocycles.

Proof. Statement (i) is obvious.
(ii) For f ∈ L2

qC
i(Σ) and f ′ ∈ L2Ci(X), we have

〈r(f), f ′〉 =
∑

c′∈X(i)

[r(f)(c′)][f ′(c′)] =
∑
c∈Σ(i)

∑
c′∈r−1(c)

f(r(c′))f ′(c′)

=
∑
c∈Σ(i)

f(c)
∑

c′∈r−1(c)

f ′(c′)

=
∑
c∈Σ(i)

Card(r−1(c))[f(c)][t(f ′)(c)] =
∑
c∈Σ(i)

µq(c)[f(c)][t(f ′)(c)]

= 〈f, t(f ′)〉.

(iii) Since r : L2
qC

∗(Σ) → L2C∗(X) is induced by the simplicial map
r : X → Σ, it takes cocycles to cocycles. We must show it also takes cycles
to cycles. If c′ ∈ X(i−1) and d′ ∈ X(i) and if the incidence number [c′ : d′] is
nonzero, then it is equal to [r(c′) : r(d′)]. Hence,

∂(r(f))(c′) =
∑

[c′ : d′]f(r(c′)) =
∑

[c : d]
µq(c)

µq(d)
f(c) = ∂q(f)(c),

where c = r(c′), d = r(d′) and the last equality comes from the definition
given in equation (7.5). So, ∂q(f) = 0 implies that ∂(r(f)) = 0. Since t is the
adjoint of r, it also must take cocycles to cocycles and cycles to cycles.
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Consider the diagram:

L2
qC

∗(Σ)
r−→ L2C∗(X)

p

y yP
L2

qH∗(Σ)
r−→ H∗(X)

where p and P denote the projections onto harmonic cocycles.

Lemma 13.7. P ◦ r = r ◦ p.

Proof. Let x ∈ L2
qC

∗(Σ). It is enough to show that P ◦ r(x) − r ◦ p(x) is
orthogonal to any harmonic cocycle h ∈ H∗(X). We have: 〈P ◦ r(x), h〉 =
〈r(x), P (h)〉 = 〈r(x), h〉. Hence,

〈P ◦ r(x)− r ◦ p(x), h〉 = 〈r(x− p(x)), h〉 = 〈x− p(x), h〉 = 0,

where the second and third equalities follow, respectively, from parts (ii) and
(iii) of Lemma 13.6.

Theorem 13.8. Suppose Φ is a building with a chamber transitive automor-
phism group G and with thickness vector q. Then the L2-Betti numbers of
X (= U(Φ, K)) equal the L2

q-Betti numbers of Σ, i.e.,

bi(X;G) = biq(Σ).

Remark. This theorem is proved in [25, Fact 3.5] in the case where the
building comes from an BN -pair. Here we use Lemma 13.7 to weaken the
hypothesis to the case of an arbitrary chamber transitive group G. The key
technique of [25] of integrating over B is replaced by the use of the transfer
map t.

Proof of Theorem 13.8. For each simplex σ in the fundamental chamber K,
consider the commutative diagram:

L2
q(W )

r−→ L2(G/B)y y
L2

q(W/WS(σ))
r−→ L2(G/GS(σ))
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where S(σ) := {s ∈ S | σ ⊂ Ks}, where WS(σ) and GS(σ) are the isotropy
subgroups of σ in W and G, respectively, where the vertical maps are orthog-
onal projections and where r (= r∗) is the map induced by r : G/B → W .
Let eB ∈ L2(G/B) denote the characteristic function of B and let eσ be its
orthogonal projection in L2(G/GS(σ)). (eσ is the characteristic function of
GS(σ) renormalized to have norm 1.) We note that eB is the image of the
basis vector e1 ∈ L2(W ) under r and eσ is the image of aS(σ). We have the
commutative diagram:⊕

L2
q(W )

r−−−−−−−−−−−−−−−−−−→
⊕

L2(G)y y⊕
L2

q(W/WS(σ)) L2
qC

i(Σ)
r−→ L2Ci(X)

⊕
L2(G/GS(σ))

p

y yP
L2

qHi(Σ)
r−→ Hi(X),

where the sums are over all σ ∈ K(i). Let e ∈
⊕

L2(G/GS(σ)) denote the
vector (eσ)σ∈K(i) and let a ∈

⊕
L2

q(W/WS(σ)) be the vector (aS(σ))σ∈K(i) . (So,
r(a) = e.) Using Lemma 13.6, we get

bi(X;G) := dimN (G)Hi(X)

= 〈P (e), e〉 = 〈Pr(a), r(a)〉 = 〈rp(a), r(a)〉
= 〈p(a), tr(a)〉 = 〈p(a), a〉 = dimNq L

2
qHi(Σ)

:= biq(Σ).

The Decomposition Theorem for L2(G/B). As above, G is a chamber
transitive automorphism group of a building Φ. For each T ∈ S, let

ÂT := L2(G/GT ) = L2(G)GT

be the subspace of L2(G/B) consisting of the square summable functions on
G which are constant on each coset gGT . Set

D̂S−T := ÂT ∩
( ∑
U∈S>T

ÂU

)⊥
.

D̂S−T is a closed G-stable subspace in the regular representation. (It corre-
sponds to the Nq-module DS−T defined in Section 9.)
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Theorem 13.9. (The Decomposition Theorem for L2(G/B)). Suppose G
is a chamber transitive automorphism group of a building Φ and B is the
stabilizer of a chamber. If the thickness vector q lies in R−1, then∑

T∈S

D̂S−T

is a dense subspace of L2(G/B) and a direct sum decomposition.

Given a module M and a collection of submodules (Mα)α∈A, the state-
ment that (Mα)α∈A gives a direct sum decomposition of M can be interpreted
as a statement about chain complexes as follows. Set

C1 :=
⊕
α∈A

Mα and C0 := M,

where
⊕

means external direct sum. Let ∂ : C1 → C0 be the natural map.
This gives a chain complex, C∗ := {C0, C1}, with nonzero terms only in
degrees 0 and 1. The statement that the internal sum

∑
Mα is direct is

equivalent to the statement that ∂ is injective, i.e., that H∗(C∗) vanishes
in dimension 1. The statement that the Mα span M is equivalent to the
statement that ∂ is onto, i.e., that H∗(C∗) vanishes in dimension 0. Similarly,
if M and the Mα are Hilbert spaces, then the statement that Mα is dense in
M is equivalent to the statement that the reduced homology H∗(C∗) vanishes
in dimension 0.

Proof of Theorem 13.9. The map r from Lemma 13.5 takes AT to ÂT and
DS−T to D̂S−T . Define chain complexes Ĉ∗ = {Ĉ0, Ĉ1} and C∗ = {C0, C−}
by

Ĉ1 :=
⊕
T∈S

D̂S−T and Ĉ0 := L2(G/B)

C1 :=
⊕
T∈S

DS−T and C0 := L2
q(W ),

where the boundary maps Ĉ1 → Ĉ0 and C1 → C0 are the natural maps.
By the Decomposition Theorem for L2

q (Theorem 9.11), H∗(C∗) vanishes

identically. So, by the proof of Theorem 13.8, H∗(Ĉ∗) has dimension 0 with
respect to N (G) and hence, also vanishes identically. The theorem then
follows from the previous paragraph.
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Decoupling cohomology. As in Section 6, suppose we are given a finite
CW complex Z and a family of subcomplexes (Zs)s∈S. As in (13.1), given a
building Φ, define its Z-realization to be

U(Φ, Z) = (Φ× Z)/ ∼,

where (ϕ, x) ∼ (ϕ′, x′) if and only if x = x′ and ϕ, ϕ′ belong to the same
S(x)-residue.

The proof of Theorem 10.3 goes through to give the following two results.

Theorem 13.10. Suppose Φ is a building with a chamber transitive auto-
morphism group G and that its thickness vector q lies in R−1. Then there is
an isomorphism of orthogonal G-representations:

H∗(U(Φ, Z)) ∼=
⊕
T∈S

H∗(Z,ZS−T )⊗ D̂S−T .

Corollary 13.11. (Compare [18] and [26, Cor. 8.2 and Prop. 8.5]). Suppose
Φ is a building with a chamber transitive automorphism group G and that
its thickness vector q lies in R−1. Then, for X = U(Φ, K), there is an
isomorphism of orthogonal G-representations:

H∗(X) ∼=
⊕
T∈S

H∗(K,KS−T )⊗ D̂S−T .

14 The case where L is a sphere

A simplicial complex Λ is a generalized homology m-sphere (for short, a
GHSm) if it is a homology m-manifold having the same homology as Sm.
This is equivalent to the condition that, for each T ∈ S(Λ), Lk(T,Λ) has the
same homology as Sm−Card(T ).

Similarly, a pair(Λ, ∂Λ) is a generalized homology m-disk (for short, a
GHDm) if it is an acyclic homology m-manifold with boundary.

From now on, when we say that a complex is a generalized homology
sphere or disk or that it is a homology manifold, we only require that it be
one with respect to homology with real coefficients. (This is all that is needed
to insure that Poincaré duality holds for the (weighted) L2-cohomology of
various related complexes.)

If the nerve L of (W,S) is homeomorphic to Sn−1, then Σ is a contractible
n-manifold. If L is PL-homeomorphic to Sn−1, then each face KT of the
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fundamental chamber K is a PL-disk of codimension Card(T ). Similarly, if
L is a GHSn−1, then Σ is a contractible homology n-manifold and each KT

is a contractible GHDn−Card(T ). (See [15, 16].)
For the remainder of this section suppose that L is a GHSn−1.

Poincaré duality. It is proved in [25] that L2
qH∗(Σ) satisfies Poincaré

duality, where the duality changes q to q−1. We repeat the argument below.
For each T ∈ S and w ∈ W , the subcomplex wKT is the “dual cell”

to the Coxeter cell w〈T 〉 (defined in Sections 6 and 7). (Strictly speaking,
wKT is not a cell unless Lk(T, L) is a PL-sphere; however, since (KT , ∂KT )
is a GHDn−Card(T ), the wKT behave homologically as if they were dual
cells.) The chain complex obtained by partitioning Σ into these “dual cells”
is denoted L2

qC∗(Σghd) in [25]. It is naturally identified with the cochain
complex L2

qC
n−∗(A∅) associated to the cosheaf A on L, defined in Sec-

tion 8. By Lemma 8.1 (ii), L2
qC∗(Σcc) is identified with the chain com-

plex L2
qC∗(H∅) associated to the cosheaf H on L. It is proved in [25] that

the chain complexes L2
qC∗(Σghd) and L2

qC∗(Σcc) are both chain homotopy
equivalent to L2

qC∗(Σ), the chain complex defined via the standard simpli-
cial structure on Σ. (This simplicial structure is a common subdivision of
Σghd and Σcc.) Hence, all three complexes have the same homology. The
map L2

qC
n−∗(Σghd)→ L2

q−1C∗(Σcc), induced by wKT → w〈T 〉 is a chain iso-

morphism. (When viewed as a map L2
qC∗(A∅) → L2

q−1C∗(H∅), it is induced
by the j-isomorphism of Section 5.) So, we have proved the following.

Proposition 14.1. ([25, Theorem 6.1]). Suppose the nerve L of (W,S) is
a GHSn−1. Then there is j-equivariant isomorphism from the Hilbert Nq-
module L2

qHk(Σ) to the Hilbert Nq−1-module L2
q−1Hn−k(Σ) (where j is the

isomorphism of Section 5). Hence, bkq(Σ) = bn−kq−1 (Σ).

Remark. The same type of Poincaré duality (exchanging q with q−1) holds
for U(W,Z), whenever Z is compact and U(W,Z) is a homology manifold. In
other words, it holds provided that, for each T ∈ S, (ZT , ∂ZT ) is a compact
homology manifold with boundary (see [12, 14]).

Corollary 14.2. ([9]). Suppose the nerve L of (W,S) is a GHSn−1. Then
the growth series of W is (−1)n-reciprocal, i.e.,

1

W (t)
=

(−1)n

W (t−1)
.
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Proof. Take the alternating sums of the dimensions on both sides of the
equation of Proposition 14.1. By Proposition 7.4, the left hand side gives
χq(Σ) and the right hand side (−1)nχq−1(Σ). Replacing q by t we get the
result.

The next result is proved in [25] as a corollary of Proposition 14.1. (It is
also a consequence of Theorem 10.4.)

Corollary 14.3. ([25, Cor. 10.4]). Suppose the nerve L of (W,S) is a
GHSn−1.

(i) If q ∈ R, then L2
qH∗(Σ) is concentrated in dimension 0; moreover,

L2
qH0(Σ) ∼= AS,

where AS is the representation of Rq[W ] on R via the symmetric char-
acter αS of Definition 5.6.

(ii) If q ∈ R−1, then L2
qH∗(Σ) is concentrated in dimension n and

L2
qHn(Σ) ∼= HS,

where HS is the representation of Rq[W ] on R via the alternating char-
acter βS of Definition 5.6.

Remark. If L is a GHSn−1, then (K, ∂K) is a GHDn where ∂K := KS.
Since H1(K;Z/2) = 0, K is orientable. So, we can choose orientations for the
n-simplices of K so that their sum is a relative cycle, ξK . Its homology class
[K] ∈ Hn(K, ∂K) is the fundamental class of K. By Theorem 10.4, L2

qHn(Σ)
is spanned by [K]hS. (This was proved in [24].) A representative for this
class is obtained by taking the fundamental cycle ξK and then harmonizing
it to ξKhS.

Example 14.4. (dimL = 1.) Suppose L is a k-gon. In other words, suppose
we are given a Coxeter matrix on a set S, so that its nerve L is a circle and
so that Card(S) = k. This means, first of all, that the 1-skeleton of L is a
k-gon. When k = 3, for L to be equal to its 1-skeleton, a further condition
is needed. Suppose S = {s1, s2, s3}, mij := msisj

and αij := π/mij, where
{i, j, k} = {1, 2, 3}. The condition is that α12 + α23 + α13 ≤ π. When this
holds, the W -action on Σ is isomorphic to the action of a group of isometries
on the Euclidean or hyperbolic plane generated by the reflections across the
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edges of a k-gon. (The Euclidean case occurs only when k = 4 and W is
right-angled or when k = 3 and α12 + α23 + α13 = π.)

If q ∈ R, then L2
qH∗(Σ) is concentrated in dimension 0; if q ∈ R−1,

it is concentrated in dimension 2; if q /∈ R ∪ R−1, then it is concentrated
in dimension 1 (since it vanishes in dimensions 0 and 2). In each case, the
nonzero Betti number is given by ±χq.

Notation. Write 1 for the I-tuple (1, . . . , 1) and write q ≥ 1 (resp. q ≤ 1)
to mean that each qi ≥ 1 (resp. each qi ≤ 1).

Corollary 14.5. Suppose that W is a Euclidean reflection group, i.e., that
it can be represented as a cocompact group generated by isometric reflections
on Rn. Suppose further that q ≥ 1. Then L2

qH∗(Σ) is concentrated in the
top dimension, ∗ = n. (It is 0 if q = 1.)

Proof. By Proposition 3.10 (or Remark 3.11), when t is a single indetermi-
nate, the reciprocal of the radius of convergence of W (t) is 1. It follows that
{q | q > 1} ⊆ R−1.

Since Σ ∼= Rn, it follows from [14, Theorem B] that L is a GHSn−1. In
fact, L is a triangulation of Sn−1. (When (W,S) is irreducible, L is isomorphic
to boundary complex of an n-simplex, by [5, Prop. 8, p. 90]; when it is not
irreducible it is a join of such complexes.) So, the result is a consequence of
the previous proposition.

Combining this with Corollary 13.11, we get the following (known) result.

Corollary 14.6. Suppose that X is a Euclidean building with a chamber
transitive automorphism group. Then its reduced L2-cohomology is concen-
trated in the top dimension.

A generalization of the Singer Conjecture. Proposition 14.3 states that
when L is a GHSn−1, L2

qH∗(Σ) is concentrated in dimension 0 for q ∈ R and

in dimension n for q ∈ R−1. What about the intermediate range, q /∈ R ∪
R−1? By Remark 7.6, in this range, L2

qH0(Σ) = 0 and by Poincaré duality,
L2

qHn(Σ) = 0. For q = 1, L2
qH∗(Σ) is the ordinary reduced L2-homology

H∗(Σ). In this case, the Singer Conjecture predicts that H∗(Σ) vanishes
except in dimension n

2
. There is considerable evidence for this version of

the Singer Conjecture, at least in the case where (W,S) is right-angled. For
example, it holds for n = dim Σ ≤ 4 as well as for arbitrary even n when L
is a barycentric subdivision. (See [19, 20, 35].)
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This suggests that the following generalization of the Singer Conjecture
for Coxeter groups should hold for weighted L2-homology.

Conjecture 14.7. (The Generalized Singer Conjecture). Suppose L is a
GHSn−1. If q ≤ 1 and k > n

2
, then L2

qHk(Σ) = 0.

By Poincaré duality, this is equivalent to the conjecture that if q ≥ 1 and
k < n

2
, then L2

qHk(Σ) = 0.
In Section 16 we prove Conjecture 14.7 (as Theorem 16.13) in the case

where W is right-angled and n ≤ 4. In [35] the fourth author proves this con-
jecture in the case where W is right-angled, n is even and L is the barycentric
subdivision of a simplicial GHSn−1.

To further simplify the discussion, suppose q = q, a single indeterminate.
By Corollary 14.2, the roots of χq (= 1/W (q)) are symmetric about 1, i.e.,
if q is a root, then so is q−1.

At one point, the following scenario (which is stronger than Conjec-
ture 14.7) seemed plausible:

(a) χq has exactly n positive real roots (counted with multiplicity) and

(b) L2
qH∗(Σ) is always concentrated in a single dimension. The dimension

jumps each time q passes a root of χq and the size of the jump is the
multiplicity of the root.

In fact, both (a) and (b) are false. Gal [28] has given counterexamples to
(a) in dimensions ≥ 6. We shall explain why (b) is false in dimensions n ≥ 4
in Section 17 below.

15 Properties of weighted L2-homology in the

right-angled case

The usual L2-cohomology of Σ is the case q = 1. In [19] the first and
fourth authors studied this case when (W,S) was right-angled. (Recall Def-
inition 13.2: (W,S) is right-angled if mst = 2 or ∞ for all pairs {s, t} of
distinct elements in S.) Much of [19] extends in a straightforward fashion
from q = 1 to the case of a general q. The purpose of this section is to
rewrite parts of [19] in the general case.

If (W,S) is right-angled, then its nerve L is a flag complex. (A simplicial
complex Λ is a flag complex if any finite set of vertices in Λ which are pairwise
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connected by edges span a simplex of Λ.) Conversely, given any finite flag
complex L, there is a right-angled Coxeter group WL with nerve L. (The set
of generators S for WL is the vertex set of L and mst = 2 if and only if {s, t}
spans an edge of L.) For further explanations, see [12, 16, 19].

In this section, as well as in Sections 16 and 17, all simplicial complexes
will be flag complexes and all subcomplexes will be full subcomplexes. Given
a finite flag complex L, let ΣL be the complex on which WL acts. As usual,
q is an I-tuple of positive real numbers. For each i ∈ N, we have a Hilbert
Nq-module, L2

qHi(ΣL). Similarly, to each pair (L,A), we can associate the
Hilbert Nq-module, L2

qHi(ΣL,WLΣA).
We introduce some useful notation which reflects this situation.

Notation

hq
i (L) := L2

qHi(ΣL) hiq(L) := L2
qHi(ΣL) (15.1)

hq
i (A) := L2

qHi(WLΣA) (15.2)

hq
i (L,A) := L2

qHi(ΣL,WLΣA) (15.3)

biq(A) := dimNq(h
q
i (A)) (15.4)

biq(L,A) := dimNq(h
q
i (L,A)) (15.5)

χq(L) :=
∑

(−1)ibiq(A). (15.6)

The notation in (15.2) and (15.4) will not lead to confusion, since L2
qHi(WLΣA)

is the induced representation from L2
qHi(ΣA) and therefore, biq(WLΣA) =

biq(ΣA), where the left hand side of this equation denotes a dimension cal-
culated with respect to Nq(WL) while the right hand side is with respect to
Nq(WA).

Basic algebraic topology. The next theorem is a compilation of properties
of hq

i (L,A) which were proved in [19] for the case q = 1.

Theorem 15.1. (Compare [19, Section 7.2].)

(a) (Exact sequence of the pair). The sequence

→ hq
i (A)→ hq

i (L)→ hq
i (L,A)→

is weakly exact.

(b) (Excision). Let T be a set of vertices of A such that the open star of any
vertex in T is contained in the interior of A. Then

hq
i (L,A) ∼= hq

i (L− T,A− T ).
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(c) (Mayer-Vietoris sequence). Suppose L = L1∪L2 and A = L1∩L2, where
L1 and L2 (and therefore, A) are full subcomplexes of L. Then

→ hq
i (A)→ hq

i (L1)⊕ hq
i (L2)→ hq

i (L)→

is weakly exact.

(d) With L1, L2 and A as in (c),

hq
i (L,A) ∼= hq

i (L1, A)⊕ hq
i (L2, A).

(e) (The Künneth Formula: the Betti numbers of a join).

bkq(L1 ∗ L2) =
∑
i+j=k

biq(L1)b
j
q(L2).

(f) (Atiyah’s Formula).

χq(L) =
∑
T∈S

∏
s∈T

−qs
1 + qs

=
1

W (q)
.

(g) (0-dimensional homology, [25]).

b0q(L) =

{
0 if q /∈ R,

1
W (q)

if q ∈ R.

and
biq(L) = 0 for i > 0, q ∈ R.

(h) (Pseudomanifolds, [24, Theorem 10.3]). Suppose L is a (n−1)-dimensional
pseudomanifold. Then ΣL is an n-dimensional pseudomanifold and,
since the 1-skeleton of ΣL is the Cayley graph of WL, each component
of the complement of codimension 2 skeleton of ΣL is infinite. So, if
q /∈ R−1, then bnq(L) = 0. (If q ∈ R−1 and in addition, L is ori-
entable and the complement of its codimension 2-skeleton is connected,
then bnq(L) = 1/W (q−1).

(i) (The empty set). Since Σ∅ is a point,

biq(∅) =

{
1 if i = 0,

0 if i 6= 0.
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(j) (A k-simplex). Given a k-simplex σ, WS(σ)
∼= (Z2)

k+1 and Σσ =
[−1, 1]k+1. Hence, for q = q, a single indeterminate:

biq(σ) =


(

1
1+q

)k+1

if i = 0,

0 if i 6= 0.

(k) (The Betti numbers of a disjoint union). Suppose L is the disjoint union
of L1 and L2. Then, for i ≥ 2,

biq(L) = biq(L1) + biq(L2).

For q /∈ RL1 ∪RL2,

b1q(L) = b1q(L1) + b1q(L2) + 1.

Proof. Properties (a) through (e) follow from general principles as in [19].
Property (f) is Proposition 7.4; (g) is proved in Section 7 as Proposition 7.5;
(h) is proved in [24] (it also follows from Theorem 10.4); properties (i) and
(j) are special cases of (g). Property (k) follows from (c) (the Mayer-Vietoris
sequence); the last sentence of (k) follows after noting that L1 ∩ L2 = ∅ has
nonzero Betti number, b0q(∅) = 1 and that, by (g) b0q(L1) = b0q(L2) = 0.

In the next proposition we assume that I is a singleton so that q is a
single parameter q. We extend some simple calculations of [19] from q = 1
to the case where q is arbitrary.

Proposition 15.2. (Compare [19, Section 7.3].) Suppose q = q, a positive
real number.

(a) (The Betti numbers of k points). Let Pk denote the disjoint union of k
points. If k ≥ 2, then

b0q(Pk) =

{
1−(k−1)q

1+q
if q < 1

k−1
,

0 if q ≥ 1
k−1

.

b1q(Pk) =

{
0 if q < 1

k−1
,

(k−1)q−1
1+q

if q ≥ 1
k−1

.
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In particular,

b0q(S
0) = biq(P2) =

{
1−q
1+q

if q < 1,

0 if q ≥ 1,

b1q(S
0) = b1q(P2) =

{
0 if q < 1,
q−1
1+q

if q ≥ 1.

(b) (The Betti numbers of a suspension). The “suspension” of L is defined
by SL := S0 ∗ L. Then

biq(SL) =

{
1−q
1+q

biq(L) if q < 1,
q−1
1+q

bi−1
q (L) if q ≥ 1,

for all i.

(c) (The boundary complex of an n-octahedron). Let

On := S0 ∗ · · · ∗ S0︸ ︷︷ ︸
n

.

Then

b0q(On) =

{(
1−q
1+q

)n
if q < 1,

0 if q ≥ 1,

biq(On) = 0, for 1 ≤ i ≤ n− 1 and for all q,

bnq (On) =

{
0 if q ≤ 1,(
q−1
1+q

)n
if q > 1.

(d) (The Betti numbers of a cone).

biq(CL) =
1

q + 1
biq(L),

bi+1
q (CL,L) =

q

1 + q
biq(L).

Moreover, the sequence of the pair (CL,L) breaks up into short exact
sequences:

0→ hqi+1(CL,L)→ hqi (L)→ hqi (CL)→ 0.
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Proof. Since ΣPk
is 1-dimensional, biq(Pk) = 0 for i > 1. By Theorem 15.1(g),

hq
i (Pk) is concentrated in one dimension. Since χq(Pk) = 1−(k−1)q

1+q
, the calcu-

lation in (a) follows.
The calculations of Betti numbers in (b), (c) and (d) follows immediately

from part (a) and Theorem 15.1(e). The proof of the last sentence of (d) is
similar to [19, Lemma 7.3.3]. hqi (L) means L2

qHi(ΣL × Z2) (= L2
qHi(ΣL) ⊗

L2
q(Z2)). hqi (CL) can be identified with the subspace L2

qHi(ΣL)⊗As, where s
is the generator corresponding to the cone point. The map hqi (L)→ hqi (CL)
is then identified with orthogonal projection onto this subspace.

16 W is right-angled and L is a sphere

In the right-angled case, Conjecture 14.7 can be attacked using the techniques
of [19]. In this case, the arguments of [19] are sufficient to prove the conjecture
for n ≤ 4. We give the details below.

Poincaré duality. If a pair (D, ∂D) of flag complexes is a generalized
homology disk, then ΣD is a polyhedral homology manifold with boundary
(its boundary beingWDΣ∂D). Hence, it satisfies a relative version of Poincaré
duality.

Proposition 16.1. (Compare [19, Section 7.4].)

(i) If L is a GHSn−1, then biq(L) = bn−iq−1(L).

(ii) If (D, ∂D) is a GHDn−1, then biq(D, ∂D) = bn−iq−1(D).

(iii) If (D, ∂D) is a GHDn−1, then the homology and cohomology sequences
of the pair (D, ∂D) are isomorphic under Poincaré duality in the sense
that the following diagram commutes up to sign,

−→ hq
i+1(D, ∂D) −→ hq

i (∂D) −→ hq
i (D) −→ hq

i (D, ∂D) −→xy ∼= xy ∼= xy ∼= xy ∼=
−→ hn−i−1

q−1 (D) −→ hn−i−1
q−1 (∂D) −→ hn−iq−1(D, ∂D) −→ hn−iq−1(D) −→

where the vertical isomorphisms are given by Poincaré duality.
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Suppose that L = D1 ∪D2 and M = D1 ∩D2. Also suppose that L is a
GHSn−1 and that (D1,M) and (D2,M) areGHDn−1’s. By Theorem 15.1(d),
hiq−1(L,M) ∼= hiq−1(D1,M)⊕hiq−1(D2,M). Similarly to Proposition 16.1(iii),
the homology Mayer-Vietoris sequence of L = D1 ∪ D2 is isomorphic, via
Poincaré duality, to the exact sequence of the pair (L,M) in cohomology. In
other words, the following diagram commutes up to sign,

−→ hq
i+1(L) −→ hq

i (M) −→ hq
i (D1)⊕ hq

i (D2) −→xy ∼= xy ∼= xy ∼=
−→ hn−i−1

q−1 (L) −→ hn−i−1
q−1 (M) −→ hn−iq−1(D1,M)⊕ hn−iq−1(D2,M) −→

where the first row is the Mayer-Vietoris sequence, the second is the exact
sequence of the pair and the vertical isomorphisms are given by Poincaré
duality. We record the special case of this where n = 2k+1 and i = k as the
following lemma.

Lemma 16.2. (Compare [19, Lemma 7.4.6].) With hypotheses as above,

suppose n = 2k + 1. Then the map i∗ : hq−1

k (M) → hq−1

k (L) induced by the
inclusion is dual (under Poincaré duality) to the connecting homomorphism
∂∗ : hq

k+1(L)→ hq
k(M) in the Mayer-Vietoris sequence.

Proof. In this special case, the previous diagram becomes the following:

hq
k+1(L)

∂∗−−−→ hq
k(M) −−−→ hq

k(D1)⊕ hq
k(D2)xy ∼= xy ∼= xy ∼=

hkq−1(L)
i∗−−−→ hkq−1(M) −−−→ hk+1

q−1 (D1,M)⊕ hk+1
q−1 (D2,M)

Vanishing Conjectures. We consider several conjectures, I(n), III(n),
III′(n) and V(n), concerning the reduced L2

q-homology of ΣL, where L is
a generalized homology sphere. (The notation I(n), III(n), V(n), is taken
from [19]; the “n” refers to the dimension of ΣL, so that dimL = n− 1.)

I(n). If L is a GHSn−1 and q ≤ 1, then biq(L) = 0 for i > n/2.

Given (D, ∂D), a generalized homology disk, denote by D̂ (or L) the
GHS formed by gluing on C(∂D) (the cone on ∂D) to D along ∂D. If v
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denotes the cone point, then ∂D = Lv (the link of v in D̂) and C(∂D) = CLv.
Conversely, given a GHS, call it L, and a vertex v, we obtain a GHD, with
D = L− v (the full subcomplex of L spanned by the vertices 6= v) and with
∂D = Lv.

Next we consider a seemingly weaker version of I(2k + 1).

III(2k + 1). Suppose (D,Lv) is a GHD2k and D̂ = D ∪ CLv as above. If
q ≤ 1, then, in the Mayer-Vietoris sequence, the map

j∗ ⊕ h∗ : hq
k(Lv)→ hq

k(D)⊕ hq
k(CLv)

is a monomorphism.

By Lemma 16.2, III(2k + 1) is equivalent to the following.

III′(2k + 1). Suppose (D,Lv) is a GHD2k and D̂ = D ∪ CLv as above. If
q ≥ 1, then the map i∗ : hq

k(Lv) → hq
k(L), induced by the inclusion, is the

zero homomorphism.

The following is a stronger version of I(n).

V(n). Suppose L is a GHSn−1 and A is any full subcomplex.

• If n = 2k is even and q ≤ 1, then biq(L,A) = 0 for all i > k.

• If n = 2k + 1 is odd and q ≤ 1, then biq(A) = 0 for all i > k.

By [24], I(1) and I(2) hold.
Next we list some obvious implications among these conjectures.

Lemma 16.3. (Compare [19, Section 8].)

(a) I(2k + 1) =⇒ III(2k + 1).

(b) V(n) =⇒ I(n)

(c) V(2k) implies that for any full subcomplex A of L (a GHS2k−1), we have

biq(A) = 0 for all i > k and q ≤ 1.
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Proof. (a) is obvious: if I(2k+ 1) holds, then the hq
∗ (L) terms in the Mayer-

Vietoris sequence all vanish, so the map j∗ ⊕ h∗ in III(2k + 1) is a weak
isomorphism.

(b) If n = 2k, take A = ∅ to get biq(L) = 0 for i > k. If n = 2k + 1, take
A = L, to get biq(L) = 0 for i > k.

(c) Assume V(2k) holds. By (b), biq(L) = 0 for i > k. Hence, in the exact
sequence of the pair,

hq
i+1(L,A)→ hq

i (A)→ hq
i (L),

the first and third terms vanish for all i > k.

Lemma 16.4. III(2k + 1) =⇒ III(2l + 1) for all l ≤ k.

Proof. The proof is the same as in [19, 8.8.1 on p. 41]. Suppose (D,Lv) is
a GHD2l, with l < k. Let A be the join of k − l copies of an m-gon, m ≥ 5
and assign to A a thickness vector q = 1. If III(2l + 1) fails for D, then
III(2k + 1) fails for D ∗ A (the join of D and A).

Inductive Arguments. We describe the program of [19] for proving Con-
jecture V(n). The idea is to use a double induction: first, induction on the
dimension n and second, depending on the parity of n, induction either on
the number of vertices of A or on the number of vertices in L − A. In this
section we always assume q ≤ 1.

As in [19], we set up some notation for the induction on the number of
vertices. Suppose A and B are full subcomplexes of L, the vertex sets of
which differ by only one element, say v. In other words, B = A− v, for some
v ∈ S(1)(A). Let Av and Lv denote the link of v in A and L, respectively.
Thus, A = B ∪ CAv and CAv ∩ B = Av. We note that Lv is a GHS of one
less dimension than L and that Av is a full subcomplex of Lv.

Lemma 16.5. (Compare [19, Lemma 9.2.1].) V(2k − 1) =⇒ V(2k).

Proof. Suppose V(2k−1) holds. Let (L,A) be as in V(2k) and let B = A−v.
Assume, by induction on the number of vertices in L−A, that V(2k) holds
for (L,A). (The case A = L being trivial.) We want to prove it also holds
for (L,B), i.e., that biq(L,B) = 0 for i > k. Consider the exact sequence of
the triple (L,A,B):

→ hq
i (A,B)→ hq

i (L,B)→ hq
i (L,A)→ .
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Suppose i > k. By inductive hypothesis, biq(L,A) = 0. By excision (Theo-
rem 15.1(b)), biq(A,B) = biq(CAv, Av). By Theorem 15.1(e),

biq(CAv, Av) =
qv

qv + 1
bi−1
q (Av).

Since V(2k− 1) holds for (Lv, Av) and since i− 1 > k− 1, bi−1
q (Av) = 0. So,

0 = biq(CAv, Av) = biq(A,B). Consequently, biq(L,B) = 0.

Essentially the same argument proves the following lemma.

Lemma 16.6. (Compare [19, Lemma 9.2.2].) Assume that V(2k) holds.
Suppose that a flag complex L is a polyhedral homology manifold of dimension
2k and that A is a full subcomplex. Then biq(L,A) = 0 for i > k+1and q ≤ 1.

Proof. We proceed as in the previous proof. If B = A− v, then

biq(A,B) = biq(CAv, Av) =
qv

qv + 1
bi−1
q (Av).

Since we are assuming V(2k) holds, Lemma 16.3(c) implies that bi−1
q (Av) = 0

for i > k + 1. Hence, if we assume by induction that the lemma holds for
(L,A), then it also holds for (L,B).

Lemma 16.7. (Compare [19, Lemma 9.2.3].) [V(2k) and III(2k + 1)] =⇒
V(2k + 1).

Proof. Assume V(2k) and III(2k + 1) hold. Let (L,A) be as in V(2k + 1)
and let B = A − v. Assume, by induction on the number of vertices in B,
that V(2k + 1) holds for B. (The case B = ∅ being trivial.) We want to
prove that it also holds for A, i.e., that biq(A) = 0 for i > k.

First suppose that i > k + 1. Consider the Mayer-Vietoris sequence for
A = B ∪ CAv:

hq
i (B)⊕ hq

i (CAv)→ hq
i (A)→ hq

i−1(Av).

By V(2k) and Lemma 16.3(c), bi−1
q (Av) = 0 (since i − 1 > k) and hence,

biq(CAv) = 0 (by Theorem 15.1(c)). By inductive hypothesis, biq(B) = 0,
and consequently, biq(A) = 0.
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For i = k + 1, we compare the Mayer-Vietoris sequence of A = B ∪ CAv
with that of L = D ∪ CLv (where D = L− v):

hq
k+1(Lv, Av)y

0 −−−→ hq
k+1(A) −−−→ hq

k(Av)
j′∗⊕h′∗−−−→ hq

k(B)⊕ hq
k(CAv)

f∗

y y
hq
k(Lv)

j∗⊕h∗−−−→ hq
k(D)⊕ hq

k(CLv)

By V(2k), bk+1
q (Lv, Av) = 0; hence, f∗ is injective. By III(2k+ 1), j∗ ⊕ h∗ is

injective. Hence, j′∗ ⊕ h′∗ is injective and therefore, bk+1
q (A) = 0.

One of the main results of [19] has the following analog.

Theorem 16.8. (Compare [19, Theorem 9.3.1]). Statement III(2k − 1)
implies that V(n) holds for all n ≤ 2k.

Proof. By Lemma 16.4, III(2k−1) implies III(2l−1), for all l ≤ k. Suppose,
by induction on n, that V(n−1) holds for some n ≤ 2k. If n−1 is odd, then
by Lemma 16.5, V(n−1) implies V(n). If n−1 is even, then by Lemma 16.7,
V(n− 1) and III(n) imply V(n).

The conjecture in dimension 3. We begin with a discussion of triangu-
lations of S2. (Details can be found in [19, Section 10.2].)

For j = 1, 2, suppose that Lj is a flag triangulation of S2 and that sj is
a vertex of valence 4 in Lj. Choose an identification of the link of s1 with
that of s2. (They are both 4-gons.) Define a new triangulation L1�L2 of S2

by gluing together the 2-disks L1 − s1 and L2 − s2 along their boundaries.
Conversely, suppose C is an empty 4-circuit in L. Then C separates L

into two 2-disks, D1 and D2. Let L1 and L2 denote the result of capping off
D1 and D2, respectively (where “capping off” means adjoining a cone on the
boundary). Then L = L1�L2.

Lemma 16.9. (Compare [19, Lemma 10.2.7].) For q ≤ 1, b2q(L1�L2) =
b2q(L1) + b2q(L2).

Proof. This follows from the Mayer-Vietoris sequence and Proposition 15.2(c).
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Andreev [1, 2] determined the possible fundamental polytopes for any
reflection group on H3 of cofinite volume. The right-angled case of the An-
dreev’s Theorem is the following.

Theorem 16.10. (Andreev’s Theorem). Suppose that L is a flag triangula-
tion of S2 and that

(i) L has no empty 4-circuits, and

(ii) L is not the suspension of a 4- or 5-gon.

Let T denote the set of valence 4 vertices of L and let K[S−T ] be the dual
of the cellulation [S − T ] of S2 obtained by replacing stars of vertices of T
by square cells. Then K[S−T ] can be realized as an ideal, right-angled convex
polytope in H3. (The ideal vertices correspond to the square faces of [S−T ],
i.e., to the vertices of valence 4 in S.) The resulting hyperbolic reflection
group is the right-angled Coxeter group WS−T .

Next we show that III′(3) is true for right-angled reflection groups on
H3.

Equidistant hypersurfaces. Suppose a Coxeter group W acts by reflec-
tions on hyperbolic (2k + 1)-space H2k+1 with a fundamental polytope K of
finite volume.

Let H2k be a wall. We claim that the map L2
qHk(H

2k)→ L2
qHk(H

2k+1),
induced by inclusion, is the zero map for q ≥ 1.

Our argument uses weighted L2-de Rham cohomology theory. We will
show that the map L2

qHk(H2k+1) → L2
qHk(H2k), induced by restriction of

forms, is the zero map. To define these terms we first need a “weight function”
on H2k+1 which we can then use to define a new inner product on the vector
space C∞ j-forms on H2k+1.

Given any measurable nonnegative function f : H2k+1 → [0,∞), one can
modify the volume form on H2k+1 by multiplying by f and then define a new
norm on C∞ j-forms ω by

‖ω‖2f =

∫
H2k+1

‖ω‖2p f(p) dV,

where ‖ω‖p denotes the pointwise norm. ‖ω‖f is called the L2
f -norm of ω.

Let K be a fundamental polytope for W on H2k+1. As usual, q is an I-
tuple of positive real numbers. For any point p in H2k+1, put f(p) = qw when
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p ∈ wK. Of course, this expression is ambiguous for p ∈ w ∂K. Nevertheless,
choose some convention to remove the ambiguity, for example, that w is the
element of minimum word length with p ∈ wK. Then f is the word length
weight function on H2k+1. It is a sort of step function in that it is constant
on the interior of each chamber.

When K is compact, the arguments of [23] go through to show that the
cellular weighted L2-cohomology of Σ can be calculated using weighted de
Rham cohomology, i.e.,

L2
qH∗(Σ) ∼= L2

qHk(H2k+1),

where the right hand side is defined using L2
f forms with f the word length

weight function defined above. When K is not compact but has finite volume
we can reach the same conclusion by using [10].

Next let H2k be a supporting wall of K (i.e., H2k is a wall determined
by a codimension one face of K). Put coordinates (x, y) on H2k+1 by letting
y ∈ R be the oriented distance from p to the nearest point x ∈ H2k. Let Ny

be the hypersurface in H2k+1 consisting of the points of (oriented) distance
y from H2k. Let py : Ny → H2k be the projection which takes a point in Ny

to the closest point in H2k. Then py is a homothety. Let φy : H2k → Ny be
its inverse. Also, let i : H2k → H2k+1 and iy : Ny → H2k+1 be the inclusions.
Thus, i and iy ◦ φy are properly homotopic.

Let g(x, y) = f(x, 0). Note that f(x, y) ≥ g(x, y).
Let ω be a closed L2

f -k-form on H2k+1. We claim that the restriction i∗(ω)

of ω to H2k represents the zero class in reduced L2
f -cohomology. Suppose,

to the contrary, that [i∗(ω)] 6= 0. Then ‖i∗(ω)‖g ≥ ‖[i∗(ω)]‖g ≥ 0, where
‖[i∗(ω)]‖g denotes the norm of the harmonic representative of the cohomol-
ogy class [i∗(ω)]. Since φy is a conformal diffeomorphism, it follows that it
preserves norms of middle-dimensional forms: ‖φ∗y(i∗y(ω)‖g = ‖i∗y(ω)‖g. Since
i and iy ◦ φy are properly homotopic, [φ∗y(i

∗
y(ω)] = [i∗(ω)], so it follows that

‖i∗y(ω)‖g ≥ ‖[i∗(ω)]‖g. Now, since i∗y(ω) is just a restriction of ω, we have a
pointwise inequality ‖ω‖x ≥ ‖i∗y(ω)‖x. Therefore, using Fubini’s Theorem,
we obtain

‖ω‖2g =

∫
H2k+1

‖ω‖2x g(x, y) dV =

∫
R

∫
Ny

‖ω‖2x g(x, y) dAdy ≥∫
R

∫
Ny

‖i∗y(ω)‖2x g(x, y) dAdy =

∫
R

‖i∗y(ω)‖2g dy ≥
∫

R

‖[i∗(ω)]‖2g ds =∞.
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Since ‖ω‖f ≥ ‖ω‖g, this contradicts our assumption that the L2
f -norm of ω

is finite and thereby completes the proof.
In dimension 3 we get the following.

Theorem 16.11. Suppose that L is a flag triangulation of S2 satisfying the
conditions of the Andreev’s Theorem. Then III′(3) is true for L.

Proof. If v ∈ T , then, by Proposition 15.2(c), b1q(Lv) = 0 so III′(3) is auto-
matic. If v 6∈ T , then the result follows from the Andreev’s Theorem and the
previous paragraphs.

Theorem 16.12. I(3) is true: if L is a triangulation of the 2-sphere as a
flag complex, then

biq(L) = 0 for i > 1 and q ≤ 1.

Proof. If L is the suspension of a 4- or 5-gon, then the theorem follows from
Proposition 15.2(b). If L is not the suspension of a 4-gon or a 5-gon and
if it has no empty 4-circuits, then the theorem follows from Theorem 16.11,
Lemma 16.7 and the fact that I(2) holds ([24]).

In every other case, L has an empty 4-circuit which we can use to decom-
pose it as, L = L1�L2, as before. Since L1 and L2 each have fewer vertices
than does L, this process must eventually terminate. So, the theorem follows
from Lemma 16.9.

Since I(3) is true, Theorem 16.8 (together with Lemma 16.3(a)) yields
the following.

Theorem 16.13. (Compare [19, Theorem 11.1.1].) V(n) is true for n ≤ 4.

If L is a flag triangulation of S3, then V(4), Poincaré duality and [25]
imply:

for q ∈ R, hq
∗ (L) is concentrated in dimension 0,

for q ≤ 1 and q /∈ R, hq
∗ (L) is concentrated in dimensions 1 and 2,

for q > 1 and q /∈ R−1, hq
∗ (L) is concentrated in dimensions 2 and 3,

for q ∈ R−1, hq
∗ (L) is concentrated in dimension 4.
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17 Failure of concentration in the intermedi-

ate range

In this section I is a singleton (so that q is a single parameter) and W is
right-angled. We retain the notation and conventions of Section 15.

The h-polynomial. Combinatorialists have associated two polynomials
to a finite simplicial complex L: its “f -polynomial,” fL(t), and its “h-
polynomial,” hL(t). The first is defined by

fL(t) :=
∑

T∈S(L)

tCard(T ) =
n∑
i=0

fi−1t
i, (17.1)

where fm is the number of m-simplices of L, f−1 = 1 and dimL = n − 1.
The second one is defined by

hL(t) := (1− t)nfL
(

t

1− t

)
. (17.2)

If a Coxeter system (W,S) is right-angled, then for each spherical subset
T , WT

∼= (Z/2)Card(T ). So, WT (t) = (1 + t)Card(T ). Hence,

1

WT (t)
=

(
1

1 + t

)Card(T )

and
1

WT (t−1)
=

(
t

1 + t

)Card(T )

. (17.3)

Proposition 17.1. Suppose (W,S) is a right-angled Coxeter system and that
its nerve L is (n− 1)-dimensional. Then

1

W (t)
=

hL(−t)
(1 + t)n

.

Proof. By Lemma 3.3 (iv) and (17.3),

1

W (t)
=
∑
T∈S

ε(T )

WT (t−1)
=
∑
T∈S

(
−t

1 + t

)Card(T )

= fL

(
−t

1 + t

)
=

hL(−t)
(1 + t)n

.
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In the next proposition we record some properties of hL(t).

Proposition 17.2. Suppose L is a GHSn−1. Let hL(t) =
∑
hit

i be its
h-polynomial. Then

(i) hL is a polynomial of degree n. The constant term h0 is 1.

(ii) hL(t) = tnhL(t−1). (This means that the coefficient sequence (h0, . . . , hn)
is palindromic. It also implies that t→ t−1 is a symmetry of the set of
roots of hL.)

(iii) Each hi ≥ 0.

(iv) If L is also assumed to be 3-dimensional and a flag complex, then all
four roots of hL(t) are real.

Statements (i),(ii) and (iii) are well-known; proofs can be found in [7].
Statement (iv) is proved in [3]. We give a simple argument for it below.

Proof of (iv). Put ĥ(t) = hL(−t). By Proposition 17.1, 1/WL(t) = ĥ(t)/(1+
t)n. The Flag Complex Conjecture is that for n−1 = 2k−1, (−1)k/WL(1) ≥
0, i.e., (−1)kĥ(1) ≥ 0. (See [19], [16].) Let ρ be the radius of convergence of
WL(t). By Lemma 3.8, ρ is a root of ĥ and it is the smallest root in absolute
value. By (ii), ρ−1 is also a root of ĥ and it is the largest in absolute value.

Now suppose dimL = 3. To prove (iv), it suffices to show the four roots
of ĥ are positive reals. The Flag Complex Conjecture is known to hold in
this dimension (by [19]), i.e., ĥ(1) ≥ 0. We know that ρ and ρ−1 are roots
and also that ĥ(t) > 0 for t ∈ [0, ρ) or t ∈ (ρ−1,∞). If the other two roots of
ĥ don’t lie in [ρ, ρ−1], then ĥ must be negative on that interval, contradicting
the fact that ĥ(1) ≥ 0.

For any full subcomplex A of L, set rA := ρ−1
A , where, as before, ρA is

the radius of convergence of WA(t). Since WA is a subgroup of WL, ρA ≥ ρL;
hence, rA ≤ rL.

Next, suppose that M is a GHSn−2 and a full subcomplex of L (so, M is
a homology submanifold of codimension one in L). Then M separates L into
two generalized homology (n− 1)-disks, say, A and B. Thus, ∂A = ∂B = M

and L = A∪B. Let CM denote the cone on M . Let Â (resp. B̂) denote the
result of gluing CM onto A (resp. B) along M .

88



Lemma 17.3. With hypotheses as above, suppose q < min{rL, r bA, r bB} and
q > rM . Then

bn−1
q (L) ≥ q − 1

q + 1
bn−1
q (M) > 0.

Proof. Since q > 1, by Proposition 15.2(d), we have

bkq(CM) = b0q(point)bkq(M) =
1

1 + q
bkq(M). (17.4)

By Remark 7.6, since q < rL, hqn(L) ∼= hq0(L) = 0. By Proposition 14.3,
since q > rM , hqk(M) = 0 for k 6= n− 1. Hence, the Mayer-Vietoris sequence
(Theorem 15.1(c)) for L = A ∪B gives a weakly exact sequence:

0−→ hqn−1(M)−→ hqn−1(A)⊕ hqn−1(B)−→ hqn−1(L)−→ 0.

So,
bn−1
q (L) = bn−1

q (A) + bn−1
q (B)− bn−1

q (M). (17.5)

A similar Mayer-Vietoris sequence for Â = A ∪ CM gives

bn−1
q (Â) = bn−1

q (A) + bn−1
q (CM)− bn−1

q (M),

which we rewrite as

bn−1
q (A) = bn−1

q (Â)− bn−1
q (CM) + bn−1

q (M)

= bn−1
q (Â) +

q

1 + q
bn−1
q (M), (17.6)

where the second equality is from (17.4). Similarly,

bn−1
q (B) = bn−1

q (B̂) +
q

1 + q
bn−1
q (M), (17.7)

Combining (17.5), (17.6) and (17.7), we get

bn−1
q (L) = bn−1

q (Â) +
q

1 + q
bn−1
q (M) + bn−1

q (B̂) +
q

1 + q
bn−1
q (M)− bn−1

q (M)

= bn−1
q (Â) + bn−1

q (B̂) +
q − 1

1 + q
bn−1
q (M)

≥ q − 1

1 + q
bn−1
q (M) > 0,

where the last inequality holds because q > 1 and bn−1
q (M) > 0 (since q >

rM).
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Lemma 17.4. (Failure of concentration in dimension 4). Suppose that L is a
triangulation of S3 as a flag complex, that a full subcomplex M is isomorphic
to the boundary complex of an octahedron and that M divides L into two
3-disks A and B nontrivially, i.e., neither A nor B is a cone on M . Suppose
further that χ1(L) 6= 0. Let p be the second largest root of hL(−t), and let
r = min{p, r bA, r bB}. Then r > 1 and for 1 < q < r, b2q(L) and b3q(L) are both
nonzero.

Proof. We want to use Lemma 17.3 for n = 4. Since WM is the product of 3
copies of the infinite dihedral group, its growth series is given by

WM(t) =

(
1 + t

1− t

)3

.

So, ρM = 1 = rM .
Suppose r bA = 1. Then rA = 1 and by Proposition 3.10, WA splits as W0×

W1, whereW0 is a Euclidean reflection group andW1 is finite. SinceM = ∂A,
the only possibility is W0 = WM and W1 = Z/2, i.e., A = CM , which we
have ruled out by hypothesis. Similarly, for B. Thus, min{r bA, r bB} > 1. Since
χ1(L) 6= 0, p 6= 1 and by [19], χ1(L) > 0. So, χq(L) is positive on the interval
(p−1, p) and therefore, also on the subinterval (1, r).

By Lemma 17.3, for 1 < q < min{rL, r bA, r bB}, b3q(L) > 0. On the interval
(p−1, p) we have b4q(L) = 0 = b0q(L) as well as χq(L) > 0 and this forces
b2q(L) > 0. Therefore, for 1 < q < r, hq∗(L) is nonzero in dimensions 2 and
3.

Example 17.5. (Existence). Here we show that there is a flag triangulation
L of S3 together with a full subcomplex M ⊂ L so that the conditions of
Lemma 17.4 are satisfied. Let Pm denote an m-gon (i.e., a triangulation of S1

withm vertices). Let Il denote the triangulation of an interval with l vertices.
Let Ak,m denote a triangulation of the annulus S1 × [0, 1] such that its two
boundary components are Pk and Pm and such that there are no interior
vertices. (This does not determine the triangulation, but it does determine
the number of i-simplices in Ak,m for i = 0, 1, 2.) Form the suspension
SAk,m := S0 ∗ Ak,m. It has two boundary components: SPk and SPm. Fill
in SPm with I4 ∗ Pm to get a triangulation A of D3, i.e.,

A := SAk,m ∪SPm (I4 ∗ Pm).

90



If k = 4, then ∂A = SP4, which is the boundary complexM of an octahedron.
Hence, we can double A along its boundary to get a triangulation L of S3

(so, B = A).
By Theorem 15.1 (f),

χq(L) =
1

W (q)
= fL

(
−q

1 + q

)
,

where fL was defined in (17.1). This formula is the basic method used for
computing Euler characteristics. It gives

χq(Pm) = 1− mq

(1 + q)
+

mq2

(1 + q)2
=

1− (m− 2)q + q2

(1 + q)2
,

χq(I4) = 1− 4q

(1 + q)
+

3q2

(1 + q)2
=

1− 2q

(1 + q)2
.

We compute the number of simplices in Ak,m. Each triangle of Ak,m has
exactly one of its edges on the boundary and each interior edge is on the
boundary of two triangles. Hence, there are k+m triangles in Ak,m and k+m
interior edges. So, f0(Ak,m) = k+m, f1(Ak,m) = 2(k+m), f2(Ak,m) = k+m
and

χq(Ak,m) = 1− (k +m)q

(1 + q)
+

2(k +m)q2

(1 + q)2
− (k +m)q3

(1 + q)3

= (1− (k +m− 3)q + 3q2 + q3)/(1 + q)3.

Therefore,

χq(SAk,m) = χq(S
0)χq(Ak,m) =

1− q
1 + q

χq(Ak,m)

= (1− (k +m− 2)q + (k +m)q2 − 2q3 − q4)/(1 + q)4,

χq(I4 ∗ Pm) = χq(I4)χq(Pm)

= (1−mq + (2m− 3)q2 − 2q3)/(1 + q)4,

χq(SPm) = χq(S
0)χq(Pm)

= (1− (m− 2)q + (m− 2)q3 − q4)/(1 + q)4

So,

χq(A) = χq(SAk,m) + χq(I4 ∗ Pm)− χq(SPm)

= (1− (k +m)q + (k + 3m− 3)q2 − (m+ 2)q3)/(1 + q)4
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Taking k = 4, χq(A) = (1 − (m + 4)q + (3m + 1)q2 − (m + 2)q3)/(1 + q)4;
hence,

χq(Â) = χq(A)−
(

q

1 + q

)
χq(M) = χq(A)−

(
q

1 + q

)(
1− q
1 + q

)3

= (1− (m+ 5)q + (3m+ 4)q2 − (m+ 5)q3 + q4)/(1 + q)4.

When m = 10, the numerator is

h bA(−q) = 1− 15q + 34q2 − 15q3 + q4,

which has roots .08, .48, 2.10 and 12.34 (rounded off to two decimal places).
Similarly,

χq(L) = 2χq(A)− χq(M) = (1− 26q + 62q2 − 26q3 + q4)/(1 + q)4,

which has roots .04, .48, 2.08 and 23.40. So, the numbers in Lemma 17.4 are
r bA = r bB = 12.34 and r = p = 2.08. In particular, since r > 2, the right-
angled building with q = 2 has nonvanishing L2-homology in dimensions 2
and 3.

18 Remarks about other groups

Suppose Γ is a countable discrete group and | | is a “norm” on it, i.e., | | is a
function from Γ to [0,∞) such that |αβ| ≤ |α|+|β|. For example, | | might be
defined by |γ| = l(γ) where l : Γ→ Z is word length with respect to a finite
set of generators S. Suppose further that Γ acts properly and cellularly on a
CW complex X and that a subcomplex D ⊂ X is a “fundamental domain” in
the sense that it contains at least one cell from each Γ-orbit of cells. Given a
cell σ ⊂ X, define d(σ), its distance from D, by d(σ) := min{l(γ) | σ ⊂ γD}.

As before, given a positive real number q, define an inner product 〈 , 〉q
on R(Γ) by 〈eγ, eγ′〉q := q|γ|δγγ′ . Let L2

q(Γ, | |) be its completion. Simi-
larly, define an inner product on compactly supported cellular i-cochains,
Ci
c(X), by 〈eσ, eσ′〉q := ql(σ)δσσ′ and let L2

qC
i(X) be its completion. Using

the usual coboundary operator δ, we get the weighted L2-cohomology spaces,
L2
qH

∗(X). Let ∂qi denote the adjoint of δ : L2
qC

i−1(X) → L2
qC

i(X). The ∂qi
give us a chain complex and allow us to define the weighted L2-homology,
L2
qH∗(X).
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The infinite sum
Γ(t) :=

∑
γ∈Γ

t|γ|.

converges for t in a some neighorhood of 0 in [0,∞). Γ(t) is the growth
function of (Γ, | |). It is a power series if | | is integer-valued (e.g., if it is
given by a word length). Let R be the region of convergence of Γ(t). Suppose
X is connected. The argument in the proof of Proposition 7.5 shows that
any 0-cocycle is constant and that if q ∈ R, the only constant which is square
summable is 0. Hence, L2

qH
0(X) ∼= R if q ∈ R and is 0 if q /∈ R.

Γ acts on these vector spaces; however, it does not act via isometries.
The usual boundary map ∂ gives us a different chain complex structure

(on the same underlying Hilbert spaces L2
qC

i(X)).
As in Lemma 7.1, the isometry θ : L2

qCi(X) → L2
1/qCi(X) defined by

eσ → qd(σ)eσ intertwines ∂q with ∂. Hence, it induces an isomorphism θ∗ :
H∗(L

2
qC∗(X), ∂)→ L2

1/qH∗(X).
As in Remark 7.2, we have natural inclusions of cochain complexes:

Ci
c(X) ↪→ L2

qC
i(X) ↪→ Ci(X).

There is also a version for chain complexes (using ordinary boundary map,
∂):

Ci(X) ↪→ L2
qCi(X) ↪→ C lf

i (X),

where C lf
i (X) denotes the infinite cellular chains on X. Using the isometry

θ, we get a monomorphism of chain complexes

Ci(X) ↪→ L2
1/qCi(X)

θ−→L2
qCi(X), (18.1)

where the boundary maps in the first two terms are the usual ones and where
the boundary map in the third term is ∂q. We then have the following version
of Theorem 12.1.

Conjecture 18.1. (i) For q ∈ R, the canonical map L2
qH

i(X)→ H i(X;R)
is a monomorphism. Moreover, the map Hi(X;R) → L2

qHi(X), in-
duced by (18.1), is a monomorphism with dense image.

(ii) For q−1 ∈ R, the canonical map H i
c(X;R)→ L2

qH
i(X) is a monomor-

phism with dense image.
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Quite possibly it will be necessary to add more hypotheses for this con-
jecture to be true. For example, we might need to assume that the Γ-action
is cocompact and that the norm is given by a word length with respect to a
set of generators induced by the choice of fundamental domain D.

The missing feature from this picture is that for a general group Γ there
is no analog of the Hecke algebra and no analog of the Hecke - von Neumann
algebra Nq. So, in the general situation we don’t know how to define “di-
mension” and we don’t have weighted L2-Betti numbers. Nevertheless, in
some situations it is still possible to assign a “dimension” to these weighted
L2-cohomology spaces and obtain weighted L2-Betti numbers. The condition
that is needed for these numbers to be well-defined is that the Γ-action on
X has a strict fundamental domain.
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