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BERNSTEIN WIDTHS OF HARDY-TYPE OPERATORS IN A
NON-HOMOGENEOUS CASE

D.E.EDMUNDS and J.LANG

Abstract

Let I = [a, b] ⊂ R, let 1 < p ≤ q <∞, let u and v be positive functions with u ∈ Lp′ (I), v ∈ Lq(I)
and let T : Lp(I)→ Lq(I) be the Hardy-type operator given by

(Tf)(x) = v(x)

∫x

a
f(t)u(t)dt, x ∈ I.

We show that the Bernstein numbers bn of T satisfy

lim
n→∞

nbn = cpq

(∫
I
(uv)rdt

)1/r

, r = 1/p′ + 1/q,

where cpq is an explicit constant depending only on p and q.

1. Introduction

Let u and v be real-valued measurable functions on an interval I := [a, b] ⊂ R.
In [7], [10], [11], [8] and [12] the Hardy-type operator T given by

(Tf)(x) := v(x)
∫x

a

f(t)u(t)dt, x ∈ I, (1.1)

was considered as a map from Lp(I) to itself, when 1 ≤ p ≤ ∞. As a consequence of
this work, together with that of [9], it is known that under appropriate conditions
on u and v the approximation numbers an(T ) of T satisfy

lim
n→∞

nan(T ) = λ−1/p
p

∫
I

|u(t)v(t)| dt,

where λp is the first eigenvalue of a p−Laplacian eigenvalue problem on I. We recall
that an(T ) := inf ‖T − F‖ , the infimum being taken over all bounded linear maps
F : Lp(I) → Lp(I) with rank less than n. A connected account of such results
concerning an(T ) is given in [6]. The main purpose of this paper is to study the
properties of T as a map from Lp(I) to Lq(I) when 1 < p ≤ q < ∞, and we focus
on its Bernstein widths. These are the numbers bn = bn(T ) (n ∈ N) given by

bn = sup
Xn+1

inf
Tf∈Xn+1\{0}

‖Tf‖q,I / ‖f‖p,I ,

where the supremum is taken over all subspaces Xn+1 of T (Lp(I)) with dimension
n + 1. The Bernstein widths of various maps have been extensively studied: for
embeddings of Sobolev spaces we refer to Pinkus [19], Bourgain and Gromov [1]
and Lang [13]; and for the map T : Lp(I) → Lp(I), in the special case when
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u = v = 1, see [3]. Our main result is that if u and v are positive functions with
u ∈ Lp′(I) and v ∈ Lq(I), then

lim
n→∞

nbn = cpq

(∫
I

(uv)rdt

)1/r

, r = 1/p′ + 1/q,

where cpq is an explicit constant.
For appropriate u and v it can be proved that when T is viewed as a map from

Lp(I) to Lp(I) we have an(T ) = bn(T ) for all n ∈ N (for more details see [14]).
In contrast, when T is a map from Lp(I) to Lq(I) with p < q, we know that
an(T ) > bn(T ) for all n ∈ N (see Section IV, Theorem 1.1 in [18]). Moreover, with
suitable u and v, it can be shown that (again with p < q)

lim
n→∞

nan(T ) = ∞,

so that the decay of an(T ) is slower than 1/n : see [16]. This underlines the difference
between the approximation numbers and the Bernstein numbers.

Throughout the paper we suppose that 1 < p ≤ q < ∞, that u and v are positive
functions I = [a, b] ⊂ R with u ∈ Lp′(I) and v ∈ Lq(I), and that T is a compact
map from Lp(I) to Lq(I). The standard norm on Lp(I) will be denoted by ‖·‖p,I

or by ‖·‖p if no ambiguity is possible. We write A . B (or A & B) if A ≤ cB
(or cA ≥ B) for some positive constant c independent of appropriate quantities
involved in the expressions A and B. By A ≈ B we shall mean that A . B and
B . A.

2. Preliminaries and technical results

We start with the definition of special generalisations of the trignometric func-
tions, the sinpq and cospq functions (see [4]). (Note that these functions have their
origin in [15] and [20])

Definition 2.1. For σ ∈ [0, q/2] we set

arc sinpq(σ) =
q

2

∫2σ/q

0

ds

(1− sq)1/p
.

We put

πpq = 2arc sinpq(q/2) = B(1/q, 1/p′),

where 1/p′ = 1 − 1/p and B denotes the Beta function. By sinpq we mean the
inverse of arc sinpq and the extension of this inverse as a 2πpq−periodic function
on R.

More precisely, since arc sinpq : [0, q/2] → [0, πpq/2] is increasing, sinpq is well-
defined on [0, πpq/2]. We extend it to [πpq/2, πpq] by defining sinpq x = sinpq(πpq−x)
for x ∈ [πpq/2, πpq], to [−πpq, πpq] by oddness, and finally to all of R by 2πpq−periodicity.
Now define cospq by

cospq(x) =
d

dx
sinpq x;

this is an even, 2πpq−periodic function that is odd about πpq/2.
Now we recall some facts concerning eigenfunctions and eigenvalues for certain
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non-linear problems, together with results about Bernstein widths for Sobolev em-
beddings. Put I = [a, b], where −∞ < a < b < ∞, and let (x)(p) := |x|p−1 sgn (x),
x ∈ R. Let

K(x, y) := v(x)u(y)χ[a,x](y) for x, y ∈ I.

Then for any m ∈ N and any collection of points x1, x2, ..., xm, y1, y2, ..., ym with
a ≤ x1 ≤ x2 ≤ ... ≤ xm ≤ b and a ≤ y1 ≤ y2 ≤ ... ≤ ym ≤ b, we have

det (K(xi, yj))
m
i,j=1 ≥ 0.

This means that K(·, ·) is totally positive, in the terminology of Pinkus [19], Defi-
nition 3.1, p. 52. The map T given by (1.1) is represented by

(Tf)(x) =
∫
I

K(x, y)f(y)dy.

Let B := {f ∈ Lp(I) : ‖f‖p ≤ 1} and consider the isoperimetric problem of
determining

sup
g∈T (B)

‖g‖q . (2.1)

This problem is related to the following non-linear integral problem:

g(x) = (Tf)(x) (2.2)

and
(f(x))(p) = λ(T ∗((g)q))(x), (2.3)

where (g)q is the function with value (g(x))q at x and T ∗ is the map defined by
(T ∗f)(x) = u(x)

∫b

x
v(y)f(y)dy. Note that when u and v are both identically equal

to 1 on I, (2.2) and (2.3) can be transformed into the p, q−Laplacian differential
equation

−
(
(w′)(p)

)′
= λ(w)(q), (2.4)

with the boundary condition
w(a) = 0. (2.5)

A pair (g, λ) for which a function f with ‖f‖p = 1, satisfying (2.2) and (2.3), can
be found, will be called a spectral pair. The set of all spectral pairs will be denoted
by SP (T, p, q). The number λ occurring in a spectral pair will be called a spectral
number, and the set of all such numbers denoted by sp(T, p, q); the function g
corresponding to λ is called a spectral function. Given any continuous function f

on I we denote by Z(f) the number of distinct zeros of f on
o

I, and by P (f) the
number of sign changes on this interval. The set of all spectral pairs (g, λ) with
Z(g) = n (n ∈ N0) will be denoted by SPn(T, p, q), and spn(T, p, q) will represent
the set of all corresponding numbers λ.

Theorem 2.1. For all n ∈ N, SPn(T, p, q) 6= ∅.

Proof. This essentially follows from [3] (see also [17]), but we give the details
for the convenience of the reader. For simplicity we suppose that I is the interval
[0, 1]. A key idea in the proof is the introduction of an iterative procedure used in
[3].



4 d.e.edmunds and j.lang

Let n ∈ N and define

On =
{

z = (z1, ..., zn+1) ∈ Rn+1 :
∑n+1

i=1
|zi| = 1

}
and

f0(x, z) = sgn(zj) for
∑j−1

i=0
|zi| < x <

∑j

i=1
|zi| , j = 1, ..., n + 1, with z0 = 0.

With g0(x, z) = Tf0(x, z) we construct the iterative process

gk(x, z) = Tfk(x, z), fk+1(x, z) = (λq
k(z)T ∗(gk(x, z))(q))(p′),

where λk is a constant so chosen that

‖fk+1‖p = 1

and 1/p + 1/p′ = 1. Then, all integrals being over I,

1 =
∫
|fk(x, z)|p dx =

∫
fk(fk)(p)dx =

∫
fk

(
[λq

k−1T
∗((gk−1)(q)

)
](p′))(p)dx

=
∫

fkλq
k−1T

∗((gk−1)(q))dx

= λq
k−1

∫
T (fk)(gk−1)(q)dx ≤ λq

k−1 ‖gk‖q ‖gk−1‖q−1
q

and also

‖gk−1‖q
q =

∫
|gk−1(x, z)|q dx =

∫
(gk−1)(q)gk−1dx

=
∫
(gk−1)(q)T (fk−1)dx =

∫
T ∗((gk−1)(q))fk−1dx

= λ−q
k−1

∫
λq

k−1T
∗((gk−1)(q))fk−1dx

≤ λ−q
k−1

(∫ ∣∣(λq
k−1T

∗((gk−1)(q))(p′)
∣∣p′ dx

)1/p′ (∫
|fk−1|p dx

)1/p

= λ−q
k−1

(∫ ∣∣(λq
k−1T

∗((gk−1)(q))(p′)
∣∣p′ dx

)1/p′

= λ−q
k−1

(∫
|fk|p dx

)1/p

= λ−q
k−1.

From these inequalities it follows that

‖gk−1(·, z)‖q ≤ λ−1
k−1 ≤ ‖gk(·, z)‖q .

This shows that the sequences {gk(·, z)} and {λk(z)} are monotonic decreasing.
Put λ(z) = limk→∞ λk(z); then ‖gk(·, z)‖q → λ−1(z).

As the sequence {fk(·, z)} is bounded in Lp(I), there is a subsequence {fki
(·, z)}

that is weakly convergent, to f(·, z), say. Since T is compact, gki
(·, z) → Tf(·, z) :=

g(·, z) and we also have f(·, z) = (λq(z)T ∗(g(·, z))(q))(p′). It follows that for each
z ∈ On, the sequence {gki(·, z)} converges to a spectral function.

Now set z = (0, 0, ..., 0, 1) ∈ On. Then f0(·, z) = 1, and as the operators T and
T ∗ are positive, gk(·, z) ≥ 0 for all k, so that g(·, z) ≥ 0. Thus g(·, z) ∈ SP0(T, p, q) :
SP0(T, p, q) 6= ∅.
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Next we show that for all n ∈ N, SPn(T, p, q) 6= ∅. Given n, k ∈ N, set

En
k = {z ∈ On : Z(gk(·, z)) ≤ n− 1}.

From the definition of T it follows that gk(·, z) depends continuously on z; thus
En

k is an open subset of On and Fn
k := On\En

k is a closed subset of On. Let
0 < t1 < ... < tn < 1 and put

Fk(α) = (gk(t1, α), ..., gk(tn, α)), α ∈ On.

Then Fk is a continuous, odd mapping from On to Rn. By Borsuk’s theorem, there
is a point αk ∈ On such that Fk(αk) = 0; that is, αk ∈ En

k . From the definition of
gk and fk+1, together with the positivity of T and T ∗, we have

Z(gk+1) ≤ P (fk+1) ≤ Z(fk+1) ≤ P (gk) ≤ Z(gk),

so that En
k ⊂ En

k+1, which implies that Fn
k ⊃ Fn

k+1. Hence there exists α̃ ∈ ∩k≥1F
n
k ,

and as above we see that gk(·, α̃) converges, as k → ∞, to a spectral function
g(·, α̃) ∈ SPn(T, p, q). Thus SPn(T, p, q) 6= ∅ and the proof is complete.

We denote by SP a
n (p, q) the set of all pairs (w, λ) (again called spectral pairs, w

being an eigenfunction with associated eigenvalue λ) corresponding to solutions of
(2.4) and (2.5) for which Z(u) = n. Similarly, SP a,b

n (p, q) will stand for the set of
all spectral pairs (w, λ) corresponding to solutions of (2.4) that satisfy the Dirichlet
boundary conditions

w(a) = w(b) = 0 (2.6)

and have Z(u) = n. It is known from [3], [4] or [19] that for all n ∈ N, SP a,b
n (p, q)

consists of exactly one spectral pair (up to normalisation). Moreover, from [20] or
[4] we have

Lemma 2.1. For any α ∈ R\{0}, the set of eigenvalues of problem (2.4) under
the Dirichlet boundary conditions (2.6) on I = [a, b] is given by

λn(α) :=
(

2nπpq

b− a

)q

· |α|
p−q

p′qq−1
(n ∈ N),

with corresponding eigenfunctions

wn,α(t) :=
α(b− a)

nπpq
sinpq

(
nπpq

b− a
t

)
(t ∈ I).

A simple computation enables us to modify Lemma 2.1 so as to apply to the
eigenvalue problem (2.4) with initial conditions at the left-hand endpoint a of I.

Lemma 2.2. For any α ∈ R\{0}, the set of eigenvalues of problem (2.4) under
the conditions

w(a) = 0, w′(a) = α (2.7)

on I = [a, b] is given by

λ̃n(α) :=
(

2(n− 1/2)πpq

b− a

)q

· |α|
p−q

p′qq−1
(n ∈ N),
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with corresponding eigenfunctions

w̃n,α(t) :=
α(b− a)

(n− 1/2)πpq
sinpq

(
(n− 1/2)πpq

b− a
t

)
(t ∈ I).

Next we recall the definitions and basic properties of the Bernstein widths, the
linear widths and the approximation numbers.

Definition 2.2. Let C be a centrally symmetric subset of a normed linear space
X and let n ∈ N. The nth Bernstein width of C, bn(C,X), is

bn(C,X) := sup
Xn+1

sup{λ ≥ 0 : Xn+1 ∩ (λBX) ⊂ C},

where BX is the closed unit ball in X and the outer supremum is taken over all
subspaces Xn+1 of X such that dim Xn+1 = n+1. The linear width of C, δn(C,X),
is

δn(C,X) := inf
Pn

sup
x∈C

‖x− Pnx‖ ,

where the infimum is taken over all bounded linear maps P : X → X with rank at
most n.

It can be shown that for all n ∈ N, bn+1 ≤ bn, δn+1 ≤ δn and bn ≤ δn. For this
and more information about Bernstein and linear widths, see [18].

In this paper we study the operator T given by (1.1) as a map from Lp(I)
to Lq(I), with 1 < p ≤ q < ∞, and we are interested in the Bernstein widths
bn(TB,Lq(I)), where TB = {Tf : ‖f‖p,I ≤ 1}. For every n ∈ N we have

bn(TB,Lq(I)) ≤ δn(TB,Lq(I)) = an+1(T ).

Here an(T ) is the nth approximation number of T, given by

an(T ) = inf
Pn

sup
‖f‖p,I≤1

‖Tf − Pnf‖ ,

where the infimum is taken over all bounded linear operators from Lp(I) to Lq(I)
of rank less than n. More details of approximation numbers will be found in [5] and
[6]. From Definition 2.2, Section V in [18] we have

bn(T (B), Lq(I)) = sup
Xn+1

inf
Tf∈Xn+1\{0}

‖Tf‖q,I / ‖f‖p,I , (2.8)

where the supremum is taken over all subspaces Xn+1 of T (Lp(I)) with dimension
n + 1. Since u and v are positive functions, (2.8) can be expressed as

bn(T (B), Lq(I)) = sup
Xn+1

inf
α∈Rn+1\{0}

∥∥∥T (∑n+1
i=1 αifi

)∥∥∥
q,I∥∥∥∑n+1

i=1 αifi

∥∥∥
p,I

, (2.9)

where the supremum is taken over all (n+1)−dimensional subspaces Xn+1 = span
{f1, ..., fn+1} ⊂ Lp(I).

Now let W 1
p (I) be the Sobolev space of all functions in Lp(I) with first-order

distributional derivatives also in Lp(I). It is a familiar fact that the elements of
W 1

p (I) are absolutely continuous on I (more precisely, there is a representative in
each equivalence class that is absolutely continuous), and so it makes sense to speak
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of the values of elements of this space at the endpoints of I. Let

W 1
p,a(I) = {f ∈ W 1

p (I) : f(a) = 0}, BW 1
p,a(I) = {f ∈ W 1

p,a(I) : ‖f ′‖p,I ≤ 1}.

We shall need the following result from [2].

Theorem 2.2. Let 1 ≤ p ≤ q ≤ ∞. Then for each n ∈ N,

bn

(
BW 1

p,a(I), Lq(I)
)

= λ̃−1/q
n (α),

where λ̃n(α) is the nth eigenvalue of problem (2.4) under condition (2.7), and α is
so chosen that for the corresponding eigenfunction ũn,α we have

∥∥w̃′
n,α

∥∥
p

= 1.

It is clear that BW 1
p,a(I) = T (B), where T is the special case of (1.1) with

u = v = 1, so that (Tf)(x) =
∫x

a
f(t)dt. Together with Lemma 2.2 this enables us

to make the following observation.

Remark 2.1. Let 1 ≤ p ≤ q ≤ ∞ and suppose that T is given by (Tf)(x) =∫x

a
f(t)dt. Then

bn(T (B), Lq(I)) =
b− a

2(n− 1/2)πpq

(
p′qq−1

|α|p−q

)1/q

,

where α is chosen so that∥∥∥∥∥ α(b− a)
(n− 1/2)πpq

(
sinpq

(
(n− 1/2)πpq

b− a
·
))′∥∥∥∥∥

p

= 1.

3. Technical Lemmas

Here we introduce various techniques that will be used to establish the main
theorem. We suppose throughout this section that u ∈ Lp′(I) and v ∈ Lq(I), and
remark that these assumptions are sufficient to ensure the compactness of T. We
begin with an elementary lemma that is a simple consequence of Hölder’s inequality.

Lemma 3.1. Let 1 < p ≤ q < ∞ and n ∈ N. Then

inf
α∈Rn

(
∑n

i=1 |αi|q)
1/q

(
∑n

i=1 |αi|p)
1/p

= n1/q−1/p,

and the infimum is attained when |αi| = 1, i = 1, ..., n.

Definition 3.1. Let J = [c, d] ⊂ I. Then

Cv,u,0(J) := C0(J) := sup

{
‖Tf‖q,J

‖f‖p,J

: f ∈ Lp(J)\{0}, (Tf)(c) = (Tf)(d) = 0

}
and

Cv,u,+(J) := C+(J) := sup

{
‖Tf‖q,J

‖f‖p,J

: f ∈ Lp(J)\{0}, (Tf)(c) = 0

}
,

where T is defined in (1.1).
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From this definition we immediately have

Lemma 3.2. Let I1 and I2 be intervals with I1 ⊂ I2 ⊂ I. Then

C0(I1) ≤ C0(I2), C+(I1) ≤ C+(I2) and C0(I1) ≤ C+(I1).

A characterisation of C0(J) and C+(J) is given in the next lemma.

Lemma 3.3. Let J = [c, d] ⊂ I. Then

C0(J) = ‖g1‖q,J = λ−q
1 ,

where

(g1, λ1) ∈ SP0(T, p, q) on J, g1(c) = g1(d) = 0;

and

C+(J) = ‖g0‖q,J = λ−q
0 ,

where

(g0, λ0) ∈ SP0(T, p, q) on J.

Proof. Since T is a compact map from Lp(J) to Lq(J), there exist h0, h1 ∈ Lp(J)
such that
(a) C0(J) = ‖Th1‖q,J , ‖h1‖p,J = 1 and (Th1)(c) = (Th1)(d) = 0;
(b) C+(J) = ‖Th0‖q,J , ‖h0‖p,J = 1 and (Th0)(c) = 0.

Put

G(f) = ‖Tf‖q,J / ‖f‖p,J , f 6= 0.

Then G′(f) = 0 if, and only if, f ∈ SP (T, p, q) on J. From (a) and (b) it follows
that G′(h0) = G′(h1) = 0, and the result is now clear.

Next we give a monotonicity result.

Lemma 3.4. Let I1, I2 be intervals contained in I, with I1  I2 and |I2\I1| > 0.
Then
(a) C0(I1) < C0(I2)
and
(b) C+(I1) < C+(I2).

Proof. We prove (b) and consider the following cases:
(i) I1 = [c, d] ⊂ I2 = [c, b], d < b;
(ii) I1 = [c, d] ⊂ I2 = [a, d], a < c;
(iii) I1 = [c, d] ⊂ I2 = [a, b], a < c < d < b.

Clearly (b) will be established if we can handle these three cases. First suppose
that (i) holds. Since T is a compact map, there exists f1 ≥ 0 such that

C+(I1) = ‖Tf1‖q,I1
/ ‖f1‖p,I1

> 0.

Define f2 on I2 by f2(x) = f1(x) if x ∈ I1, f2(x) = 0 if x ∈ I2\I1. Then ‖f1‖p,I1
=

‖f2‖p,I2
, (Tf1)(x) = (Tf2)(x) (x ∈ I1), (Tf2)(x) > 0 (x ∈ I2\I1) and

C+(I1) = ‖Tf1‖q,I1
/ ‖f1‖p,I1

< ‖Tf2‖q,I1
/ ‖f2‖p,I1

≤ C+(I2).
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For case (ii), note that there exists f1 > 0, with supp f1 ⊂ I1, such that

C+(I1) = ‖Tf1‖q,I1
/ ‖f1‖p,I1

.

Since u is locally integrable, there exists z ∈
(
a, 1

2 (a + c)
)

such that
u(z) = limε→0+

∫z+ε

z
u(x)dx. Let δ > 0 and define

f2(x) = δχ(z,z+ε)(x) + f1(x), x ∈ I2.

Then for small δ > 0 and ε > 0, there is a positive constant C1 such that

‖f2‖p,I2
≤ C1εδ

p + ‖f1‖p,I2
.

For Tf2 we have, with S(z) ≈ δεu(z),

(Tf2)(x)


= 0, a ≤ x ≤ z,
> 0, z < x ≤ z + ε,
= S(z)v(x), z + ε < x ≤ c,
= S(z)v(x) + (Tf1)(x), c < x ≤ d.

From this it follows that for small positive δ and ε, there is a positive constant C2

such that

‖Tf2‖q,I2
=

{
(S(z))q

∫ c

z+ε

vq(x)dx +
∫d

c

|S(z)v(x) + (Tf1)(x)|q dx

}1/q

≥ C2{(δε)q + δε}+ ‖Tf1‖q,I1
.

Hence for small positive δ and ε, t

‖Tf2‖q,I2

‖f2‖p,I2

≥
C2δε + ‖Tf1‖q,I1

C1εδp + ‖f1‖p,I2

,

which implies that there exist ε1 > 0 and δ1 > 0 such that for ε = ε1 and 0 < δ < δ1,

‖Tf2‖q,I2

‖f2‖p,I2

>
‖Tf1‖q,I1

‖f1‖p,I1

.

This gives the proof of (b) in case (ii). Case (iii) follows from (i) and (ii).
The proof of (a) can be carried out by the use of the techniques used in the proofs

just given, and is left to the reader.

Lemma 3.5. Both C0([x, y]) and C+([x, y]) are continuous as functions of x
and of y.

Proof. Suppose that C0([x, y]) is not right-continuous as a function of the right-
hand endpoint. Then there exist x and y, with x < y, and t > 0, such that

C0([x, y]) < t < C0([x, y + ε]) for all small enough ε > 0. (3.1)

Given each small enough ε > 0, there is a function fε such that

C0([x, y + ε]) =
‖Tfε‖q

‖fε‖p

, supp fε ⊂ [x, y + ε], supp Tfε ⊂ [x, y + ε] and ‖fε‖p = 1.

Since T is bounded, there exists C > 0 such that ‖Tfε‖q ≤ C. As T is compact,
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there are a sequence (εk) of positive numbers converging to zero and an element g
of Lq(I), with supp g ⊂ ∩k[x, y + εk] = [x, y], such that Tfεk

→ g in Lq(I). From
(3.1) we see that

inf ‖g − Tf‖q > 0, (3.2)

where the infimum is taken over all f with supp f ⊂ [x, y] and supp (Tf) ⊂ [x, y].
However, since T has closed range, there exists h ∈ Lp(I), with ‖h‖p = 1 and supp
h ⊂ [x, y], such that Th = g. This contradiction with (3.2) establishes the right-
continuity of C0 in its dependence on the right-hand endpoint. Left continuity is
proved in much the same way, as are the remaining claims of the Lemma.

Now we introduce a function that is going to play an important rôle in our proofs.

Definition 3.2. Suppose that 0 < ε < ‖T : Lp(I) → Lq(I)‖ and let P be the
family of all partitions P = {a0, a1, ..., an} of [a, b], a = a1 < a2 < ... < an−1 <
an = b. Let

S(ε) : = {n ∈ N : for some P ∈ P , C0(ai−1, ai) ≤ ε (1 ≤ i ≤ n− 1),
C+(an−1, an) ≤ ε},

and define
B(ε) = minS(ε) if S(ε) 6= ∅, B(ε) = ∞ otherwise. (3.3)

As an obvious consequence of this definition we have

Lemma 3.6. If 0 < ε1 < ε2 < ‖T : Lp(I) → Lq(I)‖ , then B(ε1) ≥ B(ε2).

We also have

Lemma 3.7. Let 0 < ε < ‖T : Lp(I) → Lq(I)‖ and suppose that B(ε) ≥
1. Then there is a partition P = {a = a0, a1, ..., aB(ε) = b} of [a, b] such that
C0([ai−1, ai]) = ε (1 ≤ i ≤ B(ε)− 1), C+([aB(ε)−1, aB(ε)]) ≤ ε.

Proof. This follows from Lemmas 3.4 and 3.5, together with the techniques used
for the construction of N(ε) in [11].

Lemma 3.8. For all ε ∈ (0, ‖T : Lp(I) → Lq(I)‖), B(ε) < ∞.

Proof. Suppose that B(ε) = ∞ for some ε > 0. Then by Lemma 3.7, there
is a strictly increasing sequence {ai}∞i=0 with C0([ai−1, ai]) = ε for all i ∈ N. Let
B be the closed unit ball in Lp(I). Since T is compact, T (B) is a compact subset
of Lq(I). For each i ∈ N let fi be an extremal function from the definition of
C0([ai−1, ai]). Then supp fi ⊂ [ai−1, ai], supp Tfi ⊂ [ai−1, ai], ‖fi‖p = 1 and
‖Tfi‖q = C0([ai−1, ai]) = ε. This gives an infinite sequence of functions {Tfi}∞i=1

with disjoint supports and Lq norms equal to ε. Hence T (B) cannot be a compact
subset of Lq(I) and we have a contradiction.

Lemma 3.9. Let n = B(ε0) for some ε0 > 0. Then there exist ε1 and ε2,
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0 < ε2 < ε1 ≤ ε0, such that B(ε2) = n + 1 and B(ε1) = n; and there is a
partition {a = a0, a1, ..., aB(ε1) = b} of [a, b] such that C0([ai−1, ai]) = ε1 whenever
1 ≤ i ≤ n− 1 and C+([an−1, an]) = ε1.

Proof. This is based on the continuity of C0([x, y]) and C+([x, y]) as functions
of the endpoints x and y, together with the fact that B(ε) < ∞ for all ε ∈
(0, ‖T : Lp(I) → Lq(I)‖). Suppose that whenever 0 < ε ≤ ε0, either B(ε) > n+1 or
B(ε) = n. Put ε3 = inf{ε > 0 : ε ≤ ε0, B(ε) = n}. In view of the continuity prop-
erties of C0 and C+, if ε3 < ε ≤ ε0, there is a sequence a0 = a, a1, ..., an such that
C0([ai−1, ai]) = ε if 1 ≤ i ≤ n−1, and C+([an−1, an]) < ε. Then there is a sequence
{bi}n=B(ε3)

i=1 such that C0([bi−1, bi]) = ε if 1 ≤ i ≤ n − 1, and C+([bn−1, bn]) < ε.
Hence by the continuity of C+ and C0 there exists ε < ε3 with B(ε) = n + 1. The
proof is complete.

The final lemmas in this section deal with the properties of C0(I) and C+(I),
beginning with their explicit computation when the functions u and v are constant.
In these we shall use the following notation:

(Tv,uf)(x) := v(x)
∫x

a

u(t)f(t)dt,

and as before, Cv,u,0(I) and Cv,u,+(I) will stand for C0(I) and C+(I) respectively
for the operator Tv,u.

Lemma 3.10. Let u and v be constant on the interval I. Then
(i) Cv,u,0(I) = uv |I|1/p′+1/q

C1,1,0([0, 1]),
(ii) Cv,u,+(I) = uv |I|1/p′+1/q

C1,1,+([0, 1]),
(iii) Cv,u,+(I) = 2Cv,u,0(I).

Proof. For (i) we observe that

Cv,u,0(I) = sup
supp f, supp Tv,uf⊂I

‖Tv,uf‖q,I

‖f‖p,I

= sup
supp f, supp Tv,uf⊂I

∥∥v ∫·
a
uf(t)dt

∥∥
q,I

‖f‖p,I

= uv |I|1/p′+1/q sup
supp f, supp Tv,uf⊂I

∥∥∫·
a
f(t)dt

∥∥
q,I

‖f‖p,I

= uv |I|1/p′+1/q sup
supp f, supp T1,1f⊂[0,1]

∥∥∫·
0
f(t)dt

∥∥
q,[0,1]

‖f‖p,[0,1]

= uv |I|1/p′+1/q
C1,1,0([0, 1]).

In the same way we can prove (ii). Finally, (iii) follows from (i) and (ii), together
with Lemmas 2.1, 2.2 and 3.3.

From [4] and [20] (see also [15] for p = q) we have

Lemma 3.11. Let f(t) = c(Sf)′(t), where (Sf)(t) = csinpq(πpqt) and c is an
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arbitrary non-zero constant. Then

C1,1,0([0, 1]) =
‖Sf‖q,[0,1]

‖f‖p,[0,1]

=
(p′)1/qq1/p′(p′ + q)1/p−1/q

2πpq
.

Now we establish the continuous dependence of Cv,u,0(I) and Cv,u,+(I) on u and
v.

Lemma 3.12. Let u1, u2 and v be positive weights on I with u1, u2 ∈ Lp′(I)
and v ∈ Lq(I). Then
(i) |Cv,u1,0(I)− Cv,u2,0(I)| ≤ 2 ‖v‖q ‖u1 − u2‖p′

and
(ii) |Cv,u1,+(I)− Cv,u2,+(I)| ≤ ‖v‖q ‖u1 − u2‖p′ .

Proof. For i = 0, 1 we set

Ui =

{
f :

∫ b

a

ui(t)f(t)dt = 0, ‖f‖p = 1

}
,

Vi =

{
f :

∣∣∣∣∣
∫ b

a

ui(t)f(t)dt

∣∣∣∣∣ ≤ ‖u2 − u1‖p′ , ‖f‖p = 1

}
.

Since ∣∣∣∣∣
∫ b

a

u1(t)f(t)dt

∣∣∣∣∣ ≤ ‖u2 − u1‖p′ ‖f‖p +

∣∣∣∣∣
∫ b

a

u2(t)f(t)dt

∣∣∣∣∣ ,
we have U1 ⊂ V2. Correspondingly, U2 ⊂ V1. Either Cv,u1,0(I) ≤ Cv,u2,0(I) or
Cv,u1,0(I) ≥ Cv,u2,0(I). Suppose that the first case holds. Then

Cv,u2,0(I) = sup
f∈U2

∥∥∥∥v(·)
∫ ·
a

f(u2 − u1 + u1)dt

∥∥∥∥
q

≤ sup
f∈U2

{
‖v‖q ‖u2 − u1‖p′ ‖f‖p +

∥∥∥∥v(·)
∫ ·
a

fu1dt

∥∥∥∥
q

}

≤ ‖v‖q ‖u2 − u1‖p′ + sup
f∈U1∪(V1\U1)

∥∥∥∥v(·)
∫ ·
a

fu1dt

∥∥∥∥
q

≤ 2 ‖v‖q ‖u2 − u1‖p′ + sup
f∈U1

∥∥∥∥v(·)
∫ ·
a

fu1dt

∥∥∥∥
q

.

Hence

Cv,u2,0(I) ≤ 2 ‖v‖q ‖u2 − u1‖p′ + Cv,u1,0(I).

The other case is handled similarly, and the proof of (i) is complete.
For (ii) the argument is simpler. In what follows all the suprema are taken over
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all functions f such that supp f ⊂ I and ‖f‖p ≤ 1. Then

Cv,u1,+(I) = sup
∥∥∥∥v(·)

∫ ·
a

f(t)u1(t)dt

∥∥∥∥
q

≤ sup

{∥∥∥∥v(·)
∫ ·
a

f(t) |u1(t)− u2(t)| dt

∥∥∥∥
q

+
∥∥∥∥v(·)

∫ ·
a

f(t)u2(t)dt

∥∥∥∥
q

}

≤ ‖v‖q ‖f‖p ‖u1 − u2‖p′ + sup
∥∥∥∥v(·)

∫ ·
a

f(t)u2(t)dt

∥∥∥∥
q

≤ ‖v‖q ‖u1 − u2‖p′ + Cv,u2,+(I).

The proof is complete.

Lemma 3.13. Let u, v1 and v2 be weights on I with u ∈ Lp′(I) and v1, v2 ∈
Lq(I). Then
(i) |Cv2,u,0(I)− Cv1,u,0(I)| ≤ ‖v1 − v2‖q ‖u‖p′

and
(ii) |Cv2,u,+(I)− Cv1,u,+(I)| ≤ ‖v1 − v2‖q ‖u‖p′ .

Proof. The suprema in what follows are taken over all functions f such that
supp f, supp Tv1,uf ⊂ I and ‖f‖p ≤ 1. Note that supp Tv1,uf = supp Tv2,uf. Then

Cv1,u,0(I) = sup
∥∥∥∥v1(·)

∫ ·
a

f(t)u(t)dt

∥∥∥∥
q

≤ sup

{∥∥∥∥(v1 − v2)
∫ ·
a

f(t)u(t)dt

∥∥∥∥
q

+
∥∥∥∥v2

∫ ·
a

f(t)u(t)dt

∥∥∥∥
q

}

≤ sup

{
‖v1 − v2‖q ‖f‖p ‖u‖p′ +

∥∥∥∥v2

∫ ·
a

f(t)u(t)dt

∥∥∥∥
q

}

≤ ‖v1 − v2‖q ‖u‖p′ + sup
∥∥∥∥v2

∫ ·
a

f(t)u(t)dt

∥∥∥∥
q

≤ ‖v1 − v2‖q ‖u‖p′ + Cv2,u,0(I).

The rest is now clear.
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4. The main theorem

First we clarify the relation between B(ε) and ε. As in the previous section we
suppose that u ∈ Lp′(I) and v ∈ Lq(I).

Lemma 4.1. Let r = 1/q + 1/p′. Then

lim
ε→0+

εB(ε)1/r = C1,1,0([0, 1])
(∫

I

(uv)rdt

)1/r

.

Proof. Let β > 0. There are step functions uβ , vβ , with the same steps, such
that ‖uβ − u‖p′,I ≤ β, ‖vβ − v‖q,I ≤ β and∣∣∣∣∫

I

(uv)rdt−
∫
I

(uβvβ)rdt

∣∣∣∣ ≤ β.

Let N(β) be the number of steps in the functions uβ , vβ and let ε > 0 be so chosen
that B(ε) � N(β). Let {Ji}N(β)

i=1 be the set of all intervals on which uβ and vβ are
constant, let {ai}N(β)

i=1 be the sequence from Lemma 3.7 and put Ii = [ai−1, ai] for
i = 1, ..., B(ε). Plainly

I = ∪N(β)
i=1 Ji = ∪B(ε)

i=1 Ii.

Now define sets B,B1 and B2 by

B = {1, ..., B(ε)} = B1 ∪B2,

where

B1 := {i ∈ B : Ii ⊂ Jj for some j, 1 ≤ j ≤ N(β)}, B2 = B\B1.

Put

IB1 = ∪i∈B1Ii, IB2 = ∪i∈B2 .

Then for Ii (i ∈ B1\{B(ε)}) we have, using Lemmas 3.10, 3.12 and 3.13,∣∣∣Cv,u,0(Ii)− uβvβ |Ii|1/p′+1/q
C1,1,0([0, 1])

∣∣∣ ≤ 2 ‖uβ − u‖p′,Ii
‖v‖q,Ii

+ ‖u‖p′,Ii
‖vβ − v‖q,Ii

.

Thus for i ∈ B1, i 6= B(ε), we have

εr = Cv,u,0(Ii)r

≥
{

C1,1,0([0, 1])uβvβ |Ii|1/p′+1/q − 2 ‖uβ − u‖p′,Ii
‖v‖q,Ii

− ‖u‖p′,Ii
‖vβ − v‖q,Ii

}r
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and hence, with the understanding that the summations are over all i ∈ B1\{B(ε)},

{(#B1 − 1)εr}1/r =

 ∑
i∈B1\{B(ε)}

Cv,u,0(Ii)r

1/r

≥
{∑(

uβvβ |Ii|1/p′+1/q
)r}1/r

C1,1,0([0, 1])

− 2
{∑

‖uβ − u‖r
p′,Ii

‖v‖r
q,Ii

}1/r

−
{∑

‖u‖r
p′,Ii

‖vβ − v‖r
q,Ii

}1/r

≥ C0([0, 1])

(∫
IB1\{B(ε)}

(uβvβ)r

)1/r

− 2 ‖uβ − u‖p′,I ‖v‖q,I

− ‖u‖p′,I ‖vβ − v‖q,I

≥ C1,1,0([0, 1])

(∫
IB1\{B(ε)}

(uβvβ)r

)1/r

− 3β.

Now we look at the upper bound for εr#B1. We have, as in the previous case,

{(#B1 − 1)εr}1/r =
(∑

i∈B1\{B(ε)}
Cv,u,0(Ii)r

)1/r

≤ C1,1,0([0, 1])

(∫
IB1\{B(ε)}

(uβvβ)r

)1/r

+ 2β.

Thus ∣∣∣∣∣∣(#B1 − 1)1/rε− C1,1,0([0, 1])

(∫
IB1\{B(ε)}

(uβvβ)r

)1/r
∣∣∣∣∣∣ ≤ 3β.

When ε ↓ 0, IB1\{B(ε) ↑ I and #B1/#B ↑ 1. Hence

lim
ε→0+

∣∣∣∣∣ε(#B)1/r − C1,1,0([0, 1])
(∫

I

(uβvβ)r

)1/r
∣∣∣∣∣ ≤ 3β

and the result follows.

Next we obtain information about the Bernstein widths for Tv,u.

Lemma 4.2. Let ε > 0 be such that B(ε) > 2. Then

ε(B(ε)− 1)1/q−1/p ≤ bB(ε)−2.
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Proof. Since T is compact, B(ε) < ∞. By Lemma 3.7, there are a sequence
{ai}B(ε)

i=1 and intervals Ii = [ai−1, ai] such that Cv,u,0(Ii) = ε for i = 1, ..., B(ε)− 1
and Cv,u,0(IB(ε)) ≤ ε. For each i with 1 ≤ i ≤ B(ε)−1, denote by fi a function such
that supp fi, supp Tfi ⊂ Ii, ‖fi‖p,I = 1 and Cv,u,0(Ii) = ‖Tfi‖q,I / ‖fi‖p,I = ε.
Put

XB(ε) = span {fi : i = 1, ..., B(ε)− 1};

this is a (B(ε)− 1)−dimensional subspace of Lp(I). From (2.9) we see that

bB(ε)−2 ≥ inf
α∈RB(ε)−1

∥∥∥T (
∑B(ε)−1

i=1 αifi)
∥∥∥

q∥∥∥∑B(ε)−1
i=1 αifi

∥∥∥
p

.

Now use Lemma 3.1.

Lemma 4.3. Let ε > 0 be such that B(ε) > 2. Then

bB(ε) ≤ (B(ε)− 2)1/q−1/pε.

Proof. Suppose that there exists ε > 0 such that B(ε) > 2 and

(B(ε)− 2)1/q−1/pε < bB(ε).

Set B(ε) = n. Then there exists an (n + 1)−dimensional subspace Xn+1 = span
{f1, ..., fn+1} of Lp(I) such that T (Xn+1) is an (n + 1)−dimensional subspace of
Lq(I) and

bn ≥ inf
α∈Rn+1

∥∥∥T (
∑n+1

i=1 αifi)
∥∥∥

q∥∥∥∑n+1
i=1 αifi

∥∥∥
p

> (B(ε)− 2)1/q−1/pε.

Let

Sn :=

{
α ∈ Rn+1 :

∥∥∥∥∑n+1

i=1
αifi

∥∥∥∥
p

= 1

}
and put

u0(·, α) =
∑n+1

i=1
αifi(·)

for every α ∈ Sn. For each u0(·, α) we construct an iterative process and a sequence
{gj(·, α)}j∈N as follows:

gj(·, α) = Tuj(·, α), uj+1(·, α) =
(
λq

j(α)T ∗((gj(·, α))(q))
)

(p′)
,

where the λj(α) are chosen so that ‖uj+1(·, α)‖p = 1.
Following arguments similar to those used in the proof of Theorem 2.1 we see

that as j increases, ‖gj(·, α)‖q is monotone non-decreasing and gj(·, α) converges
to a spectral function of (2.2) and (2.3). Moreover, if we let

g(·, α) := lim
j→∞

gj(·, α) and λ−1/q(α) := lim
j→∞

‖gj(·, α)‖q ,

then (g(·, α), λ(α)) ∈ S(T, p, q) for every α ∈ Sn. For each l ∈ N let

En
l := {α ∈ Sn : Z (gl(·, α)) ≤ n− 1} .
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From the definition of T we see that gj(·, α) depends continuously on α, and so, by
the definition of Sn, it follows that En

l is an open subset of Sn for each l ∈ N. Then
Fn

l := Sn\En
l is a closed subset of Sn and Fn

l ⊃ Fn
l+1.

Take ε > 0 so that B(ε) = n + 1 and with Lemma 3.9 in mind, let ε1 be optimal
in the sense that B(ε1) = n + 1 and ε1 := inf{ε > 0 : B(ε) = n}. Let {ai}n+1

i=1 be a
sequence, forming a partition of I, such that

C0([ai−1, ai]) = ε1 (i = 1, ..., n), C+([an, an+1]) = ε1,

and put

Fl(α) := (gl(a1, α), ..., gl(an, α)) ;

Fl is a continuous, odd mapping from Sn to Rn, and by Borsuk’s theorem, there ex-
ists αl ∈ Sn such that Fl(αl) = 0, that is, αl ∈ Fn

l . There is a subsequence {αlk}
∞
k=1

of {αl}∞l=1 with limit α̃ = limk→∞ αlk . Then (g(·, α̃), λ(α̃)) ∈ Sn(T, p, q), and from
the construction of gj(·, α̃) we have (see the proof of Theorem 2.1, Definition 3.1
and Lemma 3.3)

min
α∈Rn+1

∥∥∥T (
∑n+1

i=1 αifi)
∥∥∥

q∥∥∥∑n+1
i=1 αifi

∥∥∥
p

≤ ‖gj(·, α̃)‖q ≤ ‖g(·, α̃)‖q = λ−1/q(α̃).

Also

C0(Ii) =
‖g(·, α̃)‖q,Ii

‖f(·, α̃)‖p,Ii

= ε1, Ii = [ai−1, ai], i = 1, ..., n,

and

C+(In+1) =
‖g(·, α̃)‖q,In+1

‖f(·, α̃)‖p,In+1

= ε1, In+1 = [an, b].

Now let Gn+1 := span {f̃1, ..., f̃n+1}, where f̃i(·) := fi(·, α̃). Then

inf
α∈Rn+1

∥∥∥T (
∑n+1

i=1 αif̃i)
∥∥∥

q∥∥∥∑n+1
i=1 αif̃i

∥∥∥
p

= ‖g(·, α̃)‖q = λ−1/q.

It can be seen that the infimum is attained when
∥∥∥αif̃i

∥∥∥
p,Ii

=
∥∥∥αj f̃j

∥∥∥
p,Ij

. Then it

follows that

‖g(·, α̃)‖q = ε1B(ε1)1/p−1/q,

and the proof is complete.

Theorem 4.1. Suppose that u ∈ Lp′(I) and v ∈ Lq(I). Then the Bernstein
numbers of the compact map T : Lp(I) → Lq(I) (1 ≤ p ≤ q ≤ ∞) satisfy

lim
n→∞

nbn = C1,1,0([0, 1])
(∫

I

(uv)r

)1/r

,

where r = 1/q + 1/p′.

Proof. From the combination of Lemma 4.2, Lemma 4.1 and the strict mono-
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tonicity of B(ε) given by Lemma 3.9 we have

lim
ε→0

ε[B(ε)]1/q+1/p′ = lim
ε→0

ε[B(ε)]1/q−1/pB(ε) = lim
ε→0

bB(ε)B(ε) = lim
n→∞

bn.

Together with Lemma 4.1 this completes the proof.
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