SIMPLE AND DOUBLE EIGENVALUES OF THE HILL
OPERATOR WITH A TWO TERM POTENTIAL

PLAMEN DJAKOV AND BORIS MITYAGIN

ABSTRACT. We give a complete description (Theorem 11) of the
structure of the spectra of Hill operator

Ly = —y" + (acos2z + beosdz)y, a,b real, z € [0,7]

with periodic or antiperiodic boundary conditions. As in Mag-
nus/Winkler [37, 23], properties and spectra of special tridiagonal
matrices is a core of our analysis.

1. INTRODUCTION
The Schrodinger operator, considered on R,
(1.1) Ly = —y" +v(z)y,

with a real-valued periodic potential v(x) € L*([0, 7)), v(z +7) = v(x),
has spectral gaps, or instability zones (A, A7), n > 1, close to n? if n

is large enough. The points A, A} could be determined as eigenvalues
of the Hill operator

(1.2) Ly = —y" +v(z)y = \y,
considered on [0, 7] with boundary conditions

(1.3) Per®:  y(0) =y(m), v (0)=y'(m),
for even n, and

(1.4) Per®: y(0) = —y(r), 4 (0)=—y'(m),

for odd n. See basics and details in [23, 27, 24, 21, 36].

The rate of decay of the sequence of spectral gaps v, = Af — A,
is closely related to the smoothness of the corresponding potential v.
We’ll mention now only the Hochshtadt’s result [18] that an L?([0, 7])-
potential v is in C'* if and only if (y,) decays faster than any power of
(1/n). See the latest results and further references in [6] and [8].

In the case of specific potentials, like the Mathieu potential

(1.5) v(x) = 2a cos 2z,
1
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or a more general two term potential
(1.6) v(z) = acos 2z + beos 4z,

general problems lead us to two classes of questions:
(i) Is the n-th zone closed, i.e.,

(1'7) Tn = )‘jz— - A, =0,

or, equivalently, is the multiplicity of A equal to 27

(ii) If 7, # 0, could we tell more about the size of this gap, or, for
large enough n, what is the asymptotic behaviour of v, = v,(v)?

Question (i) for the potential (1.5) was answered in a negative way
by E. L. Ince [19]: the Mathieu-Hill operator has only simple eigen-
values both for Per* and Per~ boundary conditions, i.e., all zones of
instability of the Mathieu-Schrodinger operator are open. His proof is
presented in [12]. See other proofs of this fact in [17, 25, 26].

Question (ii) for the Mathieu potential was solved by E. Harrell [16]
in 1980; see [1] as well. They showed for v € (1.5) that

8lal"
[(n = D!?

Earlier, D. Levi and J. Keller [22] gave asymptotics of v, = 7,(a) for
a — 0 when n is fixed. The question about the asymptotics of (v,) in
the case of a two term potential (1.6) was raised in [1], but remained
unsolved. We found such asymptotics both for small a and b (when n is
fixed), and for large n when a and b are fixed. First we’ve done it (see
[9]) in the case when 80 = —a?. This led us to a proper understanding
of the special parametrization of the coefficients a and b in (1.6) which
comes from Magnus-Winkler [37, 23] analysis of this Hill operator.
Put for real a,b # 0

(1.9) a=—4dat, b= —2a?

(1.8) Yo = A=A = (1+0(1/n%).

where either both v and ¢ are real (if b < 0), or both are pure imaginary
(if b > 0).

We show in [10, 11] that the following asymptotic formulae hold for
fixed a;,t and n — oo : for even n

Y = % cos (gt)‘ [1+O((logn)*/n)],

and for odd n

(1.10)

8la|™ 2

N EPR:

sin (gt)‘ [140((logn)*/n)] ,
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where
Cm-1N=1-3---(2m —1), 2m)!!=2-4---(2m).

Proof, with all analytic details, is given in [11]. It is based, on one hand,
on our analytic methods developed in [6, 7, 8], and on the other hand,
on the Magnus-Winkler approach [37, 23] to coexistence problem (see
(i) above) in the case of the potential (1.6).

We need to present (and this is done in this paper) their results in
an appropriate form that serves to our goal of finding the asymptotics
(1.10) and (1.11), or Theorems 1 and 3 in [10]. At the same time we
sharpen their results about the multiplicities of the eigenvalues of the
operator (1.2) + (1.6) in the case where ¢ is an integer.

Finally, we give a complete description of the structure of the spectra
of this operator, with full information about mutual positions of eigen-
values A\, AT for Pert and Per~ bc. The main result of this paper,
Theorem 11, gives this complete description of the spectra.

Acknoledgement. The authors thank Professor A. Turbiner for de-
tailed information about the literature on quasi-exactly-solvable dif-
ferential equations and spectral Riemann surfaces, and further discus-
sions. The first author (P. D.) acknowledges the hospitality of The
Ohio State University during the academic year 2003/2004. The sec-
ond author (B. M.) is grateful to the Institute of Nuclear Sciences and
the Institute of Applied Mathematics and System Analysis, UNAM,
Mexico City, Mexico, whose hospitality he enjoyed in Spring 2004.

2. PRELIMINARIES ON INCE METHOD AND THE HILL OPEARTOR
(1.6)

In this section we present in a convenient for our further analysis
the results of Ince [19] and Magnus and Winkler [37, 23]. Then we go
further in a deliberate analysis of first open gaps when the series of
even (or odd) gaps has only finitely many open ones.

1. A potential, or two term family potentials

(2.1) v(z) = asin 2z + bcos 4z, a, b real,

and the question about asymptotics of spectral gaps, or zones of insta-
bility, of corresponding Schrodinger operator
(2.2) Ly =—y" +v(z)y, —oo<x<+00,

has been discussed in [1], [14], [9] but until now the sharp asymptotics
of spectral gaps has not been known. We found such an asymptotics;
see Theorems 1 and 3 in [10], and details in [11].
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Notice that we change the potential, or the entire operator L, by
using elementary transformations in such a way that the spectrum is
preserved both for the Schrodinger operator, and for the Hill operator,
considered with Per™ or Per~ boundary conditions.

(a) A shift of z to z + 7/2 changes v € (2.1) to

(2.3) v1(z) = —asin 2z + bcos 4z.

It implies that without loss of generality in our analysis of spectra of
L, we can assume that a > 0 (or, a < 0 if we would prefer).
(b) A shift of x to x 4+ /4 changes v € (2.1) to

(2.4) ve(z) = acos 2z — bcos4zx.

Let us use this form (2.4) to make the most important transforma-
tion which annihilates the term with higher frequency. (See further
comments in Section 5.1).

(c) Put
(2.5) K =E'LE,
where
(2.6) Ly = —y" + va(2)y,
(2.7) Eu = uexp(acosx),
(2.8) y = uexp(acos2z).
Then
(2.9)

—Ku=—E"'LEu = u" —4a(sin 2z)u’ + (2a* — 4a cos 22 — 20 cos 4x),
and if we choose o so that
(2.10) 20 =b

then
(2.11)
(K—XNu = E ' (L-)\)Eu = —u"—4a(sin 2z)u'— (A+20°+(a—4a) cos 21).

The operator K, with any choice of a complex number «, is similar to
L, so

(2.12) o(K) =o0(L),
although K is not necessarily self-adjoint as L was. K is selfadoint if
(2.13) o =17, T real

But K has at least two nice features.
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(i) Its potential does not have terms of high frequency cos4x and
sin 4zx.

(ii) With an even coefficient for u and an odd coefficient for ', the
subspaces of even functions and odd functions are invariant for K.
Therefore, K can be considered as a direct sum of two simpler opera-
tors K°% and K" with o(K) being a union of the spectra of these
operators.

We make this vague remark (ii) more precise in analysis of the Hill
operator K with Per* boundary conditions.

2. Now we consider K on [0, 7] with boundary conditions

(2.14) Per®:  u(0) =u(r), «'(0)=1d'(n),
(2.15) Per™:  u(0) = —u(m), u'(0)=—u(m).

If w is an eigenfunction of K (in either case Per®) then its even and
odd parts are eigenfunctions as well

(2.16) w*(z) = ¢ (w(e) £ w(~)).

Therefore, if K has two Per® linearly independent \—eigen functions,
ie.,
(2.17) Kw= M, welL?® for Per®,

then we have one even nonzero solution wy = w*, and one odd nonzero
solution w; = w—. Then

(2.18) wo(z) = ZA" cos nz,
ner
(2.19) wi(z) = ZB" sin nx,
nel
with
(2.20) I'=2Z,={0}U2N for Per".
(2.21) '=2Z,+1=2N—-1 for Per .
Put
(2.22) A+20° =A+b=yu
and

(2.23) a=4at, so a—4da=4a(t—1).
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Now a direct substitution shows that the equation
(2.24) (K=XMNw=0

can be rewritten in the following way.
Case Pert. Then by (2.18)

(2.25) wo(x) = Ao + Z Ay cos kz,
k2N
(2.26) wi(z) = Z By sin kz,
k2N

and the equation (2.24) for (2.25) is equivalent to the system (k even)
(2.27) —1Ay + 2a(t —1)Ay =0,

(2.28) 4ot +1)Ag + (22 — p) Ay + 2a(t — 3) A, = 0,

(2.29) 2a(t—14+k)Ap_o+ (K> —p) Ap+2a(t—1—k)Ap o =0, k> 4.

[In [23] in the line (7.17), n = 1, p. 95, corresponding to (2.28), the
coefficient 2 is written although 4 is correct.

Respectively, for (2.26) the equation (2.24) is equivalent to the sys-
tem

(2.30) (22 — p) By + 2a(t — 3) By, = 0,

(2.31) Qa(t—1+k)Bk_2+(k2—u)Bk+2a(t—1—k)B;H_Q = 0, k Z 4.

Case Per—. Then we have

(2.32) wo(z) = Z Ay, cos kz,
kE2N—1
(2.33) wi(z) = Z By sin kx.
kE€2N—1
For (2.32) the equation (2.24) is equivalent to the system (k odd)
(2.34) (1= p+ 20t) Ay + 2a(t — 2) A3 = 0,

(2.35) 20(t—1+k)Ap o+ (K —p) A +20(t—1—k)App0 =0, k> 3.
Respectively, (2.24) for (2.33) leads to the system (k odd)

(2.37) 2a(t—1+k)By_o+ (k> —p) By +2a(t—1—k)Bro =0, k> 3.
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3. In the case of Mathieu operator (the recurrence system is simpler
there) E. L. Ince [19] explained that all gaps are open, i.e., all eigen-
values are simple, by considering a discrete Wronskian. In the case of
the operator K its analog would be the sequence

Ap Apgo
B, By

where I means evens for Per™ and odds for Per~. For Per™ we have,
if ¢ is not odd, that

(2.38) Ay = ‘ ke,

—4

Ag=1, A= 2a(lti1)’ Ay = 4a2l(lt(fl)(273) - 2%

(2.39)
—4

BO - O, B2 == 1, B4 == 2alu(tf3)

and therefore,
t+1

(2.40) Ag=1, Ay= 2t+—3.

For Per—, if t is even, then

(2.41)
By =1, B3=(u—1+2at)/2a(t-2)
and
2t
(2.42) A = —

Notice, that Equations (2.29) and (2.31), or (2.35) and (2.37) are iden-
tical (but k is odd or even). Let us compare A- and B-solutions in
Pert-case, i.e., (2.29) and (2.31) hold. Multiply (2.29) by By and
(2.31) by Ay and subtract these identities; we get

(2.43) 20(t =1+ k)Ap_o —2a(t—1—k)A, =0, k>4,
or
t—1+k k+(t—1
(2.44) Ay = i = LA,C,Q, k even, k > 4.

Tt—1-k "7 k—(t—-1)

In Per~ case, by manipulating (2.35) and (2.37), one comes to the
recurrence

k+(t-1)
k—(t-1)

If A= (Ag)ger and B = (By)ger are £2-solutions of (2.29) and (2.31)

correspondingly [or, of (2.35) and (2.37)], then by (2.38),

(2.46) lim [Ag| = 0,
k—o0

(245) Ak = Ak_g, k Odd, k > 3.
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and moreover, (Ay) € ¢'. But for any m € T, by (2.44) or (2.45),

p

(2.47) Amizp = (=17 (H m+2j+ (t - 1)) A,

m-+2j—(t—1)

=1

If z,y > 0, then z+y > |z — y|, so all factors in the product above are
larger than 1 by absolute value, and therefore, |A,,;9,| is a monotone
increasing sequence. In particular,

(2.48) Bl < Arszgly V.
Now (2.46) implies that
(2.49) A, = 0.

However, this fact and our evaluation in (2.40) [and (2.42)] shows the
following.
(a) If ¢ is not an odd positive integer and the solution (2.39) of
(2.27)-(2.29) and (2.30) - (2.31) happen to be in ¢? then
t+1
(2.50) Ay = 2t+—3 #0 and A, =0.
(b) If ¢ is not an even positive integer and the solutions (2.41) of
(2.34)-(2.35) and (2.36) - (2.37) happen to be in ¢? then
2t
(251) AI = t——2 7& 0 and Al =0.
These contradictions prove the following (See Thm. 7.9 in [23]).

Proposition 1. Consider the operator

(2.52) Ly = —y" + (acos 2z — beos 4z),
where
(2.53) a® = 8bt*, t> 0.

(i) If t is not odd, then all eigenvalues of L with bc = Per™t are
simple, so all even zones of instability are open.

(i) If t is not even, then all eigenvalues of L with bc = Per~ are
simple, so all odd zones of instability are open.

In conclusion of this Section let us notice that the assumption b > 0
[see (2.10) or (2.53)] in Proposition 1 can be omitted. If b < 0 then
(2.10) leads to a pure imaginary «, and (2.53) gives a pure imaginary
t # 0. All consructions and arguments remain valid; even the operator

(2.54) K(a) = exp(—acos 2x)L(a, b) exp(« cos 2x)
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is selfadjoint in this case. With ¢ pure imaginary, all factors of the
product in (2.47) have absolute value 1, so (2.48) holds with equalities.
Therefore, we have

Proposition 2. If b < 0 and t is pure imaginary in (2.53), then all
eigenvalues of L € (2.52) with bc = Per™ or Per~ are simple, so all
zones of instability are open.

We analyze the spectra o(Lpe+) in the case where ¢ is a positive
integer in the next section. However, let us notice that the assumption
t > 0 is not a restriction because ¢ and —¢ give a rise to isospectral
operators.

3. CASE a = —4at, b= —2a2.

0. In this section we consider potentials (1.6), i.e., v(z) = a cos 2z +
bcos 4x. Therefore, we put b = —2a? to fit to the previous section,
where we consider potentials in the form (2.4) or (2.52), with —b in
front of cos4z. There we consider an operator K € (2.5) [or (2.54)]
similar to L if

(3.1) 20 =b

and analyze its spectrum by using its decomposition into even and
odd parts K", K°¥ and then dealing with matrix representations of
these components. These matrices, or recurrences (2.27)-(2.37) will be
used in this section as well to get more information in the case where

(3.2) a’> = 8ht*, teN

Of course, in view of Proposition 1, if ¢ is even, respectively odd, we
need to analyze o(Lpe,- ), respectively o(Lpe+)-
1. In either case the following elementary lemma will be useful.

Lemma 3. Suppose D = (D;;)y is a three-diagonal matriz of the form

[ do po 0 O ]
g di pr 0 0
0 g dy po 0 O
0 0 g3 ds p3 O 0

(33) D=
0 dn—2 dn—2 Pn—2 0
0 Qn—1 dn—l Pn—1
i 0 0 g dn |
with

(34) pO""ﬂpn—l#Oa Cha---aq'n?éo'
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With fized n, denote

(3.5) D* = (Dyj)} iy

and

(3.6) §F = det D¥, k=0,1,...,n.
Then

(3.7) 8% + 6| > 0,

i.e., the determinants 6° and 8' could not be zeroes simultaneously.
Proof. If n =1 then
(3.8) 6t =d,

If di # 0 then (3.7) holds. But if d; = 0 then §° = —poq; # 0 by (3.4),
and (3.7) holds as well.

Now we do induction by n (recall that D is (n+1) x (n+ 1)-matrix).
By (3.3)

(39) (50 = doél — p0q152.

If (3.7) does not hold, i.e., §° = ' = 0, then with pyq; # 0 (3.9) implies
62 = 0. But then §' = 62 = 0 and the size of the matrix D! being n x n
would lead us to a contradiction.

60 = dodi — pog-

O
For Per~ case we need an analogue of Lemma 3.

Lemma 4. Consider two 3-diagonal n X n matrices

[ d1 +d D1 0 0 T
g2 dy po O 0
0 g3 dz ps O 0
(3.10) D* = _ _
0 dn—2 dn—2 Pn—2 O
O dn—1 dn—l Pn—1
i 0 0 4 dn
where
(311) pla"':pn—l#oa qQa"':q’n#O andd;ﬁ()
Put
(3.12) 6+ = det D*.
Then
(3.13) 16T +167] >0,
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i.e., the determinants 6 and 6% could not be zeroes simultaneosly.

Proof. Decomposing along the first row, we obtain

(314) 5i = (dl + d)52 — p1q253
SO
(3.15) 2d6? = 6t — 5.

If 5+ = §~ = 0 then 62 = 0 (because d # 0), and by (3.14) 6 = 0
(because p1ga # 0). But this contradicts to Lemma 1 if we apply it to
the matrix D?. O

2. Let t = 2p — 1, p > 1. By Proposition 1 (ii), all eigenvalues of
Lpe— (and of K) are simple. Now we consider the case Per™. The
spectral equation (2.17) can be split into even and odd components; if
w = (A, B) then (2.17) becomes

(K" = N)A=0, (K*-)\B=0,

or in matrix form

(3.16) (H*—pA=0, (H*-pB=0,
where (with &k even) H? is
(3.17)

0 2a(t — 1) 0
da(t — 1) 22 2a(t — 3)
0 2a(t — 3) 4? 2a(t — 5)

20t —1+k) k* 2a(t—1-k)

as it follows from (2.25)-(2.31).

All terms on the off-diagonals are nonzero but one on the k-th line
[see (2.29) or (2.31)]
(3.18) t—1—k=0 if k=2p—2.

This partially decouples the systems (2.27)-(2.29) and (2.30)-(2.31).
If

(3.19) A= (a,d), a=A)F 7?2 d= (4T, k even,

2p

and the same for B, i.e.,

(3.20) B=(b), b= (B)F % V=(B)X, k even,

2p
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then
(3 21) (1) (ng72 - ,LL)G = 0:
(2) agp_2-2a-4(p—1)egy, + (H? — p)a’ =0,

where e, = (d;)icr is an ort in ¢2, and

(1) (H3, 2 — m)b=0,

(3.22) , ,
(2) bgp_g <20 4(p — 1)€2p + (H P — ,Ll,)b = 0.

Lemma 5. If i is a Pert eigenvalue for K of multiplicity 1, then

(3.23) O(p;0) =0 or 6(p;a)=0.
Remark. With p fixed, we omit it in the notations of 6° and §*

(3.24) 8°(p; @) = det (Hy, o(c) — p),
(3.25) §' (s @) = det (Hj,_o(a) — 1) -
Notice that
(3.26) degd® =p, degé'=p—1.
If =0 then

p—1
(3.27) 8°(1;0) = —p6" (113 0) = —p [ [1(2)* — -

1

Proof. First, we assume p > 2. By (ii) in Sect.2.1, if
(3.28) Ku=pu, u#0,
and
(3.29) dimE(u) =1,
then

(i) u is even but no odd nonzero function satisfies (3.28), or
(ii) u is odd but no even nonzero function satisfies (3.28).
In the case (i)

(3.30) u=Ay+ Z Ay cos kz

k=2
k even

and, with notations (3.19), the equation (3.21) holds. We claim that
(3.31) §(u, ) = 0.
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Otherwise, by (1) in (3.21), a = 0, its component Ay, o = 0 as well,
the second equation in (3.21) becomes just

(3.32) (H? — p)a' = 0.

With u # 0 we should have a' # 0 as well. But the equations (3.21.2)
and (3.22.2) are essentially the same, so if we define

(3.33) B=(0,), ¥=d,

(see notations (3.20)) we get a sequence B such that (3.22) holds. It
gives us a nonzero odd function

(3.34) v(z) = Z Ay sin kx
k=2
k even

which satisfies (3.28), and therefore, the multiplicity of p is > 2. This
contradiction proves (3.31).
In the case (ii)

(3.35) U= Z Bysinkz, v #0,
k=2
k even

and

(3.36) Kv = pw.

We claim that

(3.37) 8t () = 0.

Otherwise, by (3.22.1) b = 0, and by (3.22.2)
(H? — ) =0, b #£0.

Then

(3.38) u= Z Bysinkz, v#0
k=2p
k even

is a nonzero even solution of (3.28). This contradiction proves (3.37).
Lemma 5 is proven for p > 2.
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If p =1 then the matrix H € (3.17) has the form

0 0 0
8a 4 —4o 0

(3.39) H=1"709 8 16 -8a
and
(3.40) () = —p, Vo,

but an analogue of 6' € (3.25) is not defined. We claim: If p # 0
is an eigenvalue of Kp.+ then its multiplicity is 2. Indeed, if u €
(3.30) + (3.28) then (3.21.1) tells us that

(3.41) —uAg =0,
so Ag =0, and by (3.21.2)
(3.42) (H* — p)a’ =0, a #0.

As in (3.32)-(3.33) it gives a second nonzero solution v € (3.34) of
(3.28), so the multiplicity of y is 2.
Vice versa, if v € (3.35) is a solution of (3.28) then

u = Z By, cos kzx
k=2
k even

is a nonzero solution of (3.28), and again the multiplicity is 2.
Therefore, if p =1 and p is of multiplicity 1, then y =0, i.e., it is a
root of the polynomial (3.40). Lemma 5 is proven.
d

3. By Proposition 1(i), for an even t = 2m, m > 1, all eigenvalues
of Lpe+ (and of the corresponding operator K) are simple. [See the
comment related to complex « in Sect. 5.5.] So, we need to analyze only
the case Per~. Again, we decompose functions and K into even and
odd components; if by (2.32)-(2.33) w = (A4; B) then (2.17) becomes
(Kever — u)A = 0, (K°% — 1) B = 0, or in matrix form

(3.43) (H* —)A=0, (H —pB=0,
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where A € (2.32), B € (2.33), I' = 2N, and by (2.34)-(2.37), k € T,
(3.44)
C 1420t 2a(t—2) 0

2a(t + 2) 32 20(t — 4) 0

2t —1+k) k? 20(t—1—k) 0

We do not repeat all the details which are essentially the same as in
the previous subsection.

All terms on the off-diagonals are nozero but one in the j,-th line,
when j, =m as

(3.45) -1 (2 -1)=0 if t=2m, j=m
Let HZE be the left-upper m x m submatrix of H*, and
(3.46) 6% (w; o) = det (Hy, — 1) -

Notice that [compare (3.26)] now

(3.47) degdt =degd =m>1

in both cases, and if a =0

(3.48) 0+ (150) = =I[l@i-1*-4.

j=
Now “heads” of A and B [compare (3.19), (3.20)]

(3.49) a= (A", b= (B, kodd

have the same size (m-vectors), and “tails”

(3.50) d = (A0S, V=B, kodd

satisfy the equations

(3.51) Xom—1 - 4a(2m — 1)egpi1 + (H*™ — p) 2’ =0,

where 2’ = (X;)$,,, k is odd, and H*™! is a lower right infinite block
of the matrix H* without m upper rows and m left columns.

Lemma 6. If u is a Per~ eigenvalue for K of multiplicity 1 then
(3.52) 0 (w,a) =0 or 6 (u, ) =0.
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Proof would be a copy of the Lemma 5’s proof and we omit it. Of
course, Lemma 4 is used instead of Lemma 3.

4. Lemmas 5 and 6 already lead to conclusion that if ¢ is an integer
then all but maybe [t/2] gaps are closed.

Proposition 7. (a) Ift =2p—1, p > 1, then the number of open even
gaps does not exceed p — 1.

(b) If t = 2m, m > 1, then the number of open odd gaps does not
exceed m.

Proof. Each open gap {\~, A"}, or {u~,u"}, gives two simple eigen-
values of Kpg+ or Kp..—. Such eigenvalues, by Lemmas 5 and 6, are
among the roots

(3.53)

R*=R'UR', R :={u: 8°(u;0) =0}, R':={p: 6'(u;0) =0}

for € o(Pert), and
(3.54)
R.=R'UR™, R':={p: 6" (i) =0}, R :={p: 6 () =0}

for u € o(Per™).
With ¢t = 2p — 1 > 1, by (3.26),
(3.55) #R <p+(p—1)=20p—1)+1,

and the number of pairs of simple eigenvalues does not exceed p — 1.
If t =2m, m > 1, by (3.47),

(3.56) #R, <m+m=2m,

and the number of pairs of simple eigenvalues does not exceed m. In
both cases, this number is < [t/2].
O

4. FINITELY MANY OPEN GAPS

Proposition 7 gives some improvement of Theorem 7.9 in [23], p.107,
which claims the inequality < [t/2] + 1. But we want to get more
information about the structure of these open gaps. In particular,
we’ll explain that the number of those gaps is equal to [t/2].

1. We need a few technical remarks on matrices H* (of (3.21)-
(3.21)) and H*™*! € (3.51). Lemmas 3 and 4 told something about
finite tridiagonal matrices. Now consider an infinite tridiagonal matrix
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h, h=D + P+ @, with D being diagonal and P, () off-diagonals,

do po

¢ di p
4.1 h =
( ) g2 do D2

We assume that the following conditions hold.

(4.2) dp € R, |dg| > 00 (k— o)
(43) (Ipx| + laxl)/di — O
(44) pk#oﬁk:():]-aa qk#oﬁk:]-:?a

Lemma 8. The matriz h defines an operator in £? which spectrum o (h)
s discrete, and

(4.5) o(h) ={ui}e"s m; = oo,
and each p = p; € o(h) is an eigenvalue of geometric multiplicity 1.

Proof. Condition (4.3) guarantees that for large enough r > 0
el + k| 1
4.6 sup 2. PRLTRL o 2
(4.6) 0<k <00 T+ |d| 2
Indeed, there exists k, < oo such that
el + k] 1

(4.7) TR < 1 for k > k..
Define

(4.8) re =1+ dsup{|pe| +[gx| : 0 <k <k}
then (4.6) holds for r > r,. Put

(4.9) z =1, > T

Then f = (z — h)~! is well defined. Indeed, see (4.1),
(4.10)

z—h=(2-D)—(P+Q)=(2—-D)[1-T], T:=(z—-D)"Y(P+Q),

where z — D is a diagonal operator with diagonal terms

(4.11) z—dy, |z—dp| = (4 |dp)V? > (r + |di])/2.
Now (4.6) implies that
(4.12) |71l =Nz = D) (P + Q) <1/2

and therefore,
(4.13) (z=h)'=01-T)"(2=D)!
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is well defined, and ||(1 —7)7!| < 2. In view of (4.11) and (4.2), the
operator (z — D)~! is compact, thus (z — h)~! is compact also. By the
Riesz Theorem its spectrum is a sequence {«;} such that a; — 0, and
therefore,

(4.14) o(h) = {us}, 1y =2 = 1/a; = oc.
Moreover, the projectors

1
4.15 Pj=— —h)"'d
( ) J 27T'L C’j (g ) CJ
where

1 .
C;={CeC: |¢—p;| =4, 6j:§1ﬁi§1‘ﬂj—ﬂj‘;

are finite-dimensional.

There is only one eigenvector g = g¢; with an eigenvalue p = p;
as it follows from (4.1) and (4.4). Indeed, there is only one sequence
r = (z3)5°, even without the restriction to be in £2, which satisfies
(h — )z = 0, or recurrences

dozo + poz1 =0

Q1Zo + d1Z1 + p122 =0
and so on. If zo = 7, then (with p; # 0),

d 1
(4.16) I = —OT, Trt1 = __(Qkxk—l + dkxk)
Do Dk
It means that [geometric] multiplicity of u is 1. Lemma 8 is proven.

0

2. Now we are ready to prove the following.

Lemma 9. For each real oo # 0
(i) if t =2p—1 then

(4.17) o(H)N R* =),

where R* = R U R (see (3.53);
(i) if t = 2m, then

(4.18) o(H™M N R, =0,
where R, = RT U R~ (see (3.54).
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Proof. By Lemmas 3 and 4
R°NR'=0 and R"NR =4,
so we need to explain that four sets
(4.19) R’no(h*), R'Nno(h*), R*No(h,), R™No(h,)

(where h* = H? in (i) and h, = H*™! in (ii)) are empty. The analysis
of these four cases is almost identical. Let us give all details to prove
(ii)-subcase

(4.20) R*no(h,) =0.
If (4.20) does not hold, then for some u € o(h,)
(4.21) 6T (p) =6 () = 0.
By (3.46) it implies that Ja® # 0, a™ € C™ such that (see (3.44)-(3.46))
(4.22) (H) —p)at =0, a*=(4))"", jodd.
Notice that A, | # 0; otherwise by
(4.23) Gom—1A3m_3 + (dom—1 — p) A3, =0
we had A 5 = 0 as well, and a backward induction by lines of (4.22)

showes that a™ = 0. But it is NOT the case.
Of course, in (4.23) H;! is a submatrix of H* € (3.44), and

(4.24)  dp =k, q=2a02m—-1+k), pr=2a2@m—-1-k).
With u € o(hy), h, = H*™*! we have an eigenvector ¢ # 0,
(4.25) (hy — p)e = 0.

By Lemma 8 p has a (geometric) multiplicity 1, and Y = ¢*(Z3% )
can be decomposed as a direct sum (not necessarily orthogonal)

(4.26) Y=ImP+Im(1-P), P =P, € (415),

ie.,
(4.27) p=_! (z—h,) 'd
. = — z — hy z,
270 J |y z|=e
where

c= tminflu—€: €€ o(h), £ ).

Now we’ll use the h,’s heritage; it is a restriction of K" or K, on its
invariant subspace Y. The operator K = Kp,,- is similar to a selfad-
joint operator Lp,,-. [This is not the case if a,b in (2.1) and (2.4) are
not real; see further comment in Sect. 5.5.] Therefore, the geometric
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multiplicity of each h,-eigenvalue is equal to its algebraic multiplicity.
Lemma 8 implies that

(4.28) dimImP =1, and ImP ={{: £ € C}.
Put U = I'm (1 — P); then (4.26) can be written as
(4.29) Y={¢}+U, hUCU

(4.30) o(h.|U) = o(h.) = {u}-

Of course, < 2 ) is a p-eigenvector of K" [see (3.43)-(3.51)]. Let

+

us try to find another p-eigenvector of the form ( ay ) , where a™ €

(4.22),y €Y oreven y € U.
We have
at (HF — wa™* }
431) (K" — = m ,
) | g ( y ) [ TASm1€2ms1 + (H™H — p)y

where 7 = gopmi1 = 2a - dm. By (4.29)

(4.32) eomi1 =vc+u ye€C uel.
Choose y = y* € U in such a way that

(4.33) AL _u+ (H™ — p)y* = 0.

By (4.30) the operator (h, — u)|U is invertible, so

(4.34) y = (n—h) T A,

is well defined; it solves the equation (4.33). Therefore, by (4.31),

a’ 0
4.35 Keven — . | = , 7 = 8am # 0.
ass) e (0 ) =[] /
We have no control on «; it comes from (4.32). Let us analyze two
alternatives: v =0 and vy # 0.
If v = 0, with a™ # 0, we have two linearly independent p-eigenvectors

+
c and < Z* for K¢"¢". But it is impossible, as we noticed in

Section 2, (2.14)-(2.21).
If v # 0 then the coefficient ¥ = 7AJ,, |7 in (4.35) is not zero as

+
well by (4.31) and (4.23). In this case fy = ( 2 ) and f; = ( C?LJ* )

give us a Jordan block because
(4.36) (K" —p)fo=0, and (K" —p)fi=7fo, 7#0.



SIMPLE AND DOUBLE EIGENVALUES 21

But, this is impossible because the operator K = K" + K% jg
similar to a sefadjoint operator L, and its invariant subspace E =
span{ fo, f1} should have TWO linearly independent p-eigenvectors.
This contradiction completes the proof of the claim in (4.20). As we
noticed, other three sets in (4.19) could be analyzed in the same way
to prove that they are empty. O

3. In Lemmas 5, 6 we showed that any eigenvalue p of multiplicity 1

(i) for Kpe+ when t = 2p — 1 is a root of §° or §' (see (3.23)-(3.25);

(ii) for Kpe,— when ¢t = 2m is a root of 61 or = (see (3.46)-(3.52).
Now we’ll prove that the inverse is true.

Lemma 10. Let a be real and nonzero.

(1) If t = 2p — 1, then each p € R* is simple root of §° or §', and p
1s an eigenvalue of Kpe,+ of multiplicity 1.

(1) If t = 2m, then each p € R, is simple root of 6 or 6~, and p is
an eigenvalue of Kp.,— of multiplicity 1.
Proof. Again we have four cases: 6° or §' in (i), and 7 or 6~ in (ii).The
analysis of these four cases is almost identical. Let us give all the details
in the (i)-subcase §'.

Assume that
(4.37) §'(p) = 0.

By Lemma 9 the operator (h* — p) is invertible. For brevity, let us
write g = H3, o (see (3.22.1), 3.25), (3.37)). If u as a root of §'(z) =
det(z — g) has multiplicity > 2, then there are two linearly independent
vectors

(438) b, by eCl, bf ={Bi(j))}" ", jeven, 0=1,2,
such that

(4.39) (9— b =0, and (g— pbs = &by
Put

(4.40) yi = (u— W) 7B (2 — 2)esp
and

(4.41) Yo = (1 — h*)_l [_flh + TBSL(ZD - 2)62p:| .

These vectors are well defined because by Lemma 9(i) the operator
(1 — h*) is invertible.
Then [compare (4.31)-(4.35)] by (4.39)-(4.41)

T Lo 112
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and
0 by | _ [ (g=—mwBy | _ .| b
(Kdd_“)[;z}_[ §y12]_§[y11}’
or with f, = [b: } , 0=1,2,
(4.42) (K" — ) f1 =0, (K% — ) fo = Efr

By (4.38) f1 and f, are linearly independent odd functions. Again
[compare the end of the proof of Lemma 9, after (4.34)] if £ = 0, then
we have TWO linearly independent odd p-eigenfunctions for K that is
impossible. If £ # 0 then f; and f, give us a Jordan block by (4.42),
but it is impossible either, because K is similar to the self-adjoint
operator L. It proves that u is a d'-root of multiplicity 1. In this case
a vector b, b € (4.39), does exist, and with y; € (4.40) give an odd
p-eigenfunction

by

(4.43) fi= { o

B
for K or K°%_ If 1 is of multiplicity > 2 for K then there exist an even
function (vector)

(4.44) A=(a,d)#0

(see (3.19), (3.21)) such that (3.21.1)-(3.21.2) hold. If a # 0, then by
(3.21.1),

8°(p) = 0;
however, by Lemma 1, (4.37) implies that §°(u) # 0. With a = 0,
(4.44) requires @' # 0. But then by (3.21.2)

(4.45) (H? —p)a' =0 for peo(H?)

which contradicts to Lemma 9, (4.17). Therefore, 1 € (4.37) is a simple
eigenvalue of K. Lemma 10 is proven. O

4. The technical lemmas in this Section have quite elementary proofs;
sometimes — and it is often essential — these proofs use the fact that
our non-symmetric matrices represent operators similar to self-adjoint
ones.

Direct analysis of these matrices and polynomials 6°, §!, §* and their
zeroes can be done with a help of a few basic facts about OPS, orthog-
onal polynomial sequences. Let us remind these facts (we refer to [5]
for details and proofs; see sections 1.4-1.6, pp. 18-28).
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For any sequences {c,}$° of reals and {)\,}{°, A\, # 0, let us define

polynomials

(4.46) Py(z) = (z — cn)Pue1 — MiPra(x), n=1,2,...,

(4.47) P_i(z) =0, Pz)=1

(compare (4.1) and (4.6), pp. 18-21 in [5]). Then for each n € N the
zeroes of P,(z) are real and simple (Theorem 5.2, p. 27 in [5]). Let us
denote its zeroes by z"(i) being ordered by increasing size, i.e.,

(4.48) (1) <2"(2) < <a™(i) <a"(i+1) < < a™(n).

The zeroes of P,(z) and P,.:(z) mutually separate each other, i.e.,
(4.49) z"1(6) <2"(@) < 2" G+ 1) <o <2+ 1), i=1,...,n

(Theorem 5.3, p. 28 in [5]).

These statements are useful to us because §° and §* could be con-
sidered as two consequent terms of such OPS. Indeed, with ¢ = 2p — 1
the matrix Hg, , in (3.24), (3.25) and (3.17) is

(4.50)
0 2a-2(p—1) ]
4o 2p 22 2 2(p — 2)

0 2a-2(p+1) 4? 2c-2(p — 3)

20-2-2(p—1) (2p—2)* |
All elements on the off-diagonals are not zeros. We go backward; put

(4.51) Qi(z) = (2(p—2))* — =,

(4.52) Qu(2) = det [HSIE”_;'“) - x] .

As we already noticed

(4.53) Qr=1(7) = (11 — ) Qi (T) — M1 Qx1(),
where

(4.54) = 2(p—k))?* 1<k<p,

(4.55) Me=(k—1)(2p—k)160>, 2<k<p-—1
(4.56) Ay = 320%(p — 1)p.
We can (arbitrarily) put

(4.57) =0, \py=1 for k> p,
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to have OPS well-defined for all n € N, but we are really interested
only in two polynomials

(4.58) () = Qy(r) and ' (z) = Qp_1(7).

If z°(), 0 < i< p—1,and 2'(z), 1 <i < p— 1, are the zeros of §° and
6! being ordered by increasing size as (4.48), by (4.49) we have

(4.59) 2°(0) < 2'(1) <2°(1) < -+ < 2'(d) < 2°() < --- < 2%(p—1).

Therefore, the roots of §° and ¢' are real and distinct [we knew this
by Lemma 3], and they interlace, i.e., (4.59) holds for all « # 0. The
latter is an important corollary of (4.46)-(4.49).

Analysis of zeros of 6 and 6~ is a little more complicated. Recall
that (3.46) defines these polynomials (with parameter o) by matrices
(3.44)

(4.60)
T 1+4am  4da(m —1) ]
da(m +1) 32 da(m — 2)
ot 0 da(m + 2) 52 4a(m — 3)
i 4a(2m —1) (2m—1)? |
Now 6T and 6,
(4.61) 6% = det (HZ — 1)

are polynomials of the same order m but OPS theory helps us if we
notice (compare with Lemma 4) the following. The left column is a
sum of

1 +4am
da(m + 1) 0
(4.62) 0 and 0
0 0

This decomposition implies that

(4.63) 6% (2: @) = P(x; o) + damQ(z; @)
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where P and () are consequent polynomials of OPS we could construct
by using the matrix

(4.64)
i 1 da(m —1) ]
4da(m + 1) 32 4a(m — 2)
0 da(m + 2) 52 da(m — 3)

4a(2m—1) (2m —1)?

for a backward procedure in the same way as we used the matrix (4.50)
to explain that §° and ' in (4.58) have this property. Let

(4.65) zi(a), 1<j<m and Z(a), 2<j<m,
be the zeros of P and @ in (4.63). Again by (4.49) they interlace so
(4.66) z1(@) < Za(@) < z(@) < -+ - < Zp(@) < z2m().

But these zeros are not (the case (4.59) was easy) the zeros of our
polynomials 6% in (4.63). Still (4.66) is important and useful. Let

(4.67) &), 1<j<m,
be zeros of 6*. We know that

(4.68) P(z;0) = (1 — 2)Q(z; (1-2 H 2j — 1)? — 2]

and
(4.69) &0)=(2-1)?% 1<j<m,

(4.70)
%(0)=(2/-1)%, 1<j<m, %(0)=(2j-1)7% 2<j<m

We know by the above analysis that z;(a), 1 < j < m, are distinct
for all real o, and Z;(a), 2 < j < m are distinct as well. Therefore
they are analytic functins of & € R as roots of polynomials with higher
coefficient +1. Equation (4.69) tells us that these roots are distinct if
a = 0 so they remain distinct for small enough «, certainly, if || < 1/7.
Let us assume for a while that |a| < 1/7. We want to show that for
0<a<1/7

(4.71) & (a) <& (e) <& (a) < < &u(a) < &la).
Because P and @) are of order m and m — 1, the root z;(«) is special,
so first we prove that

(4.72) & (a) <& (o), 0<a<1/7.
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With notations (4.65) and (4.67)

m

(4.73) P(z,a) = H(zk(a —z2) = (z1(e) — 2)R1 (2, @),

1

where

(4.74) R, = ﬁ(zk(a) )

and 2

(w.7) Q10) = [[Gelo — 2 = Fuzs0),
Then 2

(476 Pl (@) 0) = (1(0) — & (@) RE(0)
where

(4.77) Rf(a) = Ri(& ()i ) = [ [(s(e) - & (a))

and

(4.78) Q& (@); @) = Ry ()
where

(4.79) Rf(a) = [[(zr(@) - & ().

2

All these functions are analytic on « for || < 1/7. Our basic equation
for & is (4.63); it implies

(4.80) (z1(a” — £5(a)) R () + 4maRi () = 0,
(4.81) ££(a) = 21 (@) £ 4ma (Rf(a) /Rf(a)) .
By (4.77), (4.79) and (4.69)

(4.82) REO) =RE=]]=[@-1*-1].

2

Therefore, for some o, > 0 and —a, < o < o, the ratios Ry /R, and

Rf /R on the right side of (4.81) are certainly positive and between
1/2 and 2, so

(4.83) & <zi(a) <&f(a), 0<a<al,
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and
(4.84) & <z(a) <& (), —af, <a<O.

Now we consider the roots §f, 2 < j<mFor2< k< m,asin
(4.73)—-(4.79)

(4.85) P(z,a) = (z1(a) — 2) Ri(2; @),
where
(4.86) Ri(z,0)= ][] (zi(e)—2),
j=2
J#Fk
and
(487) Q(z,0) = ((a)—2) [ Gi(@)—2) = (Er(@) —2)Ru(z ).
j =
J#Fk
Put
(4.88) Ry (a) = Pu(& (@); )
and
(4.89) R () = Pe(&f(o); ).
As in (4.82)
(4.90) RE()=FRe(0)= [ [i-1)*-1].
j=2
J#Fk

All these functions are analytic on « for || < 1/7, and for some o** > 0
(the same for all k, 2 < k < m) if « is real and |a| < o**, then we have

(@91 1/2< Rf(@)/Rie), RBp(e)/Ri(a) <2
The basic Equation (4.63) for & (c) implies:
(4.92)

(z1() = & (@) (2 () — & (@) Ry (o) £ 4ma(Ze(a) — & (@) By () = 0
and
(4.93)

zk(a) — {,:f (o) £ dma g’i
k
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(4.94) & () = z(@) £ 4ma(z(a) — zk(a))S; (a),
where
_ Ry 1

(495) S () = 3 s e W

i
1+ 4maR—,“f .
with
(4.96) £5(0) = (26— 1)* and #(0) =1.
For |a| < o the denominator
(4.97) z2(a) = &la) < (1-2k—1)*)+1< -7 if k> 2,

is negative and

(4.98) SE) <0, |af <ok

By interlacing (4.66) we obtain

(4.99) 0 < zx(a) — Zx(a),

so (4.94), (4.98) and (4.99) imply for 0 < o < o that
(4.100) & (@) < zx(a) <& ()

and for —a < a <0

(4.101) E(a) < zk(a) <& (), 2<k<m.

For k =1 it is proven in (4.83) and (4.84).
We explained (see Lemma 4) that

(4.102) R"NR =0 for a#0.
Therefore, the interlacing
(4.103) & () <& (a) <& (a) <+ <gula) <&la),

which we have just proven for 0 < o < o} will remain valid for all
a > 0. The same extension by continuation will preserve the interlacing

(4.104) & (@) <& () <&f(a) <+ <gla) <&y(a)
for all o < 0.

It is interesting to notice for the roots of 6% that their ordering
changes (see (4.103) and (4.104)) when « goes from positive to negative.
(It does not happen in the Pert case (see (4.59)). But this is not
surprising because

(4.105) (s @) = 8°(; —a) and  §'(p;0) = 8 (1; —v),

i.e., 6° and ¢ are even with respect to a, but 61 (u; —a) = 6 (u; ).
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5. We can summarize the analysis and results of this section as the
following.

Theorem 11. Let
(4.106)
v(z) = acos2x + beosdr, a= —4at, b= 20> real, a#0,

be a potential of the Hill operator
(4.107) Ly=—-y"+v(z)y, 0<z<m.

(i) Ift = 2p—1, p > 1, and bc = Per™ then the first 2p—1 eigenvalues
are simple, and others are double,

(4.108)  Af(a) <Az (@) <A (@) <+ <Ay, () <Aj, 4

< Ay () < A (@) < Ag(e) = Ag;(a) j > p.

() <

Moreover, the eigenvalues )\;k(a), 0 < k < p-—1, are zeros of the
polynomial 6°(p, @), and the eigenvalues Ay (), 0 < k < p — 1, are
zeros of the polynomial 6* (1, ).

(i) If t = 2m, t > 1, and bc = Per~, then the first 2m eigenvalues
are simple and other are double, i.e.,

(4.109) A (@) < A5(a) < Agpi() < Mgy (@) < -+
and

(4.110)
/\Q_j—l(a) < )‘;j—l(a)7 1<j<m, /\2_j+1(04) = )‘2_j+1(a)7 Jzm.

Moreover, the eigenvalues )\;“j_l(oz), 1 < j <'m, are zeros of the poly-
nomial 51 (u, @) if a > 0, and of the polynomial 6~ (u, @) if o < 0, and
v.v., the eigenvalues /\Z_j_l(a), 1 <5 < m, are zeros of the polynomial
0~ (1, @) if o> 0, and of the polynomial 6* (u, @) if a < 0.

6. Just to demonstrate how the structure of spectra changes when
the parameters a,b cross the integer levels of ¢ in (3.2) we consider
pockets of instability of one-parametric family of potentials

(4.111) v(z) = —7(8 cos 2z + 8 cos4x).
According to (3.2)

(4.112) 8(—87)t* + (87)* =0,

S0

(4.113) t =12

Therefore, all eigenvalues in the case of potential v € (4.111) are simple
(the zones of instability are open) if 72 is not an integer.
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If t = 72 is an integer then according to Theorem 1 the first ¢ zones
are open, the (¢ 4 1)st zone is closed, and then they interlace, i.e.,
the zones t +2m, m = 1,2,..., are open and the zones t + 2p — 1,

p=1,2,..., are closed. It is shown in the following Diagram.

\/,7_

10

0 1 2 3 4

)
v(z) = 7(8sin 2z + 8 cos 4x)

6

10 /p

We need to point out that this is a diagram, not a real graph. It
ignores the values of A* and how two curves A (7), Af(7) intersect at
the integer 72. Even at 7 = 0 the diagram does not show the level of

contact of these curves with the same tangent (vertical) line.

5. COMMENTS; CONCLUSION

1. The crucial step in killing a higher frequency term of the potential
(2.4) is the transformation (2.7) used by Magnus and Winkler in the
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1950’s. Of course, in the 80’s such type gauge transform became routine
in both mathematical and phisical literature, but it was not a standard
procedure in the 50’s. True, one can find ”Sommerfeld procedure” as
Razavy [28] put it, in the 1929 book [31], and ocasionally in the 30’s
and 40’s. But even the Razavy’s observation [28] in 1980 that the
bistable potential in the Schrédinger operator

1 1
Ly =" + <8 + 552 + (n — 1)€ cosh 2z — 3 cosh 43:)
following the Sommerfeld procedure
1
Y = exp <_Z cosh 2:5) ()

brings us to an operator K = E~'LE,
Ko = ¢" — £sinh 224 + (¢ + né cosh 2z)¢

without terms of the rate 4, has been considered as a breaking news.
Of course, this is the same tranform as (2.5)-(2.11) if you change = to
1T

2. It would be interesting to chase attempts if any prior to 1958
to bring an operator (2.6) to tridiagonal matrix form. Klotter and
Kotowski in 1943 did numerical calculations [20] to see the behaviour of
the eigenvalues of this operator but they used the five-diagonal matrix
to present the operator (2.6) in trigonometric basis as it directly follows
from (2.4); multiplication by this potential is, in an obvious way, a five
diagonal matrix.

3. A tridiagonal matrix representation led Magnus and Winkler [37]
to Thm 7.9 in [23], p. 107, because a zero on the off-diagonal changes
drastically the spectra and gives a very special finite-dimensional sub-
space (invariant for K or L, or for adjoint K*). It makes the work of
Magnus and Winkler in the 1950’s quite a remarkable piece - if we
follow the language of the 90’s [34, 35, 13] - in the theory of quasi-
exactly-solvable differential equations, or QES. Indeed, this is one of
the canonical examples in this QES-theory (see (60) and (65) in A.
Turbiner [33]). But one cannot see in this literature any mentioning of
Magnus and Winkler results from the 50’s [37], or their exposition in
the book [23], published in 1968 and 1979.

4. Our Theorem 11 sharpens the results of Magnus and Winkler
by giving complete analysis of spectra of a "head“ matrix (or, the
algebraic sector, as M. Shifman and A. Turbiner say in [29]) and a
"tail“ matrix and their relationship. By (not well motivated) analogy
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we can ask whether the same spectral properties are observed in quasi-
exactly-solvable equations of one variable (see their catalogue in [33]
or [34, 35]).

A. Are all eigenvalues in the algebraic sector simple?

Of course, the answer is positive, if one can bring this block (by
some gauge transformation?) to tridiagonal matrix without zeroes on
the off-diagonals. In our context Lemma 10, together with Lemma 9,
give a positive answer to Question A.

Next two questions are vague because with great emphasis on an al-
gebraic sector (finite-dimensional invariant subspace) QES-theory does
not define in a canonical way a remainder, or a compliment, or a ”tail
block of the differential operator L which is quasi-exactly solvable.

B. Are the eigenvalues of such an operator L which is determined by
the tail, or which do not come from the algebraic sector, double, i.e.,
do they have multiplicity 27

In our context the answer is YES because the "tail“ operators in
subspaces of even and odd functions are just identical; see (3.21.2) and
(3.22.2) in Per*—case, and (3.50)—(3.51) in Per~—case.

Of course, if A and B have positive answers, then the eigenvalues
of these two classes could not coincide. [See Lemmas 9 and 10 in our
context.] But we do not know this yet, so let us ask the following
question.

C. Is it true that eigenvalues from the algebraic sector could not
coincide with eigenvalues comming from outside the algebraic sector?

5. Maybe, in these questions of subsection 5.4 we implicitly assume
that the operator L under the consideration is selfadjoint and parame-
ters are real. Certainly, it was the case in our analysis of the operator
(1.2) with potential (2.1), or (2.23) + (2.53). But it is interesting to
check which statements (from Proposition 1 to Lemma 10) and their
proofs depend on the assumption that « is real. To be certain, let
us now talk about positive ¢ > 0 and complex o with a« = —4at and
b= —2a2

What Proposition 1 and 2 really showed is that for any « € C\ {0}
the equation

(5.1) —y" — (4ot + 2¢°)y = Ay

cannot have non-zero even and odd Per*-solutions (if ¢ is not odd) at
the same time and there could not be two even and odd Per~—-solutions
if ¢ is not even and « is any nonzero complex number.
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Technical Lemmas 3 (and 4) and 8 hold for any matrices with com-
plex entries as well.

In Lemmas 5 and 6 we have essentially the same effect as in the
proofs of Proposition 1 and 2. It becomes more obvious if we point out
that "multiplicity 1“ there means a weaker assumption on “geometric
multiplicity 1”. The distinction is lost of course, if L is self-adoint (and
K is similar to L). So Lemmas 5 and 6 hold for any o € C\ {0} as
well.

But in the proofs of Lemmas 9 and 10, as we’ve noticed there' we
used in a critical way that K is similar to a self-adjoint operator L.
The same should be said about the claim (a part of Theorem 11) that
the roots of a polynomial §°(xz; o) are simple, i.e. the eigenvalues of the
"head“ (or of the algebraic sector) have ALGEBRAIC multiplicity 1.
This is not necessarily true if « is complex. Let us consider explicit
examples.

Ezample 1. Pert —case; t = 5, or p = 3. By (4.50)

[ -z B« 0 -‘
§z;a) =det | 16a 4—2 4o = (16 — 2)[2* — 42z — 12807
| 0 40 16— |

Its roots are 16 and 242(1+32a2)'/2, so for & = +i/41/2 the polynomial
8% has a root +2 of multiplicity 2. But +2 is an Lp,,+— eigenvalue of
geometric multiplicity 1.

For curiosity, let us notice that

li¥sY

1 _ 4— 2z
) (z,a)—det[ do 16— »

] =22 — 20z + 64 — 16a°.

Its roots are 10 & /36 + 1602, so 6* has a root +10 of multiplicity 2 if
o = +3i/2. Again, Lp,,+, or its restriction K°¥ has a Jordan block.

Ezample 2. Per~—case; t = 4, or m = 2. By (4.60)

1+8a—2 A4«

E —
(2 ) —det[ 120 9_ »

] =22 —102+948a(9 — 2) — 4802,
and

6t =22 — (10 + 8a)z + 9 + T2 — 4807,

6~ =22 — (10 — 8a)z + 9 — T2 — 4807,
Roots of §T are

54 4a 4+ 4(1 — 2a + 402)1/2,

IFive lines after (4.27) or the paragraph after (4.42).
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and for 6~
5+ 4o+ 4(1 4 2a + 402)Y2.

These roots are of multiplicity 2,

(5.2) if a=(1+iVv3)/4 for 67,
(5.3) if a=(-1+iV3)/4 for ¢,

Again, the operators K" and K°% have Jordan blocks (in their
"heads*) if (5.2), or (5.3), hold.

6. Examples in the previous subsection show that in Lemmas 9, 10
and Theorem 11 the assumptions on a,b be real or on L being self-
adjoint are important. But let us follow [2, 30, 15, 3, 4, 32] and raise
a general question about the structure of spectral Riemann surfaces
related to these problems. Of course, it would be interesting to change
both o and ¢ in complex plane, i.e., to consider (a,t) € C? but for a
while, let us talk about fixed positive t. Define, for each ¢ > 0, four
surfaces

Go(t) = {(u, ) : 3w € F*(2N — 2) such that H°(a)x = px},
Gi(t) = {(n, ) : 3z € *(2N) such that H?(a)z = pz},
Gt (t) = {(u,a): Fz € *(2N — 1) such that H'(a)z = pz},

G~ (t) = {(n,) : Fz € F*(2N — 1) such that H (a)z = pz},

where for each parity H, H? are defined by (3.16)—(3.17), and H* are
defined by (3.44).

What is the structure of these surfaces?

In the case of anharmonic oscilator equation such a question has
been raised and solved by C. Bender and T. Wu [2], and in the case of
Mathieu—Hill operators by C. Hunter and B. Guierrero [15].

If ¢ is an integer then as we’ve seen in our text [but this is really the
Turbiner’s observation [32] about any quasi-exactly solvable differential
operator|, Gy and G are split into two surfaces if ¢ is odd, while G* and
G~ are split into two surfaces if ¢ is even, one of them being algebraic.
These surfaces are zero-surfaces of polynomials §° and §*, or 6+ and 6~
respectively. Examples 1 and 2 in Subsection 5.5 give some branching
points (of order 2) of these surfaces. But their structure in general
remains a mystery.
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