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1 Introduction.

For the weighed Hardy operator T defined by

(Tf)(x) = v(x)

x∫
0

u(t)f(t)dt, (1)

and being a map from Lp(a, b) into Lp(a, b), for 1 ≤ p ≤ ∞, properties of the
approximation numbers were studied in (EEH1), (EEH2), citeLL and (EHL1).
From papers (NS2), (NS1) and (EHL2) under some conditions on u and v was
shoved that the approximation numbers an(T ) of T in the case 1 < p < ∞
satisfy

lim
n→∞

nan(T ) = αn

b∫
a

|u(t)v(t)|dt,

where αp = (1/λp)
1/p (λp corresponds to the first eigenvalue of the p-Laplacian

problem on interval (0, 1) and λp =
(

2π
sin(π/p)

)
1

p′pp−1 ) (see (EL)) . From this
follow

1

C
≤ lim

n→∞

(
an(T )− αp

n
‖uv‖1,(a,b)

)
≤ C, for some C > 0

Under slightly stricter conditions on weights u, v these results were improved
in (EKL) (case p = 2) and latter in (L) (case 1 < p < ∞). It was show that

lim sup
n→∞

n1/2

∣∣∣∣∣∣αp

b∫
a

|u(t)v(t)|dt− nan(T )

∣∣∣∣∣∣ (2)

≤ c(‖u′‖p′/(p′+1) + ‖v′‖p/(p+1)) (‖u‖p′ + ‖v‖p) + 3αp‖uv‖1

In this paper techniques from (L) are improved and by using information
about properties of A(I) (introduced in (EHL1)) we obtain information about
first asymptotic for n-widths and also information about second asymptotic
for the approximation numbers and n-widths numbers for the weighted Hardy
operator. Mainly we proved:

ρn(T ) =
1

n

∫
I

u(x)v(x)dx + O(n−2)
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where ρn(T ) stands for any of the followings: the Approximation numbers of
T , Kolmogorv, Gel’fand or Bernstain n-widths of T .

Let we mentioned here that in the case u = v = 1 (i.e. non-weighted case)
problem of description of approximation numbers and n-widths for the non-
weighted Hardy operator and corresponding Sobolev embedding was already
studied and described in (M), (BMN), (TB), (EL) and (L1).

Also we would like to put in the reader attention a recent elegant paper (B)
in which similar results were obtained by using different techniques.

2 Asymptotic estimate for the Approximation and n-widths num-
bers.

Let we start by recalling the definitions of the Approximative numbers and
n-widths.

Definition 2.1 Let T : Lp(I) → Lp(I) be a bounded operator and n ∈ N.

(i) The n-th approximation number an(T ) of T is defined by

an(T ) := inf ‖T − F |Lp(T ) → Lp(I)‖,

where the infimum is taken over all bounded linear maps F : Lp(I) → Lp(I)
with rank less than n.

(ii) The n-th Kolmogorov widths dn(T ) of T is defined by

dn(T ) = dn(T (Lp(I)), Lp(I)) = inf
Xn

sup
‖x‖Lp(I)≤1

inf
y∈Xn

‖Tx− y‖Lp(I)

where the infimum is taken over all n-dimensional subspaces Xn of Lp(I).
(iii) The n-th widths in the sense of Gel’fand dn(T ) of T is defined by

dn(T ) = dn(T (Lp(I)), Lp(I)) = inf
Ln

sup
‖x‖Lp(I)≤1,x∈Ln

‖Tx‖Lp(I)

where the infimum is taken over all n-dimensional subspaces Xn of Lp(I).
(iv) The Bernstein n-th widths bn(T ) of T is defined by

bn(T ) = bn(T (Lp(I)), Lp(I)) = sup
Xn+1

inf
Tx∈Xn+1,Tx 6=0

‖Tx‖Lp(I)/‖x‖Lp(I)

where Xn+1 is any subspace of span {Tx; x ∈ X} of dimension ≥ n + 1.
(v) The linear n-th widths δn(T ) of T is defined by

δn(T ) = δn(T (Lp(I)), Lp(I)) = inf
Pn

sup
‖x‖Lp(I)≤1

‖Tx− Pnx‖Lp(I)
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where Pn is any continuous linear operator of Lp(I) into Lp(I) of rank at
most n.

The following lemma will give us information about relation between the ap-
proximation numbers and n-widths.

Lemma 2.2 Let T : Lp(I) ∈ Lp(I) be a bounded operator and n ∈ N, then

an+1(T ) = δn(T ) ≥ dn(T ), dn(T ) ≥ bn(T ).

Proof. The first equality is obvious for the rest see (P) �

Throughout the paper we shall assume that −∞ ≤ a < b ≤ ∞ and that

u ∈ Lp′(a, b), v ∈ Lp(a, b) and u, v > 0 on (a, b). (3)

Under these restrictions on u and v it is well known (see, for example, (EEH1),
Theorem 1) that the norm ‖T‖ of the operator T : Lp(a, b) → Lp(a, b) in (1)
satisfies

‖T‖ ∼ sup
x∈(a,b)

‖uχ(a,x)‖p′,(a,b)‖vχ(x,b)‖p,(a,b). (4)

Here χS denotes the characteristic function of the set S and

‖f‖p,I =

∫
I

|f(t)|pdt

1/p

, 1 < p < ∞, I ⊂ (a, b).

Moreover, by F1 ∼ F2 we mean that C−1F1 ≤ F2 ≤ CF1 for some positive
constant C ≥ 1 independent of any variables in F1, F2 ≥ 0.

From (3) also follows that the operator T is a compact operator from Lp into
Lp (see (EGP) or (OK)).

In the next we introduce a function A which will play a key role in the paper.
Given I = (c, d) ⊂ (a, b), set

A(I, u, v) := sup
‖f‖p,I=1

inf
α∈<

‖Tf − αv‖p,I .

(we will write shortly A(I) in situation in which is obvious which functions
are u, v.) Since T is a compact operator then from (EHL2), Theorem 3.8. we
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have that

A(I, u, v) = inf
x∈I

‖Tx,I |Lp(I) → Lp(I)‖,

where

Tx,If(.) := v(.)χI(.)

.∫
x

v(t)χI(t)dt.

Lemma 2.3 Let I = (c, d) ⊂ (a, b) and 1 ≤ p ≤ ∞, then ‖Tx,I |Lp(I) →
Lp(I)‖ is continuous in x.

Proof. See Lemma 3.4 in (EHL2) and put Γ = (a, b) and K = I. �

Lemma 2.4 Suppose that u and v satisfy (3), a ≤ c < d ≤ b and 1 < p < ∞.
Then:

1. The function A(., d) is non-increasing and continuous on (a, d).

2. The function A(c, .) is non-decreasing and continuous on (c, b).

3. limy→a+ A(a, y) = limy→b− A(y, b) = 0.

Proof. See Lemma 2.2 in (L) �

From the previous two lemmas we can obtained the next lemma.

Lemma 2.5 Suppose that T : Lp(a, b) → Lp(a, b) is compact and 1 < p < ∞.
Let I = (c, d) and J = (c′, d′) be subintervals of (a, b), with J ⊂ I, |J | > 0,
|I − J | > 0,

∫ b
a vp(x)dx < ∞ and u, v > 0 on I. Then

A(I) > A(J) > 0. (5)

Proof. See Lemma 2.3 in (L). �

Now we will introduce N(ε) which play important rule in the next.

Remark 2.6 It follows from the continuity of A that for sufficiently small
ε > 0 there is an a1, a < a1 < b, for which A(a1, b) = ε. Indeed, since T is
compact, there exists a positive integer N(ε) and points b = a0 > a1 > . . . >
aN(ε) = a with A(ai, ai−1) = ε, i = 1, 2, . . . , N(ε)− 1 and A(a, aN(ε)−1) ≤ ε.

By the same arguments as in the proof of Lemma 2.6 from [EKL] we have as
a consequence of the previous two lemmas the following lemma:
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Lemma 2.7 If T : Lp(a, b) → Lp(a, b) be compact and v ∈ Lp(a, b), u ∈
Lp′(a, b) then the number N(ε) is a non-increasing function of ε which takes
on every sufficiently large an integer value.

The quantity N(ε) is useful in the derivation of upper and lower estimates
for the approximation numbers of T as we can see from the following lemma
which is an easy consequence of Lemma 3.19 from (EHL2) (put K = (a, b)).

Lemma 2.8 For all ε ∈ (0, ‖T‖),

aN(ε)+2(T ) ≤ ε ≤ aN(ε)−1(T ).

In next we extend this lemma also for n-widths.

Lemma 2.9 Let ε > 0, 1 < p < ∞ and let I = (a, b). If N := N(ε) then

aN+1(T ) ≤ ε.

Proof. At first let we recall that T is compact and then from Lemma 2.7
follows that for any ε > 0 we have N(ε) < ∞. Let {Ii}N

i=1 be the partition of
I which defines N := N(ε) in Remark 2.6 and set Pf =

∑N
i=1 Pif where

Pif(x) := χIi
v(x)

 ai∫
a

fu +

 ci∫
ai

fuχIi

 ,

and ai is the left end point of Ii, ci is the point from Ii such that A(Ii) =
‖Tci,Ii

|Lp(I) → Lp(I)‖ (for existence such point see Lemma 3.14 in (EHL2)).

Then rank(P ) ≤ N and we have

‖(T − P )f‖p
p,I =

N∑
i=1

‖Tf − Pf‖p
p,Ii

=
N∑

i=1

‖χIi
v(.)

.∫
a

v(t)f(t)dt− Pif(.)‖p
p,Ii

=
N∑

i=1

‖χIi
v(.)

.∫
ci

v(t)f(t)dt‖p
p,Ii

≤
N∑

i=1

(A(Ii))
p ‖f‖p

p,Ii

=
(

max
i=1,...,N

A(Ii)
)p

‖f‖p
p,I
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and then the lemma follows. �

Lemma 2.10 Let ε > 0, 1 < p < ∞ and let I = (a, b). If N := N(ε) then

bN−2(T ) ≥ ε.

Proof. From the definition of N(ε) we have that for i = 1, ..., N − 1 we have
A(Ii) = ε. Let λ ∈ (0, 1) then from the definition of A(Ii) we have that for
i = 1, ..., N −1 there is a function φi ∈ Lp(I), where ‖φi‖p,I = 1, with support
in Ii such that

inf
α∈R

‖Tφi − αv‖p,Ii
> λA(Ii) ≥ λε.

Let XN−1 = span{Tφ; φ =
∑N−1

i=1 λiφi, λi ∈ R} then we can see that rank XN−1 ≥
N − 1. Take 0 6= Tφ ∈ XN−1 then 0 6= φ =

∑N−1
i=1 λiφi with λi 6= 0 for some i.

‖Tφ‖p
p,I ≥

N−1∑
i=1

‖(Tφ)χIi
‖p

p,I

=
N−1∑
i=1

‖χIi
(x)v(x)

 x∫
ai

λiφi(t)χIi
(t)dt +

ai∫
a

φ(t)u(t)dt

 ‖p
p,I

=
N−1∑
i=1

‖
(
Tφi(x) + v(x)

ηi

λi

)
λi‖p

p,Iiwhere ηi :=

ai∫
a

φ(t)u(t)dt


≥

N−1∑
i=1

inf
α∈R

‖Tφi(x)− v(x)α‖p
p,Ii
|λi|p

≥ (λε)p
N−1∑
i=1

‖φi‖p
p,Ii
|λi|p ≥ (λε)p‖φ‖p

p,Ii
.

and the lemma follows.�

From these lemmas follows the next theorem:

Theorem 2.11 Let ε > 0, 1 < p < ∞ and let I = (a, b). If N := N(ε) then

aN+1(T ) ≤ ε ≤ bN−2(T ).

We can see that this theorem is giving us:

aN+1(T ) ≤ ε ≤ aN−1(T ) and ρN(T ) ≤ ε ≤ ρN−2(T )

where ρN(T ) stands for any of the followings δN(T ), dN(T ), dN(T ) or bN(T ).
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For general u and v it is impossible to find a simple relation between ε and
N(ε), but by using the properties of A(I) the behavior of εN(ε) when ε → 0+

can be determined.

Lemma 2.12 Given v ∈ Lp(a, b), u ∈ Lp′(a, b) then we have

lim
ε→0+

εN(ε) = αp

b∫
a

|u(t)v(t)|dt.

This result follows from an adaptation of the argument of (EHL2); see, in
particular, Theorem 6.4 of that paper. Together with Theorem 2.11 this shows,
again using the techniques of (EHL2), that the following theorem holds.

Theorem 2.13 Given v ∈ Lp(a, b), u ∈ Lp′(a, b) the operator T defined in
(1) satisfies

lim
n→∞

nρn(T ) = αp

b∫
a

|u(t)v(t)|dt,

where αp = A((0, 1), 1, 1) and ρn(T ) stands for any of the followings bn(T ),
δn(T ), dn(T ), dn(T ) or an(T ).

From paper (L) we have better estimate for the relation between ε > 0 and
N(ε) (see Theorem 4.1 in (L))

Lemma 2.14 Let −∞ ≤ a < b ≤ ∞ and I = (a, b), let u ∈ Lp′(I), v ∈ Lp(I)
and suppose that u′ ∈ Lp′/(p′+1)(a, b) ∩ C([a, b]), v′ ∈ Lp/(p+1)(a, b) ∩ C([a, b]).
Then

lim sup
ε→0+

|αp

p∫
a

|u(t)v(t)dt− εN(ε)|N1/2(ε) ≤

c(p, p′)
(
‖u′‖p′/(p′+1),I + ‖v′‖p/(p+1),I

) (
‖u‖p′,I + ‖v‖p,(a,b)

)
+ 3αp‖uv‖1,I ,

where αp = A((0, 1), 1, 1) and c(p, p′) is a constant depending only on p and
p′.

From this Lemma and from Theorem 2.11 we can easily obtain the following
theorem:

Theorem 2.15 Let −∞ ≤ a < b ≤ ∞ and I = (a, b), let u ∈ Lp′(I), v ∈
Lp(I) and suppose that u′ ∈ Lp′/(p′+1)(a, b) ∩ C([a, b]), v′ ∈ Lp/(p+1)(a, b) ∩
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C([a, b]). Then

lim sup
n→∞

|αp

p∫
a

|u(t)v(t)dt− ρn(T )n|n1/2 ≤

c(p, p′)
(
‖u′‖p′/(p′+1),I + ‖v′‖p/(p+1),I

) (
‖u‖p′,I + ‖v‖p,(a,b)

)
+ 3αp‖uv‖1,I ,

where αp = A((0, 1), 1, 1), c(p, p′) is a constant depending only on p and p′ and
ρn(T ) stands for any of the followings δn(T ), dn(T ), dn(T ), bn(T ) or an(T ).

3 The second asymptotic term

In this section we will use properties of A(I) to obtain better estimate about
the Approximation numbers and n-widths numbers.

At first let we make some observation about A(I).

Lemma 3.1 Let I = (c, d) ⊆ (a, b) and d = (c + d)/2. Suppose that u and v
are constant functions over I. Then

A(I, u, v) = |I||u||v|A((0, 1), 1, 1)

and

sup
f∈Lp(I)

inf
c∈R

‖v(x)
∫ x
a u(t)f(t)dt− c‖p,I

‖f‖p,I

=

sup
f∈Lp(I)

‖v(x)
∫ x
d u(t)f(t)dt− c‖p,I

‖f‖p,I

=

= |u||v| ‖ sinp(πp(x− a)/(b− a))‖p,I

‖ cosp(πp(x− a)/(b− a))‖p,I

=

= αp|u||v| =
(

1

λp

)1/p

|u||v|,

where λp =
(

2π
sin(π/2)

)
1

p′pp−1 is the first non-zero eigenvalue of the p-Laplacian

problem on interval (0, 1).

Proof. See Lemma 4.1 in (EHL2) and Lemma 2.7 in (EL). �
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In this lemma sinp(.) and cosp(.) means special goniometric functions which
corresponds to first non-constant eigenfunctions of the one-dimensional p-
Laplacian (see (EL) or (DM) for more).

From the definition of A(I) we have:

Lemma 3.2 Let I = (c, d) ⊂ (a, b). Let u1 ≥ u2 > 0 and v1 ≥ v2 > 0 than
we have:

A(I, u1, v1) ≥ A(I, u2, v2) ≥ 0.

Now we are ready to prove the following lemma about behavior of εN(ε).

Lemma 3.3 Let 1 < p < ∞, I = (a, b), u ∈ Lp′(I), v ∈ Lp(I) and (v′/v), (u′/u) ∈
L1(I) ∩ C[a, b] then

lim
ε→0+

∣∣∣∣∣∣N(ε)

εN(ε)−
∫
I

u(x)v(x)dx

∣∣∣∣∣∣
≤
∫
I

u(x)v(x)dx

∫
I

v′(x)

v(x)
dx +

∫
I

u′(x)

u(x)
dx + 1

+

∫
I

u′(x)

u(x)
dx

∫
I

v′(x)

v(x)
dx



Proof. Let we take ‖T‖ > ε > 0 and N := N(ε). Then we have the following
partition: I = ∪N

i=1, A(Ii) = ε for i = {1, ..., N − 1} and A(IN) < ε. Define
the following step functions:

u+,ε(x) =
N∑

i=1

u+,ε
i χIi

(x), v+,ε(x) =
N∑

i=1

v+,ε
i χIi

(x)

u−,ε(x) =
N∑

i=1

u−,ε
i χIi

(x), v−,ε(x) =
N∑

i=1

v−,ε
i χIi

(x)

where

u+,ε
i = sup

x∈Ii

|u(x)|, u−,ε
i = inf

x∈Ii

|u(x)|

v+,ε
i = sup

x∈Ii

|v(x)|, v−,ε
i = inf

x∈Ii

|v(x)|.
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Then we have from the previous two lemmas:

u−,ε
i v−,ε

i |Ii| ≤ A(Ii) ≤ u+,ε
i v+,ε

i |Ii|, (6)

and we can see that∫
I

u−,ε(x)v−,ε(x)dx ≤
∫
I

u(x)v(x)dx ≤
∫
I

u+,ε(x)v+,ε(x)dx.

Let we estimate upper bound for the following quantity:

K(ε) :=
∫
I

(u+,ε(x)v+,ε(x)− u−,ε(x)v−,ε(x))dx

=
N∑

i=1

|Ii|(u+,ε
i v+,ε

i − u−,ε
i v−,ε

i )

=
N∑

i=1

|Ii|(u+,ε
i v+,ε

i − u+,ε
i v−,ε

i + u+,ε
i v−,ε

i − u−,ε
i v−,ε

i )(
use: (v+,ε

i − v−,ε
i ) ≤ |Ii|max

x∈Ii

|v′(x)|

and (u+,ε
i − u−,ε

i ) ≤ |Ii|max
x∈Ii

|u′(x)|
)

≤
N∑

i=1

|Ii|
[
u+,ε

i |Ii|max
x∈Ii

|v′(x)|+ v−,ε
i |Ii|max

x∈Ii

|u′(x)|
]

(
use |Ii|u−,ε

i v−,ε
i ≤ A(Ii) ≤ ε

)
≤ ε

N∑
i=1

[
u+,ε

i

u−,ε
i

|Ii|
maxx∈Ii

|v′(x)|
v−,ε

i

+
v−,ε

i

v−,ε
i

|Ii|
maxx∈Ii

|u′(x)|
u−,ε

i

]

≤ ε
N∑

i=1

[
u−,ε

i + |Ii|maxx∈Ii
|u′(x)|

u+,ε
i

|Ii|
maxx∈Ii

|v′(x)|
v−,ε

i

]

+ε
N∑

i=1

[
|Ii|

maxx∈Ii
|u′(x)|

u−,ε
i

]

≤ ε
N∑

i=1

[
1 + |Ii|

maxx∈Ii
|u′(x)|

u+,ε
i

]
|Ii|

maxx∈Ii
|v′(x)|

v−,ε
i

+ε
N∑

i=1

[
|Ii|

maxx∈Ii
|u′(x)|

u−,ε
i

]

≤ ε
N∑

i=1

[
1 +

N∑
i=1

[
|Ii|

maxx∈Ii
|u′(x)|

u−,ε
i

]] [
|Ii|

maxx∈Ii
|v′(x)|

v−,ε
i

]

+ε
N∑

i=1

[
|Ii|

maxx∈Ii
|u′(x)|

u−,ε
i

]
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= ε
N∑

i=1

[
|Ii|

maxx∈Ii
|u′(x)|

u−,ε
i

]
+ ε

N∑
i=1

[
|Ii|

maxx∈Ii
|v′(x)|

v−,ε
i

]

+ε

(
N∑

i=1

[
|Ii|

maxx∈Ii
|v′(x)|

v−,ε
i

])(
N∑

i=1

[
|Ii|

maxx∈Ii
|u′(x)|

u−,ε
i

])
.

From (6) we have:

N∑
i=1

u−,ε
i v−,ε

i |Ii| ≤ εN and
N∑

i=1

u+,ε
i v+,ε

i |Ii| ≥ ε(N − 1)

and then

N∑
i=1

u−,ε
i v−,ε

i |Ii| −
∫
I

uv dx ≤ εN −
∫
I

uv dx ≤
N∑

i=1

u+,ε
i v+,ε

i |Ii|+ ε−
∫
I

uv dx

which give us

−K(ε)dx ≤ εN −
∫
I

uv dx ≤ K(ε) + ε.

and

−NK(ε)dx ≤ N

εN −
∫
I

uv dx

 ≤ NK(ε) + εN.

Using that limε→0+(εN(ε)) =
∫
I uv dx and that

lim
ε→0+

K(ε)

ε
=
∫
I

u′

u
+
∫
I

v′

v
+
∫
I

u′

u

∫
I

v′

v

we obtain:

lim sup
ε→0+

∣∣∣∣∣∣N
εN −

∫
I

uv dx

∣∣∣∣∣∣ ≤
∫

I

uv

∫
I

u′

u
+
∫
I

v′

v
+
∫
I

u′

u

∫
I

v′

v



+
∫
I

uv.

�
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With help of Theorem 2.2 we can obtain from the previous lemma the following
theorem

Theorem 3.4 Let −∞ ≤ a < b ≤ ∞ and I = (a, b), let u ∈ Lp′(I), v ∈ Lp(I)
and (v′/v), (u′/u) ∈ L1(I) ∩ C[a, b] then

lim sup
n→∞

∣∣∣∣∣∣n
nρn(T )−

∫
I

u(x)v(x)dx

∣∣∣∣∣∣
≤
∫
I

u(x)v(x)dx

∫
I

v′(x)

v(x)
dx +

∫
I

u′(x)

u(x)
dx + 2

+

∫
I

u′(x)

u(x)
dx

∫
I

v′(x)

v(x)
dx

 ,

where ρn(T ) stands for any of the followings: an(T ), δn(T ), dn(T ), dn(T ) or
bn(T ), and T is the Hardy-type operator.

Proof. From Lemma 2.7 we have that for any large n there is ε > 0 such
n = N(ε). Then from Theorem 2.11 we have:

n

εn−
∫
I

uv

≥n

an+1(T )n−
∫
I

uv


≥ [(n + 1)− 1]

an+1(T )[(n + 1)− 1]−
∫
I

uv


≥ (n + 1)

an+1(T )(n + 1)−
∫
I

uv


+(n + 1)(−an+1(T ))−

an+1(T )n−
∫
I

uv


and

n

εn−
∫
I

uv

≤n

an−1(T )n−
∫
I

uv


≤ [(n− 1) + 1]

an−1(T )[(n− 1) + 1]−
∫
I

uv


≤ (n− 1)

an−1(T )(n− 1)−
∫
I

uv
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+(n− 1)an−1(T ) +

an−1(T )n−
∫
I

uv

 .

By taking limit n → ∞ and with help of Theorem 2.13 we have proved our
theorem for ρn(T ) = an(T ) and by using similar technique we can get the
proof of the theorem for dn(T ), dn(T ), bn(T ) and δn(T ). �

From Theorem 3.4 we have the following information about the second asymp-
totic:

ρn(T ) =
1

n

∫
I

u(x)v(x)dx + O(n−2).

Remark 3.5 We have found that our method which is based on studding of
the behavior εN(ε) can not be improved behind the second term.

Acknowledgment. J. Lang wishes to record his gratitude to the Leverhulme
Foundation for its support and also to the Ohio State University for SRA
leave.
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