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ASYMPTOTICS OF INSTABILITY ZONES OF HILL
OPERATORS WITH TWO TERM POTENTIAL

PLAMEN DJAKOV AND BORIS MITYAGIN

We give a sharp asymptotics of the instability zones of the Hill
operator Ly = —y"” + (a cos 2z + b cos 4x)y for arbitrary real a,b #
0.

Résumé

Dans cette note on donne une estimation asymptotique des in-
tervalles d’instabilité d’opérateurs de Hill de la forme Ly = —y" +
(a cos 2z + bcos 4x)y, ou a et b sont des réels non nuls arbitraires.

1. The Schrodinger operator Ly = —y" +v(x)y, —oo < < oo, with real valued
periodic L2([0, ])-potential v(z), v(z + m) = v(z), has spectral gaps, or instability
zones (A, \}), n > 1, close to n? if n is large enough. The points A, , A} could
be determined as well as eigenvalues of the Hill equation Ly = —y" + v(z)y = Ay,
considered on [0, 7] with boundary conditions Per™ : y(0) = y(r), y'(0) = y'(n)
for n even, and Per~ : y(0) = —y(w), y'(0) = —y'(7w) for n odd. See details and
basics in [15, 17, 18, 21].

Let v, = At — A, be the lengths of the spectral gaps. The decay rates of (v,)
are in a close relation with smoothness of the potential v (see [11, 12, 22, 4, 5, 6]).
Sometimes the Lyapunov function, or the Hill discriminant (see [17], Sect. 2.1-2.2)
A()) can be written explicitly as it happens in the Kronig-Penney model, made of
a periodic array of § and ' functions, or onionlike scatterers with several channels
(see details in [2] and the bibliography there). Then the asymptotics of the roots
of Lyapunov functions (trigonometric polynomials (7), (8) in [2]) and consequently
the asymptotics of gaps and bands become a question about roots of elementary
trigonometric functions. Without explicit Lyapunov function this task is much
more difficult.

2. In 1980 E. Harrell [10], and then J. Avron and B. Simon [1] gave the asymp-
2

d
totics of spectral gaps of the Mathieu operator ) + 2acos 2z. They showed
x

that
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In [1] the question was raised about these asymptotics in the case of two term
potential

1) v(x) = acos2x + bcos4z.
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Later, A. Grigis [9] gave generic asymptotics of spectral gaps of the Schrédinger
2

operator ——— + v(z) when v is a real-valued trigonometric polynomial. For him,
the two term potential

(2) u(z) = csin2x +dcosde, d >0,

was of special interest as well. (Notice that the shift £ — z+m/4 transforms u(z) €
(2) into v € (1) with a = ¢,b = —d. Their Schrédinger operators are isospectral, so
we can consider without loss of generality just potentials (1); however, b could be
positive or negative.)

3. Recently, we found [7, 8] the asymptotics of (y,) for a potential of the form
(2) when ¢ = 8d > 0. Our proofs were based on the relationship of Dirac operator

with potential ( 2 1(; > and Hill operators with potential u = +p’ +p?, the Ricatti
transform of p. In terms of a,b in (1), if we introduce a parameter ¢ by
(3) a® + 8bt? = 0,

then ¢ = 8d > 0 is a special case of (3) with ¢ = 1. Generally, for real a,b # 0
we set a® + 8bt2 = 0, b = —2a2, a = —4at, where

(i) @ and t are real if b < 0,

(ii) « and t are pure imaginary if b > 0.

Now, this parametrization plays a special role in asymptotic behavior of gaps
~Yn (@), both for a = 0 and n — oo.

Theorem 1. Let v,, n € N be the spectral gaps (lengths of instability zones) of the
operator

(4) Ly = —y" — [4at cos 2z + 2a* cos 4z]y.
If t and n are fixed, then for even n
(5) = 5T ok 1) (04 0@,
2n[(n — )12 22
and for odd n
(n—1)/2
+8a™
(6) = g ey 1L (- @0 (4 0().
k=1

Remark 1. In the case (ii), if we put a = i3, ¢ = ir, 3,7 real, then we can
rewrite, say, (6), as

(n=1)/2
+86™r 2 2
"= gmonp 1L @07 (@+06).

Of course, (5) could be rewritten in terms of 3,7 in the same way.

Proof is based, on one hand, on our analytic methods [3, 4, 5, 6], and on the
other hand, on using the approach to coexistence probem of W. Magnus and S.
Winkler (see [16], [17], Ch.7, in particular, Thm 7.9)) and sharpening their result
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about the multiplicities of eigenvalues of the operator (4) in the case where ¢ is an
integer.

4. The essential components of the asymptotics (5) and (6) are polynomials in ¢
of degree n. The combinatorial meaning of their coefficients unearthed in the course
of the proof of Theorem 1 leads to a series of algebraic identities.

Theorem 2. The following formulae hold:

M Y mP=i)-m?—ip)= > (2 —1)% (2 — 1),
1<j1<<jp<m

where the first sum is over all indicies is such that

—_m <y < <dp<m, |ig—ip >2;

€) D lem—1)” = (2iy = 1)%]---[(2m — 1) — (2i — 1)7]
= X W)t

1<j1<+<je<m—1
where the first sum is over all indicies is such that

—m+1l<ip <---<ip<m,  ig—ip| > 2.

The termsin (7) and (8) look to be similar to the terms in the identity conjectured
by V. Kac and M. Wakimoto [13] and proved by S. Milne [19], and later by D.
Zagier [23]; see details and further bibliography in [20], in particular, Sect. 7 and
Cor. 7.6, pp. 120-121. Our asymptotic analysis involves eigenvalues of Schrodinger
operators. This occurrence of eigenvalues suggests a possible link with advanced
determinant calculus developed by G. Andrews (see C . Krattenthaler [14] and
references there) and Hankel determinants in S. Milne [20].

5. Asymptotics for n — oco.

Theorem 3. Under the notations of Theorem 1, let a # 0 and t # 0 be fized. Then
for even n
_ 8a™ s 3
and for odd n
8a™ 2 m
m=t—— Zgin (= 3/n)] .
(10) 7y [P sin (2t) [1+ O((logn)?/n)]

[Let us recall that (26 —1)!'=1-3---(2k—1), (2k)!!=2-4---2k]
Remark 2. As in Remark 1, in the case (ii), cos(nt/2) = cosh(n7/2) and if n is
odd, then the product a” sin(nt/2) = "1 3" sinh(77/2) is real.
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