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Abstract. We consider vector fields X on a closed manifold M
with rest points of Morse type. For such vector fields we define the
property of exponential growth. A cohomology class ξ ∈ H1(M ;R)
which is Lyapunov for X defines counting functions for isolated
instantons and closed trajectories. If X has exponential growth
property we show, under a mild hypothesis generically satisfied,
how these counting functions can be recovered from the spectral
geometry associated to (M, g, ω) where g is a Riemannian metric
and ω is a closed one form representing ξ. This is done with the
help of Dirichlet series and their Laplace transform.
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1. Introduction

1.1. Vector fields with Morse zeros and Lyapunov cohomology
class. Let X be a smooth vector field on a smooth manifold M . A
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point x ∈M is called a zero or rest point of X if X(x) = 0. Denote by
X := {x ∈M |X(x) = 0} the set of rest points.

Recall that:

(i) A parameterized trajectory is a map θ : R→M so that θ′(t) =
X(θ(t)). A trajectory is an equivalence class of parameterized
trajectories with θ1 ≡ θ2 iff θ1(t + a) = θ2(t) for some real
number a. Any representative θ of a trajectory is called a
parametrization.

(ii) An instanton from the rest point x to the rest point y is a
trajectory with the property that for one and then any param-
eterization θ, limt→−∞ θ(t) = x, limt→+∞ θ(t) = y, and which
is isolated among these trajectories.

(iii) A parameterized closed trajectory is a pair θ̃ = (θ, T ), with
θ a parametrized trajectory so that θ(t + T ) = θ(t). A pa-
rameterized closed trajectory gives rise to a smooth map θ :
S1 := R/TZ→ M . A closed trajectory is an equivalence class
of parameterized closed trajectories with (θ1, T1) ≡ (θ2, T2) iff
θ1 ≡ θ2 and T1 = T2.

Recall that a zero x ∈ X is called Morse zero if there exist coordi-
nates (t1, . . . , tn) around x so that X = 2

∑q
i=1 ti

∂
∂ti
− 2

∑n
i=q+1 ti

∂
∂ti

.

The integer q is independent of the chosen coordinates (t1, . . . , tn). It is
referred to as the Morse index of x and denoted by ind(x).1 Therefore
X =

⊔
q Xq with Xq the set of rest points of index q.

For any Morse zero x the stable resp. unstable set is

W±
x := {y| lim

t→±∞
Ψt(y) = x}

where Ψt : M →M denotes the flow of X at time t. The stable and un-
stable sets are images of injective smooth immersions i±x : W±

x → M .2

The manifold W−
x resp. W+

x is diffeomorphic to Rind(x) resp. Rn−ind(x).

Convention. Unless explicitly mentioned all the vector fields in this
paper are assumed to have Morse, hence isolated, rest points.

Definition 1. A vector field X is said to have the exponential growth
property at a zero x if for some (and then any) Riemannian metric g
there exists a positive constant C so that Vol(Dr(x)) ≤ eCr, for all
r ≥ 0. Here Dr(x) ⊆ W−

x denotes the disk of radius r centered at
x ∈ W−

x with respect to the induced Riemannian metric (i−x )∗g on
W−
x . A vector field is said to have the exponential growth property if it

has the exponential growth property at all of its zeros.

1A Morse zero is non-degenerate and its Hopf index is (−1)n−q.
2By abuse of notation we denote the source manifold also by W±x .
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We expect that every vector field which has a Lyapunov cohomology
class, see Definition 2 below, and satisfies the Morse–Smale property,
see Definition 3 below, has the exponential growth property, cf. the
conjecture in section 3.2. For the sake of Theorem 4 we introduce in
section 6.1, cf. Definition 9, the strong exponential growth property.
Both concepts are superfluous if the conjecture is true.

Definition 2. A cohomology class ξ ∈ H1(M ;R) is called Lyapunov
class for a vector field X if there exits a Riemannian metric g and a
closed one form ω representing ξ, so that X = − gradg ω.345

In this paper we will show that a vector field X and a Lyapunov
class ξ for X provide counting functions for the instantons from x to y
when ind(x) − ind(y) = 16 and counting functions for closed trajecto-
ries. Moreover these counting functions can be interpreted as Dirichlet
series.

If the vector field has exponential growth property these series have
a finite abscissa of convergence, hence have a Laplace transform. Their
Laplace transform can be read off from the spectral geometry of a
pair (g, ω) where g is a Riemannian metric and ω is a closed one form
representing ξ.

We will describe these counting functions and prove our results under
the hypotheses that properties MS and NCT defined below are satis-
fied. Generically these properties are always satisfied, cf. Proposition 2
below.

Also in this paper, for any vector field X and cohomology class ξ ∈
H1(M ;R) we define an invariant ρ(ξ,X) ∈ R ∪ {±∞} and show that
if ξ is Lyapunov for X then exponential growth property is equivalent
to ρ(ξ,X) <∞.

Definition 3. The vector field X is said to satisfy the Morse–Smale
property, MS for short, if for any x, y ∈ X the maps i−x and i+y are
transversal.

In this case the set M(x, y) = W−
x ∩ W+

y with x, y ∈ X is the
image by an injective immersion of a smooth manifold of dimension

3An alternative definition is the following: There exists a closed one form ω
representing ξ so that ω(X) < 0 on M \ X and such that in a neighborhood of any
rest point the vector field X is of the form − gradg ω for some Riemannian metric
g. It is proved in section 3 that the two definitions are actually equivalent.

4This implies that ω is a Morse form, i.e. locally it is the differential of a smooth
function whose critical points are non-degenerate.

5Not all vector fields admit Lyapunov cohomology classes.
6This is the only case when, generically, the instantons can be isolated.
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ind(x)− ind(y) on which R acts freely with quotient a smooth manifold
T (x, y) of dimension ind(x)− ind(y)−1. The manifold T (x, y) is called
the manifold of unparameterized trajectories from x to y. If ind(x) −
ind(y) = 1 it will be zero dimensional. In this case the unparameterized
trajectories are isolated and referred to as instantons from x to y.

Choose O = {Ox}x∈X a collection of orientations of the unstable
manifolds of the critical points, with Ox an orientation of W−

x . Any
instanton [θ] from x ∈ Xq to y ∈ Xq−1 has a sign ε([θ]) = εO([θ]) = ±1
defined as follows: The orientations Ox and Oy induce an orientation
on [θ]. Take ε([θ]) = +1 if this orientation is compatible with the
orientation from x to y and ε([θ]) = −1 otherwise.

Let θ̃ be a parameterized closed trajectory and let Ψt denote the
flow of X at time t. The closed trajectory [θ̃] is called non-degenerate

if for some (and then any) t0 ∈ R and parameterization θ̃ = (θ, T )
the differential Dθ(t0)ΨT : Tθ(t0)M → Tθ(t0)M is invertible with the
eigenvalue 1 of multiplicity one.

Definition 4. The vector field X is said to satisfies the non-degenerate
closed trajectories property, NCT for short, if all (unparameterized)
closed trajectories of X are non-degenerate.

Any non-degenerate closed trajectory [θ̃] has a period p([θ̃]) ∈ N and

a sign ε([θ̃]) := ±1 defined as follows:

(i) p([θ̃]) is the largest positive integer p such that θ : S1 → M
factors through a self map of S1 of degree p.

(ii) ε([θ̃]) := sign detDθ(t0)ΨT for some (and hence any) t0 ∈ R and

parameterization θ̃.

A cohomology class ξ ∈ H1(M ;R) induces the homomorphism ξ :
H1(M ;Z)→ R and then the injective group homomorphism

ξ : Γξ → R, with Γξ := H1(M ;Z)/ ker ξ.

For any two points x, y ∈M denote by Px,y the space of continuous
paths from x to y. We say that α ∈ Px,y is equivalent to β ∈ Px,y,
iff the closed path β−1 ? α7 represents an element in ker ξ. We denote
by P̂x,y = P̂ξx,y the set of equivalence classes of elements in Px,y. Note
that Γξ acts freely and transitively, both from the left and from the

right, on P̂ξx,y. The action ? is defined by juxtaposing at x resp. y a
closed curve representing an element γ ∈ Γξ to a path representing the

element α̂ ∈ P̂ξx,y.
7Here ? denotes the juxtaposition of paths. Precisely if α, β : [0, 1] → M and

β(0) = α(1), then β ?α : [0, 1]→M is given by α(2t) for 0 ≤ t ≤ 1/2 and β(1− 2t)
for 1/2 ≤ t ≤ 1.
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Any closed one form ω representing ξ defines a map, ω : Px,y → R,
by

ω(α) :=

∫
[0,1]

α∗ω

which in turn induces the map ω : P̂ξx,y → R. We have:

ω(γ ? α̂) = ξ(γ) + ω(α̂)

ω(α̂ ? γ) = ω(α̂) + ξ(γ)

Note that for ω′ = ω + dh we have ω′ = ω + h(y)− h(x).

Proposition 1. Suppose ξ ∈ H1(M ;R) is a Lyapunov class for the
vector field X.

(i) If X satisfies MS, x ∈ Xq and y ∈ Xq−1 then the set of instan-

tons from x to y in each class α̂ ∈ P̂ξx,y is finite.
(ii) If X satisfies both MS and NCT then for any γ ∈ Γξ the set of

closed trajectories representing the class γ is finite.

The proof is a straight consequence of the compacity of space of
trajectories of bounded energy, cf. [5] and [8].

Suppose X is a vector field which satisfies MS and NCT and suppose
ξ is a Lyapunov class for X. In view of Proposition 1 we can define the
counting function of closed trajectories by

Z
ξ
X : Γξ → Q, Z

ξ
X(γ) :=

∑
[θ̃]∈γ

(−1)ε([θ̃])

p([θ̃])
∈ Q.

If a collection of orientations O = {Ox}x∈X is given one defines the
counting function of the instantons from x to y by

I
X,O,ξ
x,y : P̂ξx,y → Z, I

X,O,ξ
x,y (α̂) :=

∑
[θ]∈α̂

ε([θ]). (1)

Note that the change of the orientations O might change the function
I
X,O,ξ
x,y but only up to multiplication by ±1. A key observation in this

work is the fact that the counting functions IX,O,ξx,y and ZξX can be
interpreted as Dirichlet series.

As long as Hypotheses MS and NCT are concerned we have the
following genericity result. For a proof consult [5] and the references
in [7, page 211].

Proposition 2. Suppose X has ξ ∈ H1(M ;R) as a Lyapunov coho-
mology class.
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(i) One can find a vector fields X ′ arbitrarily close to X in the
C1–topology which satisfy MS and have ξ as Lyapunov coho-
mology class. Moreover one can choose X ′ equal to X in some
neighborhood of X and away from any given neighborhood of
X .

(ii) If in addition X above satisfies MS one can find vector fields
X ′ arbitrary closed to X in the C1–topology which satisfy MS
and NCT, and have ξ as Lyapunov cohomology class. Moreover
one can choose X ′ equal to X in some neighborhood of X .

(iii) Consider the space of vector fields which have the same set of
rest points as X, and agree with X in some neighborhood of
X . Equip this set with the C1–topology. The subset of vector
fields which satisfy MS and NCT is Baire residual set.

1.2. Dirichlet series and their Laplace transform. Recall that a
Dirichlet series f is given by a pair of finite or infinite sequences:(

λ1 < λ2 < · · · < λk < λk+1 · · ·
a1 a2 · · · ak ak+1 · · ·

)
The first sequence is a sequence of real numbers with the property
that λk → ∞ if the sequences are infinite. The second sequence is a
sequence of non-zero complex numbers. The associated series

L(f)(z) :=
∑
i

e−zλiai

has an abscissa of convergence ρ(f) ≤ ∞, characterized by the follow-
ing properties, cf. [17] and [18]:

(i) If <z > ρ(f) then f(z) is convergent and defines a holomorphic
function.

(ii) If <z < ρ(f) then f(z) is divergent.

A Dirichlet series can be regarded as a complex valued measure with
support on the discrete set {λ1, λ2, . . . } ⊆ R where the measure of λi
is equal to ai. Then the above series is the Laplace transform of this
measure, cf. [18]. The following proposition is a reformulation of results
which lead to the Novikov theory and to the work of Hutchings–Lee
and Pajitnov etc, cf. [5] and [8] for more precise references.

Proposition 3.

(i) (Novikov) Suppose X is a vector field on a closed manifold M
which satisfies MS and has ξ as a Lyapunov cohomology class.
Suppose ω is a closed one form representing ξ. Then for any
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x ∈ Xq and y ∈ Xq−1 the collection of pairs of numbers

I
X,O,ω
x,y :=

{(
−ω(α̂), IX,O,ξx,y (α̂)

) ∣∣∣ IX,O,ξx,y (α̂) 6= 0, α̂ ∈ P̂ξx,y
}

defines a Dirichlet series. The sequence of λ’s consists of the
numbers −ω(α̂) when IX,O,ξx,y (α̂) is non-zero, and the sequence

a’s consists of the numbers IX,O,ξx,y (α̂) ∈ Z.

(ii) (D. Fried, M. Hutchings) If in addition X satisfies NCT 8 then
the collection of pairs of numbers

Z
ξ
X :=

{(
−ξ(γ),ZξX(γ)

) ∣∣∣ ZξX(γ) 6= 0, γ ∈ Γξ

}
defines a Dirichlet series. The sequence of λ’s consists of the
real numbers −ξ(γ) when ZξX(γ) is non-zero and the sequence

of a’s consists of the numbers ZξX(γ) ∈ Q.

We will show that if X has exponential growth property then the
abscissa of convergence will be finite, hence the above Dirichlet series
will have Laplace transform and the main results of this paper, Theo-
rems 3 and 4 below, will provide explicit formulae for them in terms of
the spectral geometry of (M, g, ω). To explain such formulae we need
additional considerations and results.

1.3. The Witten–Laplacian. Let M be a closed manifold and (g, ω)
a pair consisting of a Riemannian metric g and a closed one form ω.
We suppose that ω is a Morse form. This means that locally ω = dh,
h smooth function with all critical points non-degenerate. A critical
point or a zero of ω is a critical point of h and since non-degenerate,
has an index, the index of the Hessian d2

xh, denoted by ind(x). Denote
by X the set of critical points of ω and by Xq be the subset of critical
points of index q.

For t ∈ R consider the complex (Ω∗(M), d∗ω(t)) with differential
dqω(t) : Ωq(M)→ Ωq+1(M) given by

dqω(t)(α) := dα + tω ∧ α.

Using the Riemannian metric g one constructs the formal adjoint of
dqω(t), dqω(t)] : Ωq+1(M)→ Ωq(M), and one defines the Witten–Laplacian
∆q
ω(t) : Ωq(M)→ Ωq(M) associated to the closed 1–form ω by:

∆q
ω(t) := dqω(t)] ◦ dqt + dq−1

ω (t) ◦ dq−1
ω (t)].

8It seems possible to prove the above proposition without the hypothesis MS and
NCT, of course with properly modified definition of the counting functions IX,O,ξx,y

and ZξX .We will return to this matter in a future paper.
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Thus, ∆q
ω(t) is a second order differential operator, with ∆q

ω(0) = ∆q,
the Laplace–Beltrami operator. The operators ∆q

ω(t) are elliptic, self-
adjoint and nonnegative, hence their spectra Spect ∆q

ω(t) lie in the
interval [0,∞). It is not hard to see that

∆q
ω(t) = ∆q + t(L+ L]) + t2||ω||2 Id,

where L denotes the Lie derivative along the vector field − gradg ω, L]

the formal adjoint of L and ||ω||2 is the fiber wise norm of ω.
The following result extends a result due to E. Witten (cf. [19]) in

the case that ω is exact and its proof was sketched in [5].

Theorem 1. Let M be a closed manifold and (g, ω) be a pair as above.
Then there exist constants C1, C2, C3, T > 0 so that for t > T we have:

(i) Spect ∆q
ω(t) ∩ [C1e

−C2t, C3t] = ∅.
(ii) ]

(
Spect ∆q

ω(t) ∩ [0, C1e
−C2t]

)
= ]Xq.

(iii) 1 ∈ (C1e
−C2t, C3t).

Here ]A denotes cardinality of the set A.

Theorem 1 can be complemented with the following proposition,
proved also by Mityagin and Novikov, cf. [14], whose proof is included
in Appendix A.

Proposition 4. For all but finitely many t the dimension of ker ∆q
ω(t)

is constant in t.

Denote by Ω∗sm(M)(t) the R–linear span of the eigen forms which cor-
respond to eigenvalues smaller than 1 referred bellow as the small eigen-
values. Denote by Ω∗la(M)(t) the orthogonal complement of Ω∗sm(M)(t)
which, by elliptic theory, is a closed subspace of Ω∗(M) with respect to
C∞–topology, in fact with respect to any Sobolev topology. The space
Ω∗la(M)(t) is the closure of the span of the eigen forms which corre-
spond to eigenvalues larger than one. As an immediate consequence of
Theorem 1 we have for t > T :(

Ω∗(M), dω(t)
)

=
(
Ω∗sm(M)(t), dω(t)

)
⊕
(
Ω∗la(M)(t), dω(t)

)
(2)

With respect to this decomposition the Witten–Laplacian is diagonal-
ized

∆q
ω(t) = ∆q

ω,sm(t)⊕∆q
ω,la(t). (3)

and by Theorem 1(ii), we have for t > T

dim Ωq
sm(M)(t) = ]Xq.

The cochain complex (Ω∗la(M)(t), dω(t)) is acyclic and in view of The-
orem 1(ii) of finite codimension in the elliptic complex (Ω∗(M), dω(t)).
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Therefore we can define the function

log Tan,la(t) = log T ω,gan,la(t) :=
1

2

∑
q

(−1)q+1q log det ∆q
ω,la(t) (4)

where det ∆q
ω,la(t) is the zeta-regularized product of all eigenvalues of

∆q
ω,la(t) larger than one.9 This quantity will be referred to as the large

analytic torsion.

1.4. Canonical base of the small complex. Let M be a closed
manifold and (g, g′, ω) be a triple consisting of two Riemannian metrics
g and g′ and a Morse form ω. The vector field X = − gradg′ ω has [ω]
as a Lyapunov cohomology class.

Suppose that X satisfies MS and has exponential growth. Choose
O = {Ox}x∈X a collection of orientations of the unstable manifolds
with Ox orientation of W−

x . Let hx : W−
x → R be the unique smooth

map defined by dhx = (i−x )∗ω and hx(x) = 0. Clearly hx ≤ 0.
In view of the exponential growth property, cf. section 3, there exists

T so that for t > T the integral

IntqX,ω,O(t)(a)(x) :=

∫
W−x

ethx(i−x )∗a, a ∈ Ωq(M), (5)

is absolutely convergent, cf. section 4, and defines a linear map:

IntqX,ω,O(t) : Ωq(M)→ Maps(Xq,R).

Theorem 2. Suppose (g, g′, ω) is a triple as above with X of expo-
nential growth and satisfying MS. Equip Ω∗(M) with the scalar product
induced by g and Maps(Xq,R) with the unique scalar product which
makes Ex ∈ Maps(Xq,R), the characteristic functions of x ∈ Xq, an
orthonormal base.

Then there exists T so that for any q and t ≥ T the linear map
IntqX,ω,O(t) defined by (5), when restricted to Ωq

sm(M)(t), is an isomor-
phism and an O(1/t) isometry. In particular Ωq

sm(M)(t) has a canon-
ical base {EOx (t)|x ∈ Xq} with EOx (t) = (IntqX,ω,O(t))−1(Ex).

As a consequence we have

dq−1
ω (EOy (t)) =:

∑
x∈Xq

IX,O,ω,gx,y (t) · EOx (t), (6)

where IX,O,ω,gx,y : [T,∞) → R are smooth, actually analytic functions,
cf. Theorem 3 below.

9Which, by the ellipticity, are all eigenvalues of ∆q
ω(t) but finitely many.
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In addition to the functions IX,O,ω,gx,y (t) defined for t ≥ T , cf. (6), we
consider also the function

logV(t) = logVω,g,X(t) :=
∑
q

(−1)q log Vol{Ex(t)|x ∈ Xq}. (7)

Observe that the change in the orientations O does not change the
right side of (7), so O does not appear in the notation V(t).

1.5. A geometric invariant associated to (X,ω, g) and a smooth
function associated with the triple (g, g′, ω). Recall that Mathai–
Quillen [11] (cf. also [1]) have introduced a differential form Ψg ∈
Ωn−1(TM \ M ;OM) for any Riemannian manifold (M, g) of dimen-
sion n. Here OM denotes the orientation bundle of M pulled back
to TM . For any closed one form ω on M we consider the form ω ∧
X∗Ψg ∈ Ωn(M \ X ;OM). Here X = − gradg′ ω is regarded as a map
X : M \ X → TM \M and M is identified with the image of the zero
section of the tangent bundle.

The integral ∫
M\X

ω ∧X∗Ψg

is in general divergent. However it does have a regularization defined
by the formula

R(X,ω, g) :=

∫
M

ω0 ∧X∗Ψg −
∫
M

fEg +
∑
x∈X

(−1)ind(x)f(x) (8)

where

(i) f is a smooth function whose differential df is equal to ω in a
small neighborhood of X and therefore ω0 := ω − df vanishes
in a small neighborhood of X and

(ii) Eg ∈ Ωn(M ;OM) is the Euler form associated with g.

It will be shown in section 5 below that the definition is independent
of the choice of f , see also [6]. Finally we introduce the function

log T̂X,ω,gan (t) := log T ω,gan,la(t)− logVω,g,X(t) + tR(X,ω, g) (9)

where X = − gradg′ ω. T̂an(t) = T̂X,ω,gan (t) is referred to as as the
corrected large analytic torsion.

1.6. The main results. The main results of this paper are Theo-
rems 3 and 4 below.

Theorem 3. Suppose X is a vector field which is MS and has exponen-
tial growth and suppose ξ is a Lyapunov cohomology class for X. Let
(g, g′, ω) be a system as in Theorem 2 so that X = − gradg′ ω and ω a
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Morse form representing ξ. Let IX,O,ω,gx,y : [T,∞)→ R be the functions

defined by (6). Then the Dirichlet series IX,O,ξx,y have finite abscissa
of convergence and their Laplace transform are exactly the functions
IX,O,ω,gx,y (t). In particular IX,O,ω,gx,y (t) is the restriction of a holomorphic
function on {z ∈ C|<z > T}.

Theorem 4. Suppose X is a vector field with ξ a Lyapunov cohomol-
ogy class which satisfies MS and NCT. Let (g, g′, ω) be a system as in
Theorem 2 so that X = − gradg′ ω and ω a Morse form representing ξ.

Let log T̂X,ω,gan (t) be the function defined by (9).
If in addition X has exponential growth and H∗(M, t[ω]) = 0 for t

sufficiently large10 or X has strong exponential growth then the Dirichlet
series ZX has finite abscissa of convergence and its Laplace transform
is exactly the functions log T̂X,ω,gan (t). In particular log T̂X,ω,gan (t) is the
restriction of a holomorphic function on {z ∈ C|<z > T}.

If the conjecture in section 3.2 is true, then the additional hypothesis
(exponential growth resp. strong exponential growth) are superfluous.

Remark 1. The Dirichlet series ZX depends only on X and ξ = [ω],
while IX,O,ξx,y depends only on X and ξ up to multiplication with a
constant (with a real number r for the sequence of λ’s and with ε = ±1
for the sequence of a’s).

Corollary 1 (J. Marcsik cf. [10] or [6]). Suppose X is a vector field
with no rest points, ξ ∈ H1(M ;R) a Lyapunov class for X, ω a closed
one form representing ξ and let g a Riemannian metric on M . Suppose
all closed trajectories of X are non-degenerate and denote by

log Tan(t) := 1/2
∑

(−1)q+1q log det(∆q
ω(t)).

Then

log Tan(t) + t

∫
M

ω ∧X∗Ψg

is the Laplace transform of the Dirichlet series ZX which counts the set
of closed trajectories of X with the help of ξ.

Strictly speaking J. Marcsik proved the above result, see [10], in the
case X = − gradg ω. The same arguments could also yield the result
in the generality stated above.

Remark 2. In case that M is the mapping torus of a diffeomorphism
φ : N → N , M = Nφ whose periodic points are all non-degenerate,

10Or, more general, H∗sing(M ; Λξ,ρ) is free for ρ large enough, cf. section 6 for
definitions.
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the Laplace transform of the Dirichlet series ZX is the Lefschetz zeta
function Lef(Z) of φ, with the variable Z replaced by e−z.

Theorems 3, 4 and Corollary 1 can be routinely extended to the case
of a compact manifolds with boundary.

In section 2 we discuss one of the main topological tools in this paper,
the completion of the unstable sets and of the space of unparameterized
trajectories, cf. Theorem 5. This theorem was also proved in [5]. In
this paper we provide a significant short cut in the proof and a slightly
more general formulation.

In section 3 we define the invariant ρ and discuss the relationship
with the exponential growth property. Additional results of indepen-
dent interest pointing toward the truth of the conjecture in section 3.2
are also proved. The results of this section are not needed for the proofs
of Theorems 2–4.

The proof of Theorem 1 as stated is contained in [5] and so is the
proof of Theorem 2 but in a slightly different formulation and (appar-
ently) less generality. For this reason and for the sake of completeness
we will review and complete the arguments (with proper references
to [5] when necessary) in section 4. Section 4 contains the proof of
Theorem 2 and 3. Section 5 treats the numerical invariant R(X,ω, g).
The proof of Theorem 4 is presented in section 6 and relies on some
previous work of Hutchings–Lee, Pajitnov [9], [8], [15] and the work of
Bismut–Zhang and Burghelea–Friedlander–Kappeler [1].

2. Topology of the space of trajectories and unstable

sets

In this section we discuss the completion of the unstable manifolds
and of the manifolds of trajectories to manifolds with corners, which is
a key topological tool in this work. The main result, Theorem 5 is of
independent interest.

Definition 5. Suppose ξ ∈ H1(M ;R). We say a covering π : M̃ →M
satisfies property P with respect to ξ if M̃ is connected and π∗ξ = 0.

LetX be vector field on a closed manifoldM which has ξ ∈ H1(M ;R)
as a Lyapunov cohomology class, see Definition 2. Suppose that X is
MS. Let π : M̃ → M be a covering satisfying property P with respect
to ξ. Since ξ is Lyapunov there exists a closed one form ω represent-
ing ξ and a Riemannian metric g so that X = − gradg ω. Since the

covering has property P we find h : M̃ → R with π∗ω = dh.
Denote by X̃ the vector field X̃ := π∗X. We write X̃ = π−1(X ) and

X̃q = π−1(Xq). Clearly Cr(h) = π−1(Cr(ω)) are the zeros of X̃.
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Given x̃ ∈ X̃ let i+x̃ : W+
x̃ → M̃ and i−x̃ : W−

x̃ → M̃ , denote the
one to one immersions whose images define the stable and unstable
sets of x̃ with respect to the vector field X̃. The maps i±x̃ are actually

smooth embeddings because X̃ is gradient like for the function h, and
the manifold topology on W±

x̃ coincides with the topology induced from

M̃ . Clearly, for any x̃ with π(x̃) = x one can canonically identify W±
x̃

to W±
x and then we have π ◦ i±x̃ = i±x .

As the maps i−x̃ and i+ỹ are transversal, M(x̃, ỹ) := W−
x̃ ∩W+

ỹ is a

submanifold of M̃ of dimension ind(x̃)− ind(ỹ). The manifoldM(x̃, ỹ)
is equipped with the action µ : R ×M(x̃, ỹ) → M(x̃, ỹ), defined by
the flow generated by X̃. If x̃ 6= ỹ the action µ is free and we de-
note the quotient M(x̃, ỹ)/R by T (x̃, ỹ). The quotient T (x̃, ỹ) is a
smooth manifold of dimension ind(x̃) − ind(ỹ) − 1, possibly empty,
which, in view of the fact that X̃ · h = ω(X) < 0 is diffeomorphic to
the submanifold h−1(c) ∩M(x̃, ỹ), where c is any regular value of h
with h(x̃) > c > h(ỹ).

Note that if ind(x̃) ≤ ind(ỹ), and x̃ 6= ỹ, in view the transversality
required by the Hypothesis MS, the manifolds M(x̃, ỹ) and T (x̃, ỹ)
are empty. We make the following convention: T (x̃, x̃) := ∅. This is
very convenient for now T (x̃, ỹ) 6= ∅ implies ind(x̃) > ind(ỹ) and in
particular x̃ 6= ỹ.

An unparameterized broken trajectory from x̃ ∈ X̃ to ỹ ∈ X̃ , is an
element of the set B(x̃, ỹ) :=

⋃
k≥0 B(x̃, ỹ)k, where

B(x̃, ỹ)k :=
⋃
T (ỹ0, ỹ1)× · · · × T (ỹk, ỹk+1) (10)

and the union is over all (tuples of) critical points ỹi ∈ X̃ with ỹ0 = x̃
and ỹk+1 = ỹ.

For x̃ ∈ X̃ introduce the completed unstable set Ŵ−
x̃ :=

⋃
k≥0(Ŵ−

x̃ )k,
where

(Ŵ−
x̃ )k :=

⋃
T (ỹ0, ỹ1)× · · · × T (ỹk−1, ỹk)×W−

ỹk
(11)

and the union is over all (tuples of) critical points ỹi ∈ X̃ with ỹ0 = x̃.

To study Ŵ−
x̃ we introduce the set B(x̃;λ) of unparameterized broken

trajectories from x̃ ∈ X̃ to the level λ ∈ R as B(x̃;λ) :=
⋃
k≥0 B(x̃;λ)k

where

B(x̃;λ)k :=
⋃
T (ỹ0, ỹ1)× · · · × T (ỹk−1, ỹk)× (W−

ỹk
∩ h−1(λ))

and the union is over all (tuples of) critical points ỹi ∈ X̃ with ỹ0 = x̃.
Clearly, if λ > h(x̃) then B(x̃;λ) = ∅.

Since any broken trajectory of X̃ intersects each level of h in at
most one point one can view the set B(x̃, ỹ) resp. B(x̃;λ) as a subset
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of C0
(
[h(ỹ), h(x̃)], M̃

)
resp. C0

(
[λ, h(x̃)], M̃

)
. One parameterizes the

points of a broken trajectory by the value of the function h on these
points. This leads to the following characterization (and implicitly to a
canonical parameterization) of an unparameterized broken trajectory.

Remark 3. Let x̃, ỹ ∈ X̃ and set a := h(ỹ), b := h(x̃). The parame-
terization above defines a one to one correspondence between B(x̃, ỹ)
and the set of continuous mappings γ : [a, b] → M̃ , which satisfy the
following two properties:

(i) h(γ(s)) = a+ b− s, γ(a) = x̃ and γ(b) = ỹ.
(ii) There exists a finite collection of real numbers a = s0 < s1 <
· · · < sr−1 < sr = b, so that γ(si) ∈ X̃ and γ restricted to
(si, si+1) has derivative at any point in the interval (si, si+1),
and the derivative satisfies

γ′(s) =
X̃

−X̃ · h
(
γ(s)

)
.

Similarly the elements of B(x̃;λ) correspond to continuous mappings
γ : [λ, b]→ M̃ , which satisfies (i) and (ii) with a replaced by λ and the
condition γ(b) = ỹ ignored.

We have the following proposition, which can be found in [5].

Proposition 5. For any x̃, ỹ ∈ X̃ and λ ∈ R, the spaces

(i) B(x̃, ỹ) with the topology induced from C0
(
[h(ỹ), h(x̃)], M̃), and

(ii) B(x̃;λ) with the topology induced from C0
(
[λ, h(x̃)], M̃

)
are compact.

Let î−x̃ : Ŵ−
x̃ → M̃ denote the map whose restriction to T (ỹ0, ỹ1) ×

· · · × T (ỹk−1, ỹk) × W−
ỹk

is the composition of the projection on W−
ỹk

with i−ỹk . Moreover let ĥx̃ := hx̃ ◦ î−x̃ : Ŵ−
x̃ → R, where hx̃ = h− h(x̃).

Recall that an n–dimensional manifold with corners P , is a para-
compact Hausdorff space equipped with a maximal smooth atlas with
charts ϕ : U → ϕ(U) ⊆ Rn+, where Rn+ = {(x1, . . . , xn) | xi ≥ 0}. The
collection of points of P which correspond by some (and hence every)
chart to points in Rn with exactly k coordinates equal to zero is a well
defined subset of P called the k–corner of P and it will be denoted by
Pk. It has a structure of a smooth (n− k)–dimensional manifold. The
union ∂P = P1 ∪ P2 ∪ · · · ∪ Pn is a closed subset which is a topological
manifold and (P, ∂P ) is a topological manifold with boundary ∂P .

The following theorem was proven in [5] for the case that M̃ is the
minimal covering which has property P.
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Theorem 5. Let M be a closed manifold, X a vector field which is
MS and suppose ξ is a Lyapunov class for X. Let π : M̃ → M be a
covering which satisfies property P with respect to ξ and let h : M̃ → R

be a smooth map as above. Then:

(i) For any two rest points x̃, ỹ ∈ X̃ the smooth manifold T (x̃, ỹ)
has B(x̃, ỹ) as a canonical compactification. Moreover there is
a canonic way to equip B(x̃, ỹ) with the structure of a compact
smooth manifold with corners, whose k–corner is B(x̃, ỹ)k from
(10).

(ii) For any rest point x̃ ∈ X̃ , the smooth manifold W−
x̃ has Ŵ−

x̃

as a canonical completion. Moreover there is a canonic way to
equip Ŵ−

x̃ with the structure of a smooth manifold with corners,

whose k–corner coincides with (Ŵ−
x̃ )k from (11).

(iii) î−x̃ : Ŵ−
x̃ → M̃ is smooth and proper, for all x̃ ∈ X̃ .

(iv) ĥx̃ : Ŵ−
x̃ → R is smooth and proper, for all x̃ ∈ X̃ .

Proof. In view of Lemma 4 in section 3, the set of Lyapunov classes
for X is open in H1(M ;R). So we can find a closed one form ω and
a Riemannian metric g such that X = − gradg ω and such that ω has
degree of rationality one. Consider the minimal covering on which
ξ = [ω] becomes exact. Since ξ has degree of rationality one11 the
critical values of h form a discrete set. In [5, paragraphs 4.1–4.3] one
can find all details of the proof of Theorem 5 for this special ξ and this
special covering.

Note that as long as properties (i) through (iii) are concerned they
clearly remain true when we pass to the universal covering of M which
obviously has property P. One easily concludes that they also remain
true for every covering which has property P. So we have checked (i)
through (iii) in the general situation.

Next observe that ĥ−x̃ = hx̃ ◦ îx̃− is certainly smooth as a compo-

sition of two smooth mappings. The properness of ĥx̃ follows from
Proposition 5(ii). �

It will be convenient to formulate Theorem 5 without any reference
to the covering π : M̃ →M or to lifts x̃ of rest points x.

Let ξ ∈ H1(M ;R) be a one dimensional cohomology class so that
π∗ξ = 0. As in section 1 denote by Px,y the set of continuous paths

from x to y and by P̂M̃x,y the equivalence classes of paths in Px,y with
respect to the following equivalence relation.

11Recall that the closed one form has degree of rationality k if the image of
[ω](Γ) ⊂ R is a free abelian group of rank k.
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Definition 6. Two paths α, β ∈ Px,y are equivalent if for some (and

then for any) lift x̃ of x the lifts α̃ and β̃ of α and β originating from
x̃ end up in the same point ỹ.

The reader might note that the present situation is slightly more
general than the one considered in introduction which correspond to
the case the covering π is the Γξ–principal covering with Γξ induced

from ξ as described in section 1. For this covering we have P̂M̃x,y = P̂ξx,y.
Note that any two lifts x̃, ỹ ∈ M̃ determine an element α̂ ∈ P̂M̃x,y and

the set of unparameterized trajectories from x̃ to ỹ identifies to the set
T (x, y, α̂) of unparameterized trajectories of X from x to y in the class
α̂.

Theorem 5 can be reformulated in the following way:

Theorem 6 (Reformulation of Theorem 5). Let M be a smooth mani-
fold, X a smooth vector field which is MS and suppose ξ is a Lyapunov
class for X. Let M̃ be a covering of M which has property P with
respect to ξ. Then:

(i) For any two rest points x, y ∈ X and every α̂ ∈ P̂M̃x,y the set
T (x, y, α̂) has the structure of a smooth manifold of dimension
ind(x)− ind(y)− 1 which admits a canonical compactification
to a compact smooth manifold with corners B(x, y, α̂). Its k–
corner is

B(x, y, α̂)k =
⋃
T (y0, y1, α̂0)× · · · × T (yk, yk+1, α̂k)

where the union is over all (tuples of) critical points yi ∈ X
and α̂i ∈ P̂M̃yi,yi+1

with y0 = x, yk+1 = y and α̂0 ? · · · ? α̂k = α̂.

(ii) For any rest point x ∈ X the smooth manifold W−
x has a canon-

ical completion to a smooth manifold with corners Ŵ−
x . Its

k–corner is

(W−
x )k =

⋃
T (y0, y1, α̂0)× · · · × T (yk−1, yk, α̂k−1)×W−

yk

where the union is over all (tuples of) critical points yi ∈ X
and α̂i ∈ P̂M̃yi,yi+1

with y0 = x.

(iii) The mapping î−x : Ŵ−
x → M which on (W−

x )k is given by the
composition of the projection onto W−

yk
with i−yk : W−

yk
→ M is

smooth, for all x ∈ X .
(iv) Let ω be a closed one form representing ξ. Then the mappings

ĥx : Ŵ−
x → R which on (W−

x )k is given by the composition of
the projection onto W−

yk
with hωyk : W−

yk
→ R plus ω(α̂0 ? · · · ?

α̂k−1) is smooth and proper, for all x ∈ X .
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The above results can be easily extended to the case of compact
manifolds with boundary.

2.1. Appendix to section 2. Given a compact smooth manifold M
with boundary ∂M we will consider only admissible metrics, i.e. Rie-
mannian metrics g which are product like near the boundary. In this
case denote by g0 the induced metric on the boundary. This means
that there exists a collar neighborhood ϕ : ∂M × [0, ε) → M with ϕ
equal to the identity when restricted to ∂M ×{0} and ϕ∗g = g0 + ds2.

Convention. Unless explicitly mentioned in this paper all the vector
fields on a compact manifold with boundary are assumed to be tangent
to the boundary and have rest points of Morse type.

Definition 7. The vector field X has ξ ∈ H1(M ;R) as Lyapunov
cohomology class if the following conditions hold:

(i) There exists a closed one form representing ξ and an admis-
sible metric so that X = − gradg ω. In particular X∂M =
− gradg0

ω∂M , where ω∂M denotes the pullback of ω to ∂M .
(ii) If we set

X ′′− :=
{
x ∈ X ∩ ∂M

∣∣ ind∂M(x) = ind(x)
}

X ′′+ :=
{
x ∈ X ∩ ∂M

∣∣ ind∂M(x) = ind(x)− 1
}

then X ′′− resp. X ′′+ lie in different components ∂M− resp. ∂M+

of M .

This definition implies that X = X ′ tX ′′, where X ′ is the set of rest
points inside M and X ′′ of the rest points on ∂M which is the same as
the set of rest points of X∂M . For x ∈ X ′′ denote by i−x : W−

x → M
the unstable manifold with respect to X and by j−x : W−

∂M,x → ∂M the
unstable manifold with respect to X∂M .

Remark 4.

(i) If x ∈ X ′′− then the unstable manifold of x with respect to X
and X∂M are the same. More precisely i−x : W−

x →M identifies
to j−x : W−

∂M,x → ∂M followed by the inclusion of ∂M ⊂M .
(ii) If x ∈ X ′′+ then

(a) (W−
x ,W

−
∂M,x) is a smooth manifold with boundary diffeo-

morphic to (Rk+,R
k−1) with k = ind(x); and

(b) i−x : W−
x → M is transversal to the boundary of M and

i−x : (i−x )−1(∂M)→ ∂M can be identified to j−x : W−
∂M,x →

∂M .
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Theorems 5 and 6 remain true as stated with the following speci-
fications. Set P−y := W−

y \ W−
∂M,y for y ∈ X ′′+, and P−y := W−

y for

y ∈ X ′ t X ′′−. For x ∈ X ′′+ the k–corner of Ŵ−
x then is

(Ŵ−
x )k = (Ŵ−

∂M,x)k−1 ∪
⋃
T (y0, y1, α̂0)× · · · × T (yk−1, yk, α̂k−1)× P−yk

where the big union is over all (tuples of) yi ∈ X and α̂i ∈ P̂yi,yi+1
with

y0 = x.

3. Exponential growth property and the invariant ρ

In this section we introduce for a pair (X, ξ) consisting of a vector
field X and a cohomology class ξ ∈ H1(M ;R) an invariant ρ(ξ,X) ∈
R∪ {±∞}. For the purpose of this paper we are interested in the case
this invariant is smaller than ∞. One expects that this is always the
case if ξ is Lyapunov for X at least in the case X satisfies MS. If X
has ξ as a Lyapunov cohomology class we prove that the exponential
growth and ρ <∞ are equivalent. The discussion of this section is not
needed for the proofs of Theorem 2, 3 and 4.

Throughout this section M will be a closed manifold and X a vector
field with Morse zeros.

3.1. The invariant ρ. For a critical point x ∈ X , i.e. a zero of X,
we let i−x : W−

x → M denote the smooth immersion of the unstable
manifold into M . If M is equipped with a Riemannian metric we
get an induced Riemannian metric gx := (i−x )∗g on W−

x thus a volume
density µ(gx) on W−

x and hence the spaces Lp(W−
x ), p ≥ 1. Though the

Lp–norm depends on the metric g the space Lp(W−
x ) and its topology

does not. Indeed for another Riemannian metric g′ on M we find a

constant C > 0 so that 1/C ≤ g′(X,Y )
g(X,Y )

≤ C for all tangent vectors X

and Y which implies 1/C ′ ≤ µ(g′x)
µ(gx)

≤ C ′ for some constant C ′ > 0.

Given a closed 1–form ω on M we let hωx denote the unique smooth
function on W−

x which satisfies dhωx = (i−x )∗ω and hωx(x) = 0. We
are interested in the space of 1–forms for which eh

ω
x ∈ L1(W−

x ). This
condition actually only depends on the cohomology class of ω. Indeed
we have hω+df

x = hωx + (i−x )∗f − f(x) and so |hω+df
x − hωx | ≤ C ′′ and

e−C
′′ ≤ eh

ω+df
x /eh

ω
x ≤ eC

′′
for some constant C ′′ > 0. So we define

Rx(X) :=
{

[ω] ∈ H1(M)
∣∣ ehωx ∈ L1(W−

x )
}

and set R(X) :=
⋂
x∈Cr(X) Rx(X). Let us also define

ρx(ξ,X) := inf{t ∈ R | tξ ∈ Rx(X)} ∈ R ∪ {±∞}
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as well as:

ρ(ξ,X) := inf{t ∈ R | tξ ∈ R(X)} ∈ R ∪ {±∞}.
Observe that ρ(ξ,X) = maxx∈X ρx(ξ,X).

Lemma 1. The sets Rx(X) and R(X) are convex. Particularly

ρ
(
λξ1 + (1− λ)ξ2, X

)
≤ max{ρ(ξ1, X), ρ(ξ2, X)}

for all 0 ≤ λ ≤ 1.

Proof. Indeed let [ω0], [ω1] ∈ H1(M), λ ∈ [0, 1] and set ωλ := λω1+(1−
λ)ω0. Then hωλx = λhω1

x +(1−λ)hω0
x . For λ ∈ (0, 1) we set p := 1/λ > 1

and q := 1/(1− λ). Then 1/p+ 1/q = 1 and by Hölder’s inequality

||eh
ωλ
x ||1 = ||eλh

ω1
x e(1−λ)h

ω0
x ||1

≤ ||eλh
ω1
x ||p||e(1−λ)h

ω0
x ||q

= ||eh
ω1
x ||λ1 ||eh

ω0
x ||1−λ1

So, if [ω0] and [ω1] ∈ Rx(X) then [ωλ] ∈ Rx(X), and thus Rx(X) is
convex. As an intersection of convex sets R(X) is convex too. �

Next we introduce:

Bx(X) :=
{

[ω] ∈ H1(M)
∣∣ ehωx ∈ L∞(W−

x )
}

and set B(X) :=
⋂
x∈Cr(X) Bx(X). Note if ξ is a Lyapunov cohomology

class for X then ξ ∈ B(X), cf. Lemma 4 below.
Most obviously we have:

Lemma 2. The sets Bx(X) and B(X) are convex cones. Moreover we
have Rx(X) +Bx(X) ⊆ Rx(X) and R(X) +B(X) ⊆ R(X).

Next define

L(X) :=
{
ξ ∈ H1(M)

∣∣ ξ is Lyapunov class for X
}

Recall from Definition 2 that ξ ∈ L(X) if there exists a closed one form
ω representing ξ and a Riemannian metric g such that X = − gradg ω.

Lemma 3. Let M be a smooth manifold, X a vector field, ω a closed
one form and g a Riemannian metric. Suppose U ⊂M is an open set
and

(i) the vector fields X and − gradg ω agree on U and
(ii) ω(X) < 0 on a neighborhood of M \ U .

Then there exists a Riemannian metric g′ so that:

(i) X = − gradg′ ω
(ii) g and g′ agree on U .
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Proof. Let N be an open neighborhood of M \ U so that ω(X) < 0
and therefore Xx 6= 0, x ∈ N . For x ∈ N the tangent space Tx
decomposes as the direct sum TxM = Vx ⊕ [Xx] where [Xx] denotes
the one dimensional vector space generated by Xx and Vx = ker(ω(x) :
TxM → R). Clearly on U the function −ω(X) is the square of the
length of Xx with respect to the metric g and Xx is orthogonal to Vx
and on N it is strictly negative. Define a new Riemannian metric g′

on M as follows: For x ∈ U the scalar product in TxM is the same as
the one defined by g. For x ∈ N the scalar product on TxM agrees
to the one defined by g but make Vx and [Xx] perpendicular and the

length of Xx equal to
√
−ω(X)(x). It is clear that the new metric is

well defined and smooth. �

Corollary 2. Let X be a vector field on M and let ξ ∈ H1(M). Then
ξ is Lyapunov for X if and only if there is a closed one form ω repre-
senting ξ and a Riemannian metric g such that the following hold:

(i) ω(X) < 0 on M \ X .
(ii) X = − gradg ω on a neighborhood of X .

Lemma 4. The set L(X) ⊆ H1(M) is open and contained in B(X).
Moreover L(X) is a convex cone.

Proof. The subset L(X) ⊆ H1(M) is open, for we can change the
cohomology class [ω] by adding a form whose support is disjoint from
X and hence not affecting condition in Corollary 2(ii). If the form
we add is sufficiently small the condition in Corollary 2(i) will still be
satisfied.

We have L(X) ⊆ Bx(X) for X = − gradg ω implies that hωx attains
its maximum at x and is thus bounded from above.

Next note that both conditions (i) and (ii) in Corollary 2 are convex
and homogeneous conditions on ω. Thus L(X) is a convex cone. �

Lemma 5. Suppose L(X) ∩ R(X) 6= ∅. Then every ray of L(X), i.e.
a half line starting at the origin which is contained in L(X), intersects
R(X).

Proof. Pick ξ ∈ L(X)∩R(X). Since ξ ∈ R(X), Lemma 4 and Lemma 2
imply:

ξ + L(X) ⊆ R(X) + L(X) ⊆ R(X) +B(X) ⊆ R(X) (12)

On the other hand L(X) is open and ξ ∈ L(X), so every ray in L(X)
has to intersect ξ + L(X). In view of (12) it has to intersect R(X)
too. �
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Corollary 3. Suppose ξ0 and ξ are Lyapunov for X. Then ρ(ξ0, X) <
∞ implies ρ(ξ,X) <∞.

3.2. Exponential growth versus ρ. Let x ∈ X be a zero of X, W−
x

the unstable manifold, let g be a Riemannian metric on M and let
r := dist(x, ·) : W−

x → [0,∞) denote the distance to x with respect to
the induced metric gx = (i−x )∗g on W−

x . Clearly r(x) = 0. Moreover let
Bs(x) := {y ∈ W−

x |r(y) ≤ s} denote the ball of radius s centered at x.
Recall from Definition 1 that X has the exponential growth property

at a zero x if there exists a constant C ≥ 0 such that Vol(Bs(x)) ≤ eCs

for all s ≥ 0. Clearly this does not depend on the Riemannian metric
g on M even though the constant C will depend on g.

Lemma 6. Suppose we have C ≥ 0 such that Vol(Bs(x)) ≤ eCs for all
s ≥ 0. Then e−(C+ε)r ∈ L1(W−

x ) for every ε > 0.

Proof. We have

∫
W−x

e−(C+ε)r =
∞∑
n=0

∫
Bn+1(x)\Bn(x)

e−(C+ε)r (13)

On Bn+1(x) \Bn(x) we have e−(C+ε)r ≤ e−(C+ε)n and thus

∫
Bn+1(x)\Bn(x)

e−(C+ε)r ≤ Vol(Bn+1(x))e−(C+ε)n

≤ eC(n+1)e−(C+ε)n = eCe−εn

So (13) implies

∫
W−x

e−(C+ε)r ≤ eC
∞∑
n=0

e−εn = eC(1− e−ε)−1 <∞

and thus e−(C+ε)r ∈ L1(W−
x ). �

Lemma 7. Suppose we have C ≥ 0 such that e−Cr ∈ L1(W−
x ). Then

there exists a constant C0 such that Vol(Bs(x)) ≤ C0e
Cs for all s ≥ 0.
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Proof. We start with the following estimate for N ∈ N:

Vol(BN+1(x))e−C(N+1) =

=
N∑
n=0

Vol(Bn+1(x))e−C(n+1) − Vol(Bn(x))e−Cn

≤
∞∑
n=0

(
Vol(Bn+1(x))− Vol(Bn(x))

)
e−C(n+1)

=
∞∑
n=0

Vol
(
Bn+1(x) \Bn(x)

)
e−C(n+1)

≤
∞∑
n=0

∫
Bn+1(x)\Bn(x)

e−Cr =

∫
W−x

e−Cr

Given s ≥ 0 we choose an integer N with N ≤ s ≤ N + 1. Then
Vol(Bs(x))e−Cs ≤ Vol(BN+1(x))e−CN = eC Vol(BN+1(x))e−C(N+1). So
the computation above shows

Vol(Bs(x))e−Cs ≤ eC
∫
W−x

e−Cr =: C0 <∞

and thus Vol(Bs(x)) ≤ C0e
Cs for all s ≥ 0. �

As immediate consequence of the two preceding lemmas we have

Proposition 6. Let x be a zero of X. Then the following are equiva-
lent:

(i) X has the exponential growth property at x with respect to one
(and hence every) Riemannian metric on M .

(ii) For one (and hence every) Riemannian metric on M there
exists a constant C ≥ 0 such that e−Cr ∈ L1(W−

x ).

Let g be a Riemannian metric onM , ω a closed one form and consider
X = − gradg ω. Assume X has Morse zeros and let x be one of them.
Recall that we have a smooth function hωx : W−

x → (−∞, 0] defined
by (i−x )∗ω = dhωx and hωx(x) = 0. The next two lemmas tell, that
−hωx : W−

x → [0,∞) is comparable with r : W−
x → [0,∞).

Lemma 8. In this situation there exists a constant Cω,g ≥ 0 such that
r ≤ 1− Cω,ghωx on W−

x .

Proof. The proof is exactly the same as the one in [5, Lemma 3(2)].
Note that the Smale condition is not used there. �

Lemma 9. In this situation there exists a constant C ′ω,g ≥ 0 such that
−hωx ≤ C ′ω,gr.
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Proof. Let γ : [0, 1] → W−
x be any path starting at γ(0) = x. For

simplicity set h := hωx . Since h(x) = 0 we find

|h(γ(1))| =
∣∣∣∫ 1

0

(dh)(γ′(t))dt
∣∣∣ ≤ ||ω||∞ ∫ 1

0

|γ′(t)|dt = ||ω||∞ length(γ)

with ||ω||∞ the supremums norm of ω. We conclude

||ω||∞r(γ(1)) = ||ω||∞ dist(x, γ(1)) ≥ |h(γ(1))| ≥ −h(γ(1))

and thus −h ≤ C ′ω,gr with C ′ω,g := ||ω||∞. �

Let us collect what we have found so far.

Proposition 7. Suppose ξ is Lyapunov for X and let x be a zero of
X. Then the following are equivalent.

(i) X has the exponential growth property at x with respect to one
(and hence every) Riemannian metric on M .

(ii) For one (and hence every) Riemannian metric on M there
exists a constant C ≥ 0 such that e−Cr ∈ L1(W−

x ).
(iii) ρx(ξ,X) <∞.

Proof. The equivalence of (i) and (ii) was established in Proposition 6
without the assumption that ξ is Lyapunov for X. The implication
(ii) ⇒ (iii) follows from Lemma 8; the implication (iii) ⇒ (ii) from
Lemma 9. �

Note that this again implies Corollary 3. We expect that these equiv-
alent statements hold true, at least in the generic situation. More
precisely:

Conjecture (Exponential growth). Let g be a Riemannian metric on a
closed manifold M , ω a closed one form (and assume X = − gradg ω is
Morse–Smale.) Let x be a zero and let i−x : W−

x →M denote its unsta-
ble manifold. Let Vol(Bs(x)) denote the volume of the ball Bs(x) ⊆ W−

x

of radius s centered at x ∈ W−
x with respect to the induced Riemannian

metric (i−x )∗g on W−
x . Then there exists a constant C ≥ 0 such that

Vol(Bs(x)) ≤ eCs for all s ≥ 0.

3.3. A criterion for exponential growth. The rest of the section is
dedicated to a criterion which guarantees that the exponential growth
property, and hence ρ <∞, holds in simple situations.

Suppose x ∈ Xq. Let B ⊆ W−
x denote a small ball centered at

x. The submanifold i−x
(
W−
x \ B

)
⊆ M gives rise to a submanifold

Gr(W−
x \ B) ⊆ Grq(TM) in the Grassmannified tangent bundle, the
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space of q–dimensional subspaces in TM . For a critical point y ∈ X
we define

Kx(y) := Grq(TyW
−
y ) ∩Gr(W−

x \B)

where Grq(TyW
−
y ) ⊆ Grq(TyM) ⊆ Grq(TM). Note that Kx(y) does

not depend on the choice of B.

Remark 5.

(i) Even though we removed a neighborhood of x from the unsta-
ble manifold W−

x the set Kx(x) need not be empty. However
if we did not remove B the set Kx(x) would never be vacuous
for trivial reasons.

(ii) If q = ind(x) > ind(y) we have Kx(y) = ∅, for Grq(TyW
−
y ) = ∅

since q > dim(TyW
−
y ) = ind(y).

(iii) If dim(M) = n = q = ind(x) we always have Kx(y) = ∅ for all
y ∈ X .

Proposition 8. Let ξ be Lyapunov for X and suppose Kx(y) = ∅ for
all y ∈ X . Then ρx(ξ,X) <∞.

We start with a little

Lemma 10. Let (V, g) be an Euclidean vector space and V = V +⊕V −
an orthogonal decomposition. For κ ≥ 0 consider the endomorphism
Aκ := κ id⊕− id ∈ End(V ) and the function

δAκ : Grq(V )→ R, δAκ(W ) := trg|W (p⊥W ◦ Aκ ◦ iW ),

where iW : W → V denotes the inclusion and p⊥W : V → W the
orthogonal projection. Suppose we have a compact subset K ⊆ Grq(V )
for which Grq(V

+) ∩K = ∅. Then there exists κ > 0 and ε > 0 with
δAκ ≤ −ε on K.

Proof. Consider the case κ = 0. Let W ∈ Grq(V ) and choose a g|W–
orthonormal base ei = (e+

i , e
−
i ) ∈ V + ⊕ V −, 1 ≤ i ≤ q, of W . Then

δA0(W ) =

q∑
i=1

g(ei, A0ei) = −
q∑
i=1

g(e−i , e
−
i ).

So we see that δA0 ≤ 0 and δA0(W ) = 0 iff W ∈ Grq(V
+). Thus

δA0|K < 0. Since δAκ depends continuously on κ and sinceK is compact
we certainly find κ > 0 and ε > 0 so that δAκ|K ≤ −ε. �

Proof of Proposition 8. Let S ⊆ W−
x denote a small sphere centered

at x. Let X̃ := (i−x )∗X denote the restriction of X to W−
x and let Φt

denote the flow of X̃ at time t. Then

ϕ : S × [0,∞)→ W−
x , ϕ(x, t) = ϕt(x) = Φt(x)
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parameterizes W−
x with a small neighborhood of x removed.

Let κ > 0. For every y ∈ X choose a chart uy : Uy → R
n centered

at y so that

X|Uy = κ
∑

i≤ind(y)

uiy
∂

∂uiy
−

∑
i>ind(y)

uiy
∂

∂uiy
.

Let g be a Riemannian metric on M which restricts to
∑

i du
i
y ⊗ duiy

on Uy and set gx := (i−x )∗g. Then

∇X|Uy = κ
∑

i≤ind(y)

duiy ⊗
∂

∂uiy
−

∑
i>ind(y)

duiy ⊗
∂

∂uiy
.

In view of our assumption Kx(y) = ∅ for all y ∈ X Lemma 10 permits
us to choose κ > 0 and ε > 0 so that after possibly shrinking Uy we
have

divgx(X̃) = trgx(∇X̃) ≤ −ε < 0 on ϕ(S × [0,∞))∩ (i−x )−1
(⋃
y∈X

Uy

)
.

(14)
Next choose a closed 1–form ω so that [ω] = ξ and ω(X) < 0 on M \X .
Choose τ > 0 so that

τω(X) + ind(x)||∇X||g ≤ −ε < 0 on M \
⋃
y∈X

Uy. (15)

Using τX̃ · hωx ≤ 0 and

divgx(X̃) = trgx(∇X̃) ≤ ind(x)||∇X̃||gx ≤ ind(x)||∇X||g

(14) and (15) yield

τX̃ · hωx + divgx(X̃) ≤ −ε < 0 on ϕ(S × [0,∞)). (16)

Choose an orientation of W−
x and let µ denote the volume form on W−

x

induced by gx. Consider the function

ψ : [0,∞)→ R, ψ(t) :=

∫
ϕ(S×[0,t])

eτh
ω
xµ ≥ 0.

For its first derivative we find

ψ′(t) =

∫
ϕt(S)

eτh
ω
x iX̃µ > 0
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and for the second derivative, using (16),

ψ′′(t) =

∫
ϕt(S)

(
τX̃ · hωx + divgx(X̃)

)
eτh

ω
x iX̃µ

≤ −ε
∫
ϕt(S)

eτh
ω
x iX̃µ = −εψ′(t).

So (ln ◦ψ′)′(t) ≤ −ε hence ψ′(t) ≤ ψ′(0)e−εt and integrating again we
find

ψ(t) ≤ ψ(0) + ψ′(0)(1− e−εt)/ε ≤ ψ′(0)/ε.

So we have eτh
ω
x ∈ L1

(
ϕ(S × [0,∞)

)
and hence eτh

ω
x ∈ L1(W−

x ) too.
We conclude ρx(ξ,X) ≤ τ <∞. �

Remark 6.

(i) In view of Remark 5(iii) Proposition 8 implies ρx(ξ,X) < ∞
whenever ξ is Lyapunov for X and ind(x) = dim(M). However
there is a much easier argument for this special case. Indeed, in
this case W−

x is an open subset of M and therefore its volume
has to be finite. Since ξ is Lyapunov for X we immediately
even get ρx(ξ,X) ≤ 0.

(ii) In the case ind(x) = 1 we certainly have ρx(ξ,X) ≤ 0.
(iii) Throughout the whole section we did not make use of a Morse–

Smale condition.

Using Proposition 7, Proposition 8, Remark 5(ii) and Remark 6(ii)
we get

Corollary 4. Suppose ξ is Lyapunov for X and x a zero of X. If
1 < ind(x) < dim(M) assume moreover that Kx(y) = ∅ for all zeros
y of X with dim(M) > ind(y) ≥ ind(x). Then X has the exponential
growth property at x and ρx(ξ,X) <∞.

4. Proof of Theorems 2 and 3

Let X be a vector field with ξ ∈ H1(M ;R) a Lyapunov cohomology
class. Recall that in Section 1 we have defined the instanton counting
function (or the Novikov incidence) IX,O,ξx,y : P̂ξx,y → Z, cf. (1).

The following proposition is a reformulation of a basic observation
made by S.P. Novikov [13] in order to define his celebrated complex.

Proposition 9.

(i) For any x ∈ Xq, y ∈ Xq−1 and every real number R the set{
α̂ ∈ P̂ξx,y

∣∣ IX,O,ξx,y (α̂) 6= 0, ω(α̂) ≥ R
}

is finite. Here ω is any closed one form representing ξ.
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(ii) For any x ∈ Xq, z ∈ Xq−2 and γ̂ ∈ P̂ξx,z one has∑
I
X,O,ξ
x,y (α̂) · IX,O,ξy,z (β̂) = 0. (17)

where the sum is over all y ∈ Xq−1, α̂ ∈ P̂ξx,y and all β̂ ∈ P̂ξy,z
with α̂ ? β̂ = γ̂.

Formula (17) implicitly states that the left side of the equality contains
only finitely many non-zero terms.

Proposition 9 above is equivalent to Theorem 2 parts 1 and 2 in [5].
The proof, originally due to Novikov can be also found in [5].

The following proposition will be the main tool in the proof of The-
orem 2.

Proposition 10. Suppose t ∈ R, ω a closed one form representing ξ
and t > ρ(ξ,X). Then:

(i) For every a ∈ Ωq(M) and every x ∈ Xq the integral

IntqX,ω,O(t)(a)(x) :=

∫
W−x

ethx(i−x )∗a

converges absolutely.12 In particular it defines a linear map
IntqX,ω,O(t) : Ωq(M)→ Maps(Xq,R).

(ii) The map IntqX,ω,O(t) : Ωq(M)→ Maps(Xq,R) is surjective and

Intq+1
X,ω,O(t)(dω(t)a)(x) =

∑
y∈Xq , α̂∈P̂ξx,y

etω(α̂)
I
X,O,ξ
x,y (α̂) IntqX,ω,O(t)(a)(y)

(18)
where the right side of (18) is a potentially infinite sum which
is convergent.

The proof of Proposition 10 is given in details in [5] section 5, (cf.
Proposition 4) and uses in an essential way Theorem 5 and Stokes’
theorem. Particular care is necessary in view of the fact that W−

x are
not compact. The integration has to be performed on a non compact
manifold and Stokes’ theorem applied to non-compact manifolds with
corners.

The proof of Theorem 2 boils down to the verification of the following
claims:

12Recall that for an oriented n–dimensional manifold N and a ∈ Ωn(N) one has
|a| := |a′|Vol ∈ Ωn(M), where Vol ∈ Ωn(N) is any volume form and a′ ∈ C∞(N,R)
is the unique function satisfying a = a′ ·Vol. The integral

∫
N
a is called absolutely

convergent, if
∫
N
|a| converges.
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Claim 1. For any t > sup{ρ(ξ,X), T}, x ∈ Xq+1 and y ∈ Xq the
possibly infinite sum ∑

α̂∈P̂ξx,y

I
X,O,ξ
x,y (α̂)etω(α̂)

is convergent and the formula

δqX,ω,O(t)(Ey) =
∑

x∈Xq+1, α̂∈P̂ξx,y

(
I
X,O,ξ
x,y (α̂)etω(α̂)

)
Ex (19)

defines a linear map δqX,ω,O(t) : Cq(X) = Maps(Xq,R) → Cq+1(X) =
Maps(Xq+1,R) which makes (C∗(X), δ∗X,ω,O(t)) a smooth (actually an-
alytic) family of cochain complexes of finite dimensional Euclidean
spaces. Recall that {Ex}x∈X denotes the characteristic functions of
x ∈ X and {Ex}x∈X provide the canonical base of C∗(X) which, implic-
itly equips each component Cq(X) with a scalar product, the unique
scalar product which makes this base orthonormal. Recall also that
ω : P̂ξx,y → R was defined in section 1 before Proposition 1 and makes
sense even when ω is not a representative of ξ but still, its pull back
on M̃ is exact.

Claim 2. The linear maps IntqX,ω,O(t) are surjective and define a mor-
phism of cochain complexes.

Claim 3. There exists T larger than ρ(ω,X) so that for t > T the linear
map IntqX,ω,O(t) when restricted to Ωq

sm(M)(t) is an isomorphism and
actually an O(1/t)–isometry.

Everything but theO(1/t)–isometry statement in Claim 3 is a straight
forward consequence of Theorem 1 and Proposition 10 above. To check
this part of Claim 3 we have to go back to the proof of Theorems 3 and
4 in [5], section 6. We observe that if t is large enough the restriction
of IntqX,ω,O(t) to the subspace H1(t) ⊂ Ωq(M) defined in [5], section 4
page 172 (cf. Proof of Theorem 3) is surjective and then by Lemma 7 in
[5] so is the restriction of IntqX,ω,O(t) to Ωq

sm(M)(t). This because H1(t)
and Ωq

sm(M)(t) are, by Lemma 7 in [5] section 6, as close as we want for
t large enough. Since the spaces Ωq

sm(M)(t) and Cq(X) have the same
finite dimension, by the surjectivity in Claim 2, IntqX,ω,O(t) is an isomor-
phism and, as shown in [5] section 4 page 172 an O(1/t)–isometry. We
take as the base EOx (t) the differential forms EOx (t) = IntqX,ω,O(t)−1(Ex).
This finishes the proof of Theorem 2. Theorem 3 is a consequence of
Theorem 2 and of Claim 3.

We conclude this section with the following remarks. Let X be a
vector field which has ξ as Lyapunov cohomology class. Suppose X
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satisfies MS and ρ(ξ,X) <∞. Let ω be a closed one form representing
ξ.

For t > ρ(ξ,X) the finite dimensional vector spaces

Cq(X) := Maps(Xq,R)

and the linear maps

δqX,ω,O(t) : Maps(Xq,R)→ Maps(Xq+1,R)

defined by

δqX,ω,O(t)(Ex) :=
∑

y∈Xq+1, α̂∈Pξy,x

I
X,O,ξ
y,x (α̂)etω(α̂)Ey

give rise to a cochain complex of finite dimensional vector spaces

C
∗(X,ω,O)(t) := {Cq(X), δqX,ω,O(t)},

and to a morphism of such complexes:

Int∗X,O,ω(t) : (Ω∗(M), dω(t))→ C
∗(X,ω,O)(t)

One can show (implicit in Theorem 3) that Int∗X,O,ω(t) induces an iso-

morphism in cohomology.13

Let ω1 and ω2 be two closed one forms representing the same co-
homology class ξ and let f : M → R be a smooth function so that
ω1 − ω2 = df . The collections of linear maps

mq
f (t) : Ωq(M)→ Ωq(M), mq

f (t)(a) := etfa,

where a ∈ Ωq(M), and

sqf (t) : Cq(X,ω1,O)→ C
q(X,ω2,O), sqf (t)(Ex) := etf(x)Ex,

where Ex ∈ Maps(Xq,R) denotes the characteristic function of x ∈ Xq,
define morphisms of cochain complexes making the diagram(

Ω∗(M), dω1(t)
) m∗f (t)
−−−→

(
Ω∗(M), dω2(t)

)
Int∗X,O,ω1

(t)

y yInt∗X,O,ω2
(t)

C
∗(X,O, ω1)(t)

s∗f (t)
−−−→ C

∗(X,O, ω2)(t)

commutative for any t > ρ(ξ,X).

Indeed because h1
x−h2

x = (f−f(x)) · i−x is bounded,14
∫
W−x

eth
2
x(i−x )∗a

is absolutely convergent iff
∫
W−x

eth
1
x(i−x )∗a is.

13This will not be used in this paper but in the case that X is the gradient of
a smooth function (i.e. coming from a generalized triangulation) in which case the
statement is a consequence of deRham’s theorem with local coefficients.

14h1
x is associated to ω1 and h2

x is associated to ω2.
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5. The regularization R(X,ω, g)

In this section we discuss the numerical invariant R(X,ω, g) associ-
ated to a vector field X, a closed one form ω and a Riemannian metric
g. The invariant is defined by a possibly divergent integral but regu-
larizable and is implicit in the work of [1]. More on this invariant is
contained in [6].

In section 1.5 we have considered the Mathai–Quillen form Ψg ∈
Ωn−1(TM \M ;OM) of an n–dimensional Riemannian manifold (M, g).
The Mathai–Quillen form (see [11]) is actually associated to a pair ∇̃ =
(∇, µ) consisting of a connection and a parallel Euclidean structure
on a vector bundle E → M . If E is of rank k it is a k − 1 form
Ψ∇̃ ∈ Ωk−1(E \M ;OE) with values in the pull back of the orientation
bundle OE of E to the total space of E. Here M is identified with
the zero section in the bundle E. If g is a Riemannian metric let
∇̃g := (∇g, g) denote the Levi–Civita pair associated to g and write
Ψg := Ψ∇̃g .

The Mathai–Quillen form has the following properties:

(i) For the Euler form E∇̃ ∈ Ωk(M ;OE) associated to ∇̃ we have
dΨ∇̃ = π∗E∇̃.

(ii) For two ∇̃1 and ∇̃2 we have Ψ∇̃2−Ψ∇̃1 = π∗ cs(∇̃1, ∇̃2) modulo

exact forms. Here cs(∇̃1, ∇̃2) ∈ Ωk−1(M ;OE)/dΩk−2(M ;OE)
is the Chern–Simon invariant.

(iii) For every x ∈M the form −Ψ∇̃ restricts to the standard gen-
erator of Hk−1(Ex \ 0;OE), where Ex denotes the fiber over
x ∈M . Note that the restriction of −Ψ∇̃ is closed by (i).

(iv) Suppose E = TM , ∇̃g is the Levi–Civita pair, and suppose
that on the open set U we have coordinates x1, . . . , xn in which
the Riemannian metric g|U is given by gij = δij. Then, with
respect to the induced coordinates x1, . . . , xn, ξ1, . . . , ξn on TU ,
the form Ψg is given by

Ψg =
Γ(n/2)

2πn/2

∑
i

(−1)i
ξi(∑

j(ξ
j)2
)n/2dξ1 ∧ · · · ∧ d̂ξi ∧ · · · ∧ dξn,

cf. [11].

Let X be a vector field on M , i.e. a section of the tangent bundle
TM . We suppose that it has only isolated zeros, that is its zero set
X is a discrete subset of M . The vector field defines an integer valued
map IND : X → Z, where IND(x) denotes the Hopf index of the vector
field X at the zero x ∈ X . This integer IND(x) is the degree of the
map (U,U \x)→ (TxM,TxM \0) obtained by composing X : U → TU
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with the projection p : TU → TxM induced by a local trivialization of
the tangent bundle on a small disk U ⊆M centered at x.

Choose coordinates around x so that we can speak of the disk Uε
with radius ε > 0 centered x. It is well known that we have:

INDx = − lim
ε→0

∫
∂Uε

X∗Ψg (20)

Indeed, by (ii) we may assume that g is flat on Uε. Thus Eg = 0
and Ψg is closed on Uε by (i). Using (iii) we see that −Ψg gives the
standard generator of Hn−1(TUε\Uε;OUε) and thus certainly IND(x) =
−
∫
∂Uε

X∗Ψg.

The vector field X has its rest points (zeros) non-degenerate and in
particular isolated, if the map X is transversal to the zero section in
TM . In this case X is an oriented zero dimensional manifold, whose
orientation is specified by IND(x). Moreover we have

IND(x) = sign detH ∈ {±1},
where H : TxM → TxM denotes the Hessian. Particularly, if there
exist coordinates x1, . . . , xn centered at x so that

X = −
∑

1≤i≤k

xi ∂
∂xi

+
∑
i>k

xi ∂
∂xi

(21)

we get IND(x) = (−1)k.
Let X1 and X2 be two vector fields and X := {Xs}s∈[−1,1] a smooth

homotopy from X1 to X2, i.e. Xs = X1 for s ≤ −1 + ε and Xs = X2

for s ≥ 1 − ε. The homotopy is called non-degenerate if the map
X : [−1, 1] ×M → TM defined by X(s, x) := Xs(x) is transversal to
the zero section of TM . In this case necessarily X1 and X2 are vector
fields with non-degenerate zeros and so are all but finitely many Xs.
Moreover all Xs have isolated zeros with indexes in {0, 1,−1} and the
zero set X̃ of X is an oriented one dimensional smooth submanifold of
[−1, 1]×M . Note that we have

∂X̃ =
∑
y∈X 2

IND(y)y −
∑
x∈X 1

IND(x)x.

If X′ is a second homotopy joining X1 with X2 then X̃ ′ − X̃ is the
boundary of a smooth 2–cycle. Indeed, if we choose a homotopy of
homotopies joining X with X′ which is transversal to the zero section,
then its zero set will do the job.

Given a closed one form ω on M denote by

IX,ω :=

∫
X̃
p∗2ω,
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where p2 : X̃ → M denotes the restriction of the projection [−1, 1] ×
M → M . It follows from the previous paragraph that IX,ω does not
depend on the homotopy X — only on X1, X2 and ω, and therefor will
be denoted from now on by I(X1, X2, ω).

Remark 7. If there exists a simply connected open set V ⊂M so that
Xs ⊂ V for all s ∈ [−1, 1] then one can calculate IX,ω as follows: Choose
a smooth function f : V → R so that ω|V = df . Then

IX,ω =
∑
y∈X 2

IND(y)f(y)−
∑
x∈X 1

IND(x)f(x).

The proof of this equality is a straight forward application of Stokes’
theorem.

With these considerations we will describe now the regularization
referred to in Section 1.5, cf. (8). First note that for a non-vanishing
vector field X, a closed one form ω and a Riemannian metric g the
quantity

R(X,ω, g) :=

∫
M

ω ∧X∗Ψg (22)

has the following two properties.

R(X,ω + df, g)−R(X,ω, g) = −
∫
M

fEg

for every smooth function f . If g1 and g2 are two Riemannian metrics
then

R(X,ω, g2)−R(X,ω, g1) =

∫
M

ω ∧ cs(g1, g2)

where cs(g1, g2) = cs(∇̃g1
, ∇̃g2

). This follows from properties (i) and
(ii) of the Mathai–Quillen form.

If X has zeros, then the form ω∧X∗Ψg is well defined on M \X but
the integral

∫
M\X ω ∧ X

∗Ψg might be divergent unless ω is zero on a

neighborhood of X .
We will define below a regularization of the integral

∫
M\X ω ∧X

∗Ψg

which in case X = ∅ is equal to the integral (22). For this purpose
we choose a smooth function f : M → R so that the closed 1–form
ω′ := ω − df vanishes on a neighborhood of X , and put

R(X,ω, g; f) :=

∫
M\X

ω′ ∧X∗Ψg −
∫
M

fEg +
∑
x∈X

IND(x)f(x) (23)

Proposition 11. The quantity R(X,ω, g; f) is independent of f .
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Therefore R(X,ω, g; f) can be denoted by R(X,ω, g) and will be
called the regularization of

∫
M\X ω ∧X

∗Ψg.

Proof. Suppose f 1 and f 2 are two functions such that ωi := ω − df i

vanishes in a neighborhood U of X , i = 1, 2. For every x ∈ X we
choose a chart and let Dε(x) denote the ε–disk around x. Put Dε :=⋃
x∈X Dε(x).
For ε sufficiently small Dε ⊆ U and f 2−f 1 is constant on each Dε(x).

From (23), Stokes’ theorem and (20) we conclude that

R(X,ω, g; f 2)−R(X,ω, g; f 1)−
∑
x∈X

IND(x)
(
f 2(x)− f 1(x)

)
=

= −
∫
M\X

d
(
(f 2 − f 1) ∧X∗Ψg

)
= − lim

ε→0

∫
M\Dε

d
(
(f 2 − f 1) ∧X∗Ψg

)
=
∑
x∈X

(
f 2(x)− f 1(x)

)
lim
ε→0

∫
∂Dε(x)

X∗Ψg

= −
∑
x∈X

IND(x)
(
f 2(x)− f 1(x)

)
and thus R(X,ω, g; f 1) = R(X,ω, g; f 2). �

Proposition 12. Suppose that X is a non-degenerate homotopy from
the vector field X1 to X2 and ω is a closed one form. Then

R(X2, ω, g)−R(X1, ω, g) = I(X1, X2, ω). (24)

Proof. We may assume that there exists a simply connected V ⊆ M
with Xs ⊆ V for all s ∈ [−1, 1]. Indeed, since both sides of (24) do not
depend on the homotopy X we may first slightly change the homotopy
and assume that no component of X̃ lies in a single {s}×M . Then we
find −1 = t0, . . . , tk = 1 so that for every 0 ≤ i < k we find a simply
connected Vi ⊆M such that Xs ⊆ Vi for all s ∈ [ti, ti+1].

Assuming V as above we choose a function f so that ω′ := ω −
df vanishes on a neighborhood of every Xs, i.e. p∗2ω

′ vanishes on a
neighborhood of X̃ . Here p2 : [−1, 1]×M →M denotes the canonical
projection. Moreover let p̃2 : [−1, 1]× TM → TM denote the canonic
projection and note that p∗2ω

′ ∧ X∗p̃∗2Ψg is a globally defined form on
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[−1, 1]× TM . Using Stokes’ theorem and Remark 7 we then get:

R(X2, ω, g)−R(X1, ω, g)− IX,ω =

∫
[−1,1]×M

d
(
p∗2ω

′ ∧ X∗p̃∗2Ψg

)
=

∫
[−1,1]×M

p∗2(ω′ ∧ Eg)

= 0

For the second equality we used dX∗p̃∗2Ψg = p∗2Eg. The integrand of
the last integral vanishes because of dimensional reasons. �

With little effort, using Stokes’ theorem and the properties of the
Mathai–Quillen form, one can proof

R(X,ω + df, g)−R(X,ω, g) = −
∫
M

fEg +
∑
x∈X

IND(x)f(x)

for every smooth function f , and

R(X,ω, g2)−R(X,ω, g2) =

∫
M

ω ∧ cs(g1, g2)

for any two Riemannian metrics g1 and g2. Its also not difficult to
generalize the regularization to vector fields with isolated singularities,
cf. [6].

6. Proof of Theorem 4

The proof of Theorem 4 presented here combines results of Hutch-
ings, Pajitnov and others (cf. [8], [15]) with results of Bismut–Zhang,
cf. [1], [6] and [3]. A recollection of these results, additional notations
and preliminaries are necessary. They will be collected in four prelimi-
nary subsections. These subsections will be followed by the fifth where
Theorem 4 is proven.

Recall from [3] that a generalized triangulation τ = (f, g) on a closed
manifold M is a pair consisting of a Morse function f and a Riemannian
metric g so that X = − gradg f satisfies MS.

6.1. Homotopy between vector fields. Let ξ ∈ H1(M ;R), and
π : M̃ →M be a covering so that π∗ξ = 0.

Recall that a smooth family of sections X := {Xs}s∈[−1,1], of the
tangent bundle will be called a homotopy from the vector field X1 to
the vector field X2 if there exists ε > 0 so that Xs = X1 for s < −1 + ε
and Xs = X2 for s > 1− ε.
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To a homotopy X := {Xs}s∈[−1,1] one associates the vector field Y
on the compact manifold with boundary15N := M × [−1, 1] defined by

Y (x, s) := X(x, s) + 1/2(s2 − 1)
∂

∂s
. (25)

With this notation we have the following.

Proposition 13. If X is a homotopy between two vector fields X1 and
X2 which both have ξ as a Lyapunov cohomology class. Then the vector
field Y has p∗ξ as a Lyapunov cohomology class, cf. Definition 7, where
p : N = M × [−1, 1]→M is the first factor projection.

Proof. Since X1 and X2 are both vector fields with ξ as Lyapunov
cohomology class we can choose closed 1–forms ωi representing ξ and
Riemannian metrics gi on M such that X i = − gradgi ωi, i = 1, 2.
Choose an admissible Riemannian metric g on N inducing gi on the
boundaries; for example take

g := (1− λ)p∗g1 + λp∗g2 + ds2,

where λ : [−1, 1]→ R is a non-negative smooth function satisfying

λ(s) =

{
0 for s ≤ −1 + ε and

1 for s ≥ 1− ε.

Next choose a closed 1–form ω on N which restricts to p∗ω1 on
M × [−1,−1 + ε] and which restricts to p∗ω2 on M × [1 − ε, 1]. This
is possible since ω1 and ω2 define the same cohomology class ξ and
can be achieved in the following way. Choose a function h on M with
ω2 − ω1 = dh and set ω := p∗ω1 + d(λp∗h). Choose a function u :
[−1, 1]→ R, such that:

(i) u(s) = −1
2
(s2 − 1) for all s ≤ −1 + ε and all s ≥ 1− ε.

(ii) u(s) ≥
{
−ω(Y )(x,s)

1
2

(s2−1)

}
for all s ∈ [−1 + ε, 1− ε] and all x ∈M .

This is possible since
{
−ω(Y )(x,s)

1
2

(s2−1)

}
≤ 0 for s = −1 + ε and s = 1− ε.

Then ω̃ := ω + u(s)ds represents the cohomology class p∗ξ and one
can verify that Y is a vector field which coincides with − gradg̃ ω̃ in a
neighborhood of ∂N and for which ω̃(Y ) < 0 on N \ Y . �

Let X be a homotopy between two vector fields X1 and X2 which
satisfies MS. Let Y be the vector field defined in (25). With the nota-
tions from the appendix to section 2 (the case of a compact manifold

15See the appendix to section 2 for the definition of vector fields on a compact
manifold with boundary.
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with boundary) we have

Y = Y ′′ = Y ′′− t Y ′′+
with

Y ′′− = X 1 × {−1} and Y ′′+ = X 2 × {1}.

Definition 8. The homotopy X is called MS if the vector field Y is
MS, i.e. X1 and X2 are MS and for any y ∈ Y ′′− and z ∈ Y ′′+ the maps
i+y and i−z are transversal. The homotopy X has exponential growth if
Y has exponential growth.

Proposition 14. Let X1 and X2 be two vector fields which satisfy MS
and X a homotopy from X1 to X2. Then there exists a MS homotopy
X
′ from X1 to X2, arbitrarily close to X in the C1–topology.

Proof. First we modify the vector field Y into Y ′ by a small change in
the C1–topology, and only in the neighborhood of M ×{0}, in order to
have the Morse–Smale condition satisfied for any y ∈ Y ′′− and z ∈ Y ′′+.
This can be done using Proposition 2. Unfortunately Y ′ might not
have the I–component equal to 1/2(s2− 1)∂/∂s, it is nevertheless C1–
close, so by multiplication with a function which is C1–close to 1 and
equal to 1 on the complement of a small compact neighborhood of the
locus where Y and Y ′ are not the same, one obtains a vector field Y ′′

whose I–component is exactly 1/2(s2 − 1)∂/∂s. The M−component
of Y ′′ defines the desired homotopy. By multiplying a vector field with
a smooth positive function the stable and unstable sets do not change,
and their transversality continues to hold. �

In view of Theorem 6 for compact manifolds with boundary we have
the following

Remark 8. For any y = (x, 1) ∈ Y ′′+ the 1–corner of Ŵ−
y is given by

∂1(Ŵ−
y ) = V0 t V1 t V2

where

V0 ' W−
x

V1 '
⋃

v∈Y′′+,α̂∈P̂y,v
ind(v)=ind(y)−1

T (y, v, α̂)× (W−
v \ ∂N)

V2 '
⋃

u∈Y′′−,α̂∈P̂y,u
ind(u)=ind(y)−1

T (y, u, α̂)×W−
u
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It is understood that W−
x represents the unstable manifold in M =

M × {1} if x ∈ X 2.
In view of (25) we introduce the invariant ρ(ξ,X) ∈ R ∪ {±∞} for

any homotopy X by defining

ρ(ξ,X) := ρ(p∗ξ, Y )

Clearly ρ(ξ,X) ≥ ρ(ξ,X i) for i = 1, 2.
Suppose X is a MS homotopy from the MS vector field X1 to the

MS vector field X2. For each X i choose the orientations Oi, i = 1, 2.
Observe that the set P̂x′,x identifies to P̂(x′,1),(x′,−1). The orientations
O1 and O2 define the orientations O for the unstable manifolds of the
rest points of Y . For x1 ∈ X 1, x2 ∈ X 2 and α̂ ∈ P̂x2,x1 define the
incidences

I
X,O2,O1

x2,x1 (α̂) := IY,O
(
(x2, 1), (x1,−1)

)
(α̂). (26)

Suppose in addition that ρ(ξ,X) <∞. For any t > ρ(ξ,X) and ω a
closed one form representing ξ define the linear maps

uqω(t) := uqX,O1,O2,ω(t) : Maps(X 1
q ,R)→ Maps(X 2

q ,R)

and the linear maps

hqω(t) := hqX,O1,O2,ω(t) : Ωq(M)→ Maps(X 2
q−1,R)

by

uqω(t)(Ex1) :=
∑
x2∈X2

α̂∈P̂
x2,x1

I
X,O2,O1

x2,x1 (α̂)etω(α̂)Ex2 , x1 ∈ X 1
q (27)

and

(hqω(t)(a))(x2) =

∫
W−y

etFy(i−y )∗p∗a, x2 ∈ X 2
q−1 and y = (x2, 1).

The right side of (27) is a convergent infinite sum since it is a sub sum
of the right hand side of (19) when applied to the vector field Y .

Proposition 15. Suppose X1, X2 are two MS vector fields having ξ
as a Lyapunov cohomology class and suppose X is a MS homotopy.
Suppose that ρ := ρ(ξ,X) = ρ(p∗ξ, Y ) <∞ and ω is a closed one form
with p∗ω exact; here p : M̃ →M is the Γ–principal covering associated
with Γ. Then for t > ρ we have:

(i) The collection of linear maps {uqω(t)} defines a morphism of
cochain complexes:

u∗ω(t) := u∗X,O1,O2,ω(t) : C∗(X1,O1, ω)(t)→ C
∗(X2,O2, ω)(t)
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(ii) The collection of linear maps hqω(t) defines an algebraic ho-
motopy between Int∗X2,O2,ω(t) and u∗X,O1,O2,ω(t) ◦ Int∗X2,O2,ω(t).
Precisely, we have:

h∗+1
ω (t) ◦ d∗ω(t) + δ∗−1

ω (t) ◦ h∗ω(t) = u∗ω(t) ◦ Int∗X1,O1,ω(t)− Int∗X2,O2,ω(t)

Proof. Statement (i) follows from the equality∑
x′∈X1

q+1, α̂∈P̂z,x′
β̂∈P̂x′,x, α̂?β̂=γ̂

I
X,O2,O1

z,x′ (α̂)IX
1,O1

x′,x (β̂)−
∑

z′∈X2
q , α̂∈P̂z,z′

β̂∈P̂z′,x, α̂?β̂=γ̂

I
X2,O2

z,z′ (α̂)IX,O
2,O1

z′,x (β̂) = 0

for any x ∈ X 1
q , z ∈ X 2

q+1 and γ̂ ∈ P̂z,x which is a reinterpretation
of equation (17) when applied to the vector field Y , the rest points

(x,−1) and (z, 1) and γ̂ ∈ P̂z,x = P̂(z,1),(x,−1). The sign stems from the
fact that the sign associated to a trajectory from z to z′ changes when
it is considered as trajectory in M × [−1, 1] instead of M × {1}.

To verify statement (ii) we first observe that:

(a) If y, u ∈ Y the restriction of Fy to T (y, u)(α̂)×W−
u , α̂ ∈ P̂y,u,

when this set is viewed as a subset of Ŵ−
y is given by

Fu ◦ prW−u +ω(α̂).

(b) If y = (x,−1), x ∈ X 1, via the identification of W−
x to W−

y ,
we have Fy = hx.

In view of the uniform convergence of all integrals which appear in
the formulae below, guaranteed by the hypothesis t > ρ, the Stokes
theorem for manifolds with corners gives for any a ∈ Ωq(M) and y ∈
(Y ′′+)q ∫

Ŵ−y

d(etFyc) =

∫
V0

etFyc+

∫
V1

etFyc+

∫
V2

etFyc, (28)

where c := (i−y )∗p∗a ∈ Ωq(Ŵ−
y ).

In view of the Remark 8 we have∫
V0

etFyc = IntqX2,O2,ω(t)(a), (29)

and ∫
V2

etFyc =
∑

u∈Y′′+, α̂∈P̂y,u
ind(u)=ind(y)−1

I
Y,O
y,u (α̂)etω(α̂)

∫
Ŵ−u

etFu (̂i−u )∗p∗a

= −(δq−1
ω (t) ◦ hqω(t))(a) (30)
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and ∫
V1

etFyc = −
∑

v∈Y′′−, α̂∈P̂y,v
ind(v)=ind(y)−1

I
Y,O
y,v (α̂)etω(α̂)

∫
Ŵ−v

etFv(i−v )∗p∗a

= −(uqω(t) ◦ IntqX1,O1,ω(t))(a). (31)

Moreover

(hq+1
ω (t) ◦ dω(t))(b)(y) =

∫
Ŵ−y

etFy(i−y )∗p∗(db+ tω ∧ b)

=

∫
Ŵ−y

d(etFy(i−y )∗p∗b) (32)

and the statement follows combining the equalities (28)–(32). �

The following proposition will be important in the proof of Theo-
rem 4.

Proposition 16.

(i) Let (f, g) be a pair consisting of a Morse function and a Rie-
mannian metric. Then the vector field − gradg f has any ξ ∈
H1(M ;R) as a Lyapunov cohomology class.

(ii) Let X be a vector field which has MS property and has ξ as
Lyapunov cohomology class. Let τ = (f, g) be a generalized
triangulation. Then there exists a homotopy X from X1 :=
X to X2 which is MS and is C0–close to the family Xs =
1−s

2
X − 1+s

2
gradg f . One can choose X to be C1–close to a

family l(s)X − (1− l(s)) gradg f where l : [−1, 1] → [0, 1] is a
smooth function with l′(s) ≤ 0 and l′(s) = 0 in a neighborhood
of {±1}.

Proof of (i). Let ω be a closed one form representing ξ with support
disjoint from a neighborhood of Cr(f). Clearly for C a large constant
the form ω′ := ω+Cdf represents ξ and satisfies ω′(− gradg f) < 0. �

Proof of (ii). First consider the family Xs := (1−s
2

)X − (1+s
2

) gradg f .
Change the parametrization to make this family locally constant near
{±1}, hence get a homotopy and apply Proposition 14 to change this
homotopy into one which satisfies MS. �

Definition 9. A vector field X which satisfies MS and has ξ as a
Lyapunov cohomology class is said to have strong exponential growth if
for one (and then any) generalized triangulation τ = (f, g) there exists
a homotopy X from X to − gradg f which has exponential growth.

To summarize the discussion in this subsection consider:
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(i) a vector field X1 = − gradg′ ω with ω a Morse form represent-
ing ξ and g′ a Riemannian metric so that X1 satisfies MS,

(ii) A vector field X2 = − gradg′′ f , τ = (f, g′′) a generalized tri-
angulation,

(iii) A homotopy X from X1 to X2 which is MS,

Since ρ(ξ,X2) = −∞, for any t ∈ R we have a well defined morphism
of cochain complexes

Int∗X2,O2,ω(t) : (Ω∗(M), dω(t))→ C
∗(X2,O2, ω)(t).

If X1 has ρ(ξ,X1) <∞, equivalently X1 has exponential growth, then
for t large enough we have a well defined morphism of cochain com-
plexes

Int∗X1,O1,ω(t) : (Ω∗(M), dω(t))→ C
∗(X1,O1, ω)(t).

If X has ρ(ξ,X) <∞ then for t large enough we have the morphism of
cochain complexes

u∗X,O1,O2,ω(t) : C∗(X1,O1, ω)(t)→ C
∗(X2,O2, ω)(t)

and the algebraic homotopy h∗X,O1,O2,ω(t) making the diagram below
homotopy commutative.

(Ω∗(M), dω(t))
Id−−−→ (Ω∗(M), dω(t))

Int∗
X1,O1,ω

(t)

y yInt∗
X2,O2,ω

(t)

C
∗(X1,O1, ω)(t)

u∗
X,O1,O2,ω

(t)

−−−−−−−→ C
∗(X2,O2, ω)(t).

6.2. A few observations about torsion. Consider cochain com-
plexes (C∗, d∗) of free A–modules of finite rank whose cohomology
H∗ := H∗(C∗, d∗) is also a graded A–free module16 of finite rank. Here
A is a commutative ring with unit.

For two equivalence classes of bases, [c] of C∗ and [h] of H∗, Milnor,
cf. [12], has defined the torsion τ((C∗, d∗), [c], [h]) ∈ A+/{±1} where
A+ denotes the multiplicative group of invertible elements of A.

Recall that the bases m′ ≡ {m′1, . . . ,m′k} and m” ≡ {m′′1, . . . ,m′′k} of
the free A–module M are equivalent iff the isomorphism T : M → M
defined by T (m′i) = m′′i has determinant ±1.

If the complex (C∗, d∗) is acyclic there is no need of the base h and
one has τ((C∗, d∗), [c]) ∈ A+/{±1}. If α : A → B is a unit preserving
ring homomorphism, by tensoring (C∗, d∗), [c], [h] with B, regarded as

16Actually one can weaken the hypothesis free to projective but this is of no
interest in the present discussion.
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an A−module via α, one obtains ((C ′)∗, (d′)∗), [c′], [h′] a cochain com-
plex of free B−modules whose cohomology is a free B−module and the
bases [c′], [h′]. Clearly

τ(((C ′)∗, (d′)∗), [c′], [h′]) = α(τ((C∗, d∗), [c], [h])).

If A is the field R or C, hence (C∗, d∗) is a cochain complex of finite
dimensional vector spaces, and 〈·, ·〉 are scalar products in C∗ one can
define the T–torsion, T ((C∗, d∗), 〈·, ·〉) ∈ R+, by the formula

log T ((C∗, d∗), 〈·, ·〉) = 1/2
∑
i

(−1)i+1i log det ′∆i

where det ′∆i is the product of the non-zero eigen values of ∆i :=
(di+1)] ·di+di−1 · (di)]. Here (di)] denotes the adjoint of di with respect
of the scalar product 〈·, ·〉

If in addition scalar product 〈〈·, ·〉〉 in cohomology H∗ := H∗(C∗, d∗),
is given, one defines the positive real numbers Vol(H i, 〈·, ·〉, 〈〈·, ·〉〉) to
be the volume of the isomorphism ker di/di−1(Ci−1)→ H i.17 Here the
first vector space is equipped with the scalar product induced from 〈·, ·〉
and the second with the scalar product 〈〈·, ·〉〉.

If A is R or C then any base c resp. h induce a scalar product
〈·, ·〉c resp. 〈〈·, ·〉〉h, the unique scalar product which makes the base
orthonormal. Although equivalent bases do not necessary provide the
same scalar products they do however lead to the same T–torsions.
This follows from the inspection of the definition. Moreover one has

|τ((C∗, d∗), [c], [h])| =
= T ((C∗, d∗), 〈·, ·〉c) +

∑
i

(−1)i log Vol(H i, 〈·, ·〉c, 〈〈·, ·〉〉h)

Let u∗ : (C∗1 , d
∗
1) → (C∗2 , d

∗
2) be a morphism of cochain complexes of

free A–modules of finite rank which induce isomorphism in cohomology.
Then the mapping cone Cu∗ is an acyclic cochain complex of free A–
modules of finite rank.

Two equivalence classes of bases [c1] of C∗1 and [c2] of C∗2 provide an
equivalence class of bases [c] of Cu∗, and permit to define

τ(u∗, [c1], [c2]) := τ(Cu∗, [c]).

If A is R or C the scalar products 〈·, ·〉1 and 〈·, ·〉2 in C∗1 and C∗2 provide
the scalar product 〈·, ·〉 in Cu∗ and permit to define

T (u∗, 〈·, ·〉1, 〈·, ·〉2) := T (Cu∗, 〈·, ·〉).
17Recall that the volume of an isomorphism θ : (V1, 〈·, ·〉1)→ (V2, 〈·, ·〉2) between

two Euclidean vector spaces is the positive real number log Vol(θ) := 1/2 log det θ]·θ.
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If the scalar products 〈·, ·〉i := 〈〈·, ·〉〉ci , i = 1, 2 are induced from the
bases c∗i , i = 1, 2 we also have

|τ((u∗, [c1], [c2])| = T (u∗, 〈·, ·〉1, 〈·, ·〉2) (33)

It is a simple exercise of linear algebra (cf. [3]) to check that:

Proposition 17.

(i) Suppose u∗ : (C∗1 , d
∗
1) → (C∗2 , d

∗
2) is a morphism of cochain

complexes which induces the isomorphisms H∗u in cohomol-
ogy. Suppose that H∗(C∗1 , d

∗
1) = H∗(C∗2 , d

∗
2) are free A–modules

equipped with the bases h1 and h2 and c1 and c2 are bases of

C∗1 and C∗2 . Suppose in addition that
∏

(detH iu)(−1)i = ±1.18

Then:

τ(u∗, [c1], [c2]) = τ(C∗2 , [c2], [h2]) · τ(C∗1 , [c1], [h1])−1.

(ii) Suppose A is R or C and 〈·, ·〉1 and 〈·, ·〉2 are scalar products
on C∗1 and C∗2 . Then

log T (u∗, 〈·, ·〉1, 〈·, ·〉2) = (34)

= log T ((C∗1 , d
∗
1), 〈·, ·〉1)− log τ((C∗2 , d

∗
2), 〈·, ·〉2) + log VolH∗u

where log VolH∗u =
∑

i(−1)i log VolH iu.19 Moreover if u∗ is
an isomorphism then

log T (u∗, 〈·, ·〉1, 〈·, ·〉2) =
∑
i

(−1)i log Vol θi

We conclude this subsection by recalling the following result of Bismut–
Zhang, see [1] and [3].

Suppose that (M, g) is a closed Riemannian manifold X = − gradg′ f
with τ = (f, g′) a generalized triangulation, ρ a representation of π1(M)
and µ a Hermitian structure in the flat vector bundle associated with
ρ. Consider Int∗ : (Ω∗(M,ρ), dρ) → (C∗(τ, ρ), δO,ρ) and equip each of
these complexes with a scalar product, the first complex with the scalar
product induced from the Riemannian metric g and the Hermitian
structure µ and the second with the scalar product 〈·, ·〉µ,τ induced
from the generalized triangulation τ and the Hermitian structure µ,
cf. [3]. In this notation Cq(τ, ρ) can be viewed as the vector space of
sections above Xq of the vector bundle Eρ → M equipped with the
hermitian structure µ. This is a finite dimensional vector space with a
scalar product.

18Here (detHiu) is calculated with respect to the bases h1 and h2.
19VolHiu is calculated with respect to the scalar product induced from 〈·, ·〉i,

i = 1, 2 in cohomology.
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Equip the cohomology of these cochain complexes with the induced
scalar product. Denote by H∗ Int the isomorphism induced in coho-
mology and write

log V H(ρ, µ, g, τ) =
∑

(−1)q log Vol(Hq Int) (35)

Let ω(µ) be the closed one form induced by µ as described in [1] and
[3]. We have the following result due to Bismut–Zhang, cf. [3].

Theorem 7. With the hypothesis above we have

log Tan(M, g, ρ, µ) = log T (C∗(τ, ρ), δO,ρ, 〈·, ·〉µ,ρ)+
+ log V H(ρ, µ, g, τ) +R(X,ω(µ), g)

6.3. A summary of Hutchings–Pajitnov results. We begin by
recalling the results of Hutchings cf. [8].

Let M be a compact smooth manifold, m ∈ M a base point and
ξ ∈ H1(M ;R). Recall from section 1.1 that ξ defines the free abelian
group Γ and induces the injective homomorphism ξ : Γ → R. Denote
by π : M̃ →M the principal Γ–covering canonically associated with x
and π1(M,m)→ Γ. To ξ we associate

(i) the Novikov ring Λξ with coefficients in R which is actually a
field,

(ii) the subring Λξ,ρ ⊂ Λξ, for any ρ ∈ [0,∞), cf. below,
(iii) the multiplicative groups of invertible elements Λ+

ξ ⊂ Λξ and

Λ+
ξ,ρ ⊂ Λξ,ρ.

The Novikov ring Λξ consists of functions f : Γ → R which satisfy
the property that for any real number R ∈ R the cardinality of the set
{γ ∈ Γ|f(γ) 6= 0, ξ(γ) ≤ R} is finite. The multiplication in Λξ is given
by convolution, cf. [5]. We have also shown both in Section 1 and in
more details in [5] how to interpret the elements of Λξ as Dirichlet series.
In this context Λξ,ρ is the subring of Λξ consisting of those elements
whose corresponding Dirichlet series have the abscissa of convergence
smaller than ρ.

Note Z[Γ] ⊂ Λξ,ρ ⊂ Λξ and H∗sing(M ; Λξ) := H∗sing(M̃ ;Z)⊗Z[Γ] Λξ is a
finite dimensional vector space over the field Λξ. Let detH∗sing(M ; Λξ)
denote the one dimensional vector space over Λξ defined by

detH∗sing(M ; Λξ) =
⊗
i

(Λi(H i
X(M ; Λξ))

ε(i)

where V ε(i) = V if i is even and V ε(i) is the dual of V if i is odd.
Let X be a vector field which satisfies MS and has ξ as a Lyapunov
cohomology class and let X̃ be the pullback of X on M̃ . Choose O a
collection of orientations for the unstable manifolds of the rest points
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of X and therefore of the rest points of X̃. Denote by (NCq
X,ξ, ∂

q
O) the

Novikov cochain complex of free Λξ modules (vector spaces since Λξ

is a field) as defined in [5] and by H∗X(M ; Λξ) its cohomology. There
exists a canonical isomorphism

HV ∗X : H∗X(M ; Λξ)→ H∗sing(M ; Λξ)

described below.
The isomorphism HV ∗X : Note that for any two vector fields X1 and

X2 which are MS and have ξ as Lyapunov cohomology class there exists
by Proposition 14 homotopies X from X1 to X2 which satisfy MS. The

incidences, IO
2,O1

x2,x1 (α̂) defined in subsection 6.1 provide a morphism

u∗X,O1,O2 : (NC∗X1,ξ, ∂
∗
O1)→ (NC∗X2,ξ, ∂

∗
O2)

of cochain complexes which induces isomorphism between their coho-
mology. This cohomology isomorphism is independent of the homotopy
X,20 and will be denoted by

H∗u(X1, X2) : H∗X1(M ; Λξ)→ H∗X2(M ; Λξ).

For any three vector fields X i, i = 1, 2, 3 which satisfy MS and have
ξ as a Lyapunov cohomology class one has

H∗u(X3, X2) ·H∗u(X2, X1) = H∗u(X3, X1).

Let τ = (f, g) be generalized triangulation, and ξ ∈ H1(M ;R).
Let X ′ := − gradg f. By Proposition 16 X has ξ as Lyapunov co-
homology class. The Novikov complex (NCq

X′,ξ, ∂
q
O) identifies to the

geometric cochain complex associated to τ̃ = (f̃ , g̃), the pull back of
(f, g) to M̃ , tensored (over Z[Γ]) by Λξ. Recall that the geometric (or

Morse) cochain complex associated to (f̃ , g̃) is a cochain complex of
free Z[Γ] modules. This cochain complex is obviously a quotient of
C∗sing(M̃) tensored (over Z[Γ]) by Λξ which calculates H∗sing(M ; Λξ) and
we have an obvious isomorphism from H∗sing(M ; Λξ) to the cohomology
of H∗X′(M ; Λξ).

The composition of the this isomorphism with H∗u(X,X ′) provides
the canonical isomorphism HV ∗X : H∗X(M ; Λξ)→ H∗sing(M ; Λξ).

Denote by E(M,m) the set of Euler structures based at m ∈ M
cf. [2] or [6] for a definition, and let e ∈ E(M,m). Recall that in the
presence of X an Euler structure e is represented by an Euler chain

20One can introduce the concept of homotopy of from a homotopy X1 to the
homotopy X2 (between two vector fields X1 and X2 and prove in a standard way
that it induces an algebraic homotopy from the morphism induced by X1 and X2,
hence the same isomorphism in cohomology.
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(cf. [6]) which consists of a collection of paths αx from m to x ∈ X .
Each such path provides a lift x̃ of x (i.e. π(x̃) = x) and therefore a
base {Ẽx|x ∈ X} with Ẽx the characteristic function of x̃ regarded as

an element of NCq
X,ξ,ρ, q = ind(x). Conversely, any lift s : X → X̃,

s(x) = x̃ defines an Euler chain and therefore together with X an Euler
structure e. The path αx is the image by π of a smooth path from m
to x̃. Different Euler chains representing the same Euler structure
might provide nonequivalent bases. All theses bases will be named e–
compatible and denoted by e. Any lift s which defines with X the Euler
structure e will be also called e–compatible.

Choose an element oH ∈ detH∗sing(M ; Λξ) \ 0, and consider bases
h∗ in H∗(NC∗X,ξ, ∂

q
O) which represent via the isomorphism HV ∗X the

element oH . They all will be called oH–compatible. Again the oH–
compatible bases might not be equivalent, however an inspection of
Milnor definition of torsion [12] implies that the element

τ((NCq
X,ξ, ∂

q
O), [e], [h]) ∈ Λ+

ξ /{±1}

as defined in section 6.2 for e resp. h e–compatible resp. oH–compatible
bases depends only on e and oH ; therefore denoted by τξ(X, e, oH).

If H∗sing(M ; Λξ) = 0 there is no need of oH and we have τξ(X, e) ∈
Λ+
ξ /{±1}.
Note that if X has exponential growth, in view of Theorem 3, the

complex (NCq
X,ξ, ∂

q
O) contains, for ρ large enough, a subcomplex of free

Λξ,ρ modules (NCq
X,ξ,ρ, ∂

q
O), cf. [5] so that

(NCq
X,ξ,ρ, ∂

q
O)⊗Λξ,ρ Λξ = (NCq

X,ξ, ∂
q
O).

Moreover an e–compatible base will provide a base of of Λξ,ρ–modules
in this subcomplex. If H∗sing(M ; Λξ) = 0 then τξ(X, e) ∈ Λ+

ξ,ρ/{±1} for
ρ large enough. More general, if H∗sing(M ; Λξ,ρ) is a free Λξ,ρ–module

and oH ∈ detH∗sing(M ; Λξ,ρ) :=
⊗

i(Λ
i(H i

X(M ; Λξ,ρ))
ε(i) we will have

τξ(X, e, oH) ∈ Λ+
ξ,ρ/{±1}.

If the homotopy X has exponential growth then, for ρ big enough, we
have uqX,O1,O2(NCq

X1,ξ,ρ, ∂
q
O1) ⊂ (NCq

X2,ξ,ρ, ∂
q
O2) and τ(u∗X,O1,O2 , [e1], [e2])

which depends only on X1, X2 and e, lies in Λ+
ξ,ρ/{±1}.

Note that for t > ρ we denote by evt : Λξ,ρ → R the ring homo-
morphism which associates to each f ∈ Λξ,ρ interpreted as a Dirichlet
series f , the value of the Laplace transform L(f) at t, cf. section 1.2.
When applied to torsion it calculates the torsion of the corresponding
complex tensored by R.
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Suppose now that X is MS and satisfies also NCT. As noticed in [8],
ZX ∈ Λξ and then eZX ∈ Λ+

ξ . The main result of Hutchings can be
formulated as follows

Theorem 8. If X1 and X2 are two vector fields which are MS and
NCT and have ξ as a Lyapunov cohomology class then

eZX1 · τξ(X1, e, oH) = eZX2 · τξ(X2, e, oH).

The proof of this theorem is given in [8]. The author considers only
the acyclic case (in which case oH is not needed). The acyclicity hy-
pothesis is used only to insure that the Milnor torsion (cf. [12]) τξ(X, e)
can be defined. This can be also defined in the non-acyclic case at the
expense of the orientation oH . The orientation oH induces via v∗X an
orientation in the cohomology of the Novikov complex associated to X
and together with the Euler structure e a class of bases in the Novikov
complex. From this moment on the arguments in [8] can be repeated
word by word.

Let X be a homotopy from the vector field X1 to the vector field
X2 which is MS and suppose that both vector fields have ξ as a Lya-
punov cohomology class. The incidences IO

1,O2

··· , cf. (26), induced from
X and the orientation O = O1 t O2 provide a morphism u∗X,O1,O2 :

(NC∗X1 , ∂∗O1
) → (NC∗X2 , ∂∗O2

) which induces an isomorphism in coho-
mology as already indicated.

Choose bases ei in each of the Novikov complexes (NC∗Xi , ∂∗Oi), i =
1, 2, which are e–compatible. By the same inspection of the Milnor defi-
nition of torsion one concludes that τ(u∗X, [e1], [e2]) ∈ Λ+

ξ /{±1} defined

in section 6.2 depends only on X1, X2 and e. In view of Proposi-
tion 17(i) and of Theorem 8 one obtains

Proposition 18. If X2 and X1 are two vector fields which satisfy
MS and NCT and have ξ as a Lyapunov cohomology class, e an Euler
structure as above. Then

τ(u∗X,O1,O2 , [e1], [e2]) = eZX2 · e−ZX1 .

Hence τ(u∗X, [e1], [e2]) depends only on X1, X2 and is independent of e
and then can be denoted by τ(X1, X2).

Suppose X2 = − gradg′′ f , τ = (f, g′′) a generalized triangulation.

Corollary 5. τ(X1, X2) = eZX1 .

It is not hard to see that Hutchings theorem is equivalent to this
corollary. In this form the result was also established by Pajitnov [15].
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Suppose X is a vector field with ξ a Lyapunov cohomology class
which satisfies MS and in addition has exponential growth. The expo-
nential growth implies that any e–compatible base of NCq

X,ξ is actually

a base of NCq
X,ξ,ρ for ρ large enough. For t > ρ the R–linear maps

Evωt : NCq
X1,ξ,ρ → Maps(Xq,R) defined by

Evωt (f) :=
∑

x̃∈π−1(x)

f(x̃)e−th̃(x̃)

provides a morphism of cochain complexes Evωt : (NC∗X1,ξ,ρ, ∂
∗
O) →

C
∗(X,O, ω)(t) with Evωt (Ẽx) = e−th̃(x̃)Ex.
Here C∗(X,O, ω)(t) is equipped with the canonical base {Ex} with

Ex the characteristic function of x ∈ X . The isomorphism Evωt factors
through an isomorphism from (NC∗X1,ξ,ρ, ∂

∗
O)⊗evt R to C∗(X,O, ω)(t).

If the Novikov complex (NC∗X,ξ,ρ, ∂
∗
O) is acyclic so is C∗(X,O, ω)(t).

Let s : X → X̃ be a compatible lift and e the associated e–compatible
base. A simple inspection of Milnor definition of torsion leads to

evt(τ(X, ξ, e)) = evt(τ((NC∗X,ξ,ρ, ∂
∗
O), [e]) (36)

= τ(C∗(X,O, ω)(t), [Ex]) · e−t
P
x∈X IND(x)h̃(x̃)

Suppose now that X i, i = 1, 2, are two vector fields which have ξ
as a Lyapunov cohomology class and X is a homotopy between them.
Suppose in addition that X i and X satisfy MS and have all exponential
growth. Then we obtain the morphism of Novikov cochain complexes
u∗X,O1,O2 : (NC∗X1,ξ,ρ, ∂

∗
O1) → (NC∗X1,ξ,ρ, ∂

∗
O2) which induces an isomor-

phism in cohomology. Clearly when tensored by R this morphism is
conjugate to u∗X,O1,O2,ω(t).

The Euler structure e ∈ E(M, p) permits to choose e−compatible
lifts of and then e–compatible bases e1 and e2. The same inspection of
Milnor definition leads then to

evt(τ(u∗X,O1,O2), [e1], [e2]) = (37)

= τ(u∗X,O1,O2,ω(t), [Ex1 ], [Ex2 ]) · e−t(
P
x∈X1 IND(x)h̃(x̃)−

P
x∈X2 IND(x)h̃(x̃))

where Ex1 resp. Ex2 are the canonical base provided by the rest points
of X1 resp. X2.

Note that in view of Proposition 12 (Additional property) for any
e–compatible lifts of X 1 and X 2 we have:∑

x∈X 1

IND(x)h̃(x̃)−
∑
x∈X 2

IND(x)h̃(x̃) = I(X1, X2, ω). (38)
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The change of the lifts (providing the same the Euler structure) does
not change the left side of (38).

6.4. The geometry of closed one form. Suppose M is a connected
smooth manifold and p ∈ M is a base point. The homomorphism
[ω] : H1(M ;Z) → R induces the one dimensional representation ρ =
ρ[ω] : π1(M, p) → GL1(R) defined by the composition π1(M, p) →
H1(M ;Z)

[ω]−→ R
exp−−→ R+ = GL1(R). The representation ρ provides

a flat rank one vector bundle ξρ : Eρ → M with the fiber above p
identified with R. This bundle is the quotient of trivial flat bundle

M̃ ×R→ M̃ by the group Γ which acts diagonally on M̃ ×R. Here M̃
denotes the principal Γ–covering associated with [ω] and constructed
canonically with respect to p (from the set of continuous paths originat-
ing from p). Note that M̃ is equipped with a base point p̃ corresponding

to the constant path in p. The group Γ acts freely on M̃ with quo-
tient space M . The action of Γ on R is given by the representation

Γ→ R
exp−−→ R+ = GL1(R).21

There is a bijective correspondence between the closed one forms ω
in the cohomology class represented by ρ and the Hermitian structures
µ in the vector bundle ξρ which agree with a given Hermitian structure
on the fiber above p (identified to R).

Given ω in the cohomology class [ω] ∈ H1(M ;R), one constructs a

Hermitian structure µ̃ω on the trivial bundle M̃ ×R→ M̃ which is Γ–
invariant. Therefore, by passing to quotients one obtains a Hermitian
structure µω in ξρ. The Hermitian structure µ̃ω is defined as follows:

(i) Observe that the pull back ω̃ of ω on M̃ is exact and therefore

equal dh̃ where h̃ : M̃ → R is the unique function with h̃(p̃) = 0

and dh̃ = ω̃.
(ii) Define µ̃(x̃) by specifying the length of the vector 1 ∈ R. We

put ||1x̃||µ̃(x̃) := eh̃(x̃).

Given a Hermitian structure µ one construct a closed one form ωµ as

follows: Denote by (Ẽρ → M̃, µ̃) the pair consisting of the flat line

bundle Ẽρ → M̃ and the Hermitian structure µ̃ the pullback of the

pair (Eρ → M,µ) to M̃ by the map M̃ → M . Let µ be the Hermit-
ian structure obtained by parallel transporting the scalar product µ̃p̃.

Denote by α : M̃ → R the function α(x̃) := ||v||µ̃(x̃)/||v||µ(x̃) for v a

nonzero vector in Ẽx̃.

21Note that instead of M̃ → M one can use the universal covering M̂ → M
which is a π–principal covering. One ends up with the same Eρ →M .
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Define ω̃µ := d log(α) and observe that this is a Γ invariant closed
one form, hence descends to a closed one form ω on M .

To simplify the writing below we denote (by a slight abuse of nota-
tion):

(i) ρ(t) := ρtω
(ii) µ(t) := µtω

Remark 9. The cochain complex (Ω∗(M), dω(t)) equipped with the
scalar product induced from g is isometric to the cochain complex
(Ω∗(M,ρ(t)) equipped with the scalar product induced from g and
µ(t) = µ as defined in [3].

In particular we have

log T ω,gan (ω, t) = log Tan(M,ρ(t), g, µ(t))

where log Tan(M,ρ, g, µ) is the analytic torsion considered in [3] and
associated with the Riemannian manifold (M, g) the representation ρ
and the Hermitian structure µ in the flat bundle induced from ρ.

Remark 10. Let ξ ∈ H1(M ;R) and ω a closed one form representing
ξ. Suppose X = − gradg′′ f where τ = (f, g′′) is a generalized trian-
gulation. Choose orientations O for the unstable manifolds of X. The
morphism

Int∗X,O,ω,(t) : (Ω∗(M), dω(t))→ C
∗(X,O, ω)(t)

defined in (5) where (Ω∗(M) is equipped with the scalar product in-
duced from g and Maps(Xq,R) is equipped with the obvious scalar
product, i.e. associated with the base {Ex}, is isometrically conjugate
to

Int∗ : (Ω∗(M,ρ(t)), dρ(t))→ (C∗(τ, ρ(t)), δO,ρ(t))

defined in [3] where (Ω∗(M,ρ(t)) is equipped with the scalar product
induced by (g, µ(t)) and C∗(τ, ρ(t)) is equipped with the scalar product
induced from τ and µ(t).

6.5. Proof of Theorem 4. We begin with a triple (g, g′, ω) with
X1 = X = − gradg′ ω as in the hypothesis of Theorem 4. We choose
orientations O1 for the unstable manifolds of X1 We also choose X2 =
− gradg′′ f so that τ = (f, g′′) is a generalized triangulation and choose
orientations O2 for the unstable manifolds of X2.

For simplicity of the writing we will use the following abbreviations:
I1(t) := Int∗X1,O1,ω(t)|Ω∗sm(M) and I2(t) := Int∗X2,O2,ω(t)|Ω∗sm(M).

In view of Proposition 17(ii) applied to I1(t) one obtains

log(V(t)) = log T (C(X1,O1, ω)(t), 〈·, ·〉1) (39)

− log T ω,gan,sm(t) + log Vol(H∗(I1(t))
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where 〈·, ·〉1 is the scalar product induced from the canonical base {Ex},
x ∈ X 1.

In view of Theorem 7 and the Remarks 9 and 10 in section 6.4 one
has

log T ω,gan (t) = log T (C(X2,O2, ω)(t), 〈·, ·〉2) (40)

+ log Vol(H∗(I2(t))− tR(ω, g,X2)

where 〈·, ·〉2 is the scalar product induced from the canonical base {Ex},
x ∈ X 2.

Combining with (39) and (40) one obtains

log(V(t))− log T ω,gan,la(t) = (41)

= log Vol(H∗(I1(t))− log Vol(H∗(I2(t))

+ log τ(C(X1,O1, ω)(t), 〈·, ·〉1)

− log T (C(X2,O2, ω)(t), 〈·, ·〉2) + tR(X2, ω, g)

First consider the case that X = X1 has exponential growth and
H∗(M, t[ω]) = 0 for t large enough. Note that X2 has exponen-
tial growth too by Proposition 16. Clearly then log Vol(H∗(I1(t)) =
log Vol(H∗(I2(t)) = 0. By (33), (36) and (38) we have

log T (C(X1,O1, ω)(t), 〈·, ·〉1)− log T (C(X2,O2, ω)(t), 〈·, ·〉2) =

= log(evt(τ(X1, ξ, e∗1))

− log(evt(τ(X2, ξ, e∗2))− tI(X1, X2, ω) (42)

By Theorem 8 in section 6.3 we have

log(evt(τ(X1, ξ, e∗1))− log(evt(τ(X2, ξ, e∗2)) =

= log(evt(e
ZX1 · e−ZX2 ))

= log(evt e
−ZX1 )

= −L(ZX1)(t) (43)

Combining (41), (42) and (43) one obtains the result.
Second consider the case X has (strong) exponential growth prop-

erty. Then choose a homotopy X which satisfy: ρ(ξ,X) <∞. Then for
t big enough, we have the following (algebraically) homotopy commu-
tative diagram of finite dimensional cochain complexes whose arrows
induce isomorphisms in cohomology.

(Ω∗sm(M)(t), dω(t))
Id−−−→ (Ω∗sm(M)(t), dω(t))

Int∗
X1,O,ω1

(t)

y yInt∗
X2,O,ω2

(t)

C
∗(X1,O1, ω)(t)

u∗X,O1,O2,ω
(t)

−−−−−−−→ C
∗(X2,O2, ω)(t)
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For simplicity we write u∗(t) := u∗X,O1,O2,ω(t) and observe that in view
of the homotopy commutativity of the above diagram and of Proposi-
tion 17(ii) we have

log T (u∗(t), 〈·, ·〉1, 〈·, ·〉2) = (44)

= log Vol(H∗(I1(t))− log Vol(H∗(I2(t))

+ log T (C(X2,O1, ω)(t), 〈·, ·〉1)

− log T (C(X2,O1, ω)(t), 〈·, ·〉)

As noticed (C∗(X2,O2, ω)(t), 〈·, ·〉) is isometric to (C(M, τ, ρ(t), µ(t)).
By (33), (37) and Proposition 18 combined with the observations

that X2 has no closed trajectories we have

log T (u∗(t), 〈·, ·〉1, 〈·, ·〉2) = log τ(u∗(t), e∗1, e
∗
2)

= evt(ZX1) + I(X1, X2, tω) (45)

Combining (41) and (45) we obtain

logV(t) + evt(ZX1) + tI(X1, X2, ω) = log T ω,gan,la(t) + tR(X2, ω, g) (46)

which in view of Proposition 12 implies the result.
When H∗(M ; tΛξ) is acyclic we do not need the morphism u∗ and a

simple consequence of Corollary 5 implies the result. It turns out the
strong exponential growth can be weaken to the (apparently) weaker
hypothesis H∗sing(M ; Λξ,ρ) is a free module over Λξ,ρ for some ρ. As in
acyclic case one can circumvent the morphism u∗(t).

Appendix A

Lemma 11. Suppose a1, . . . , an ∈ R, ai 6= aj for i 6= j. Suppose
λ1, . . . , λn ∈ R, λi 6= 0. Consider the function f : R→ R,

f(t) :=
n∑
i=1

λie
tai . (47)

Then there are only finitely many t ∈ R for which f(t) = 0.

Proof. W.l.o.g. a1 > ai for i 6= 1. There certainly exists T+ ∈ R, such
that

1

n− 1
|λ1e

ta1| > |λietai|, for all t ≥ T+ and for all i 6= 1.

Using |x+ y| ≥ |x| − |y| we derive

|f(t)| ≥ |λ1e
ta1| −

n∑
i=2

|λietai| > |λ1e
ta1| −

n∑
i=2

1

n− 1
|λ1e

ta1| = 0,
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for all t ≥ T+. Similarly (using the smallest ai instead of the largest)
one finds T− ∈ R, such that |f(t)| > 0 for all t ≤ −T−. Setting
T := max{T+, T−} we have f(t) 6= 0 for all |t| ≥ T and since the set of
zeros has to be discrete there can only be a finite number of them. �

Corollary 6. Let ω be a closed one form and let βi(t) denote the
dimension of H i(Ω∗(M), dω(t)), where t ∈ R and i = 0, 1, . . . , dim(M).
Then there are finitely many ti ∈ R, t0 < t1 < · · · < tN and positive
integers βi so that βi(t) = βi, for t 6= t1, . . . , tN and so that βi(tk) > βi

for all k.

Proof. Take any generalized (in particular smooth) triangulation τ and
consider X an Euler vector field i.e. a vector field with isolated rest
points and whose unstable sets identify to the open cells (simplexes) of
the triangulation. For any t ∈ R

Int∗X,O,ω(t) : (Ω∗(M), dω(t))→ C
∗(X,O, ω)(t)

is well defined and provides an isomorphism in cohomology by deR-
ham’s theorem.

Note that the differential δ∗X,O,ω(t) of the complex C∗(X,O, ω)(t)
with respect to the canonical base of C∗(X,O, ω) is given by a ma-
trix whose entries are functions in t of the form (47), see (19). The
condition for the change of the dimension of H i(C(X,O, ω)(t)) can be
expressed as vanishing of finitely many minors of the matrix represent-
ing δ∗X,O,ω(t). These minors are functions of the form (47) and hence
have only finitely many zeros in view of previous lemma. �
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