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Abstract

Let I = [a, b] ⊂ R, let 1 < q ≤ p <∞, let u and v be positive functions
with u ∈ Lp′(I), v ∈ Lq(I) and let T : Lp(I) → Lq(I) be the Hardy-type
operator given by

(Tf)(x) = v(x)

Z x

a

f(t)u(t)dt, x ∈ I.

Given any n ∈ N, let sn stand for either the n-th approximation number
of T or the n-th Kolmogorov width of T . We show that

lim
n→∞

nsn = cpq

„Z
I

(uv)1/rdt

«r

, r = 1/p′ + 1/q,

where cpq is an explicit constant depending only on p and q.

1 Introduction

Let u and v be real-valued measurable functions on an interval I := [a, b] ⊂ R.
In [5], [10], [11], [6] and [12] the Hardy-type operator T given by

(Tf)(x) := v(x)
∫ x

a

f(t)u(t)dt, x ∈ I, (1.1)

was considered as a map from Lp(I) to itself, when 1 ≤ p ≤ ∞.
The main purpose of this paper is to study the properties of the Kolmogorov

widths dn(T ) and the approximation numbers an(T ) of T as a map from Lp(I)
to Lq(I) when 1 < q ≤ p < ∞. These numbers are defined by (with standard
notation)

dn(T ) = dn = inf
Xn

sup
0<‖f‖p,I≤1

inf
g∈Xn

‖Tf − g‖q,I / ‖f‖p,I (n ∈ N),
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where the infimum is taken over all n-dimensional subspaces Xn of Lq(I), and

an(T ) = an = inf
Pn

sup
0<‖f‖p,I≤1

‖Tf − Pnf‖q,I / ‖f‖p,I (n ∈ N),

where the infimum is taken over all continuous linear operators Pn from Lp(I)
into Lq(I) of rank at most n− 1. Note that the n-th approximation number is
identical to the (n− 1)-th linear width of T , see Pinkus [19].

From [5]-[12] we know that under appropriate conditions on u and v the
approximation numbers an(T ) of T , viewed as a map from Lp(I) to Lp(I),
satisfy

lim
n→∞

nan(T ) = λ−1/p
p

∫
I

|u(t)v(t)| dt,

where λp is the first eigenvalue of a p−Laplacian eigenvalue problem on I. A
connected account of such results concerning an(T ) is given in [4].

For many years the Kolmogorov widths and approximation numbers of var-
ious maps have undergone intense scrutiny: for embedding of Sobolev spaces
we refer to [21], [19], [9] and [13]; and for the Hardy-type operator T , see [4],
[17] and (in the special case when u=v=1) [14]. When p 6= q, the previously
existing results for the approximation numbers of T : Lp(I) → Lq(I) are of the
form (see [15] and [17])

c1 ≤ lim inf
n→∞

nλan(T ) ≤ lim sup
n→∞

nλan(T ) ≤ c2,

for some λ > 0; c1, c2 are positive constants independent of n but depending on
p, q, u and v. The existence of limn→∞ nλan(T ) is not established in this earlier
work. Here we show that this limit does exist, when 1 < q ≤ p < ∞: our main
result is that if u and v are positive functions with u ∈ Lp′(I) and v ∈ Lq(I),
then

lim
n→∞

nsn = cpq

(∫
I

(uv)rdt

)1/r

, r = 1/p′ + 1/q,

where cpq is an explicit constant and sn stands for either an or dn. This leaves
open the situation in which p < q. For this case, however, we obtained in [8] by
rather similar techniques a corresponding formula for the asymptotic behaviour
of the Bernstein widths of T .

Throughout the paper we suppose that 1 < q ≤ p < ∞ and that u and v
are positive functions on I = [a, b] ⊂ R with u ∈ Lp′(I) and v ∈ Lq(I). Then
we have that T is a compact map from Lp(I) to Lq(I). The standard norm on
Lp(I) will be denoted by ‖·‖p,I or by ‖·‖p if no ambiguity is possible. By χs

will be meant the characteristic function of a set S ⊂ R; |S| will denote the
Lebesgue measure of S. We write A � B (or A � B) if A ≤ cB (or cA ≥ B)
for some positive constant c independent of appropriate quantities involved in
the expressions A and B. By A ≈ B we shall mean that A � B and B � A.
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2 Preliminaries and technical results

We start with the definition of special generalisations of the trigonometric func-
tions, the sinpq and cospq functions (see [2]). (Note that these functions have
their origin in [16] and [20])

Definition 2.1 For σ ∈ [0, q/2] we set

arc sinpq(σ) =
q

2

∫ 2σ/q

0

ds

(1− sq)1/p
.

We put
πpq = 2arc sinpq(q/2) = B(1/q, 1/p′),

where 1/p′ = 1 − 1/p and B denotes the Beta function. By sinpq we mean the
inverse of arc sinpq and the extension of this inverse as a 2πpq−periodic function
on R.

More precisely, since arc sinpq : [0, q/2] → [0, πpq/2] is increasing, sinpq is
well-defined on [0, πpq/2]. We extend it to [πpq/2, πpq] by defining sinpq x =
sinpq(πpq − x) for x ∈ [πpq/2, πpq], to [−πpq, πpq] by oddness, and finally to all
of R by 2πpq−periodicity. Now define cospq by

cospq(x) =
d

dx
sinpq x;

this is an even, 2πpq−periodic function that is odd about πpq/2.
Let B := {f ∈ Lp(I) : ‖f‖p ≤ 1} and consider the isoperimetric problem of

determining
sup

g∈T (B)

‖g‖q . (2.1)

This problem is related to the following non-linear integral problem:

g(x) = (Tf)(x) (2.2)

and
(f(x))(p) = λ(T ∗((g)q))(x), (2.3)

where (g)q is the function with value (g(x))q at x and T ∗ is the map defined
by (T ∗f)(x) = u(x)

∫ b

x
v(y)f(y)dy. Note that when u and v are both identically

equal to 1 on I, (2.2) and (2.3) can be transformed into the p, q−Laplacian
differential equation

−
(
(w′)(p)

)′
= λ(w)(q), (2.4)

with the boundary condition
w(a) = 0. (2.5)

A pair (g, λ) for which a function f with ‖f‖p = 1, satisfying (2.2) and (2.3),
can be found, will be called a spectral pair. The set of all spectral pairs will
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be denoted by SP (T, p, q). The number λ occurring in a spectral pair will be
called a spectral number, and the set of all such numbers denoted by sp(T, p, q);
the function g corresponding to λ is called a spectral function. Let g, f and λ
satisfy (2.2) and (2.3); then∫

|g(x)|qdx =
∫

g(g)qdx =
∫

Tf(x)(g)qdx

=
∫

f(x)T ∗(g)qdx =
∫

f(x)(f)pλ
−1

= λ−1

∫
|f(x)|pdx.

From this it follows that λ−1 = ‖g‖q
q

‖f‖p
p

and then for (g1, λ) ∈ SP (T, p, q) we have

λ−1/q = ‖g1‖q.
Given any continuous function f on I we denote by Z(f) the number of

distinct zeros of f on
o

I, and by P (f) the number of sign changes on this interval.
The set of all spectral pairs (g, λ) with Z(g) = n (n ∈ N0) will be denoted by
SPn(T, p, q), and spn(T, p, q) will represent the set of all corresponding numbers
λ.

We denote by SP a
n (p, q) the set of all pairs (w, λ) (again called spectral

pairs, w being an eigenfunction with associated eigenvalue λ) corresponding to
solutions of (2.4) and (2.5) for which Z(u) = n. Similarly, SP a,b

n (p, q) will stand
for the set of all spectral pairs (w, λ) corresponding to solutions of (2.4) that
satisfy the Dirichlet boundary conditions

w(a) = w(b) = 0 (2.6)

and have Z(u) = n. It is known from [1], [2] or [19] that for all n ∈ N, SP a,b
n (p, q)

consists of exactly one spectral pair (up to normalisation). Moreover, from [20]
or [2] we have

Lemma 2.2 For any α ∈ R\{0}, the set of eigenvalues of problem (2.4) under
the Dirichlet boundary conditions (2.6) on I = [a, b] is given by

λn(α) :=
(

2nπpq

b− a

)q

· |α|
p−q

p′qq−1
(n ∈ N),

with corresponding eigenfunctions

wn,α(t) :=
α(b− a)

nπpq
sinpq

(
nπpq

b− a
t

)
(t ∈ I).

It is easy to modify Lemma 2.2 so as to apply to the eigenvalue problem
(2.4) with initial conditions at the left-hand endpoint a of I.

Lemma 2.3 For any α ∈ R\{0}, the set of eigenvalues of problem (2.4) under
the conditions

w(a) = 0, w′(a) = α (2.7)
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on I = [a, b] is given by

λ̃n(α) :=
(

2(n− 1/2)πpq

b− a

)q

· |α|
p−q

p′qq−1
(n ∈ N),

with corresponding eigenfunctions

w̃n,α(t) :=
α(b− a)

(n− 1/2)πpq
sinpq

(
(n− 1/2)πpq

b− a
t

)
(t ∈ I).

Next we recall that a basic property of the Kolmogorov widths and the
approximation numbers is that for all n ∈ N, an ≤ dn+1. For this and more
information about Kolmogorov widths, see [18]. Now let W 1

p (I) be the Sobolev
space of all functions in Lp(I) with first-order distributional derivatives also in
Lp(I). It is a familiar fact that the elements of W 1

p (I) are absolutely continuous
on I (more precisely, there is a representative in each equivalence class that is
absolutely continuous), and so it makes sense to speak of the values of elements
of this space at the endpoints of I. Let

W 1
p,a(I) = {f ∈ W 1

p (I) : f(a) = 0}, BW 1
p,a(I) = {f ∈ W 1

p,a(I) : ‖f ′‖p,I ≤ 1}

and denote the embedding from W 1
p,a(I) into Lq(I) by Ea. We shall need the

following result from [1].

Theorem 2.4 Let 1 ≤ q ≤ p ≤ ∞. Then for each n ∈ N,

dn (Ea) := inf
Xn

sup
f∈BW 1

p,a

inf
g∈Xn

‖Eaf − g‖q,I = λ̃−1/q
n (α),

where the outer infimum is taken over all n-dimensional subspaces Xn of Lq(I),
λ̃n(α) is the nth eigenvalue of problem (2.4) under condition (2.7), and α is so
chosen that for the corresponding eigenfunction ũn,α we have

∥∥ũ′n,α

∥∥
p

= 1.

It is clear that BW 1
p,a(I) = {Tf ; ‖f‖p,I ≤ 1}, where T is the special case of

(1.1) with u = v = 1, so that (Tf)(x) =
∫ x

a
f(t)dt. Together with Lemma 2.3

this enables us to make the following observation.

Remark 2.5 Let 1 ≤ q ≤ p ≤ ∞ and suppose that T is given by (Tf)(x) =∫ x

a
f(t)dt. Then

dn(Ea) =
b− a

2(n− 1/2)πpq

(
p′qq−1

|α|p−q

)1/q

,

where α is chosen so that∥∥∥∥∥ α(b− a)
(n− 1/2)πpq

(
sinpq

(
(n− 1/2)πpq

b− a
·
))′∥∥∥∥∥

p

= 1.
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3 Technical Lemmas

Here we introduce various techniques that will be used to establish the main
theorem. Although there are similarities between these and the procedures
used in [8], we give details here for the convenience of the reader. We suppose
throughout this section that u ∈ Lp′(I) and v ∈ Lq(I) : these assumptions are
sufficient to ensure the compactness of T. We begin with an elementary lemma
that is a simple consequence of Hölder’s inequality.

Lemma 3.1 Let 1 < q ≤ p < ∞ and n ∈ N. Then

sup
α∈Rn

(
∑n

i=1 |αi|q)
1/q

(
∑n

i=1 |αi|p)
1/p

= n1/q−1/p,

and the supremum is attained when |αi| = 1, i = 1, ..., n; and

inf
α∈Rn

(
∑n

i=1 |αi|q)
1/q

(
∑n

i=1 |αi|p)
1/p

= 1,

where the infimum is attained when |αi| = 1 for only one i and αj = 0 for each
j 6= i.

Definition 3.2 Let J = [c, d] ⊂ I and x ∈ I. Then

Tx,Jf(.) := v(.)χJ(.)
∫ .

x

f(t)u(t)χJ(t)dt,

Av,u(J) := A(J) = inf
x∈J

‖Tx,J |Lp(J) → Lq(J)‖,

Cv,u,+(J) := C+(J) := sup

{
‖Tc,Jf‖q,J

‖f‖p,J

: f ∈ Lp(J)\{0}

}
.

Cv,u,0(J) := C0(J) := sup

{
‖Tf‖q,J

‖f‖p,J

: f ∈ Lp(J)\{0}, (Tf)(c) = (Tf)(d) = 0

}
.

From this definition we have (see section 2.4.2 in [4] or [11] for details of
similar arguments)

Lemma 3.3 Let I1 and I2 be intervals with I1 ⊂ I2 ⊂ I. Then

A(I1) ≤ A(I2), C+(I1) ≤ C+(I2).

and
C0(I1) ≤ C0(I2), C0(I1) ≤ C+(I1).

The quantities A(J), C0(J) and C+(J) are characterised in the next lemma.

6



Lemma 3.4 Let J = [c, d] ⊂ I. Then

A(J) = ‖Te,J |Lp(J) → Lq(J)‖ (3.1)

for some e ∈
o

J and

A(J) =
‖g1‖q,J

‖f1‖p,J

= λ
−1/q
1 ,

where
(g1, λ1) ∈ SP (T, p, q) on J and g1(e) = 0;

and

C+(J) =
‖g0‖q,J

‖f0‖p,J

= λ
−1/q
0 ,

where
(g0, λ0) ∈ SP (T, p, q) on J, and g0(c) = 0;

also
C0(J) = ‖g1‖q,J = λ−q

1 ,

where
(g1, λ1) ∈ SP (T, p, q) on J, g1(c) = g1(d) = 0.

Proof. Since T is a compact map from Lp(J) to Lq(J), there exist h0, h1, h2 ∈
Lp(J) and x ∈ J such that
(a) A(J) = ‖Tx,Jh1‖q,J , ‖h1‖p,J = 1;
(b) C+(J) = ‖Tc,Jh0‖q,J , ‖h0‖p,J = 1;
(c) C0(J) = ‖Th0‖q,J , ‖h0‖p,J = 1.

Put
G(f) = ‖Tf‖q,J / ‖f‖p,J , f 6= 0.

Then G′(f) = 0 if, and only if, Tf ∈ SP (T, p, q) on J. From (b) it follows that
G′(h0) = 0. By a simple modification of this argument, with the help of (a), the
statement concerning A follows. The rest is proved in a similar manner.

Next we give a monotonicity result.

Lemma 3.5 Let I1, I2 be intervals contained in I, with I1 ⊂ I2 and |I2\I1| > 0.
Then
(a) C+(I1) < C+(I2),
(b) C0(I1) < C0(I2),
(c) A(I1) < A(I2).

Proof. First we prove (a) and consider the following cases:
(i) I1 = [c, d] ⊂ I2 = [c, b], d < b;
(ii) I1 = [c, d] ⊂ I2 = [a, d], a < c;
(iii) I1 = [c, d] ⊂ I2 = [a, b], a < c < d < b.
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Clearly (a) will be established if we can handle these three cases. First
suppose that (i) holds. Since T is a compact map, there exists f1 ≥ 0 such that

C+(I1) = ‖Tf1‖q,I1
/ ‖f1‖p,I1

> 0.

Define f2 on I2 by f2(x) = f1(x) if x ∈ I1, f2(x) = 0 if x ∈ I2\I1. Then
‖f1‖p,I1

= ‖f2‖p,I2
, (Tf1)(x) = (Tf2)(x) (x ∈ I1), (Tf2)(x) > 0 (x ∈ I2\I1)

and
C+(I1) = ‖Tf1‖q,I1

/ ‖f1‖p,I1
< ‖Tf2‖q,I1

/ ‖f2‖p,I1
≤ C+(I2).

For case (ii), note that there exists f1 > 0, with supp f1 ⊂ I1, such that

C+(I1) = ‖Tf1‖q,I1
/ ‖f1‖p,I1

.

Since u is locally integrable, there exists z ∈
(
a, 1

2 (a + c)
)

such that
u(z) = limε→0+

∫ z+ε

z
u(x)dx. Let δ > 0 and define

f2(x) = δχ(z,z+ε)(x) + f1(x), x ∈ I2.

Then for small δ > 0 and ε > 0, there is a positive constant C1 such that

‖f2‖p,I2
≤ C1ε

1/pδ + ‖f1‖p,I2
.

For Tf2 we have, with S(z) ≈ δεu(z),

(Tf2)(x)


= 0, a ≤ x ≤ z,
> 0, z < x ≤ z + ε,
= S(z)v(x), z + ε < x ≤ c,
= S(z)v(x) + (Tf1)(x), c < x ≤ d.

From this it follows that for small positive δ and ε, there is a positive constant
C2 such that

‖Tf2‖q,I2
≥

{
(S(z))q

∫ c

z+ε

vq(x)dx +
∫ d

c

|S(z)v(x) + (Tf1)(x)|q dx

}1/q

≥ C2{(δε)q + δε}+ ‖Tf1‖q,I1
.

Hence for small positive δ and ε,

‖Tf2‖q,I2

‖f2‖p,I2

≥
C2δε + ‖Tf1‖q,I1

C1ε1/pδ + ‖f1‖p,I2

,

which implies that there exist ε1 > 0 and δ1 > 0 such that for ε = ε1 and
0 < δ < δ1,

‖Tf2‖q,I2

‖f2‖p,I2

>
‖Tf1‖q,I1

‖f1‖p,I1

.

This gives the proof of (a) in case (ii). Case (iii) follows from (i) and (ii).
The proof of (b) and (c) can be accomplished by modification of this argu-

ment with use of (3.1).
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Lemma 3.6 The functions C+([x, y]), C0([x, y]) and A([x, y]) are continuous
in their dependence on x and y.

Proof. Suppose that C+([x, y]) is not right-continuous as a function of the
right-hand endpoint. Then there exist x and y, with x < y, and t > 0, such
that

C+([x, y]) < t < C+([x, y + ε]) for all small enough ε > 0. (3.2)

Given each small enough ε > 0, there is a function fε such that

C+([x, y+ε]) =
‖Txfε‖q

‖fε‖p

, supp fε ⊂ [x, y+ε], supp Txfε ⊂ [x, y+ε] and ‖fε‖p = 1.

Since Tx is bounded, there exists C > 0 such that ‖Txfε‖q ≤ C. As Tx is
compact, there is a sequence (εk) of positive numbers converging to zero and an
element g of Lq(I), with supp g ⊂ ∩k[x, y + εk] = [x, y], such that Txfεk

→ g in
Lq(I). From (3.2) we see that

inf ‖g − Txf‖q,[x,y] > 0, (3.3)

where the infimum is taken over all f with supp f ⊂ [x, y]. However, since Tx

has closed range, there exists h ∈ Lp(I), with ‖h‖p = 1 and supp h ⊂ [x, y],
such that Th = g. This contradiction with (3.3) establishes the right-continuity
of C+ in its dependence on the right-hand endpoint. Left continuity is proved
in much the same way. Continuity of A and C0 can be proved by modification
of the previous arguments (for more details see the proof of Lemma 2.2 in [12].

After this preparation we introduce a function that will be of crucial impor-
tance in our proofs.

Definition 3.7 Suppose that 0 < ε < ‖T : Lp(I) → Lq(I)‖ and let P be the
family of all partitions P = {a1, ..., an} of [a, b], a = a1 < a2 < ... < an−1 <
an = b. Let

S(ε) : = {n ∈ N : for some P = {a1, ..., an} ∈ P, C+([a1, a2]) ≤ ε,
A([a2, a3]) ≤ ε, ... , A([an−1, an]) ≤ ε}

and define

B(ε) = minS(ε) if S(ε) 6= ∅, B(ε) = ∞ otherwise. (3.4)

Monotonicity of B is clear:

Lemma 3.8 If 0 < ε1 < ε2 < ‖T : Lp(I) → Lq(I)‖ , then B(ε1) ≥ B(ε2).

We also have

Lemma 3.9 Let 0 < ε < ‖T : Lp(I) → Lq(I)‖ and suppose that B(ε) ≥ 1.
Put B(ε) = n. Then there is a partition P = {a = a1, a2, ..., aB(ε) = b} of
[a, b] such that C+([a1, a2]) = ε, A([a2, a3]) = ε , ..., A([an−2, an−1]) = ε,
A([an−1, an]) ≤ ε.
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Proof. This follows from Lemmas 3.5 and 3.6, together with the techniques
used for the construction of N(ε) in [11].

Lemma 3.10 Let T be a compact map from Lp(I) into Lq(I). Then for all
ε ∈ (0, ‖T : Lp(I) → Lq(I)‖), B(ε) < ∞.

Proof. This follows from the definition of compactness of T and a simple
modification of the proof of Remark 2.4 of [12]. See also Lemma 3.8 of [8].

Lemma 3.11 Let n = B(ε0) for some ε0 > 0. Then there exist ε1 and ε2,
0 < ε2 < ε1 ≤ ε0, such that B(ε2) = n + 1 and B(ε1) = n; and there is a
partition {a = a1, a2, ..., aB(ε1) = b} of [a, b] such that the conclusion of Lemma
3.9 is satisfied with A([an−1, an]) = ε1.

Proof. We use the continuity of C+([x, y]) and A([x, y]) as functions of the end-
points x and y, together with the fact that B(ε) < ∞ for all ε ∈ (0, ‖T : Lp(I) → Lq(I)‖).
Suppose that whenever 0 < ε ≤ ε0, either B(ε) > n + 1 or B(ε) = n. Put
ε3 = inf{ε > 0 : ε ≤ ε0, B(ε) = n}. In view of the continuity properties of
A and C+, if ε3 < ε ≤ ε0, there is a sequence a1 = a, a2, ..., an such that the
conclusion of Lemma 3.9 is satisfied for the sequence with C+([a1, a2]) = ε,
A([ai−1, ai]) = ε if 1 ≤ i ≤ n − 1, and A([an−1, an]) ≤ ε. Then there is a se-
quence {bi}n=B(ε3)

i=1 such that C+([a1, a2]) = ε, A([bi−1, bi]) = ε if 1 ≤ i ≤ n− 1,
and A([bn−1, bn]) = ε. Hence by the continuity of C+ and A there exists ε < ε3

with B(ε) = n + 1. The proof is complete.
The final lemmas in this section deal with additional properties of A(I) and

C+(I). In these we shall use the following notation:

(Tv,uf)(x) := v(x)
∫ x

a

u(t)f(t)dt,

and as before, Av,u(I), Cv,u,0(I) and Cv,u,+(I) will stand for A(I), C0(I) and
C+(I) respectively for the operator Tv,u. Of crucial importance is the next
Lemma, which gives the values of these functions when u and v are constant.

Lemma 3.12 Let u and v be constant on the interval I. Then
(i) Av,u(I) = Cv,u,0(I) = uv |I|1/p′+1/q

C1,1,0([0, 1]),
(ii) Cv,u,+(I) = uv |I|1/p′+1/q

C1,1,+([0, 1]),
(iii) Cv,u,+(I) = 2Av,u(I) = 2Cv,u,0(I).
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Proof. For (ii) note that

Cv,u,+(I) = sup
supp f⊂I

‖Tv,uf‖q,I

‖f‖p,I

= sup
supp f⊂I

∥∥v ∫ ·
a
uf(t)dt

∥∥
q,I

‖f‖p,I

= uv sup
supp f⊂I

∥∥∫ ·
a
f(t)dt

∥∥
q,I

‖f‖p,I

= uv |I|1/p′+1/q sup
supp f⊂[0,1]

∥∥∫ ·
0
f(t)dt

∥∥
q,[0,1]

‖f‖p,[0,1]

= uv |I|1/p′+1/q
C1,1,+([0, 1]).

In the same way we can prove (i). Finally, (iii) follows from (i) and (ii), together
with Lemmas 2.2, 2.3 and 3.4.

From [2] and [20] (see also [16] for p = q) we have

Lemma 3.13 Let f(t) = c(Sf)′(t), where (Sf)(t) = csinpq(πpqt), (T0f)(t) =
csinpq(πpqt) and c is an arbitrary non-zero constant. Then

A1,1([−1/2, 1/2]) =
‖T0f‖q,[0,1]

‖f‖p,[0,1]

=
‖Sf‖q,[−1/2,1/2]

‖f‖p,[−1/2,1/2]

=
(p′)1/qq1/p′(p′ + q)1/p−1/q

2πpq

and

C1,1,0([0, 1]) =
‖Sf‖q,[0,1]

‖f‖p,[0,1]

=
(p′)1/qq1/p′(p′ + q)1/p−1/q

2πpq
.

Note that A1,1([0, 1]) = A1,1([−1/2, 1/2]) and the extremal functions for
A1,1([0, 1]) can be obtained by translation of the extremal function for A1,1([−1/2, 1/2]).
Now we establish the continuous dependence of Av,u(I), Cv,u,0(I) and Cv,u,+(I)
on u and v.

Lemma 3.14 Let u1, u2 and v be positive weights on I with u1, u2 ∈ Lp′(I) and
v ∈ Lq(I). Then
(i) |Av,u1(I)−Av,u2(I)| ≤ ‖v‖q ‖u1 − u2‖p′

(ii) |Cv,u1,+(I)− Cv,u2,+(I)| ≤ ‖v‖q ‖u1 − u2‖p′ ,
(iii) |Cv,u1,0(I)− Cv,u2,0(I)| ≤ 2 ‖v‖q ‖u1 − u2‖p′
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Proof. Let us start with (i). Without loss of generality we may suppose that
Av,u1(I) ≥ Av,u2(I). Then

Av,u1(I) = sup
‖f‖p,I≤1

inf
c∈I

‖v
[∫ .

c

(u1 − u2 + u2)fdt

]
‖q,I

≤ sup
‖f‖p,I≤1

inf
c∈I

[
‖v
∫ .

c

(u1 − u2)fdt‖q,I

+‖v
∫ .

c

u2fdt‖q,I

]
≤ sup

‖f‖p,I≤1

inf
c∈I

[‖v‖q,I‖u1 − u2‖p′,I

+ ‖v
∫ .

c

u2fdt‖q,I

]
≤ ‖v‖q,I‖u1 − u2‖p′,I + Av,u2(I).

For (ii) the argument is simpler. In what follows all the suprema are taken
over all functions f such that supp f ⊂ I and ‖f‖p ≤ 1. Then

Cv,u1,+(I) = sup
∥∥∥∥v(·)

∫ ·

a

f(t)u1(t)dt

∥∥∥∥
q

≤ sup

{∥∥∥∥v(·)
∫ ·

a

f(t) |u1(t)− u2(t)| dt

∥∥∥∥
q

+
∥∥∥∥v(·)

∫ ·

a

f(t)u2(t)dt

∥∥∥∥
q

}

≤ sup ‖v‖q ‖f‖p ‖u1 − u2‖p′ + sup
∥∥∥∥v(·)

∫ ·

a

f(t)u2(t)dt

∥∥∥∥
q

≤ ‖v‖q ‖u1 − u2‖p′ + Cv,u2,+(I).

Finally we prove (iii). For i = 0, 1 we set

Ui =

{
f :
∫ b

a

ui(t)f(t)dt = 0, ‖f‖p = 1

}
,

Vi =

{
f :

∣∣∣∣∣
∫ b

a

ui(t)f(t)dt

∣∣∣∣∣ ≤ ‖u2 − u1‖p′ , ‖f‖p = 1

}
.

Since ∣∣∣∣∣
∫ b

a

u1(t)f(t)dt

∣∣∣∣∣ ≤ ‖u2 − u1‖p′ ‖f‖p +

∣∣∣∣∣
∫ b

a

u2(t)f(t)dt

∣∣∣∣∣ ,
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we have U2 ⊂ V1. Correspondingly, U1 ⊂ V2. Either Cv,u1,0(I) ≤ Cv,u2,0(I) or
Cv,u1,0(I) ≥ Cv,u2,0(I). Suppose that the first case holds. Then

Cv,u2,0(I) = sup
f∈U2

∥∥∥∥v(·)
∫ ·

a

f(u2 − u1 + u1)dt

∥∥∥∥
q

≤ sup
f∈U2

{
‖v‖q ‖u2 − u1‖p′ ‖f‖p +

∥∥∥∥v(·)
∫ ·

a

fu1dt

∥∥∥∥
q

}

≤ ‖v‖q ‖u2 − u1‖p′ + sup
f∈U1∪(V1\U1)

∥∥∥∥v(·)
∫ ·

a

fu1dt

∥∥∥∥
q

≤ 2 ‖v‖q ‖u2 − u1‖p′ + sup
f∈U1

∥∥∥∥v(·)
∫ ·

a

fu1dt

∥∥∥∥
q

.

Hence
Cv,u2,0(I) ≤ 2 ‖v‖q ‖u2 − u1‖p′ + Cv,u1,0(I).

The other case is handled similarly, and the proof of (iii) is complete.

Lemma 3.15 Let u, v1 and v2 be weights on I with u ∈ Lp′(I) and v1, v2 ∈
Lq(I). Then
(i) |Av2,u(I)−Av1,u(I)| ≤ ‖v1 − v2‖q ‖u‖p′

(ii) |Cv2,u,+(I)− Cv1,u,+(I)| ≤ ‖v1 − v2‖q ‖u‖p′ ,
(iii) |Cv2,u,0(I)− Cv1,u,0(I)| ≤ ‖v1 − v2‖q ‖u‖p′ .

Proof. The proof of (i) and (ii) is just a simple modification of the previous
proof. Let us prove (iii). The suprema in what follows are taken over all
functions f such that supp f, supp Tv1,uf ⊂ I and ‖f‖p ≤ 1. Note that supp

13



Tv1,uf = supp Tv2,uf. Then

Cv1,u,0(I) = sup
∥∥∥∥v1(·)

∫ ·

a

f(t)u(t)dt

∥∥∥∥
q

≤ sup

{∥∥∥∥(v1 − v2)
∫ ·

a

f(t)u(t)dt

∥∥∥∥
q

+
∥∥∥∥v2

∫ ·

a

f(t)u(t)dt

∥∥∥∥
q

}

≤ sup

{
‖v1 − v2‖q ‖f‖p ‖u‖p′ +

∥∥∥∥v2

∫ ·

a

f(t)u(t)dt

∥∥∥∥
q

}

≤ ‖v1 − v2‖q ‖u‖p′ + sup
∥∥∥∥v2

∫ ·

a

f(t)u(t)dt

∥∥∥∥
q

≤ ‖v1 − v2‖q ‖u‖p′ + Cv2,u,0(I).

The rest is now clear.

4 The main theorem

Our first objective is to make more precise the relationship between B(ε) and
ε. As before we suppose that u ∈ Lp′(I) and v ∈ Lq(I).

Lemma 4.1 Let 1 < q ≤ p < ∞ and r = 1/q + 1/p′. Then

lim
ε→0+

εB(ε)r = A1,1([0, 1])
(∫

I

(uv)1/rdt

)r

.

Proof. Let β > 0. There are step functions uβ , vβ , with the same steps, such
that ‖uβ − u‖p′,I ≤ β, ‖vβ − v‖q,I ≤ β and∣∣∣∣∫

I

(uv)1/rdt−
∫

I

(uβvβ)1/rdt

∣∣∣∣ ≤ β.

Let N(β) be the number of steps in the functions uβ , vβ and let ε > 0 be so
chosen that B(ε) � N(β). Let {Ji}N(β)

i=1 be the set of all intervals on which
uβ and vβ are constant, let {ai}N(β)

i=1 be the sequence from Lemma 3.9 and put
Ii = [ai−1, ai] for i = 2, ..., B(ε). Plainly

I = ∪N(β)
i=1 Ji = ∪B(ε)

i=1 Ii.

Now define sets B,B1 and B2 by

B = {1, ..., B(ε)} = B1 ∪B2,

14



where

B1 := {i ∈ B : Ii ⊂ Jj for some j, 1 ≤ j ≤ N(β)}, B2 = B\B1.

Put
IB1 = ∪i∈B1Ii, IB2 = ∪i∈B2Ii.

Then for Ii (i ∈ B1\{B(ε), 2}) we have, using Lemmas 3.12, 3.14 and 3.15,

∣∣∣Av,u(Ii)− uβvβ |Ii|1/p′+1/q
A1,1([0, 1])

∣∣∣ ≤ ‖uβ − u‖p′,Ii
‖v‖q,Ii

+ ‖u‖p′,Ii
‖vβ − v‖q,Ii

We recall that for 0 < s < 1, ‖.‖s is a quasi-norm which satisfies the inequal-
ity ‖f + g‖s

s ≤ ‖f‖s
s + ‖g‖s

s and we have also
∑
|fi + gi|s ≤

∑
|fi|s +

∑
|gi|s.

Thus with the understanding that the summations are over all i ∈ B1\{B(ε), 2},
together with help from this and the Hölder inequality,

∑
i

∣∣Av,u(Ii)− uβvβ |Ii|1/p′+1/qA1,1([0, 1])
∣∣1/r

≤
∑

i

(‖uβ − u‖p′,Ii
‖v‖q,Ii

+ ‖u‖p′,Ii
‖vβ − v‖q,Ii

)1/r

≤
∑

i

(‖uβ − u‖p′,Ii
‖v‖q,Ii

)1/r +
∑

i

(‖u‖p′,Ii
‖vβ − v‖q,Ii

)1/r

≤ ‖uβ − u‖1/r
p′,I‖v‖

1/r
q,I + ‖u‖1/r

p′,I‖vβ − v‖1/r
q,I ,

and

∑
i

∣∣Av,u(Ii)− uβvβ |Ii|1/p′+1/qA1,1([0, 1])
∣∣1/r

≥
∣∣∣∑

i

∣∣Av,u(Ii)
∣∣1/r −

∑
i

∣∣uβvβ |Ii|1/p′+1/qA1,1([0, 1])
∣∣1/r

∣∣∣
≥
∣∣∣ {(#B1 − 1)ε1/r

}
− (A1,1([0, 1]))1/r

(∫
IB1\{B(ε)}

(uβvβ)1/r

)∣∣∣.
Thus∣∣∣∣∣(#B1 − 1)ε1/r − (A1,1([0, 1]))1/r

(∫
IB1\{B(ε)}

(uβvβ)1/r

)∣∣∣∣∣ ≤ β1/r(‖v‖1/r
q,I +‖u‖1/r

p,I ).

When ε ↓ 0, IB1\{B(ε) ↑ I and #B1/#B ↑ 1. Hence

lim
ε→0+

∣∣∣∣ε(#B)r −A1,1([0, 1])
(∫

I

(uβvβ)1/r

)r∣∣∣∣ ≤ 2β(‖v‖q,I + ‖u‖p,I)
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and the result follows.
Next we establish a connection with the Kolmogorov widths for Tv,u.

Lemma 4.2 Let ε > 0 be such that B(ε) > 2. Then

aB(ε)(T ) ≤ εB(ε)1/q−1/p.

Proof. Since T is compact, B(ε) < ∞. By Lemma 3.9, there are a sequence
{ai}B(ε)

i=1 and intervals Ii = [ai−1, ai] such that Cv,u,+(I1) = ε, Av,u(Ii) = ε for
i = 2, ..., B(ε)− 1 and Av,u(IB(ε)) ≤ ε. For each i with 1 < i ≤ B(ε)− 1, denote
by ci ∈ Ii a point such that

Av,u(Ii) = sup
f∈Lp(Ii)

‖Tci,Iif‖q

‖f‖p
,

Put

PB(ε)f(x) =

B(ε)∑
i=2

(Tf) (ci)χIi
(x)

+ 0 · χI1(x);

this is a linear map Lp → Lq with rank B(ε)− 1.
We see that

aB(ε)(T ) ≤ sup
f∈Lp(I)

‖Tf − PB(ε)f‖q,I

‖f‖p,I

= sup
f∈Lp(I)

(∑B(ε)
i=2 ‖Tf(.)− Tf(ci)‖q

q,Ii
+ ‖Tf(.)‖q

q,I1

)1/q

‖f‖p,I

≤ sup
f∈Lp(I)

(∑B(ε)
i=2 ‖Tci

f(.)‖q
q,Ii

+ ‖Tf(.)‖q
q,I1

)1/q

‖f‖p,I

≤ sup
f∈Lp(I)

ε
(∑B(ε)

i=1 ‖f‖q
p,Ii

)1/q

‖f‖p,I

≤ sup
f∈Lp(I)

ε[B(ε)]1/q−1/p)
(∑B(ε)

i=1 ‖f‖p
p,Ii

)1/p

‖f‖p,I

≤ ε[B(ε)]1/q−1/p.

To prove the reverse inequality with the Kolmogorov numbers we first recall
the Makovoz lemma (see 3.11 in [1]).

Lemma 4.3 Let Un ⊂ {Tf ; ‖f‖p,I ≤ 1} be a continuous and odd image of the
unit sphere Sn in Rn+1 endowed with the l1 norm. Then

dn(T ) ≥ inf{‖x‖q,I : x ∈ Un}
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Lemma 4.4 Let 1 < q ≤ p < ∞. Then

lim inf
n→∞

ndn(T ) ≥ C1,1,0([0, 1])
(∫

I

|uv|1/r

)r

.

Proof. Let n ∈ N and define

On =
{

z = (z1, ..., zn+1) ∈ Rn+1 :
∑n+1

i=1
|zi| = 1

}
.

For the sake of simplicity we suppose that I = [a, b] = [0, 1]. We define

un,z(.) =
n+1∑
i=1

χIi(.)Tfi(.)

where z = (z1, z2, ..., zn+1) ∈ On, Ij = [
∑j−1

i=0 |zi|,
∑j

i=1 |zi|], for j = 1, ..., n + 1,
with z0 = 0 and

suppfi = Ii, fi(t) sign(zi) ≥ 0 for all t ∈ I,

‖fi‖p,Ii
= 1,

‖Tfi‖q,Ii

‖fi‖p,Ii

= Cv,u,0(Ii).

Then we can put Un = {un,z(.); z ∈ On} and have

dn(T ) ≥ inf{‖un,z(.)‖q,I , un,z(.) ∈ Un}n−1/p = inf{‖un,z(.)‖q,I , z ∈ On}n−1/p.

Let β > 0. There are step functions uβ , vβ , with the same steps, such that
‖uβ − u‖p′,I ≤ β, ‖vβ − v‖q,I ≤ β and∣∣∣∣∫

I

(uv)1/rdt−
∫

I

(uβvβ)1/rdt

∣∣∣∣ ≤ β,

where r = 1/q + 1/p′.
Let N(β) be the number of steps in the functions uβ , vβ . Denote by {yi}N(β)

i=1

the set of points of discontinuity of uβ , vβ . We define Tβf(.) = vβ(.)
∫ .

a
uβ(t)f(t)dt

and

uβ
n,z(.) =

n+1∑
i=1

χIi
(.)Tβfi(.)

where z = (z1, z2, ..., zn+1) ∈ On, Ij = [
∑j−1

i=0 |zi|,
∑j

i=1 |zi|], for j = 1, ..., n + 1,
with z0 = 0 and

suppfi = Ij , fi(t)sign(zi) ≥ 0 for all t ∈ I,

‖fi‖p,Ii = 1,
‖Tβfi‖q,Ii

‖fi‖p,Ii

= Cvβ ,uβ ,0(Ii).
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Putting Uβ
n = {uβ

n,z(.); z ∈ On} we have

dn(Tβ) ≥ inf{‖uβ
n,z(.)‖q,I , u

β
n,z(.) ∈ Uβ

n }n−1/p = inf{‖uβ
n,z(.)‖q,I , z ∈ On}n−1/p.

Now we modify the set Uβ
n . Put

ũβ
n,z(.) =

∑
i

χJi
(.)Tβfi(.)

where z = (z1, z2, ..., zn+1) ∈ On, the Ji are intervals built from consecutive
pairs of points from P := {

∑j
i=1 |zi|, j = 1, .., n + 1} ∪ {yi, i = 1, .., N(β)} and

suppfi = Jj , fi(t)sign(zi) ≥ 0 for all t ∈ I,

‖fi‖p,Ji = 1,
‖Tβfi‖q,Ji

‖fi‖p,Ji

= Cvβ ,uβ ,0(Ji).

Then with Ũβ
n = {ũβ

n,z(.); z ∈ On} we have

dn(Tβ) ≥ inf{‖uβ
n,z(.)‖q,I , u

β
n,z(.) ∈ Uβ

n }n
−1/p
β ≥ inf{‖ũβ

n,z(.)‖q,I , ũ
β
n,z(.) ∈ Ũβ

n }n
−1/p
β ,

where n ≤ nβ := #P ≤ n + N(β). It follows that

‖un,z(.)‖q = (
n+1∑
i=1

(Cv,u,0(Ii))q)1/q ≥ (
nβ∑
j=1

(Cv,u,0(Jj))q)1/q

and with the help of Lemma 3.12:

‖ũn,z(.)‖q = (
nβ∑
j=1

(Cvβ ,uβ ,0(Jj))q)1/q = (
nβ∑
j=1

(uβvβ |Jj |1/p′+1/q
C1,1,0([0, 1]))q)1/q.

By Lemma 3.14 and Lemma 3.15:

(
∑
j=1

|Cvβ ,uβ ,0(Jj)− Cv,u,0(Jj)|q)1/q ≤

≤ (
∑
j=1

|2 ‖uβ − u‖p′,Ji
‖v‖q,Ji

+ ‖u‖p′,Ji
‖vβ − v‖q,Ji

|q)1/q

≤ 2(max
j
‖uβ − u‖p′,Ji

)‖v‖q,I + ‖u‖p′,Iβ

≤ β(2‖v‖q,I + ‖u‖p′,I).

From the definition of Jj and with help of the Hölder inequality we have

[∫
I

|uβvβ |1/r

]r

=

 nβ∑
j=1

|uβvβ |1/r|Ji|

r

≤

 nβ∑
j=1

|uβvβ |q|Jj |1+q/p′

1/q

n
1/p′

β .
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By combining all previous observations we have:

‖un(z)‖q ≥

 nβ∑
j=1

(Cv,u,0(Jj))
q

1/q

≥

 nβ∑
j=1

(
uβvβ |Jj |1/p′+1/q

C1,1,0([0, 1])
)q

1/q

− β(2‖v‖q,I + ‖u‖p′,I)

≥ C1,1,0([0, 1])

 nβ∑
j=1

|uβvβ |1/r |Jj |

r

n
−1/p′

β − β(2‖v‖q,I + ‖u‖p′,I)

= C1,1,0([0, 1])
(∫

I

|uβvβ |1/r

)r

n
−1/p′

β − β(2‖v‖q,I + ‖u‖p′,I)

≥ C1,1,0([0, 1])
(∫

I

(uv)1/rdt

)r

n
−1/p′

β − β(2‖v‖q,I + ‖u‖p′,I)− βrC1,1,0([0, 1])n−1/p′

β .

Take small β > 0 and let n →∞: then nβ/n → 1 and

lim inf
n→∞

dn(T )n ≥ C1,1,0([0, 1])
(∫

I

|uv|1/r

)r

−β(2‖v‖q,I+‖u‖p′,I)−βrC1,1,0([0, 1])n−1/p′

β .

Taking β → 0 we finish the proof.

Theorem 4.5 Suppose that u ∈ Lp′(I) and v ∈ Lq(I) and 1 < q ≤ p < ∞. Let
sn denote an(T ) or dn(T ). Then

lim
n→∞

nsn = A1,1([0, 1])
(∫

I

(uv)1/r

)r

,

where r = 1/q + 1/p′.

Proof. From the combination of Lemma 4.2, Lemma 4.1, Lemma 4.4, the strict
monotonicity of B(ε) given by Lemma 3.11 and the fact that an(T ) ≥ dn(T ),
we have

A1,1([0, 1])
(∫

I

(uv)1/r

)r

= lim
ε→0

ε[B(ε)]r = lim
ε→0

ε[B(ε)]1/q−1/pB(ε)

≥ lim sup
ε→0

aB(ε)B(ε) = lim sup
n→∞

ann ≥ lim sup
n→∞

ndn

≥ lim inf
n→∞

ndn ≥ A1,1([0, 1])
(∫

I

(uv)1/r

)r

.

The result follows.
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